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Summary. The paper deals with the analysis of multiple exposures on the occurrence of a dis-
ease. We consider observational case-control data in a multilevel setting, with subjects nested
in clusters. A hierarchical Bayesian model is proposed to tackle the within-cluster dependence
and the correlation among the exposures, simultaneously. To do that, we assign prior distribu-
tions on the crucial parameters by exploiting additional information at different levels, as well
as reasonable assumptions and previous knowledge. The model is applied to a multi-centric
study aiming to investigate the association of dietary exposures with the colon-rectum can-
cer. Compared with results obtained with conventional regressions, our hierarchical Bayesian
model yields great gains in terms of more consistent and less biased estimates.
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1. Introduction and background

When a case-control study aims to investigate the exposures which can be the cause of the
occurrence of a disease, epidemiologists often deal with some complications that need to be
somehow controlled during the analysis. In such cases, the use of the models conventionally
employed becomes improper, yielding apparent associations between some exposures and
the disease and unstable corresponding estimates.

We consider two kinds of such complications. The first one concerns the structure of the
data and occurs whenever subjects are nested into higher level units involving their own
variability and a dependence among the related observations. The commonest examples
in epidemiology lie in patients admitted to different hospitals or wards, as well as subjects
living in various neighborhoods, towns or countries (Leyland and Goldstein (2001)). More
generally, the nested structure of data is a common phenomenon, especially in behavioral
and social research, where the evaluation of the relationship between individuals and society
is of crucial importance. In all these cases, the dependence of data is a focal interest of the
research. Conversely, the hierarchy of data can be generated by the sampling design, such
as in the multi-stage sampling, which is frequently employed in the traditional surveys to
reduce the costs of data collection. As a result, the dependence is treated as a nuisance
which requires further adjustments during the analysis. Whatever the dependence arises
from, it is ”neither accidental nor ignorable” (Goldstein (1999)). Indeed, the risks of drawing
wrong conclusions are high if the clustering of the data is disregarded (Snijders and Bosker
(1999)).
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The joint analysis of multiple exposures gives rise to the second complication. Indeed,
many epidemiologic studies involve a set of potential effects to be compared and, as a result,
face problems of multiple inference (Thomas et al. (1985)). When a conventional analysis
is carried out, these problems are revealed by failures in the convergence of the estimation
process or by implausible large and unstable estimates, especially when the samples are small
and sparse (Greenland (1992); Greenland (1993)). The main reason is that these effects are
often correlated. Therefore, we need to take into account for a covariance structure among
them to reduce the random errors in the estimates.

Both these complications have been tackled separately in various applications and sim-
ulations by using hierarchical modeling (see for example, Diex-Roux (2000), Diex-Roux
(2004), Greenland (1992), Witte et al. (1994)). Over the last 50 years, hierarchical mod-
eling has appeared in various forms to address many multiparameter problems, involving
two or more levels of analysis and specifying various relationships among study variables
and parameters. In epidemiological research, some noteworthy applications include dis-
ease mapping (see, e.g., Bernardinelli et al. (1995)), spatial and spatio-temporal analysis
(Lawson (2001)), study of health-care programs and institutions (Burgess et al. (2000)).
Moreover, the large increase in computing power over recent decades has strongly sup-
ported the spreading of this approach as a practical and powerful analysis tool (Graham
(2008); Raudenbush and Bryk (2002); Greenland (2000)).

When the structure of the data is nested, hierarchical modeling allows to handle simul-
taneously multiple levels of information and dependencies (Raudenbush and Bryk (2002);
Leyland and Goldstein (2001); Snijders and Bosker (1999); Hox (1995)). In this setting,
we often refer to multilevel regression models. These can appropriately address different
research aims: (i) improved estimation of the individual effects under investigation (i.e., all
the available information at both levels are efficiently used in order to exploit both the group
features and the relations existing in the overall sample); (ii) evaluation of the cross-level
effects (e.g., how variables measured at one level affect relations occurring at another); and
(iii) decomposition of the variance-covariance components at each level. Although it was
firstly introduced and used in educational and social fields, during the past decade the mul-
tilevel approach has been increasingly employed also in epidemiologic analysis as a powerful
strategy to explain the correlation between analytical units (see for example, Leyland and
Goldstein (2001); Diex-Roux (2004); Cubbin and Winkleby (2005)).

As far as the multiple exposure issue is concerned, numerous authors have shown that
empirical and semi-Bayes estimates from hierarchical models can improve standard regres-
sion estimation, allowing for correlated associations and showing to be less sensitive to
sampling error and model misspecification (Morris (1983); Greenland (1992); Greenland
(1993); Greenland (1997)). Indeed, relying on the presence of some additional information
suitable to mediate the final effects of the exposures, they can be arranged in a second-
stage regression to model similarities among the parameters of interest (Witte et al. (1994);
Rothman et al. (2008)).

Although developed separately and for different purposes, hierarchical modeling for cor-
related effects an for nested data have important communalities, which can be strengthened
especially when a Bayesian perspective is adopted. The use of Bayesian methods for epi-
demiological research is a relevant topic discussed by several authors (Greenland (2006);
Greenland (2007); MacLehose et al. (2007); Graham (2008)). They all support the use of
prior assumptions as they are more reasonable than those implicitly made by frequentist
models and address the problems of sparse data, multiple comparisons, subgroup analysis
and study bias. The main feature is that prior expectations on the parameters are em-
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bedded in a probability model with its own uncertainty to form a hierarchy of models and
parameters. As a result, the corresponding posterior estimates are compromises between
summaries of the sample data and such prior expectations.

In this framework, the assignment of prior judgements is of primary importance. In gen-
eral, a reasonable Bayesian analysis needs a prior that reflects results form previous studies
or review. A fully-Bayesian (FB) approach forces all the parameters in the model to be
random and corresponding probability distributions to be assigned. When these prior dis-
tributions are in the form of prior data, we refer to empirical prior, arising from frequentist
shrinkage-estimation or empirical-Bayes (EB) methods (Maritz and Lwin (1989)). More-
over, the increasing availability of data that can be easily linked each other by computer
programs has strongly supported the use of the EB methods. Actually, both the hierarchi-
cal models described above for nested data and correlated effects involve the EB approach,
as they employ additional information on the crucial parameters of interest arranged in a
hierarchy of probability models.

Instead of assigning a full prior distribution, another method consists in fixing in advance
a specific value for one or more parameters using background information. This strategy,
called semi-Bayes (SB) approach, is commonly employed to avoid the drawback of absurd
estimates of some (hyper-) parameters (Greenland (1992); Greenland (2000)).

Such criteria for the assignment of the priors can be jointly adopted to specify the
probability distributions of different parameters. Indeed, the Bayes empirical-Bayes (BEB)
methods (Deeley and Lindley (1981)) exploit the available prior data for some (hyper-)
parameters and some kinds of proper distributions for the others. In the latter case, the
specification can involve different levels of knowledge, as well as reasonable assumptions, to
develop an informative prior. Otherwise, noninformative distributions can be specified.

In this paper, we aim to extend the hierarchical approach in a multilevel setting for
the analysis of multiple exposures and highly correlated effects. We attempt to improve the
ordinary estimates of such effects by using some descriptive information to develop a second-
stage regression model mediating the effects of the exposure variables, separately by group
membership but into a single analysis. Such additional data are second-stage covariates
which can arise from specific features of the clusters, as well as information about the
regressors. In addition, we adopt a BEB perspective and exploit the previous knowledge
on the other (hyper-) parameters to specify prior distributions, which are suitable with
respect to the problem at hand. The main purpose is to provide a flexible and powerful
framework for the analysis of complex case-control data and to encourage the use of the
Bayesian methods in epidemiology. In order to prove and measure the gains in the final
estimates of the crucial parameters, we consider a notable application aiming to investigate
the association of dietary exposures with the occurrence of colon-rectum cancer. In this
study, a multilevel setting is involved, as individuals are enrolled from different countries
and centers of Europe. Additional data on the nutrient compositions of each dietary item
are arranged to model the correlation among the exposures.

The paper develops as follows. We firstly introduce the conventional analysis employed
for the evaluation of multiple exposures on a disease and the corresponding hierarchical
approach when the data are nested. In particular, the case of observational case-control
studies is considered. Then, the extension to correlated multiple effects of the exposures in
the Bayesian setting is described in sections 3 and 4. In section 5, we compare the hierar-
chical Bayesian regression method with the conventional maximum-likelihood results with
respect to the study application. The last section summarizes our findings and concludes.
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2. Hierarchical approaches for nested data (multilevel models)

We consider a case-control study, where the presence/absence of a disease is denoted by the
individual indicator Y (Y = 1 for cases, Y = 0 for control units) and the information on K
exposures are summarized by the matrix X = [xik]. Under the independence assumption of
the responses Yi across the units, a conventional analysis would use the method of Maximum
Likelihood (ML) to estimate the effects β = [β1, β2, . . . , βK ] of the exposures for i = 1, ..., n
individuals in the sample according to the following logistic regression

Pr[(yi = 1|xi;wi] =
exp(α +

∑K
k=1 βkxik +

∑P
p=1 γpwip)

1 + exp(α +
∑K

k=1 βkxik +
∑P

p=1 γpwip)

or, analogously,

logit[E(yi|xi; wi]) = α +
K∑

k=1

βkxik +
P∑

p=1

γpwip. (1)

Generally, the effects of a set of potential confounders (such as age and sex of individuals)
need to be controlled for (Rothman et al. (2008)). In our formulation, they are embedded in
the model specification as additional covariates in the matrix W = [wip] with corresponding
vector of coefficients γ = [γ1, . . . , γP ].

When the data structure is hierarchical with subjects at level 1 nested in clusters at
level 2, the basic independence assumption across units is violated. If we ignore this within-
cluster dependence, the conventional analysis yields incorrect standard errors and inefficient
estimates (Diex-Roux (2000)). Therefore, unless some different statistical models are in-
troduced, we should be forced to carry out separate ordinary logistic regressions, one for
each cluster. Conversely, a proper method to manage correlations among the responses
is represented by the hierarchical or multilevel modeling (Raudenbush and Bryk (2002);
Leyland and Goldstein (2001); Snijders and Bosker (1999); Hox (1995)). This allows to
unify the analysis across the clusters, partition the variability at both levels and choose the
parameters to be random among the groups.

The simplest multilevel regression is represented by the random-intercept model, where
among the set of parameters only the intercept varies across the clusters. If we can further
suppose the effects of the exposures are random†, the resulting random-slopes model is

logit[E(yij |xij ;wij ]) = αj +
K∑

k=1

βkjxikj +
P∑

p=1

γpwipj (2)

where the n level-1 subjects in the J level-2 groups (with i = 1, ..., nj , n =
∑

j nj and
j = 1, ..., J) are characterized by the observed data, now denoted by the double index ij.
The effects of potential confounders are estimated regardless of the nested structure of data.
Conversely, the intercepts and the exposure effects are influenced by the data hierarchy and
are modeled by a set of level-2 regressions, which can exploit some additional information.

If we can rely on the presence of a number R of level-2 data, vj1, . . . , vjR, characterizing
the group units, they can be employed as regressors in order to explain the cluster variability

†The effects of the potential confounders are reasonably assumed to be independent on the group
membership.
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and to shrink the estimation of the corresponding random coefficients toward each other
when different groups have similar information. As an example, in a study of patients nested
into hospitals a typical level-2 covariate should be the classification into private or public
hospitals or the numbers of doctors working in each hospital. In such cases, the level-2
regressions for the intercepts and slopes can be formulated as

αj = ψ00 +
R∑

r=1

ψ0rvjr + u0j (3)

βkj = ψk0 +
R∑

r=1

ψkrvjr + ukj (4)

where the vectors ψk∗ = [ψ0k∗ , ψ1k∗ , . . . , ψKk∗ ] (with k∗ = 0, 1, . . . ,K) include the level-2
intercepts and coefficients; and uk∗j are the level-2 residuals, which are assumed to be nor-
mally distributed with null means. In the standard formulation, the dispersion of the level-2
random effects uk∗j is represented by a variance-covariance matrix Φ, where the variance
terms are denoted by φ2

k∗ and the covariances between slopes and intercepts by φk∗k′ (with
k′ = 0, 1, . . . ,K and k∗ 6= k′). They are all defined as conditional or residual compo-
nents. Conversely, whenever no level-2 predictors are included, we refer to unconditional
variance-covariance components (Raudenbush and Bryk (2002)).

3. Hierarchical modeling for correlated exposures and nested data

Let consider the non-multilevel case in the conventional logistic regression (1), where it
is crucial to estimate the effects of the exposures in vector β. When a large number of
exposures are involved, we often face several drawback due to interactions and collinearity
among covariates or data which can be too sparse to yield accurate estimates (Thomas et
al., 1985). As a result, a number of these standard ML estimates can show large absolute
values, suggesting strong associations often implausible according to the relevant epidemio-
logic literature. A reasonable approach to address this problem consists in exploiting some
information about the regressors X, which can mediate their final effects (Morris (1983);
Greenland (1992); Greenland (1993); Greenland (1997)). For instance, in a study where
the vitamin intakes are related to the occurrence of a disease, we can exploit the distinction
between water-soluble and fat-soluble vitamins; or if we aim to investigate the chlorinated
hydrocarbon levels in tissues, we would know the degree of chlorination of measured com-
pounds (Rothman et al. (2008)). In this setting, the coefficients βk are supposed to be
random parameters and modeled through these prior data in matrix Z = [zqk] as follows

βk = π0 +
Q∑

q=1

πqzqk + εk (5)

where the column vector π = [π1, π2, . . . , πQ] includes the effects of such prior information
on the exposures (and on the disease) common to all the exposures and εk are independent
and normal distributed residuals with null mean and constant variance. This additional
regression is shown to improve the final estimate of effects βk by pulling the ML estimates
from the conventional logistic model toward each other when corresponding exposures are
alike in terms of prior information.
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When the structure of the data is hierarchical and we aim to evaluate the effects of
exposures with respect to the different clusters according to regression (2), the inference
problems due to the joint analysis of multiple exposures can be strengthened by the sparse-
ness of information in small groups. The level-2 regressions for slopes in the multilevel
setting (4) can partially model the associations among the exposures thanks to the resid-
ual covariance terms included in matrix Φ. However, a more appropriate approach should
include again some information about the regressors X in order to explain (part of) the
covariance components.

With this aim, we can generalize the standard random-slopes model (4) to further control
for interactions among the effects. We consider prior features Z on the exposures, which
are supposed to be common to all the J clusters. The resulting model can be expressed as

βkj = ψk0 +
R∑

r=1

ψkrvjr +
Q∑

q=1

πqzqk + δkj (6)

where δkj are the residuals which represent the effect not captured by the whole set of
level-2 covariates for each exposure and cluster. They are now assumed to be independent,
as well as normal distributed quantities having null means and variances τ2

k . We further
simplify the analysis by supposing the level-2 residuals u0j and δkj are independent. As a
result, the more the exposures share similar features in both the prior data in Z and group
membership, the more the corresponding estimates will be alike.

The basic level-2 regression (6) for correlated effects and nested data offers the oppor-
tunity of a wide range of generalizations, as well as simpler submodels. Some examples lie
into including cluster-specific prior data on the exposures (Zj) or constraining to a con-
stant level-2 variance (in order to reduce the effort in the estimation process) or removing
the group covariates (e.g., if they are not available). Anyway, the model specification de-
pends on the problem at hand and needs to be supported by reasonable assumptions for
the application.

4. The Bayesian perspective

Under the frequentist perspective, according to the model specification (2), (3) and (6) there
are both fixed (γ, ψk∗ , π, φ2

0, τ2
k ) and random coefficients (αj , βj , u0j , δj). This is clearly

an EB approach, as for the random intercepts αj and effects βj specific prior distributions
based on the additional data are fully assigned through the regressions in (3) and (6). In
this framework, different methods for fitting the model have been proposed. In order to
maximize the likelihood respect to the parameters to be estimated, the integral defining
this function can be evaluated by Monte-Carlo techniques (Gelman et al. (2003)) or by
approximation, such as penalized quasi-likelihood (Breslow and Clayton (1993)), pseudo-
likelihood (Wolfinger and O’Connel (1993)) and other related methods, which in the simplest
cases can be carried out with available procedures in ordinary statistical softwares (Witte
et al. (1998); Witte et al. (2000)).

However, the frequentist EB method often yields null estimates for the level-2 variances
τ2
k leading to an extreme shrinkage estimation of the target vectors βj toward the estimated

prior means. This seems more likely to reflect a marginal likelihood for τ2
k with peak at

zero, rather than true under dispersion (Greenland (1992)). Moreover, a credible result
would achieve a more reasonable positive value for τ2

k . Indeed, it represents the uncertainty
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about the residuals δkj and therefore also about the estimation of βkj after incorporating
the level-2 information. In particular, if τ2

k tends to ∞, the hierarchical model and the
conventional logistic regression come to the same results according to the estimates of βkj .
On the contrary, if τ2

k = 0, then the residuals δkj results to be null, meaning that we
implicitly assume the absence of any effects of first-stage covariates in Xj beyond those of
second-stage regressors in Zj and V j .

Previous works suggest the SB approach as a good and easy strategy to tackle the
problem of null estimation of the level-2 variance parameters (Greenland (1992)) by setting
specific suitable values for τ2

k . In particular, SB estimates appear to be better than EB
estimates when the sample sizes and the ratio of subjects to parameters are small. More-
over, they are proved to be robust to misspecification (Greenland (1993)). Besides being
frequently employed for the point-assignment of the level-2 variances, such as τ2

k , the SB
approach can be also used to specify the level-2 intercepts. For instance, the intercepts ψk0

in model (6), which reflect the knowledge about any residual effects of the exposures due
to level-2 covariates not included in the analysis, can be differently specified for each expo-
sure with a positive (corresponding to a causative residual effect on the disease), negative
(preventive residual effect) or null (negligible or null residual effect) value. For more details
see Witte et al. (1994). Anyway, a great caution to overspecify these values is required,
especially when either the sample size or number of parameters are large.

Conversely, the BEB approach offers a more appropriate framework. Indeed, it gives
the opportunity of assigning reasonable priors for the parameters τ2

k by letting the data
contribute to their final estimation. As an example, we can suitably suppose that the value
of each τ2

k will be small, on the grounds that most important level-2 covariates have been
included in the analysis. As a consequence, we can identify reasonable values on the residual
variation of the logarithm of the effects βkj (i.e., the Odds Ratio (OR) of each exposure),
reflecting both the prior guess and the corresponding uncertainty for τ2

k . For instance, a
prior guess τ2

k = 0.18 implies a 95% a priori certainty that the residual OR for the effect
of a given unit increase in the k-th exposure lies in a 4-fold range. In order to reflect our
uncertainty in this prior guess, we can further believe that, e.g., 8-fold variation between
the upper and the lower 5% of units is very unlikely (say, less than a 1% chance). These two
assumptions are sufficient to fully specify a proper hyperprior for τ2

k (or for the precision
τ−2
k ) (Gelman et al. (2003)).

Actually, under this Bayesian setting, all the parameters are random with their own
prior distribution to be specified. With this aim, the conjugacy among the distributions
of the parameters at different levels can be exploited to assign informative or, at least,
noninformative priors (Gelman et al. (2003)).

If properly used, the BEB approach represents the best compromise between the SB
analysis for small studies and the EB method in large samples. Moreover, the BEB modeling
can be regarded as a natural generalization of the EB and SB approaches, involving an
additional stage in the hierarchy of models which represents the hyperprior distributions on
parameters defining the descriptive level-2 prior information.

Mainly thanks to the recent development of computational methods, such as Monte
Carlo Markov Chain (MCMC) techniques together with Gibbs sampling or Metropolis-
Hastings algorithm (Gelman et al. (2003); Carlin and Louis (1998)), BEB analysis are now
more practical to be employed and can be entirely exploited in their potentials.
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5. Application

We consider a sample of 24, 376 individuals nested in 27 European centers of recruitment
drawn from the European Prospective Investigation into Cancer and Nutrition (EPIC)
study ‡. Subjects who developed a colon-rectum cancer after the enrollment and until the
last observed year (i.e., 2005) are included in the analysis. Then, a number of controls are
randomly selected to be equal to 5% of the whole control units, separately by center. Some
descriptive statistics about the sample data are reported in Table 1.

The main aim of the analysis is to evaluate the effect of multiple dietary exposures on
the occurrence of colon-rectum cancer cases, separately by center membership. Indeed,
empirical evidence shows significant differences among these groups with respect to the
occurrence of the disease (Pearson chi-squared= 542.7; p-value= 0.000).

The dietary information collected during the enrollment refers to the internal EPIC-
SOFT food classification system and the corresponding individual food intakes are expressed
in grams-per-day (gm/d). A list of 30 food groups are selected to be analyzed according to
the suggestions of nutritionists and epidemiologists working on the study (Table 2).

Additional dietary information on the nutrient compositions are further available. In
detail, these concern the amounts of constituents for one gram of each food. These data are
arranged in matrices where the generic k-th row refers to the amounts of food constituents
for the k- dietary exposure. Such matrices are usually named tables of nutrient composition
and may vary between countries and centers. As a result, they can be generally regarded as
center-specific information which can further contribute to model the variability among the
centers. According to the dietary items involved into the analysis, we select a list including
the most considerable nutrients (Table 3).

We employ a hierarchical Bayesian model to analyze these data by controlling for both
the multilevel structure of the data (i.e., the within-center dependence) and the correlation
among the dietary exposures. At level 1, we consider the logistic regression (2), where both
the intercepts αj and the dietary coefficients βj = [β1j , . . . , βKj ] vary across the centers
denoted by j. In this case, the disease outcome represents the individual indicator of
presence (yij = 1) or absence (yij = 0) of colon-rectum cancer up to year 2005 and the food
intakes are in the matrix Xj = [xikj ]. As potential confounders, arranged in matrix W j =
[wipj ], we consider: age at recruitment, gender, body mass index (BMI), smoking status
(smoker-never-former-unknown), physical activity at work (sedentary occupation-standing
occupation-manual work-heavy manual work-non worker-unknown), alcohol intake. The
corresponding effects are in vector γ = [γ1, . . . , γP ], which are fixed among the centers.

At level 2, since no additional covariates for the centers are available, we consider an
empty model for the intercepts which split the random parameter into a common effect, ψ0,
and a residual term, uj , yielding the differences among the centers:

αj = ψ0 + uj (7)

‡EPIC is an ongoing multi-center study designed to investigate the relationship between nutrition
and cancer, with the potential for studying other diseases as well. Its participants have been enrolled
from several centers in 10 European countries and followed for cancer incidence and cause-specific
mortality for several decades. During the enrollment, which took place between 1992 and 2000,
information was collected through a non-dietary questionnaire on lifestyle variables and through
a dietary questionnaire (EPIC Large scale Intake Assessment) addressing usual diet (see Riboli
and Kaaks (1997) and Riboli et al.(2002)). The EPIC study is coordinated by the Nutrition and
Hormones Group of the International Agency for Research on Cancer (IARC) in Lyon, France.
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where the uj are assumed to be independent and normally distributed with null means and
common variances φ2.

Moreover, the data on constituents for each food are used to develop the level-2 model for
the dietary coefficients. In detail, these are regressed on the nutrient covariates Zj = [zqkj ]
as follows:

βkj = π0 +
Q∑

q=1

πqzqk + δkj (8)

where we assume that the effects of the food exposures on the colon-rectum cancer are
partially mediated by the effects of nutrients, π = [π1, . . . , πQ].

In this case, we can suitably suppose that the values of the level-2 residual variances
related to model (8) will be small for all the food effects. Indeed, once the center-specific
information on nutrients are considered, we believe that the variability of dietary effects
among the centers would be entirely explained. As a results, the residuals δkj can be
assumed to hold the simple hypothesis of independence and normal distribution with null
means and constant variances, τ2, and to be further independent on uj .

In a BEB perspective, at level 3 the prior distributions for the other parameters are
specified. We mainly focus our attention on the crucial level-2 variance τ2§. As introduced
above, we attempt to specify an informative hyperprior distribution for τ2, based on plau-
sible ranges of variation for log normal random dietary effects. More specifically, since at
level 2 the log ORs (i.e., β = {βkj}) are supposed to be normally distributed with means
µ(β) = Zjπ and variance τ2, the precision τ−2 can be expressed as

τ−2 = (2× 1.645)2/(β95% − β5%)2.

Then, we believe a 2-fold variation between the ORs for the upper and lower 5% of units is
reasonable, that is β95%−β5% = log2. Hence our prior guess at τ−2 is τ−2 ≈ 3.292/(log2)2 ≈
22.53, corresponding to a level 2 standard deviation τ equals to 0.21. To reflect our uncer-
tainty in this prior guess, we believe that 4-fold variation between the upper and the lower
5% of units is very unlikely (say, less than a 1% chance). Thus, lower 1% quantile of our
prior distribution for the precision τ−2 can be supposed to be τ−2

1% ≈ 3.292/(log4)2 ≈ 5.63.
In this application, the previous assumptions imply 95% a priori certainty that the

residual OR for the effect of a given unit increase in the k-th dietary exposure lies in a
2-fold range and 99% certainty that it lies in a 4-fold range. For instance, supposing the
prior mean of βkj is −0.02 for an increase of 36.6 grams per day of leafy vegetables we are
95% certain that the corresponding residual OR lies in the range from 0.69 to 1.38, and
99% certain it lies from 0.49 to 1.96. Assuming both the hypothesis are consistent with
the data and the previous knowledge, we specify an informative proper distribution for the
hyperparameter τ−2, that is a Gamma probability distribution of parameters 5 and 0.22
for shape and rate, respectively.

The Bayesian approach would ensure that inference about every parameter fully takes
into account for the uncertainty about all other parameters. As a result, it provides the
estimation of the joint posterior distribution for all the unknown parameters summarized
into vector θ as stated by the Bayes theorem:

p(θ|Y ) =
f(Y |θ)p(θ)

h(Y )
(9)

§For the other hyperparameters we assign proper non-informative priors.
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where f(Y |θ) is the likelihood function, p(θ) includes all the (hyper-) prior distributions
on the parameters and

h(Y ) =
∫

f(Y |θ)p(θ) dθ

is the marginal distribution of Y , i.e. a kind of normalizing constant ensuring the joint
posterior is a probability distribution.

Inferences about the parameters of crucial interest are ensued by averaging over auxiliary
parameters. We particularly focus our attention on the vector of parameters β, reflecting the
effects of dietary exposures on colon-rectum cancer for each area of enrolment. Therefore,
the corresponding posterior distribution is computed as

p(β|Y ) =
∫

. . .

∫
p(θ|Y ) dγ dψ0 du dφ2 dπ dδ dτ2. (10)

The need for numerical integration is avoided by taking repeated samples from the
posterior distributions using the MCMC methods and Gibbs sampling. These procedures
are implemented by using the software WinBUGS, version 1.4 (Spiegelhalter et al. (2003)).
A total of 30, 000 iterations were run with a burn-in of 20, 000.

In order to measure the improvement in the estimates of dietary effects, we compare the
results from this hierarchical Bayesian model with those obtained by carrying out several
conventional analysis (1), separately by center of enrollment j.

Some results are showed in Tables 4 to 9, where the ORs and their 95% confidence
intervals (CI) are calculated according to food-specific values of unit increase which are the
sample standard deviations in Table 2.

The results from the conventional disease model are notably affected by problems of
sparse data which preclude the full estimation of each dietary effect on the occurrence of
colon-rectum cancer. In some cases, the ML estimation fails to converge because the pre-
dictors are highly correlated. Even when the convergence is achieved, a great number of
estimates result with large and unstable absolute values, suggesting implausible strong asso-
ciations according to the to the relevant diet and colon-rectum cancer literature. Moreover,
when the results are compared across different areas, there are discordant values. As an
example, let’s consider the extremely large and unstable estimation of the cabbages effect
in Turin (OR=5.503 and CI=0.089−340.060 for 37.9 grams of unit increase). This estimate
appears to be strongly different from the most part of the corresponding results in other
areas, which identify the intakes of cabbages as a protective factor for colon-rectum cancer.

When the hierarchical Bayesian model is fitted, formerly extreme and unstable estimates
become more reasonable and less biased, even when the results on the same exposure are
compared across different centers. For example, the excessive risk factor for additional 31.2
grams per day of processed meat in the south coast of France from the ordinary model
(OR =1.901 and CI=0.777 − 4.654) becomes more realistic and stable (OR=1.076 and
CI=0.934−1.241); and the estimate of the effect of milk and milk beverages in the north &
west of Norway becomes consistent with the results in the other centers (OR from 2.275 to
0.964). On the other hand, stable conventional estimates remain much more the same (see,
e.g., the estimates for legumes in San Sebastian or milk and milk beverages in Malmo).
In these cases, great gains in term of standard errors are often reported. For instance,
the effect of eating fish in Copenhagen shows similar estimates for both methods, but the
improvement in the corresponding standard errors returns results which are significant.

The improvement on dietary estimation is mainly due to the shared food information
on nutrients also across different centers. As a result, dietary estimates are pulled toward
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each other when they have similar compositions. Therefore, we expect this shrinkage espe-
cially occurs for the same exposures evaluated in different centers as their levels of nutrients
are more likely to be similar. Indeed, previous evidence (Roli (2006)) showed that the the
substantive improvements in the estimation of dietary effects are gained when a single mul-
tilevel analysis is carried out, while the inclusion of nutrient information alone for separate
conventional regressions does not yield as good results.

The shrinkage of the estimates can be evaluated in practice by plotting the results from
the conventional regressions and from the hierarchical Bayesian method, simultaneously
(Figure 1). Indeed, for the former we can observe a great variability with peaks of extremely
high and extremely low numbers. Conversely, the estimates from our model are closer to
each other (i.e., to the prior means based on the nutrients) and are controlled for variations
due to random occurrences in small samples.

6. Discussion and conclusions

Statistical theory, several simulation studies and a large number of applications all support
the use of hierarchical modeling as a powerful method which allows to yield strong gains in
the accuracy of predictions and effect estimates. The improvement is mainly due to the use
of prior data arranged in an additional model. As a result, the ordinary estimates from the
conventional level-1 model are pulled or ’shrunk’ toward each other when they have similar
levels of prior data.

In epidemiological field, hierarchical methods are strongly recommended to address es-
timation problems of multiple exposures, whose effects are often correlated, and to analyze
small data set. Moreover, these complications commonly affect multicentric studies where
the area-specific estimation of such effects is of crucial importance, but the independence
among the units belonging to the centers is violated. In these cases, the hierarchical model-
ing implicitly assume the so-called exchangeability hypothesis, which states that the more
the areas (or the exposures) have similar features (i.e., prior data), the more the correspond-
ing parameters are likely to be close. In sparse samples, the exchangeability assumption is
fundamental because it allows to mediate the poor or missing level-1 data of some groups by
sharing the corresponding non-missing information with other groups having similar priors.

In multiple regression analysis, the hierarchical framework can further provide an al-
ternative to conventional variable selection techniques (Gelman and Hill (2007)). These
procedures begin with a maximal model including all the terms (such as in backward elimi-
nation) or a minimal model that has only the essential regressors, i.e. the confounders, (such
as in forward and stepwise selection) and proceed with a model reduction based on some sig-
nificance criteria to search for a final model. The hierarchical approach states the maximal
model as the level-1 regression. Then, it specifies a level-2 model, where the corresponding
values of the residual variances mark the degree of compromise between the extremes of
putting each variable completely in or completely out of the model. Therefore, when these
level-2 variances are null, then a minimal model holds; conversely, if they are large, the final
model tends to be the maximal one. Moreover, the hierarchical approach does not make
a definitively “all-or-nothing” choice for each term, but allows to retain all the variables
in the analysis in order to be further evaluated whenever additional information would be
available.

The use of the BEB perspective is proposed as a reasonable and flexible strategy to
avoid prior restrictions regardless the sample data information, such as in the SB approach.
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Furthermore, it is a natural completion of the hierarchical model structure which develops
by specifying hyperprior probability distributions to be consistent with data and previous
knowledge. The estimation of parameters of interest is supported by the computational
powerful of recent softwares, such as WinBUGS (Spiegelhalter et al. (2003)), an interactive
Windows version of the BUGS program for Bayesian analysis of complex statistical models
implementing MCMC techniques and Gibbs sampling.

The advantages related to the use of hierarchical methods under a BEB framework are
highlighted by the results of the empirical illustration, where for a multicentric study the
ordinary ML estimates of multiple dietary effects are improved, for each center separately,
by a hierarchy of models merging and exploiting all the prior knowledge about the problem
at hand. The improvement is expressed in terms of more plausible estimates of dietary
effects and lower mean-squared errors than traditional data summaries, thanks to a two-
fold shrinkage action due to the similar nutrient compositions of dietary items between and
within the centers.

If one is interested in the evaluation of effects of the level-2 covariates, a single level-
1 conventional regression on nutrient intakes can be carried out. But in this case the
unmeasured constituents and their interactions that might be responsible for some dietary
item effects would be ignored. Conversely, the hierarchical model can offer a more realistic
and generic representation of data allowing for the possibility that there are food effects
beyond the nutrient contribution, as well as food interactions which are important to be
investigated. Indeed, understanding dietary effects is crucial for development of public
health recommendations and these effects are not captured by the effects of nutrients alone.
Moreover, the hierarchical approach provides the food constituents to be estimated, that
may be alike useful from a nutritional point of view (e.g., for the formulation of a balanced
diet).

The sample size limits the performance of BEB hierarchical model and the number of
level-2 covariates to be embedded into the analysis. As a result, some problems during
the estimation process can be encountered when a large number of parameters have to be
estimated. Therefore, only potentially relevant covariates, about which useful descriptive
information are available, are recommended to be included in the level-2 model.

The hierarchical Bayesian model we propose can be further applied in many other epi-
demiologic contexts. For instance, in occupational studies, where more levels of information
can be merged; or to perform polytomous logistic regressions of different causes of death
on a set of exposures; or in disease mapping and spatial analysis, where the variations due
to random occurrences need to be controlled by exploiting the spatial proximity and the
consequent interaction of the geographical areas.

In all these examples, the use of hierarchical Bayesian modeling can be easily extended
or raised thank to the substantial gains that it can be yield and its internal flexibility as
regards to the prior assumptions. This paper is intended to encourage the use of Bayesian
methods in epidemiology as a powerful statistical tool to address the problem of nested
data and correlated effects. Indeed, in the simplest cases the implementation of such meth-
ods can be carried out by standard frequentist softwares (Witte et al. (1998); Greenland
(2006); Greenland (2007)). Conversely, if the full flexibility of MCMC posterior sampling is
required to analyze more complex model structures, some knowledge of Bayesian statistical
theory and computation is needed. Anyway, the role of epidemiologists remains of primary
importance and they should be closely involved into the crucial phase of model specification.
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Table 1. Descriptive statistics.
Center Women Age BMI Cases Controls Total

(%) mean (sd) mean (sd)

North-East of France 100.0 56.4 (6.7) 23.5 (3.5) 83 1525 1608
North-West of France 100.0 54.5 (7.1) 22.9 (3.3) 35 538 573
South of France 100.0 56.1 (5.9) 23.1 (3.4) 47 853 900
South coast of France 100.0 55.3 (5.4) 23.2 (3.0) 20 457 477
Florence 61.9 54.8 (6.1) 25.8 (3.5) 54 637 691
Varese 76.4 55.3 (7.4) 25.9 (4.3) 47 559 606
Ragusa 41.4 53.8 (5.8) 27.4 (3.9) 13 296 309
Turin 21.7 58.1 (3.8) 26.6 (3.7) 27 482 509
Naples 100.0 57.5 (7.8) 27.2 (4.8) 12 247 259
Asturias 51.3 54.1 (7.7) 28.3 (3.9) 22 413 435
Granada 58.6 54.7 (7.6) 30.6 (4.5) 18 378 396
Murcia 63.2 52.0 (8.9) 28.7 (4.6) 17 410 427
Navarra 39.3 55.4 (5.7) 29.4 (3.6) 28 388 416
San Sebastian 33.8 53.6 (7.4) 27.9 (3.7) 36 406 442
Cambridge 44.9 65.0 (7.8) 26.3 (3.8) 154 1112 1266
Oxford Health conscious 67.8 63.7 (13.0) 24.0 (3.7) 95 2297 2392
Oxford General population 61.5 56.7 (7.2) 26.0 (4.3) 28 335 363
Bilthoven 34.4 53.6 (6.4) 26.2 (3.7) 33 1079 1112
Utrecht 100.0 60.4 (6.0) 25.7 (4.0) 135 783 918
Heidelberg 28.0 56.9 (5.7) 27.1 (4.0) 82 1185 1267
Potsdam 42.2 57.0 (6.8) 27.2 (4.1) 90 1282 1372
Malmo 51.6 61.2 (6.6) 25.8 (3.9) 194 1206 1400
Umea 43.5 56.6 (5.1) 25.7 (3.9) 83 1212 1295
Aarhus 46.4 58.3 (4.4) 26.0 (3.9) 125 824 949
Copenhagen 44.4 58.5 (4.2) 26.2 (4.1) 286 1906 2192
South & Est of Norway 100.0 51.8 (3.8) 24.6 (4.0) 29 970 999
North & West of Norway 100.0 50.6 (3.5) 25.3 (3.6) 15 790 805

Total 58.5 58.4 (6.3) 25.9 (3.9) 1808 22568 24376
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Table 2. Dietary items and corresponding average intakes and
standard deviations (gm/d).

Dietary items Mean SD

Potatoes and Other Tubers 108.097 80.743
Leafy Vegetables 23.324 36.617
Fruiting Vegetables 55.570 49.021
Root Vegetables 27.350 32.656
Cabbages 25.992 37.925
Grain and Pod Vegetables 8.879 13.569
Stalk Vegetables, Sprouts 8.974 12.102
Mixed Salad, Mixed Vegetables 13.769 29.568
Legumes 11.463 21.770
Fruits 218.786 171.468
Nuts and Seeds 3.189 8.040
Mixed Fruits 3.881 12.097
Milk + Milk beverages 226.287 230.397
Yogurt 67.816 92.272
Fromage blanc, petit suisse + Cheeses 44.068 41.252
Pasta, rice, other grain 51.657 61.304
Crispbread, Rusks 8.593 15.972
Breakfast Cereals 22.014 55.757
Beef 19.651 20.464
Pork 18.989 19.819
Poultry 24.664 27.979
Processed meat 33.931 31.253
Fish 29.514 28.825
Eggs and Egg Product 18.833 18.136
Vegetable Oils 7.224 11.452
Margarines 15.506 17.607
Deep Frying Fat 0.040 0.553
Chocolate + Confectionery + Syrup 13.902 20.901
Coffee 452.990 400.388
Sauces 22.872 22.101

Table 3. Nutrients and corresponding
unit of measurement.

Total proteins (g)
Saturated fatty acids (g)
Monosaturated fatty acids (g)
Polyunsaturated fatty acids (g)
Starch (g)
Sugar (g)
Fibre (g)
Calcium (mg)
Iron (mg)
Vitamin D (µg)
Vitamin E (mg)
Beta-carotene (µg)
Retinol (performed vitamin A) (µg)
Vitamin C (mg)
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Table 4. Results: milk and milk beverages.
Center Ordinary logistic regression Hierarchical Bayesian model

OR (95% CI) OR (95% CI)

North-East of France 0.892 (0.624-1.276) 0.923 (0.809-1.051)
North-West of France - 0.948 (0.822-1.099)
South of France - 0.904 (0.787-1.039)
South coast of France 0.079 (0.009-0.700) 0.896 (0.772-1.039)
Florence 0.883 (0.487-1.600) 0.925 (0.807-1.064)
Varese - 0.944 (0.822-1.087)
Ragusa - 0.945 (0.820-1.096)
Turin 0.466 (0.154-1.410) 0.917 (0.790-1.060)
Naples - 0.942 (0.813-1.093)
Asturias 0.889 (0.401-1.968) 0.914 (0.792-1.053)
Granada - 0.926 (0.802-1.073)
Murcia - 0.914 (0.787-1.062)
Navarra - 0.900 (0.779-1.033)
San Sebastian 1.120 (0.624-2.010) 0.923 (0.800-1.064)
Cambridge 0.989 (0.778-1.256) 0.953 (0.848-1.070)
Oxford Health conscious 0.851 (0.655-1.106) 0.921 (0.817-1.042)
Oxford General population 0.505 (0.258-0.989) 0.892 (0.770-1.024)
Bilthoven 0.616 (0.375-1.013) 0.895 (0.784-1.022)
Utrecht 1.070 (0.893-1.281) 0.989 (0.887-1.097)
Heidelberg 1.064 (0.808-1.400) 0.969 (0.853-1.099)
Potsdam - 0.901 (0.787-1.027)
Malmo 0.999 (0.853-1.171) 0.962 (0.870-1.063)
Umea 1.187 (0.876-1.610) 0.982 (0.861-1.120)
Aarhus 1.026 (0.866-1.217) 0.969 (0.871-1.074)
Copenhagen 0.930 (0.838-1.031) 0.924 (0.857-0.997)
South & Est of Norway - 0.948 (0.822-1.097)
North & West of Norway 2.275 (0.620-8.340) 0.964 (0.833-1.119)
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Table 5. Results: fruits.
Center Ordinary logistic regression Hierarchical Bayesian model

OR (95% CI) OR (95% CI)

North-East of France 1.436 (1.084-1.902) 1.074 (0.948-1.218)
North-West of France - 0.990 (0.863-1.133)
South of France - 1.024 (0.905-1.158)
South coast of France 1.434 (0.856-2.402) 1.008 (0.879-1.158)
Florence 0.523 (0.328-0.830) 0.883 (0.777-1.000)
Varese - 0.960 (0.845-1.091)
Ragusa - 0.936 (0.820-1.066)
Turin 1.664 (1.030-2.690) 1.008 (0.878-1.158)
Naples - 0.973 (0.846-1.117)
Asturias 0.622 (0.375-1.031) 0.942 (0.818-1.076)
Granada - 0.977 (0.848-1.124)
Murcia - 0.971 (0.846-1.114)
Navarra - 1.018 (0.894-1.165)
San Sebastian 0.673 (0.460-0.980) 0.903 (0.794-1.024)
Cambridge 1.054 (0.854-1.301) 1.019 (0.911-1.138)
Oxford Health conscious 0.742 (0.576-0.956) 0.909 (0.812-1.015)
Oxford General population 1.219 (0.688-2.160) 1.006 (0.875-1.158)
Bilthoven 0.751 (0.374-1.509) 0.958 (0.828-1.108)
Utrecht 1.180 (0.947-1.470) 1.033 (0.915-1.167)
Heidelberg 1.139 (0.681-1.904) 0.992 (0.862-1.142)
Potsdam - 0.987 (0.863-1.135)
Malmo 0.833 (0.649-1.067) 0.948 (0.844-1.067)
Umea 0.820 (0.560-1.200) 0.964 (0.843-1.101)
Aarhus 0.660 (0.492-0.885) 0.883 (0.779-0.995)
Copenhagen 1.015 (0.867-1.189) 0.995 (0.902-1.098)
South & Est of Norway - 1.015 (0.877-1.176)
North & West of Norway 2.224 (0.600-8.240) 0.981 (0.847-1.142)
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Table 6. Results: processed meat.
Center Ordinary logistic regression Hierarchical Bayesian model

OR (95% CI) OR (95% CI)

North-East of France 0.985 (0.684-1.419) 1.035 (0.912-1.175)
North-West of France - - 1.019 (0.886-1.174)
South of France - - 1.053 (0.918-1.203)
South coast of France 1.901 (0.777-4.654) 1.076 (0.934-1.241)
Florence 0.635 (0.336-1.200) 0.986 (0.859-1.130)
Varese - 0.978 (0.853-1.118)
Ragusa - 1.031 (0.895-1.192)
Turin 1.566 (0.503-4.870) 1.013 (0.875-1.174)
Naples - 1.008 (0.873-1.167)
Asturias 1.111 (0.579-2.130) 1.014 (0.881-1.162)
Granada - 0.999 (0.871-1.147)
Murcia - 1.013 (0.888-1.149)
Navarra - 1.030 (0.904-1.177)
San Sebastian 1.440 (1.062-1.950) 1.075 (0.947-1.222)
Cambridge 1.123 (0.857-1.472) 1.030 (0.915-1.162)
Oxford Health conscious 1.040 (0.733-1.476) 1.017 (0.899-1.152)
Oxford General population 0.720 (0.315-1.645) 1.005 (0.873-1.159)
Bilthoven 0.916 (0.608-1.379) 1.092 (0.942-1.266)
Utrecht 1.249 (0.933-1.670) 1.142 (0.990-1.311)
Heidelberg 1.023 (0.853-1.225) 1.036 (0.941-1.136)
Potsdam - 1.033 (0.944-1.126)
Malmo 1.137 (0.989-1.306) 1.110 (1.011-1.213)
Umea 1.266 (0.921-1.740) 1.067 (0.934-1.218)
Aarhus 0.967 (0.697-1.341) 1.029 (0.903-1.175)
Copenhagen 1.044 (0.869-1.254) 1.068 (0.957-1.190)
South & Est of Norway - 1.024 (0.885-1.181)
North & West of Norway 0.573 (0.115-2.860) 1.038 (0.900-1.199)
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Table 7. Results: fish.
Center Ordinary logistic regression Hierarchical Bayesian model

OR (95% CI) OR (95% CI)

North-East of France 0.809 (0.579-1.130) 0.927 (0.818-1.051)
North-West of France - 0.976 (0.853-1.115)
South of France - 1.029 (0.900-1.175)
South coast of France 0.310 (0.094-1.020) 0.957 (0.829-1.102)
Florence 0.904 (0.503-1.630) 0.943 (0.820-1.080)
Varese - 0.941 (0.819-1.081)
Ragusa - 0.969 (0.840-1.120)
Turin 0.911 (0.359-2.320) 0.959 (0.833-1.105)
Naples - 0.941 (0.810-1.085)
Asturias 0.988 (0.607-1.610) 0.961 (0.845-1.095)
Granada - 0.943 (0.828-1.074)
Murcia - 0.984 (0.863-1.120)
Navarra - 0.934 (0.826-1.056)
San Sebastian 0.834 (0.613-1.130) 0.928 (0.826-1.039)
Cambridge 1.145 (0.926-1.416) 1.023 (0.914-1.140)
Oxford Health conscious 0.879 (0.671-1.151) 0.926 (0.824-1.038)
Oxford General population 0.826 (0.396-1.725) 0.940 (0.817-1.077)
Bilthoven 0.442 (0.024-8.181) 0.920 (0.791-1.072)
Utrecht 0.939 (0.359-2.455) 0.900 (0.775-1.040)
Heidelberg 0.694 (0.419-1.149) 0.893 (0.769-1.036)
Potsdam - 0.888 (0.762-1.030)
Malmo 1.019 (0.871-1.192) 0.980 (0.888-1.078)
Umea 0.770 (0.363-1.630) 0.890 (0.751-1.050)
Aarhus 1.088 (0.817-1.449) 0.976 (0.857-1.107)
Copenhagen 0.848 (0.693-1.037) 0.889 (0.799-0.989)
South & Est of Norway - 0.999 (0.887-1.123)
North & West of Norway 0.863 (0.464-1.610) 0.961 (0.855-1.083)
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Table 8. Results: legumes.
Center Ordinary logistic regression Hierarchical Bayesian model

OR (95% CI) OR (95% CI)

North-East of France 0.958 (0.732-1.254) 0.967 (0.858-1.085)
North-West of France - 0.945 (0.829-1.076)
South of France - 1.002 (0.882-1.140)
South coast of France 2.424 (0.955-6.152) 1.003 (0.873-1.151)
Florence 0.422 (0.142-1.250) 0.947 (0.816-1.099)
Varese - 0.980 (0.843-1.138)
Ragusa - 0.975 (0.840-1.134)
Turin 0.324 (0.034-3.050) 0.977 (0.847-1.125)
Naples - - - 0.978 (0.861-1.111)
Asturias 0.889 (0.645-1.225) 0.968 (0.869-1.077)
Granada - 0.943 (0.826-1.075)
Murcia - 0.971 (0.855-1.101)
Navarra - 0.983 (0.885-1.091)
San Sebastian 0.938 (0.756-1.160) 0.974 (0.888-1.061)
Cambridge 1.105 (0.846-1.443) 1.029 (0.913-1.157)
Oxford Health conscious 1.273 (1.039-1.559) 1.075 (0.964-1.194)
Oxford General population 0.944 (0.436-2.041) 0.970 (0.846-1.115)
Bilthoven 1.181 (0.369-3.784) 0.992 (0.858-1.148)
Utrecht 0.770 (0.470-1.262) 0.945 (0.824-1.081)
Heidelberg 0.779 (0.400-1.519) 0.964 (0.841-1.110)
Potsdam - 0.994 (0.865-1.144)
Malmo 0.944 (0.719-1.239) 0.986 (0.876-1.108)
Umea 0.645 (0.181-2.300) 0.977 (0.849-1.124)
Aarhus 0.609 (0.024-15.686) 0.962 (0.810-1.138)
Copenhagen 3.169 (0.589-17.057) 0.992 (0.843-1.173)
South & Est of Norway - 1.008 (0.876-1.159)
North & West of Norway - 0.998 (0.863-1.151)
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Table 9. Results: cabbages.
Center Ordinary logistic regression Hierarchical Bayesian model

OR (95% CI) OR (95% CI)

North-East of France 0.667 (0.338-1.315) 0.950 (0.833-1.087)
North-West of France - 0.985 (0.855-1.135)
South of France - 0.983 (0.856-1.129)
South coast of France 0.574 (0.056-5.911) 0.985 (0.858-1.138)
Florence 1.508 (0.133-17.060) 0.960 (0.826-1.112)
Varese - 0.962 (0.825-1.116)
Ragusa - 0.975 (0.841-1.135)
Turin 5.503 (0.089-340.060) 0.969 (0.836-1.128)
Naples - 0.972 (0.826-1.137)
Asturias 0.751 (0.290-1.943) 0.968 (0.845-1.104)
Granada - 0.987 (0.854-1.139)
Murcia - 0.989 (0.858-1.139)
Navarra - 1.035 (0.897-1.192)
San Sebastian 1.261 (0.538-2.950) 0.985 (0.860-1.132)
Cambridge 0.887 (0.763-1.032) 0.927 (0.849-1.011)
Oxford Health conscious 0.853 (0.718-1.013) 0.943 (0.860-1.031)
Oxford General population 0.925 (0.548-1.561) 0.967 (0.853-1.090)
Bilthoven 0.604 (0.197-1.858) 0.967 (0.838-1.113)
Utrecht 0.887 (0.566-1.393) 0.967 (0.845-1.106)
Heidelberg 1.833 (0.840-3.999) 0.998 (0.867-1.147)
Potsdam - 0.956 (0.836-1.093)
Malmo 1.069 (0.805-1.420) 1.013 (0.897-1.147)
Umea 0.936 (0.419-2.090) 0.977 (0.853-1.124)
Aarhus 1.041 (0.513-2.114) 0.990 (0.863-1.137)
Copenhagen 0.784 (0.481-1.277) 0.955 (0.837-1.084)
South & Est of Norway - 1.027 (0.903-1.162)
North & West of Norway 0.684 (0.161 2.910) 0.967 (0.844-1.108)


