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Abstract

If X ⊂ Pn is a projective non degenerate variety, the X-rank of a point P ∈ Pn is defined
to be the minimum integer r such that P belongs to the span of r points of X. We
describe the complete stratification of the fourth secant variety of any Veronese variety
X via the X-rank. This result has an equivalent translation in terms both of symmetric
tensors and homogeneous polynomials. It allows to classify all the possible integers r that
can occur in the minimal decomposition of either a symmetric tensor or a homogeneous
polynomials of X-border rank 4 (see Not. 1) as a linear combination of either completely
decomposable tensors or powers of linear forms respectively.
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Introduction

Fix integers m ≥ 2 and d ≥ 2 and set nm,d := m+ dm − 1. All along this paper
the number field K over which all the projective spaces and all the vector spaces will be
defined is algebraically closed and of caracteristic 0. Let νm,d : Pm ↪→ Pnm,d be the order
d Veronese embedding of Pm defined by the sections of the sheef O(d). Set:

Xm,d := νm,d(Pm). (1)

We often set X := Xm,d and n := nm,d. The Veronese variety can be regarded both
as the variety that parameterizes projective classes of homogeneous polynomials of de-
gree d in m + 1 variables that can be written as d-th powers of linear forms, and as
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the variety that parameterizes projective classes of symmetric tensors T ∈ V ⊗d where
V is a vector space of dimension m + 1 and T = v⊗d for certain v ∈ V (symmetric
tensors of the form v⊗d are often called “completely decomposable tensors”). Hence if
we indicate with K[x0, . . . , xm]d the vector space of homogeneous polynomials of degree
d in m+ 1 variables, and with SdV the subspace of symmetric tensors in V ⊗d, then the
Veronese variety Xm,d ⊂ Pnm,d can be described both as {[F ] ∈ P(K[x0, . . . , xm]d) | ∃L ∈
K[x0, . . . , xm]1 s.t. F = Ld} and as {[T ] ∈ P(SdV ) | ∃ v ∈ V s.t. T = v⊗d}.

A very classical problem coming from a number theory problem known as the Big
Waring Problem (see [22]) is the knowledge of the minimum integer s for which a generic
form F ∈ K[x0, . . . , xm]d can be written as the sum of s d-th powers of linear forms
L1, . . . , Ls ∈ K[x0, . . . , xm]1:

F = Ld1 + · · ·+ Lds . (2)

The same s gives the minimum integer for which the generic symmetric tensor T ∈ SdV
can be written as a sum of s completely decomposable tensors v⊗d1 , . . . , v⊗ds ∈ SdV :

T = v⊗d1 + · · ·+ v⊗ds . (3)

This problem was solved by J. Alexander and A. Hirshowithz in [2] (see also [5] for a
modern proof).

A natural question arising form the applications (see for example [1], [13], [8], [12],
[19], [10], [15]) is:

Question 1. Given a symmetric tensor T ∈ SdV (or a homogeneous polynomial F ∈
K[x0, . . . , xm]d), which is the minimum integer r for wich we can write it as a linear
combination of r completely decomposable tensors, i.e. as in (3) with r = s (or as a
linear combination of r d-th powers of linear forms, i.e. as in (2) with r = s)?

A first useful definition in order to formalize the problem in terms of linear algebra is
the following:

Definition 1. Let X ⊂ Pn ' P(SdV ) be a Veronese variety. The X-rank of a point
P ∈ Pn is the minimum integer r such that P ∈ 〈P1, . . . , Pr〉 with P1, . . . , Pr ∈ X. Such
an integer is often called “the symmetric rank of P”. We denote it by rX(P ).

With this definition it turns out to be obvious that answering to Question 1 is equivalent
to find the X-rank of a given point P ∈ Pnm,d since Pnm,d can be both the projective
space of homogeneous polynomials of degree d in m+1 variables and the projective space
of symmetric tensors of order d over an m+ 1 dimensional vector space.

The answer to Question 1, in the particular case of m = 2, is known from [21] and
[9]. In that case the Veronese variety coincides with a rational normal curve. In more
recent papers [7] and [11] one can find an algebraic theoretical algorithm for the general
case with m ≥ 2.

Both the Big Waring Problem and Question 1 have a very interesting reformulation in
Algebraic Geometry by using Linear Algebra tools. The authors of [6] give some effective
algorithms for the computation of the X-rank of certain kind of symmetric tensors by
using this algebraic geometric interpretation (about the results appeared in [6], we will
be more precisely in the sequel). The advantage of those last algorithms is that they are
effective and that they arise from an algebraic geometric perspective that gives the idea
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on how one can proceed in the study of the X-rank either of a form or of a symmetric
tensor. Let us go into the details of that geometric description.

Let σs(X) ⊂ Pn be the so called “higher s-th secant variety of X” (for brevity we
will quote it only as “s-th secant variety of X”):

σs(X) :=
⋃

P1,...,Ps∈X
〈P1, . . . , Ps〉. (4)

From this definition it turns out that generic element of σs(X) has X-rank equal to s,
but obviously not all the elements of σs(X) have X-rank equal to s.

Notation 1. For any P ∈ Pn let bX(P ) denote the “X-border rank of P”, i.e. the first
integer s > 0 such that P ∈ σs(X). Sometimes bX(P ) is called either “the secant X-rank
of P” or the “symmetric border rank of P”.

Remark 1. Obviously bX(P ) ≤ rX(P ) for all P ∈ Pn.

First of all the definition (4) of the secant varieties of the Veronese variety implies
the following chain of containments:

X = σ1(X) ⊆ σ2(X) ⊆ · · · ⊆ σk−1(X) ⊆ σk(X) = Pn (5)

for certain natural number k. Therefore σs(X) contains all the elements of X-rank less
or equal than s.
Moreover the set

σ0
s(X) :=

⋃
P1,...,Ps∈X

〈P1, . . . , Ps〉 (6)

is contained in σs(X) and it is made by the elements P ∈ Pn whose X-rank is less or
equal than s, hence the elements of σs(X) \ (σs−1(X)∪σ0

s(X)) have X-rank bigger than
s.

What is done in [6] is to start giving a stratification of σs(X) \ σs−1(X) via the X-
rank: in that paper the cases of σ2(Xm,d) and σ3(Xm,d) for any m, d ≥ 2 are completey
classified (among others). The authors gives algorithms that produce the X-rank of an
element of σ2(Xm,d) and σ3(Xm,d).
If we indicate

σs,r(X) := {P ∈ σs(X) | rX(P ) = r} ⊂ σs(X) ⊂ Pn, (7)

then we can write the stratifications quoted above as follows:

• σ2(Xm,d) \ Xm,d = σ2,2(Xm,d) ∪ σ2,d(Xm,d), for m ≥ 1 and d ≥ 2 (cfr. [21], [9],
[6], [11], [7]);

• σ3(X1,d) \ σ2(X1,d) = σ3,3(X1,d) ∪ σ3,d−1(X1,d), for d ≥ 4 (cfr. [21], [9], [6], [11],
[7]);

• σ3(Xm,3) \ σ2(Xm,3) = σ3,3(Xm,3) ∪ σ3,4(Xm,3) ∪ σ3,5(Xm,3), for m ≥ 2 (see [6]);

• σ3(Xm,d) \ σ2(Xm,d) = σ3,3(Xm,d)∪ σ3,d−1(Xm,d)∪ σ3,d+1(Xm,d)∪ σ3,2d−1(Xm,d),
for m ≥ 2 and d ≥ 4 (see [6]).
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What we want to do in this paper is to give the analogous stratification for σ4(Xm,d)
for any m, d ≥ 2. We will prove the following:

Theorem 1. The stratification of σ4(Xm,d) \ σ3(Xm,d) via the Xm,d-rank is the follow-
ing:

1. σ4(X1,d) \ σ3(X1,d) = σ4,4(X1,d) ∪ σ4,d−2(X1,d), if d ≥ 6;
2. σ4(X2,3) \ σ3(X2,3) = P9 \ σ3(X2,3) = σ4,4(X2,3);
3. σ4(X2,4) \ σ3(X2,4) = σ4,4(X2,4) ∪ σ4,6(X2,4) ∪ σ4,7(X2,4);
4. σ4(X2,5) \ σ3(X2,5) = σ4,4(X2,5) ∪ σ4,5(X2,5) ∪ σ4,7(X2,5) ∪ σ4,9(X2,d);
5. σ4(X2,d)\σ3(X2,d) = σ4,4(X2,d)∪σ4,d−2(X2,d)∪σ4,d(X2,d)∪σ4,d+2(X2,d)∪σ4,2d−2(X2,d)∪
σ4,2d−1(X2,d), if d ≥ 6;

6. σ4(Xm,4)\σ3(Xm,4) = σ4,4(Xm,4)∪σ4,6(Xm,4)∪σ4,7(Xm,4)∪σ4,8(Xm,4)σ4,10(Xm,4),
if m ≥ 3;

7. σ4(Xm,5)\σ3(Xm,5) = σ4,4(Xm,5)∪σ4,5(Xm,5)∪σ4,7(Xm,5)∪σ4,9(Xm,5)∪σ4,10(Xm,5)σ4,13(Xm,5),
if m ≥ 3;

8. σ4(Xm,d) \ σ3(Xm,d) = σ4,4(Xm,d) ∪ σ4,d−2(Xm,d) ∪ σ4,d(Xm,d) ∪ σ4,d+2(Xm,d) ∪
σ4,2d−2(Xm,d) ∪ σ4,2d−1(Xm,d) ∪ σ4,2d(Xm,d)σ4,3d−2(Xm,d), if m ≥ 3 and d ≥ 6.

Moreover all listed σs,r(Xn,d) are non-empty.

The case of the rational normal curve of item (1) is done in [21], [9], [11], [7] and [6].
The cases of the Veronese surfaces in degrees 3 and 4 (i.e. item (2) and item (3)) are
done in [6].
We complete the case of Veronese surface (item (5)) in the Subsection 4.1 of the present
paper.
In the Subsection 4.2 of this paper we will give the stratification of σ4(X3,d) that will be
the same stratification for any m ≥ 3 (items (6), (7) and (8)).

Before going into the details of the proof we need some preliminary and auxiliary
sections. In Section 1 we present the construction that will allow to associate two different
zero-dimensional schemes of Pm to two zero-dimensional sub-schemes of Xm,d realizing
the Xm,d-border rank and the Xm,d-rank, respectively, of a point P ∈ Pnm,d . Section 2
and Section 3 will be crucial and useful for the proof of Theorem 1. In fact in Section 2 we
give bounds for the Y -rank (see Definition 3) of a point with respect to some particular
projective curves Y ⊂ Pt that will be used in the proof of the Theorem 1. Section 3 is
made by preliminary lemmas on the linear dependence of the pre-image via the Veronese
map νm,d of the zero-dimensional schemes realizing the X-rank and the X-border rank
of a point P ∈ Pn. Finally in Section 4 we collect all the previous results into the proof
of Theorem 1.

Moreover we will describe case by case how to find the scheme that realizes the X-
rank of a point P (modulo the scheme that realizes the X-border rank). This allows to
explicitly describe the subset σs,r(X) ⊂ σs(X) defined in (7).

We like to stress here that the defining ideals of σ2(X1,d) and σ3(X2,d) are known (see
[16] and [20] respectively) and this allows the authors of [6] to give algorithms for the
X-rank of points in σs(X) with s = 2, 3. Given an element P ∈ Pn they can firstly check
if its X-border rank is actually either 2 or 3, and then they can produce the algorithm
for the computation of the X-rank of P . Unfortunately equations defining σ4(X3,d) at
least set-theoretically are not known yet (at least on our knowledge), therefore we could
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write algorithms for the X-rank of an element P ∈ σ4(X) but only if we already know
by other reason that bX(P ) = 4.

1. Construction

In this paper we want to study the X-rank of the points P belonging to the fourth
secant variety of the Veronese variety X, i.e. P ∈ σ4(X). By the chain of containments
(5) we have that σ3(X) ⊆ σ4(X), then, since the stratification of σ3(X) via the X-
rank is already known by [6], it is sufficient to understand the X-rank of points P ∈
σ4(X) \ σ3(X).

Moreover the definition (6) of σ0
s(X) implies that if P ∈ σ0

4(X) then rX(P ) ≤ 4, hence,
for the purpose of this paper, it is sufficient to study the X-rank of points belonging to

σ4(X) \ (σ3(X) ∪ σ0
4(X)) .

Start our construction by taking P ∈ σ4(X).
For such a point P , by the definition (4) of σ4(X), it exists at least one zero-dimensional
scheme Z ⊂ X of degree 4 such that P ∈ 〈Z〉.

Definition 2. We say that a zero-dimensional scheme Z ⊂ X such that P ∈ 〈Z〉 and
P /∈ 〈Z ′〉 for any Z ′ ⊂ X with deg(Z ′) < deg(Z) “computes the X-border rank of P”.

Since we want to take P ∈ σ4(X)\σ3(X) we can assume the existence of such a degree
4 zero-dimensional scheme Z ⊂ Xm,d such that P ∈ 〈Z〉 and moreover that P /∈ 〈Z ′〉 for
all Z ′ $ Z (cfr. [6], Proposition 2.8). More precisely we can assume that P /∈ 〈Z ′〉 for
all zero-dimensional schemes Z ′ ⊂ Xm,d with deg(Z ′) ≤ 3.

We also want that P /∈ σ0
4(X) hence we can assume that the above zero-dimensional

scheme Z of degree 4 that computes the X-border rank of P is unreduced (otherwise
rX(P ) = 4 and then P ∈ σ0

4(X)).
We fix the following notation.

Notation 2. If P ∈ σ4(X) \ (σ3(X) ∪ σ0
4(X)), we fix Z ⊂ X to be one of the degree 4

unreduced zero-dimensional schemes that computes the X-border rank of P , i.e. P ∈ 〈Z〉
and P /∈ 〈Z ′〉 for all zero-dimensional schemes Z ′ ⊂ X of degree less or equal than 3 such
that P ∈ 〈Z ′〉.

In order to study the stratification of σ4(Xm,d) it is therefore necessary to understand
the Xm,d-rank of the points belonging to the span of a non reduced zero-dimensional
subscheme Z ⊂ Xm,d of degree 4. Clearly, for such a degree 4 scheme Z we have that
dim(〈Z〉) ≤ 3. By [18], Proposition 3.1, or [17], Subsection 3.2, [6], Remark 4.2, it is
sufficient to do the cases m = 2, 3. In fact the stratification of σ4(X1,d) is already known
by [21], [9] and [6]. Hence it remains to study the stratification of σ4(X2,d) (in fact [6]
gives it for the cases d = 3, 4), i.e. when m = 2, and the stratification of σ4(Xm,d) for
m ≥ 3. What the already quoted results in [6], [17] and [18] allow to do is that, once we
will have the stratification of σ4(X3,d) then we will straightforwardly have that the same
stratification will hold for σ4(Xm,d) for the same d and m ≥ 3.
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Notation 3. Let P ∈ σ4(Xm,d) \ (σ3(Xm,d) ∪ σ0
4(Xm,d)) and let Z ⊂ Xm,d be, as in

Notation 2, a scheme computing the Xm,d-border rank of P . Take A ⊂ Pm to be an
unreduced zero-dimensional scheme of degree 4 such that νm,d(A) = Z.

By the discussion above we may assume that such a scheme A just defined in Notation
3 is not contained in a 2-dimensional projective subspace of Pm. In fact, deg(A) = 4
then 〈A〉 ⊆ P3, but if 〈A〉 ⊆ P2 then there exist a zero-dimensional scheme B ⊂ P2 of
degree 3 such that 〈A〉 ⊆ 〈B〉 = P2. This would imply that any point P ∈ 〈νm,d(A)〉
belongs to 〈νm,d(B)〉 for some zero-dimensional scheme B ⊂ Pm of degree 3. Now, since
deg(B) = 3 then 〈νm,d(B)〉 ⊂ σ3(X). Therefore if 〈A〉 ⊂ P2 we get that, if Z = νm,d(A),
any point P ∈ 〈Z〉 belongs to σ3(X), but we want to study the X-rank of the points
P ∈ σ4(X) \ σ3(X). Therefore we assume that the scheme A ⊂ Pm defined in Notation
3 spans a projective subspace of dimension 3.

Notation 4. Let P ∈ σ4(Xm,d) \ (σ3(Xm,d) ∪ σ0
4(Xm,d)). We fix S ⊂ Xm,d to be a

reduced zero-dimensional scheme that computes the Xm,d-rank of P . I.e. S ⊂ Xm,d

is a reduced zero-dimensional scheme such that P ∈ 〈S〉 and P /∈ 〈S′〉 for any reduced
S′ ⊂ Xm,d with deg(S′) < deg(S).

Notation 5. Let P ∈ σ4(Xm,d) \ (σ3(Xm,d) ∪ σ0
4(Xm,d)). Let also S ⊂ Xm,d be a

reduced zero-dimensional scheme that computes the Xm,d-rank of P as in Notation 4.
Take B ⊂ Pm be a reduced zero-dimensional scheme of degree deg(B) = deg(S) such
that νm,d(B) = S.

We introduced this notation because we will often use it in the sequel. More precisely
it allows to use many results on the reduced and unreduced zero-dimensional schemes
in Pm and translate them in informations on the zero-dimensional sub-schemes of Xm,d

(see Section 3 and in particular Lemma 3).

2. Useful reducible curves

First of all let us recall the generic notion of Y -rank of a point P with respect to any
non-degenerate projective curve Y ⊂ Pt.

Definition 3. Let Y ⊂ Pt be an embedded non-degenerate projective curve, and let
P ∈ Pt. The Y -rank of P with respect to Y is the minimum number of points belonging
to Y whose span contains P :

rY (P ) := min{r ∈ N | P ∈ 〈P1, . . . , Pr〉, with P1, . . . , Pr ∈ Y }.

Definition 4. Let Y ⊂ Pt be an embedded non-degenerate projective curve, and let
P ∈ Pt. The Y -border rank of P is the minimum positive integer s such that P ∈
σs(Y ) =

⋃
P1,...,Ps∈Y 〈P1, . . . , Ps〉.

We prove here four propositions on the Y -rank of points belonging to 〈Z〉 where Z is a
degree 4 non-reduced zero-dimensional sub-scheme a projective non-degenerate reduced
curve Y obtained by the union of two rational normal curves Y1, Y2. We will not study
here neither all the possible configurations of the scheme Z nor all the possible reciprocal
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positions of the curves Y1, Y2, but only those that will be needed in the proof of the
Theorem 1.
We like to stress here that in almost all the following propositions of this section (except
in Proposition 3) we can prove only that the Y -rank of certain points is less or equal than
a value. Nevertheless in Section 4 all these inequalities will be proved to be equalities
(cfr. Corollary 1, Corollary 2 and Corollary 3).

Proposition 1. Fix an integer d ≥ 3. Let Y ⊂ P2d be a reduced and connected curve
union of two smooth degree d curves Y1, Y2, each of them a rational normal curve in its
linear span, with a unique common point point, Q, and with 〈Y 〉 = P2d. Let Z ⊂ Y be a
length 4 zero-dimensional scheme such that Zred = {Q}, Z is a Cartier divisor of Y and
deg(Z ∩ Yi) ≥ 2 for i = 1, 2. Fix P ∈ 〈Z〉 such that P /∈ 〈Z ′〉 for any Z ′ $ Z. Then:

rY (P ) ≤ 2d− 2 (8)

and there is a reduced zero-dimensional sub-scheme S ⊂ Y computing rY (P ) such that
Q /∈ S and ](S ∩ Yi) = d− 1 for i = 1, 2. We may find S as above and not intersecting
any finite prescribed subset of Y .
If d ≥ 4, then for a general pair of sets of points (A1, A2) ⊂ Y1 × Y2 such that ](A1) =
](A2) = d− 3 there is S as above with the additional property that A1 ∪A2 ⊂ S.

Proof. Fix a finite set of points M ⊂ Y .
In Steps (a) and (b) of this proof we will show the existence of a reduced zero-dimensional
sub-scheme S ⊂ Y \M of length 2d − 2 that intersects both Y1 and Y2 in degree d − 1
and such that P ∈ 〈S〉, but the point Q = {Y1 ∩ Y2} /∈ S, and moreover, if d ≥ 4, then
the set A1 ∪A2 is contained in S.

Step (a) Here we assume d = 3. Let `P : P6 \ {P} → P5 be the linear projection from P .
Since P /∈ Y , then the map `P |Y is obviously a morphism. Since P /∈ 〈Yi〉, each
curve Ci := `P (Yi), i = 1, 2, is a rational normal curve in its 3-dimensional linear
span. Now the zero-dimensional sub-scheme Z ⊂ Y is, by hypothesis, such that
P ∈ 〈Z〉 and P /∈ 〈Z ′〉 for any proper sub-scheme Z ′ ⊂ Z. If P ∈ 〈TQY1∪TQY2〉
we would have that P belongs to the span of a proper sub-scheme of Z of degree
3 (in fact deg(TQY1 ∪ TQY2) = 3 and TQY1 ∪ TQY2 ⊂ Z) that contradicts the
hypothesis. Then P ∈ 〈Z〉\ 〈TQY1∪TQY2〉, hence D := 〈C1〉∩〈C2〉 is a line not
tangent either to C1 or to C2, but intersecting each Ci only at their common
point `P (Q). Hence the linear projection from D induces a degree 2 morphism
ψi : Ci → P1. Thus, for a general O ∈ D, there are two sets of points Bi ⊂ Ci
such that ](Bi) = 2 and O ∈ 〈Bi〉, for i = 1, 2. Let Si ⊂ Yi be the only set of
points such that `P (Si) = Bi for i = 1, 2. Since dim(〈`P (S1∪S2)〉) = 2, we have
dim(〈{P} ∪ S1 ∪ S2〉) = 3. We easily find O ∈ D such that dim(〈S1 ∪ S2〉) = 3
and Q /∈ S1 ∪ S2. Hence P ∈ 〈S1 ∪ S2〉. We can then take S := S1 ∪ S2 as a
solution for d = 3.

Step (b) Here we assume d ≥ 4. Take a general pair of sets of points (A1, A2) ⊂ Y1 × Y2

such that ](A1) = ](A2) = d − 3. Let ` : P2d \ 〈A1 ∪ A2〉 → P6 denote the
linear projection from 〈A1 ∪ A2〉. Apply Step (a), i.e. the case d = 3, to the
curve Y ′ ⊂ P6 which is the closure of `(Y \ Y ∩ 〈A1 ∪ A2〉). Let S1 ∪ S2 be a
solution for Y ′ with respect to the point `(P ). For general O ∈ D (as in Step
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(a)) we may find S1 ∪ S2 not through the finitely many points of Y ′ which are
in Y ′ \ `(Y \ (A1 ∪ A2)). Hence there are unique Bi ⊂ Yi such that `(Bi) = Si
for i = 1, 2. Set S := B1 ∪B2 ∪A1 ∪A2. 2

Remark 2. We notice that the triple (Y1, Y2, Q) described in the statement of Proposi-
tion 1 is unique, up to a projective transformation, and that pa(Y ) = 0.

In Corollary 2 we will show that (8) is an equality.
The following result can be proved in a similar way as we proved Proposition 1.

Proposition 2. Fix an integer d ≥ 3. Let Y ⊂ P2d be a reduced and connected curve
union of two smooth degree d curves Y1, Y2, each of them a rational normal curve in its
linear span, with a unique common point point, Q, and with 〈Y 〉 = P2d. Fix Pi ∈ Yi\{Q}
for i = 1, 2. Let Zi ⊂ Yi, i = 1, 2, be the degree 2 effective divisor of Yi supported on Pi.
Set Z := Z1∪Z2. Fix P ∈ 〈Z〉 such that P /∈ 〈Z ′〉 for any Z ′ ⊂ Y with deg(Z ′) < deg(Z).
Then:

rY (P ) ≤ 2d− 2 (9)

and there is reduce zero-dimensional sub-scheme S ⊂ Y computing rY (P ) such that
Q /∈ S and ](S ∩ Yi) = d− 1 for i = 1, 2. We may find S as above and not intersecting
any finite prescribed subset of Y . If d ≥ 4, then for a general pair of sets of points
(A1, A2) ⊂ Y1×Y2 such that ](A1) = ](A2) = d− 3 there is S as above with the addition
property that A1 ∪A2 ⊂ S.

We do not write the proof of Proposition 2 because it is completely analogous to the
proof of the above Proposition 1.

Corollary 3 will prove that (9) is an equality.

Proposition 3. Fix an integer d ≥ 3. Let Y ⊂ P2d+1 be a reduced curve union of two
smooth degree d curves Y1, Y2, each of them a rational normal curve in its linear span
and such that 〈Y1〉 ∩ 〈Y2〉 = ∅. Fix Pi ∈ Yi for i = 1, 2. Let Zi ⊂ Yi be the degree 2
effective Cartier divisor 2Pi of Yi, i = 1, 2. Set Z := Z1 ∪ Z2. Fix P ∈ 〈Z〉 such that
P /∈ 〈Z ′〉 for all Z ′ $ Z. Then bY (P ) = 4, Z is the only subscheme of Y computing
bY (P ),

rY (P ) = 2d

and ](S ∩ Y1) = ](S ∩ Y2) = d for all reduced zero-dimensional sub-schemes S ⊂ Y
computing rY (P ).

Proof. Since deg(Z) = 4 and since Y is a smooth curve, we have bY (P ) ≤ 4.
Obviously 〈Z〉 ∩ 〈Yi〉 ⊃ 〈Zi〉. Let’s see the other containment. We show that 〈Z〉 ∩

〈Y1〉 ⊂ 〈Z1〉 (the same proof holds for 〈Z〉∩〈Y2〉 ⊂ 〈Z2〉). If 〈Z〉∩〈Y1〉 is not contained in
〈Z1〉 then there exists a point Q ∈ 〈Z〉 ∩ 〈Y1〉 such that Q /∈ 〈Z1〉. Since such a Q ∈ 〈Z〉,
we have that dim(〈Z1, Q〉) = 2 and 〈Z1, Q〉 := Π ⊂ 〈Z〉. Now Π is spanned by a zero-
dimensional scheme of degree 3 that is contained in 〈Y1〉, by hypothesis 〈Y1〉 ∩ 〈Y2〉 = ∅,
then Π cannot intersect 〈Z2〉 which is entirely contained in 〈Y2〉. Now boht Π and 〈Z2〉
are contained in 〈Z〉 which has projective dimension 3. Therefore if such a Q exists,
we would have a projective plane Π and a line 〈Z2〉 that are contained in a P3 without
intersecting each other, but this is impossible. Then 〈Z〉 ∩ 〈Yi〉 ⊂ 〈Zi〉 for i = 1, 2.
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Since P /∈ 〈Z ′〉 for all Z ′ $ Z, we get P /∈ 〈Y1〉 and P /∈ 〈Y2〉. Since for i = 1, 2 Yi is
a rational normal curve, then Zi is the only sub-scheme of Yi computing bYi(Q) for all
Q ∈ TPi

Yi \{Pi}. We immediately get that Z is the only sub-scheme of Y with length at
most 4 whose linear span contains P . Hence we have proved that Z is the unique zero-
dimensional scheme that computes the Y -border rank of P and that P ∈ σ4(Y ) \ σ3(Y ).

Now we compute rY (P ).
Let `P : P2d+1 \ {P} → P2d denote the linear projection from P . Set C := `P (Y ) and
Ci := `P (Yi). Since P /∈ σ2(Y ), then `P |Y is an embedding. Hence C1 ∩ C2 = ∅. Since
P /∈ 〈Y1〉∪ 〈Y2〉, then each Ci is a degree d rational normal curve in its linear span. Thus
rY (P ) is the minimal cardinality of a set of points A := A1 ∪ A2 such that A1 ⊂ C1,
A2 ⊂ C2 and A1 ∪ A2 is linearly dependent. Notice that 〈C1〉 ∩ 〈C2〉 is a unique point
O /∈ C. Set Qi := `P (Pi) with Pi = (Zi)red, Wi := `P (Zi) and W := W1 ∪W2. Hence
Wi is the degree 2 effective divisor 2Qi of Ci. Since P ∈ 〈Z〉, then 〈W 〉 is a plane. Thus
the two lines TQi

Ci, i = 1, 2, meets each other. Since {O} = 〈C1〉 ∩ 〈C2〉, then O is their
unique common point. Since O ∈ TQi

Ci, we have rCi
(O) = d (see [9] or [17], Theorem

4.1). Hence ](A ∩ C1) ≥ d and ](A ∩ C2) ≥ d. Since 〈C1〉 ∩ 〈C2〉 = {O} and any d + 1
points of Ci are linearly independent, ](A∩C1) = d and ](A∩C2) = d for every linearly
dependent A ⊂ C such that ](A ∩ Ci) ≤ d for all i. Then rY (P ) ≥ 2d, but rYi(Ri) = d
for all Ri ∈ TPi

Yi \ Yi and i = 1, 2, hence rY (P ) ≤ 2d and therefore rY (P ) = 2d. 2

Proposition 4. Fix an integer d ≥ 3. Let Y ⊂ P2d be a reduced and connected curve
union of two smooth degree d curves Y1, Y2, each of them a rational normal curve in its
linear span, with a unique common point, Q, and with 〈Y 〉 = P2d. Fix P1 ∈ Y1 \{Q} and
let Z1 ⊂ Y1 the degree 2 effective divisor with P1 as its reduction. Let Z2 ⊂ Y2 be the
degree 2 effective divisor of Y2 with Q as its reduction. Set Z := Z1 ∪ Z2. Z is a degree
4 Weil divisor of Y , but not a Cartier divisor of Y . Fix P ∈ 〈Z〉 such that P /∈ 〈Z ′〉 for
any Z ′ $ Z. Then:

rY (P ) ≤ 2d− 1 (10)

and there is a reduced zero-dimensional sub-scheme S ⊂ Y computing rY (P ) such that
](S ∩ Y1) = d− 1 and ](Y2 ∩ S) = d. Moreover 〈Z〉 ∩ 〈S〉 is a line intersecting both 〈Y1〉
and 〈Y2〉.

Proof. First of all observe that, by construction, P ∈ 〈TQY2, TP1Y1〉. Since Q = Y1∩Y2,
we may also observe that P ∈ 〈σ3(Y2), TQY1〉. Hence there exists a zero-dimensional
scheme Z ′ ⊂ Y1 such that P ∈ 〈Z ′, TQY1〉. The construction of the scheme Z allows
us to be more precise: Z ′ = Z1 ∪ Q. Therefore the point P can be written as a linear
combination of a point P ′1 ∈ 〈Z ′〉 and P ′2 ∈ TQY1 where Z ′ = Z1 ∪Q. Now rY2(P ′2) = d
because P ′2 ∈ TQY1 and, by [21], [6], [9], [11] and [7], the points belonging to the tangent
line to a rational normal curve of degree d have symmetric rank equal to d. Moreover
rY1(P ′1) = d − 1 because P ′1 ∈ 〈Z1〉 that is not reduced and the points belonging to the
span of a degree 3 non-reduced zero-dimensional sub-scheme of a rational normal curve
belongs to σ3(Y2) \ σ0

3(Y2) and then, by [21], [6], [9], [11] and [7], they have symmetric
rank d− 1. Hence P = P ′1 + P ′2, then rY (P ) ≤ 2d− 1. 2

In Corollary 1 of Section 4.1.1 we will prove that (10) is actually an equality.
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3. Lemmas

In Notation 3 and in Notation 5 we defined two zero-dimensional schemes A,B ⊂ Pm
such that νm,d(A) = Z and νm,d(B) = S respectively and two different zero-dimensional
schemes Z, S ⊂ X realizing the X-border rank and the X-rank respectively of a point
P ∈ σ4(X) \ (σ0

4(X) ∪ σ3(X)). Here, but only for this Section 3, we do not care about
the fact that P ∈ 〈νm,d(A)〉 ∩ 〈νm,d(B)〉 is a point of σ4(X) \ (σ0

4(X) ∪ σ3(X)): for this
section A,B ⊂ Pm are zero-dimensional schemes whose images via νm,d still realize the
X-border rank and the X-rank respectively of a point P ∈ Pn, but here we do not give
any restriction on the minimum secant variety σs(X) such that P ∈ σs(X). This is
summarized in the following notation.

Notation 6. In this section, and only in this section, we only require that:

• A ⊂ Pm is a non-reduced zero-dimensional scheme such that νm,d(A) = Z ⊂ Pn
realizes the X-border rank of P ∈ Pn,

• B ⊂ Pm is a reduced zero-dimensional scheme such that νm,d(B) = S ⊂ Pn realizes
the X-rank of P ∈ Pn,

• deg(A) < deg(B).

More assumptions on the degrees of A and B will be explained in each Lemma.

We can now give the following lemmata. It will be crucial in the proof of Theorem 1.

Lemma 1. Fix P ∈ Pnm,d . Let A,B ∈ Pm be two zero-dimensional schemes as in
Notation 6. We have that

h1(Pm, IA∪B(d)) > 0.

Proof. The statement is equivalent to the fact that the zero-dimensional scheme νm,d(A∪
B) is linearly dependent in Pnm,d , i.e. dim(〈νm,d(A∪B)〉) ≤ deg(A∪B)−2. The latter in-
equality is true even if A∩B 6= ∅, because P ∈ 〈νm,d(A)〉∩〈νm,d(B)〉, but P /∈ 〈νm,d(A′)〉
for any A′ $ A and P /∈ 〈νm,d(B′)〉 for any B′ $ B. 2

We introduce here a tool that we will use in the proofs of the next lemmata.

Notation 7. Let E ⊂ Pm be a zero-dimensional scheme and let H ⊂ Pm be a hyper-
plane, then the sequence that defines the residual scheme ResH(E) of E with respect to
H is the following:

0→ IResH(E)(t− 1)→ IE(t)→ IE∩H,H(t)→ 0 (11)

Lemma 2. Fix an integer d ≥ 2 and a zero-dimensional and curvilinear subscheme E
of P2 such that deg(E) = 2d+ 2 and h1(IE(d)) > 0.

(i) If E is in linearly general position, then h1(IE(d)) = 1 and there is a smooth
conic C such that E ⊂ C.

(ii) Assume that E is not in linearly general position. Then either there is a line
L ⊂ P2 such that deg(L ∩ E) ≥ d + 2 and h1(IE(d)) = deg(L ∩ E) − d − 1 or there are
two lines L1, L2 such that E ⊂ L1 ∪ L2 and ](E ∩ L1) = ](E ∩ L2) = d+ 1.
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Proof. First assume that E is in linearly general position. Let C ⊂ P2 be a reduced
conic such that y := deg(E ∩ C) is maximal. Since deg(E) ≥ 5 and 52 = 6, we have
y ≥ 5. Since ResC(E) ⊂ E, the scheme ResC(E) is in linearly general position. Since
deg(ResC(E)) = 2d + 2 − y ≤ 2(d − 2) + 1, we have h1(IResC(E)(d − 2)) = 0 ([14],
Theorem 3.2). Thus the exact sequence

0→ IResC(E)(d− 2)→ IE(d)→ IC∩E(d)→ 0

gives h1(C, IC∩E(d)) > 0. Thus deg(E ∩ C) ≥ 2d + 2. Since deg(E) = 2d + 2, we get
E ⊂ C, concluding the proof of (i).

Now assume that E is not in linearly general position. Take a line L ⊂ P2 such that
x := deg(L ∩ E) is maximal. By assumption we have x ≥ 3. First assume x ≥ d + 2.
Since ResL(E) has degree 2d+ 2−x, we have h1(IResL(E)(d− 1)) = 0 ([6], Lemma 4.6).
From the exact sequence (11) we get the result in this case. Now assume x ≤ d + 1. If
h1(IResL(E)(d − 1) = 0, then (11) gives h1(IE(d)) = 0 that is a contradiction. Thus
h1(IResL(E)(d − 1)) > 0. Since 2d + 2 − x ≤ 2(d − 1) + 1 ([6], Lemma 4.6) gives the
existence of a line R such that z := deg(R∩ResL(E)) ≥ d+ 1. The maximality property
of x and the inclusion ResL(E) ⊆ E gives x ≥ d + 1. Since z ≤ 2d + 2 − x, we get
z = x = d+ 1. 2

We remind here part of the Theorem 1 proved in [4], and we write the part that will
be useful in our paper applied in the particular case of deg(Z) = 4.

Lemma 3. (Theorem 1 in [4]) Assume m ≥ 2 and let A,B ⊂ Pm as in Notation 6.
Assume also that 〈A〉 = 〈B〉 = Pm and deg(A ∪ B) ≤ 2d + 1. Then there are a line
L ⊂ Pm and a finite set of points F2 ⊂ Pm \ L such that:

deg(L ∩ (A ∪B)) ≥ d+ 2,

A ∩ L 6= ∅, (B \Ared) ∩ L 6= ∅, ](F2) ≥ m− 1, B = F2 t (B ∩ L) and A = F2 t (A ∩ L)
(as schemes).

Remark 3. We like to observe that the proof of the above Lemma (ref. proof of Theorem
1 in [4]) holds even if either A ⊂ Pm is reduced or if B ⊂ Pm does not compute rXm,d

(P ).
We do not give the details of the proof of this fact because it is sufficient to retrace
the proof of Theorem 1 in [4] without the assumptions on the non-reducibility of A and
on the fact that B computes the Xm,d-rank of P . In fact that proof only requires the
existence of P ∈ 〈νm,d(A)〉 ∩ 〈νm,d(B)〉 such that P /∈ 〈νm,d(A′)〉 for any A′ $ A and
P /∈ 〈νm,d(B′)〉 for any A′ $ B.

Because of the above remark we will often use, especially in Section 4.2, the Lemma
3 in the following form.

Lemma 4. Assume m ≥ 2 and let A,B ⊂ Pm two zero-dimensional schemes such that
there exists a point P ∈ 〈νm,d(A)〉 ∩ 〈νm,d(B)〉 such that P /∈ 〈νm,d(A′)〉 for any A′ $ A
and P /∈ 〈νm,d(B′)〉 for any A′ $ B. Assume also that 〈A〉 = 〈B〉 = Pm and deg(A∪B) ≤
2d+ 1. Then there are a line L ⊂ Pm and a finite set of points F2 ⊂ Pm \ L such that:

deg(L ∩ (A ∪B)) ≥ d+ 2,
11



A ∩ L 6= ∅, (B \Ared) ∩ L 6= ∅, ](F2) ≥ m− 1, B = F2 t (B ∩ L) and A = F2 t (A ∩ L)
(as schemes).

Lemma 5. Assume the existence of a hyperplane M ⊂ Pm such that h1(Pm, IResM (A∪B)(d−
1)) = 0. Let A,B ⊂ Pm as in Notation 6. Set F3 := B \ B ∩M . Then F3 ⊂ Ared. If
either 〈A〉 = Pm or B * M , then F3 6= ∅.

Proof. Set G := F3 ∩ A and S3 := F3 \ G. Notice that S3 (if it is not empty) is
a union of reduced connected components of A ∪ B. From the exact sequence (11)
we get h1(M, I(A∪B)∩M (d)) = h1(P3, IA∪B(d)) and h1(M, I(A∪B)∩M (d)) > 0. Thus
〈νm,d(A ∩ M)〉 ∩ 〈νm,d(B ∩ M)〉 6= ∅. Since νm,d is a complete embedding, then we
have just proved that h1(I(Z∪S)∩νm,d(M)(1)) = h1(IZ∪S(1)). We have dim(〈Z ∪ S〉) =
deg(Z ∪ S)− 1− h1(P3, IA∪B(d)) and dim(〈νm,d((A ∪B) ∩M)〉 = deg((A ∪B) ∩M)−
1− h1(M, I(A∪B)∩M (d)). We also have dim(〈E〉) = deg(E)− 1 for every E ∈ {A,B,A∩
M,B ∩M}. Hence Grassmann’s formula gives dim(〈Z〉 ∩ 〈S〉) = ](G) + dim(〈νm,d(A ∩
M)〉∩〈νm,d(B∩M)〉) and dim(〈Z ∪S〉) = dim(〈νm,d(A∪B \S3)〉)+ ](S3) (i.e. dim(〈Z ∪
S)〉) = ](S3) + dim(〈νm,d(A ∪B) \ S3〉).

Now we prove S3 = ∅, i.e. F3 ⊂ Ared. Since S ∩ ((A ∪ B) \ S3) = S1 ∪ S2, A ∪ B =
((A ∪ B) \ S3) t S3, W = W ′ t S3 and Z ∪ (S ∩M) ∪ νm,d(G) = (A ∪ B) \ S3, we get
〈(Z ∪ S) \ νm,d(S3)〉 ∩ 〈S〉 = 〈Z〉 ∩ 〈(S ∩M) ∪ νm,d(G)〉. Since P ∈ 〈Z ∪ (S ∩M) ∪
νm,d(G)〉 ∩ 〈S〉, we get P ∈ 〈(S ∩M) ∪ Z ∪ (S ∩M) ∪ νm,d(G)〉. The minimality of S
gives S3 = ∅.

To conclude the proof it is sufficient to show that F3 6= ∅. Assume F3 = ∅. Then
B ⊂ M . Hence 〈S〉 ⊂ 〈νm,d(M)〉. Hence P may be defined using a smaller number of
homogeneous variables, contradicting [18], Proposition 3.1, or [17], Subsection 3.2, and
the assumption that m is minimal for P . 2

4. Preliminaries of the proof of the main theorem

This section is essentially the core of the proof of Theorem 1 but it is not the proof
yet. That proof will be done in the next section. Here we give only all the preliminaries,
they will reduce the proof of Theorem 1 to its structure: it will be sufficient to show the
frame of the proof and all the details will be already proved in this section.

For all this section we will use the notation given in the Introduction that we remind
here for the reader.

• Let Z ⊂ Xm,d, as in Notation 2, be a degree 4 zero-dimensional sub-scheme of
Xm,d that computes the Xm,d-border rank of a point P ∈ σ4(Xm,d) \ (σ0

4(Xm,d) ∪
σ3(Xm,d));

• Let A ⊂ Pm, as in Notation 3, be the pre-image of Z ⊂ Xm,d as above via the
Veronese map νm,d;

• Let S ⊂ Xm,d, as in Notation 4, be a reduced zero-dimensional sub-scheme of Xm,d

that computes the Xm,d-rank of a point P ∈ σ4(Xm,d) \ (σ0
4(Xm,d) ∪ σ3(Xm,d));

• Let B ⊂ Pm, as in Notation 5, be the pre-image of S ⊂ Xm,d as avobe via νm,d.

Here we give two auxiliary lemmas using these assumptions.
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Lemma 6. Fix a line L ⊂ Pm and assume h1(IA∪B(d)) = deg(L∩(A∪B))−d−1. Then
〈Z〉 ∩ 〈S〉 ⊆ 〈D〉 with D = νm,d(L) where A,B ⊂ Pm are as in Notation 3 and Notation
5 respectively and S,Z ⊂ Xm,d are as in Notation 4 and Notation 2 respectively.

Proof. The assumption h1(IA∪B(d)) = deg(L∩(A∪B))−d−1 implies dim(〈A∪B〉) =
dim(〈D〉) + deg(A ∪B)− deg((A ∪B) ∩D). 2

Lemma 7. Let M ⊂ Pm be a hyperplane such that h1(Pm, IResM (A∪B)(d−1)) = 0. Then
h1(Pm, IA∪B(d)) = h1(M, I(A∪B)∩M (d)) and 〈Z〉 ∩ 〈S〉 ⊆ 〈νm,d(M)〉 where A,B ⊂ Pm
are as in Notation 3 and Notation 5 respectively and S,Z ⊂ Xm,d are as in Notation 4
and Notation 2 respectively.

Proof. Since h2(Ym, IA∪B(d − 1)) = 0, the first equality follows from the residual
sequence (11) . Thus dim(〈A∪B〉)−dim(〈νm,d((A∪B)∩D)〉) = deg(A∪B)−deg((A∪
B) ∩M). 2

Now we split the section in two subsections where we study the Xm,d-rank of a
point P ∈ 〈νm,d(A)〉 for particular configurations of the scheme A ⊂ Pm with m = 2, 3
respectively (if A ⊂ P1 we refer to the Sylvester algorithm in [21], [9], [6], [11] and [7] for
the computation of the X1,d-rank of a point P ∈ 〈ν1,d(P1)〉).

4.1. Two dimensional case
Here we study the X2,d-rank of a point P ∈ σ4(X2,d) \ (σ0

4(X2,d) ∪ σ3(X2,d)) with
X2,d the Veronese surface ν2,d(P2) ⊂ Pn2,d . Moreover we assume in this sub-section that
the scheme A ⊂ P2 such that Z = ν2,d(A) computes the X2,d-border rank of P is not
contained in a line, that is to say that m = 2 is the minimum integer that contains A
where A is defined as in Notation 3. Since A is not contained in a line we have that
〈A〉 = P2 and that

h0(P2, IA(2)) = 2. (12)

4.1.1. Here assume the existence of a line L ⊂ P2 such that the schematic intersection
between A and L has degree at least 3

Since we are assuming that there exists a line L ⊂ P2 such that deg(A ∩ L) ≥ 3 and
since, by (12), 〈A〉 = P2, we have necessary that:

deg(A ∩ L) = 3.

Hence, in this case, the scheme ResL(A) has degree 1, i.e.

ResL(A) = O (13)

is a point with its reduced structure.
Notice that every point P ′ of 〈ν2,d(A ∩ L)〉 \ σ2(ν2,d(L)) has rank d − 1 ([9] or [17],
Theorem 4.1), unless A ∩ L is reduced. In the latter case any such a point has rank 3.

In Proposition 5 we study the case of O /∈ L, while the case of O ∈ L is done in
Proposition 6, Proposition 7 and Proposition 8.
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Proposition 5. Let A ⊂ P2 a degree 4 zero-dimensional non-reduced scheme with h0(P2, IA(2)) =
2. Suppose that it exists a line L ⊂ P2 such that deg(L ∩ A) ≥ 3 and that ResL(A) =:
{O} /∈ L. Let Z ⊂ X2,d, as in Notation 2, be Z = ν2,d(A). Then the X2,d-rank of a point
P ∈ 〈Z〉 \ (σ0

4(X2,d) ∪ σ3(X2,d)) is

rX2,d
(P ) = d.

Proof. Since A is not reduced, thenO /∈ L, {O} = ResL(A) and the scheme A∩L cannot
be reduced. Moreover let P ′ ∈ 〈ν2,d(L ∩ A)〉 \ σ2(ν2,d(L ∩ A)), then P ′ ∈ σ3(ν2,d(L)) \
(σ0

3(ν2,d(L))∪σ2(ν2,d(L))), hence rν2,d(L)(P ′) = d−1 (in fact ν2,d(L) is a rational normal
curve of degree d, hence we can apply the Sylvester algorithm [21], [9], [6], [11], [7]). Now,
by [9] or [17], Theorem 4.1, we have that also rX2,d

(P ′) = d− 1.
Obviously a point P ∈ 〈Z〉 is a linear combination of a point P ′ ∈ 〈ν2,d(L ∩ A)〉 \
σ2(ν2,d(L ∩A)) and the point O, hence rX(P ) ≤ rX(P ′) + 1 = d.
Assume rX(P ) < d, i.e. ](B) ≤ d − 1 where B ⊂ P2 is defined as in Notation 5 to
be the pre-image via ν2,d of a scheme S ⊂ X that computes the X-rank of P . Hence
deg(A∪B) ≤ d+ 3 ≤ 2d+ 1. Apply Lemma 3, calling R the line such that deg(R∩ (A∪
B)) ≥ d+ 2. Since deg(A ∪B) ≤ d+ 3 and deg(A ∩ L) = 3, we have R = L and B ⊂ R.
Since P /∈ 〈ν2,d(L)〉, we have P /∈ 〈S〉, that is a contradiction. 2

In the next three propositions we will do the cases in which the point O = ResL(A)
defined in (13) is contained in L. Observe that the definition of the residual scheme shows
that the connected component AO of A containing O is not reduced. We will distinguish
the three propositions below by the cardinality of the support of A.

Proposition 6. Let A ⊂ P2 be a degree 4 zero-dimensional scheme with h0(P2, IA(2)) =
2 with support on a point O. Suppose that it exists a line L ⊂ P2 such that deg(A∩L) =
3. Let Z ⊂ X2,d, as in Notation 2, be Z = ν2,d(A). Then the X2,d-rank of a point
P ∈ 〈Z〉 \ (σ0

4(X2,d) ∪ σ3(X2,d)) is

rX2,d
(P ) = 2d− 2.

Proof. Since deg(A) = 4 and 42 = 6, there is a reduced conic T ⊃ L, say T = L ∪ L1

with L1 a line and L1 6= L, such that A ⊂ T . We are in the set-up of Proposition
1 taking Y := ν2,d(T ), Y1 = ν2,d(L1) and Y2 = ν2,d(L). In this case we have that
deg(Yi ∩ Z) = 2 for i = 1, 2. Remember that in the proof of Proposition 1 we proved
the inequality rY (P ) ≤ 2d − 2. Since Y ⊂ X2,d, this inequality gives rX(P ) ≤ 2d − 2.
Assume that rX2,d

(P ) ≤ 2d− 3. This implies that deg(A ∪B) ≤ 2d+ 1. Hence we may
apply Lemma 3. Since Zred is a single point, we must have F2 = ∅, contradicting the
inequality ](F2) ≥ m− 1 = 1 of the statement of Lemma 3. 2

Proposition 7. Let A1, A2 ⊂ P2 be two degree 2 non-reduced zero-dimensional schemes
such that if A = A1 ∪ A2 then h0(P2, IA(2)) = 2. Let also A ⊂ P2 be such that there
exists a line L ⊂ P2 with the property that deg(L∩A) = 3. Let Z ⊂ X2,d, as in Notation
2, be Z = ν2,d(A). Then the X2,d-rank of a point P ∈ 〈Z〉 \ (σ0

4(X2,d) ∪ σ3(X2,d)) is

rX2,d
(P ) = 2d− 1.
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Proof. The inequality rX(P ) ≤ 2d − 1 follows from the inequality rY (P ) ≤ 2d − 1
proved in Proposition 4. Hence to prove that rX(P ) = 2d − 1 it is sufficient to prove
rX(P ) ≥ 2d− 1. Let B ⊂ P2 be as in Notation 5 such that ν2(B) = S and S ⊂ X2,d be
a sub-scheme computing the X2,d-rank of P .
Assume rX(P ) ≤ 2d− 2, hence deg(A∪B) ≤ 2d+ 2. First assume deg(A∪B) ≤ 2d+ 1.
Since no component of Z is reduced, Lemma 3 gives both F2 = ∅ and ](F2) ≥ 1 that is
a contradiction. Now assume deg(A ∪ B) = 2d+ 2. Since h1(P2, IA∪B(d)) > 0 (Lemma
1), we may apply Lemma 2 to E := A ∪ B. Since A is not in linearly general position,
Lemma 2 gives deg((A ∪ B) ∩ L) ≥ d + 1 and the existence of a line R 6= L such that
A∪B ⊂ L∪R. If R∩L /∈ B, then we may apply the proven part of Proposition 4. Since
deg(A)+deg(B) ≤ 2d+2, if R∩L ∈ B, then deg(A∪B) ≤ 2d+1 that is a contradiction.

2

This proposition allows to prove that the inequality (10) of Proposition 4 is actually
an equality.

Remark 4. Let Y be a projective curve contained in the variety Xm,d, and let P ∈
Pnm,d . Then obviously

rY (P ) ≥ rXm,d
(P ).

Corollary 1. Fix an integer d ≥ 3. Let Y ⊂ P2d be a reduced and connected curve union
of two smooth degree d curves Y1, Y2, each of them a rational normal curve in its linear
span, with a unique common point, Q, and with 〈Y 〉 = P2d. Fix P1 ∈ Y1 \ {Q} and let
Z1 ⊂ Y1 the degree 2 effective divisor with P1 as its reduction. Let Z2 ⊂ Y2 be the degree
2 effective divisor of Y2 with Q as its reduction. Set Z := Z1 ∪ Z2. Fix P ∈ 〈Z〉 such
that P /∈ 〈Z ′〉 for any Z ′ $ Z. Then

rY (P ) = 2d− 1.

Proof. The inequality rY (P ) ≤ 2d− 1 is proved in Proposition 4.
In the proof of Proposition 7 we showed that rX2,d

(P ) ≥ 2d− 1.
Since Y ⊆ X2,d then, as Remark 4 shows, also rY (P ) as to be bigger or equal than 2d−1.

2

Remark 5. The case proved in Proposition 7 is a very interesting case, because h1(P3, IA∪B(d)) =
2 (i.e. dim(〈Z〉 ∩ 〈S〉) = 1.

Proposition 8. Let A = AO t O1 t O2 ⊂ P2 with O1 6= O2 be two simple points of P2

and AO ⊂ P2 be a degree 2 non-reduced zero-dimensional scheme with support on a point
O ∈ L := 〈O1, O2〉 but O /∈ {O1, O2} and deg(AO∩L) = 1. Let Z ⊂ X2,d, as in Notation
2, be Z = ν2,d(A). Then, if d ≥ 4, the X2,d-rank of a point P ∈ 〈Z〉\(σ0

4(X2,d)∪σ3(X2,d))
is

rX2,d
(P ) = d+ 2.

Proof. Define ZO := ν2,d(AO) ⊂ X2,d. Every point P ′ ∈ 〈ν2,d(ZO)〉 \ X2,d has X2,d-
rank equal to d (see [6], Theorem 4.3). Thus rX(P ) ≤ d + 2 in this case. Assume
rX(P ) ≤ d + 1. Since d + 5 ≤ 2d + 1 (here we are using the hypothesis d ≥ 4), we may
apply Lemma 3. We get the existence of a line R ⊂ Y2 and of a set of points F2 ⊂ Y2 \R
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such that deg((A∩B)∩R) ≥ d+ 2, ](F2) ≥ 1, B = ((B \B∩Ared)∩R)tF2, A∩R 6= ∅,
B ∩R 6= ∅, B = (B ∩R) t F2 and A = (A ∩R) t F2 where B is as in Notation 5. First
assume R = L. Since Ared ⊂ L, we get F2 = ∅, contradicting the inequality ](F2) ≥ 1.
Now assume R 6= L. Thus {O} = R ∩ L, AO is the degree 2 effective divisor of R
supported by O and F2 = {O1, O2}. Since P /∈ 〈ν2,d(O1), ν2,d(O2), ν2,d(O)〉 (in fact we
have assumed that Z = ν2,d(A) computes the X-border rank of P and deg(Z) = 4),
we have 〈ν2,d(A ∩ L)〉 ∩ 〈ν2,d(AO〉 ∩ 〈(B ∩ R) \ {O}〉. Since rν2,d(R)(U) = d for all
U ∈ 〈ν2,d(AO)〉 \ {O} (see [9]), we get ]((B ∩ R) \ {O}) ≥ d. Thus ](B) ≥ d+ 2 that is
a contradiction. 2

Remark 6. Take m ≥ 2 and A = AO t O1 t O2 ⊂ Pm with AO ⊂ Pm connected and
deg(AO) = 2 and O1, O2 ∈ Pm. Notice that if m > 2 we are not assuming that A is
contained in a plane. As in Proposition 8 if P ∈ 〈νm,d(AO t O1 t O2)〉 \ (σ0

4(Xm,d) ∪
σ3(Xm,d)) we have that:

rXm,d
(P ) = d+ 2.

Let L ⊂ Pm be the line spanned by AO. Set {O} := (AO)red. Let T be the tangent line to
the degree d rational normal curve νm,d(L) at νm,d(O). The plane 〈{νm,d(O1), νm,d(O2), P}〉
intersects T at a unique point P1 and P1 6= νm,d(O). Hence rνm,d(L)(P1) = d. Using
Sylvester’s algorithm (see [6], §3) to find a set S1 ⊂ νm,d(L) computing rνm,d(L)(P1).
The set S1 ∪ {νm,d(O1), νm,d(O2)} computes rXm,d

(P ).

This concludes our considerations on the Subsection 4.1.1 in which we were assuming
the existence of a line L ⊂ P2 such that deg(A ∩ L) ≥ 3.

4.1.2. Here assume that the schematic intersection of A with a line L ⊂ P2 has degree
less or equal than 2 for every line L

First of all observe that the assumption

deg(L ∩A) ≤ 2

for all lines L ⊂ P2 is equivalent to the spannedness of the sheaf IA(2).

Notation 8. Fix a general E ∈ |IA(2)| for A ⊂ P2 a non-reduced zero-dimensional
scheme of degree 4 such that IA(2) is spanned.

Remark 7. If the degree 4 non-reduced zero-dimensional scheme A ⊂ P2 is such that
IA(2) is spanned then A is the complete intersection of the conic E ⊂ P2 fixed in Notation
8 with another conic (perhaps a double line). Thus A is a Cartier divisor of E.

Let’s do first the case in which the generic conic E ∈ |IA(2)| of Notation 8 is smooth.

Proposition 9. Let A ⊂ P2 be a non-reduced zero dimensional scheme of degree 4 such
that IA(2) is spanned. Suppose that the general conic E ∈ |IA(2)| is smooth. Let Z ⊂
X2,d be equal to ν2,d(A) as in Notation 5. Then the X2,d-rank of a point P ∈ 〈Z〉 \
(σ0

4(X2,d) ∪ σ3(X2,d)) for d ≥ 4 is

rX2,d(P ) = 2d− 2.
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Proof. Notice that Y := ν2,d(E) is a degree 2d rational normal curve in its linear span.
Let B ⊂ P2 be defined as in Notation 5. Since A ∪ B ⊂ E, we have P ∈ 〈Y 〉. Since
rY (P ) = 2d − 2 (see [9] or [17], Theorem 4.1) we have that rX2,d

(P ) ≤ 2d − 2. Assume
rX2,d

(P ) ≤ 2d − 3. Thus deg(A ∪ B) ≤ 2d + 1. Take L and F2 as in the statement
of Lemma 3. Since deg(L ∩ E) ≤ 2, we have ](F2) ≥ 2. Since S is in linearly general
position, we have ](L∩B) ≤ d+1. Thus rX2,d

(P ) = ](B) ≤ d+3 that is a contradiction.
2

Remark 8. Assume m ≥ 2 and that the scheme A ⊂ Pm of Proposition 9 is contained
in a smooth conic E ⊂ Pm. Set Y := νm,d(E). In Proposition 9 we proved that
rY (P ) = 2d− 2. Since one can use Sylvester’s algorithm (see [6], §3) to compute a set of
points S ⊂ C that computes rY (P ), then one can use the same S in order to compute
rXm,d

(P ), too.

Suppose now that the generic conic E ∈ |IA(2)| of Notation 8 is reduced, but not
smooth.

Remark 9. If the generic conic E ∈ |IA(2)| of Notation 8 is reduced, but not smooth
then E = L1 ∪ L2 with L1 and L2 lines and L1 6= L2. Notice that Y := ν2,d(E) is a
degree 2d reduced and connected curve (it is a nodal union of 2 smooth degree d rational
normal curves meeting in one point). Hence dim(〈Y 〉) = 2d. Since we are not in the
set-up of § 4.1.1, deg(A ∩ Li) ≤ 2 for all i. Since deg(A) = 4, we get that:

deg(A ∩ Li) = 2

for all i and that A is a Cartier divisor of E. Since A is not reduced, then 1 ≤ ](Ared) ≤ 3.

In the next propositions and in the following remarks we will study the cases ](Ared) =
1, 2, 3.

Proposition 10. Let A ⊂ P2 be a non-reduced zero dimensional scheme of degree 4 such
that IA(2) is spanned. Moreover suppose that the generic conic E ∈ |IA(2)| of Notation
8 is reduced, but not smooth: E = L1 ∪ L2 with L1 and L2 lines and L1 6= L2, then
deg(A ∩ Li) = 2 for i = 1, 2. Assume ](Ared) = 1. Let Z ⊂ X2,d be equal to ν2,d(A) as
in Notation 5. Then the X2,d-rank of a point P ∈ 〈Z〉 \ (σ0

4(X2,d) ∪ σ3(X2,d)) is

rX2,d(P ) = 2d− 2.

Proof. Since deg(A ∩ Li) > 0 for all i, we have Ared = L1 ∩ L2. Since A is a Cartier
divisor of E, we may apply Proposition 1. Thus rY (P ) = 2d − 2 for Y = ν2,d(E).
Hence rX2,d

(P ) ≤ 2d − 2. Thus it is sufficient to prove rX2,d
(P ) ≥ 2d − 2. Assume

rX2,d
(P ) ≤ 2d−3. Hence deg(A∪B) ≤ 2d+1 for B as in Notation 5. Thus we may apply

Lemma 3. Since A is connected, F2 = ∅, contradicting the inequality ](F2) ≥ m− 1 = 1.
2

We can now prove that the reverse inequality of (8) appeared in Proposition 1 is an
equality.
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Corollary 2. Fix an integer d ≥ 3. Let Y ⊂ P2d be a reduced and connected curve
union of two smooth degree d curves Y1, Y2, each of them a rational normal curve in its
linear span, with a unique common point point, Q, and with 〈Y 〉 = P2d. Let Z ⊂ Y be a
length 4 zero-dimensional scheme such that Zred = {Q}, Z is a Cartier divisor of Y and
deg(Z ∩ Yi) ≥ 2 for i = 1, 2. Fix P ∈ 〈Z〉 such that P /∈ 〈Z ′〉 for any Z ′ $ Z. Then:

rY (P ) = 2d− 2.

Proof. The inequality rY (P ) ≤ 2d− 2 is proved in Proposition 1.
In the proof of Proposition 6 we showed that if deg(A∩Li) = 3 for one i ∈ {1, 2} (i.e. if
deg(Z ∩ Yi) ≥ 2 for i = 1, 2) then rX2,d

(P ) ≥ 2d− 2. Since Y ⊆ X2,d then, as Remark 4
shows, also rY (P ) as to be bigger or equal than 2d− 2.
Finally in Proposition 10 we showed that if deg(A∩Li) = 2 for i = 1, 2 then rX2,d

(P ) ≥
2d− 2. Therefore. with the same argument above, we get that rY (P ) = 2d− 2. 2

Proposition 11. Let A ⊂ P2 be a non-reduced zero dimensional scheme of degree 4
such that IA(2) is spanned. Moreover suppose that the conic E ∈ |IA(2)| of Notation 8
is reduced, but not smooth: E = L1 ∪ L2 with L1 and L2 lines and L1 6= L2. Assume
](Ared) = 2 and that A has two unreduced connected components, say A1 and A2 with
A1 ∩ L1 6= ∅. Let Z ⊂ X2,d be equal to ν2,d(A) as in Notation 5. Then the X2,d-rank of
a point P ∈ 〈Z〉 \ (σ0

4(X2,d) ∪ σ3(X2,d)) is

rX2,d(P ) = 2d− 2.

Proof. Since deg(A ∩ Li) > 0 for all i and deg(Li ∩ A) < 3 for all i, we have Ai ⊂
Li \ (L1 ∩ L2) for all i. Proposition 2 gives rY (P ) ≤ 2d − 2 with Y = ν2,d(E). Hence
rX2,d

(P ) ≤ 2d − 2. Assume rX2,d
(P ) ≤ 2d − 3. Thus deg(A ∪ B) ≤ 2d + 1. We may

apply Lemma 3. Since A has no reduced component, we get F2 = ∅, contradicting the
inequality ](F2) ≥ m− 1 = 1. 2

In the following corollary we show that one can substitute the inequality (9) of the
Proposition 2 with an equality.

Corollary 3. Fix an integer d ≥ 3. Let Y ⊂ P2d be a reduced and connected curve union
of two smooth degree d curves Y1, Y2, each of them a rational normal curve in its linear
span, with a unique common point point, Q, and with 〈Y 〉 = P2d. Fix Pi ∈ Yi \ {Q} for
i = 1, 2. Let Zi ⊂ Yi, i = 1, 2, be the degree 2 effective divisor of Yi supported by Pi. Set
Z := Z1 ∪ Z2. Fix P ∈ 〈Z〉 such that P /∈ 〈Z ′〉 for any Z ′ ⊂ Y with deg(Z ′) < deg(Z).
Then

rY (P ) = 2d− 2.

Proof. In Proposition 2 it is proved that rY (P ) ≤ 2d− 2.
In the above Proposition 11 we proved that rX2,d

(P ) = 2d − 2, then, by Remark 9, we
have that also rY (P ) = 2d− 2. 2

Remark 10. Here we cover the cases described in Proposition 10 and in Proposition 11.
Fix an integer m ≥ 2 and two lines L1, L2 ⊂ Pm such that L1 6= L2 and L1∩L2 6= ∅. Set
{O} := L1∪L2. Assume that no connected component of A is reduced, A ⊂ L1∪L2 and
deg(L1 ∩A) = deg(L2 ∩A) = 2. Set Ai := A∩Li and Zi := Z ∩Li. By [18], Proposition
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3.1, or [17], Subsection 3.2, and Proposition 10 or Proposition 11 we have rX2,d
(P ) =

2d − 2. Set Yi := νm,d(Li). Since d ≥ 3, we have 〈νm,d(L1)〉 ∩ 〈νm,d(L2)〉 = {νm,d(O)}.
Set D1 := 〈{P} ∪ Y2〉 ∩ 〈Y1〉 and D2 := 〈{P} ∪ Y1〉 ∩ 〈Y2〉. The schemes D1 and D2 are
lines and D1 ∩D2 = {νm,d(O)}. Fix Pi ∈ Di \ {νm,d(O)}. Take any Si ⊂ Yi computing
rYi

(Pi) and set S := S1 ∪ S2.

Remark 11. Let A ⊂ P2 be a non-reduced zero-dimensional scheme of degree 4 such
that IA(2) is spanned. Moreover suppose that the conic E ∈ |IA(2)| of Notation 8 is
reduced, but not smooth: E = L1 ∪ L2 with L1 and L2 lines and L1 6= L2. Assume
](Ared) = 2 and that A is the disjoint union of a connected component, AO, with degree
3 and a point O′, say O′ ∈ L1. Since no line intersects A in a scheme of degree ≥ 3,
AO is neither the first infinitesimal neighborhood of L1 ∩L2 in Y2 (the line 〈O′, L1 ∩L2〉
would give a contradiction) nor a degree 3 effective divisor either of L1 or of L2. Hence
O′ 6= L1∩L2 and (AO)red = L1∩L2. Let E′ another reducible conic such that A = E∩E′.
Let R be the line of E′ containing O′. Since E ∩ R ⊆ A, then R is the line of L1 ∪ L2

containing O′. Call it L1. Since h0(Y2, IA(2)) = 2, we have infinitely many such conics.
Thus L1 is in the base locus of |IA(2)|. Hence deg(L1 ∩ A) ≥ 3 that is in contradiction
with our hypothesis.

Proposition 12. Let A ⊂ P2 be a non-reduced zero-dimensional scheme of degree 4
such that IA(2) is spanned. Moreover suppose that the conic E ∈ |IA(2)| of Notation 8
is reduced, but not smooth: E = L1 ∪ L2 with L1 and L2 lines and L1 6= L2. Assume
](Ared) = 3. Let AO be the unreduced connected component of A and O1, O2 the reduced
ones. Let Z ⊂ X2,d be equal to ν2,d(A) as in Notation 5. Then the X2,d-rank of a point
P ∈ 〈Z〉 \ (σ0

4(X2,d) ∪ σ3(X2,d)) is

rX2,d(P ) = d+ 2.

Proof. Since ν2,d(AO) is a tangent vector of X2,d, rX2,d
(P ′) = d for all P ′ ∈ 〈ν2,d(AO)〉\

(AO)red ([6], Theorem 4.3). Thus rX2,d
(P ) ≤ d + 2. Using Lemma 3 we easily get

rX2,d
(P ) ≥ d+ 2 (see Proposition 8 for a similar case). Thus rX2,d

(P ) = d+ 2. 2

Remark 12. Let A ⊂ P2 be a non-reduced zero-dimensional scheme of degree 4 such
that IA(2) is spanned. Moreover suppose that the conic E ∈ |IA(2)| of Notation 8 is
reduced, but not smooth: E = L1 ∪ L2 with L1 and L2 lines and L1 6= L2. Aassume
that E is not reduced. Hence E is a double line. Bertini’s theorem and the generality of
E gives that E is smooth outside the base locus of IU (2). Thus L := Ered is in the base
locus of IA(2). Hence deg(A ∩ L) ≥ 3. Thus we are in the set-up of § 4.1.1.

4.2. Three dimensional case
Here we assume that m = 3 and that the degree 4 non-reduced zero-dimensional

scheme A ⊂ P3 introduced in Notation 3 and such that ν3,d(A) = Z computes the X3,d-
border rank of a point P ∈ σ4(X3,d)\ (σ0

4(X3,d)∪σ3(X3,d)) is not contained in any plane
of P3, that is to say:

dim(〈A〉) = 3
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Remark 13. If A ⊂ P3 is the first infinitesimal neighborhood 2Q of some point Q ∈ P3

then, if Z ⊂ X3,d is as in Notation 2, the linear span 〈Z〉 is actually the tangent space
Tν3,d(Q)X3,d of X3,d at ν3,d(Q). Therefore, by [6], Theorem 4.3, we have rX3,d

(P ) = d,
but also that P ∈ σ2(X3,d).

Proposition 13. Let U1, U2 ⊂ P3 be two disjoint non-reduced zero-dimensional schemes
of degree 2 such that A = U1 t U2 spans P3. Let Zi = ν3,d(Ui) ⊂ X3,d for i = 1, 2 and
Z = ν3,d(A) as in Notation 2. Then, if d ≥ 4,

rX3,d
(P ) = 2d

for every P ∈ 〈Z〉 \ (σ0
4(X3,d) ∪ σ3(X3,d)).

Proof. Since no proper linear subspace of P3 contains A, the lines 〈U1〉 and 〈U2〉 of
P3 are disjoint. Set E := Z ∪ {P}. Since P /∈ 〈Z ′〉 for any Z ′ ⊆ Z and Z is linearly
independent (in fact Z as in Notation 2 computes the X3,d-border rank of P ), the degree
5 scheme E is in linearly general position in its 3-dimensional linear span 〈Z〉. Any two
such schemes E are projectively equivalent (this can be seen by using [14], Corollary 2,
and the fact that ](Ered) = 3).
Proposition 3 gives rX3,d

(P ) ≤ 2d. Here we will prove the reverse inequality and hence
that rX3,d

(P ) = 2d for d ≥ 4.
Assume rX3,d

(P ) ≤ 2d− 1 and fix S ⊂ X3,d computing rX3,d
(P ). We will show that this

is actually a contradiction.
Now if rX3,d

(P ) ≤ 2d − 1 and if B is defined as in Notation 5, we have that deg(A ∪
B) ≤ 2d + 3. Lemma 1 gives h1(P3, IA∪B(d)) > 0. Since deg(A ∪ B) ≤ 3d + 1 and
h1(P3, IA∪B(d)) > 0, A∪B is not in linearly general position ([14], Theorem 3.2). Thus
there is a plane M ⊂ P3 such that deg(M ∩ (A ∪ B)) ≥ 4. Among all such planes
we take one, say M , such that deg(M ∩ (A ∪ B)) is maximal. The residual scheme
ResM (A∪B) of A∪B with respect to the effective Cartier divisor M of P3 is the closed
subscheme of P3 with (IA∪B : IM ) as its ideal sheaf. We have ResM (A ∪ B) ⊆ A ∪ B
and deg(A ∪B) = deg((A ∪B) ∩M) + deg(ResM (A ∪B)).
Set W := A ∪B, M0 := M and W1 := ResM (W ).
Define inductively the planes Mi ⊂ P3, i ≥ 1, and the schemes Wi+1, i ≥ 1, by the
condition that Mi is one of the planes such that deg(Mi ∩Wi) is maximal and then set
Wi+1 := ResMi(Wi).
We have Wi+1 ⊆ Wi for all i ≥ 1 and Wi = ∅ for all i � 0. For all integers t and i ≥ 1
there is the residual exact sequence

0→ IWi+1(t− 1)→ IWi
(t)→ IWi∩Mi,Mi

(t)→ 0. (14)

In what follows we distinguish the case h1(M, IW1∩M,M (d)) = 0 (see item (1) in the
proof) from the case h1(M, IW1∩M,M (d)) > 0 (see item (2) and item (3) in the proof) and
we will show that in all possible cases we will get that the assumption rX3,d

(P ) ≤ 2d− 1
leads to a contradiction, then we will be allowed to conclude that rX3,d

(P ) = 2d− 1.

(1) First assume:
h1(M, IW1∩M,M (d)) = 0.

Since by Lemma 1 we have h1(IW1(d)) > 0, then (14) gives h1(P3, IW2(d− 1)) > 0.
Since deg(W1 ∩M1) ≥ 4, we have deg(W2) ≤ 2(d − 1) + 1. Hence [6], Lemma 4.6,
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gives the existence of a line L ⊂ P3 such that deg(L ∩W2) ≥ (d− 1) + 2.
Since W2 ⊂W1, we get deg(L ∩W1) ≥ d+ 1. Since W1 is non-degenerate, deg(M ∩
W1) ≥ 1 + deg(L ∩W1) ≥ d+ 2. Thus deg(W1) ≥ d+ 2 + deg(W2) ≥ 2d+ 3. Thus
we must have equalities everywhere. Hence deg(W2) = d+ 1 and deg(W1) = 2d+ 3.
Since deg(W2) = deg(W2 ∩ L), we also get W2 ⊂ L. Since L ⊂ M1 no reduced
connected component of W1 supported by a point of L survives to a component of
W2. Since B is reduced and deg(A) = 4, we get d+ 1 ≤ 2 that is a contradiction.

(2) Now, by the previous item (1) we are allowed to assume here (and in the next item
(3)) that

h1(M, IW1∩M,M (d)) > 0.

Actually here in this item (2) we start assuming also that

deg(W1 ∩M) ≥ 2d+ 2.

Since W1 spans P3 and deg(W1) ≤ 2d + 3, we get deg(W1 ∩M) = 2d + 2 and that
W2 is a reduced point, say Q. Since P ∈ 〈Z〉 ∩ 〈S〉, to compute rX3,d

(P ) we cannot
use a smaller number of variables. Thus Q ∈ Ared ∩ Bred. Thus deg(A ∪ B) ≤
deg(A) + deg(B \ {Q}) ≤ 2d + 2. We also get deg(M ∩ (A ∪ B)) ≤ 2d + 1, even
if Q ∈ M . Hence we may apply Remark 3 to M . Take the line L ⊂ M such that
deg((A∪B)∩L) ≥ d+ 2. Since S is linearly independent, we have ](B ∩L) ≤ d+ 1.
Since ](Ared) ≤ 2, Remark 3 gives ](B∩M) ≤ d+3. Hence rX3,d

(P ) := ](B) ≤ d+4
that is a contradiction.

(3) Finally we still assume (as in item (2)) that

h1(M, IW1∩M,M (d)) > 0

but also that
deg(W1 ∩M) ≤ 2d+ 1.

Since h1(M, IW1∩M,M (d)) > 0, Remark 3 gives the existence of a line L such that
]((A ∪ B) ∩ L) ≥ d + 2 and a non-empty set F2 such that A ∩M = (A ∩ L) t F2

and B ∩M = (B ∩ L) t F2. Since deg(A ∪ B) ≤ 2d + 3 − ](F2) and no connected
component of A is reduced, Lemma 3 gives ](F2) = 1.
First assume h1(P3, IResM (A∪B)(d− 1)) = 0.
Lemma 6 gives the existence of a set F3 such that F3 ⊂ Ared and B = (B ∩M)tF3.
Since B spans P3, F3 6= ∅. Thus deg(A∪B) ≤ 2d+ 3− ](F2)− ](F3) ≤ 2d+ 1. Since
no connected component of A is reduced, Lemma 3 gives a contradiction.
Now assume h1(P3, IResM (A∪B)(d− 1)) > 0.
We get deg(ResM (A∪B) ≥ d+1. Since deg(A∪B) ≤ 2d+2 and deg((A∪B)∩M) ≥
d+ 2, we obtained a contradiction.

All the cases above lead to a contradiction, then rX3,d
(P ) = 2d− 1 and this ends the

proof. 2

Remark 14. Assume, for m > 2, that the zero-dimensional scheme A ⊂ Pm of Notation
3 has two connected components, A1, A2 ⊂ Pm, both of degree 2 and that the lines Li :=
〈Ai〉, i = 1, 2, are disjoint. Thus dim(〈L1 ∪ L2〉) = 3. Set Yi := νm,d(Li), i = 1, 2, and
Y := Y1∪Y2. Notice that Y1∩Y2 = ∅. Now let Z ⊂ Xm,d be defined as in Notation 2 as a
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scheme that computes the Xm,d-border rank of a point P ∈ 〈Z〉\ (σ0
4(Xm,d)∪σ3(Xm,d)).

By [18], Proposition 3.1, or [17], Subsection 3.2, r(Xm,d)(P ) = rY1∪Y2(P ). We proved in
Proposition 3 that rXm,d

(P ) = 2d and that it may be computed by a set S ⊂ Y such
that ](S ∩ Yi) = d, i = 1, 2. The set S may be found in the following way (here we just
translate the proof of Proposition 3):

Step 1. Set P2 := 〈{P} ∪ Y1〉 ∩ 〈Y2〉 and P1 := 〈{P} ∪ Y2〉 ∩ 〈Y1〉.
Step 2. Find Si ⊂ Yi computing the Yi-rank of Pi (e.g. use Sylvester’s algorithm [21],

[9], [6], [11] and [7]).
Step 3. Set S := S1 ∪ S2.

Proposition 14. Let A ⊂ P3 be a degree 4 curvilinear zero-dimensional scheme with
support on only one point and such that 〈A〉 = P3. Let Z ⊂ X3,d be defined as in Notation
2 as ν3,d(A). If d ≥ 4 then the X3,d-rank of a point P ∈ 〈Z〉 \ (σ0

4(Xm,d) ∪ σ3(X3,d)) is

rX3,d
(P ) = 3d− 2.

Proof. Since A spans P3, it is projectively equivalent to a connected degree 4 divisor of a
smooth rational curve of P3. Thus rX3,d

(P ) ≤ 3d−2. We want to prove rX3,d
(P ) = 3d−2.

Assume rX3,d
(P ) ≤ 3d− 3 and get a contradiction.

Take S ⊂ X3,d computing rX3,d
(P ). We have deg(A∪B) = 4 + rX3,d

(P )− deg(S ∩Z) ≤
3d + 1 where B ⊂ P3 is as in Notation 5 the pre-image of S via ν3,d. Lemma 1 gives
h1(Pm, IA∪B(d)) > 0. Hence A∪B is not in linearly general position (see [14], Theorem
3.2). Thus there is a plane M ⊂ P3 such that deg(M ∩ (A ∪ B)) ≥ 4. Among all
such planes we take one, say M1, such that x1 := deg(M1 ∩ (A ∪ B)) is maximal. Set
E1 := A ∪ B and E2 := ResM1(E1). Notice that deg(E2) = deg(E1) − x1. Define
inductively the planes Mi ⊂ P3, i ≥ 2, the schemes Ei+1, i ≥ 2, and the integers xi,
i ≥ 2, by the condition that Mi is one of the planes such that xi := deg(Mi ∩ Ei) is
maximal and then set Ei+1 := ResMi

(Ei). We have Ei+1 ⊆ Ei (with strict inclusion if
Ei 6= ∅) for all i ≥ 1 and Ei = ∅ for all i � 0. For all integers t and i ≥ 1 there is the
residual exact sequence

0→ IEi+1(t− 1)→ IEi(t)→ IEi∩Mi,Mi(t)→ 0 (15)

Let z be the minimal integer i such that 1 ≤ i ≤ d+1 and h1(Mi, IMi∩Ei
(d+1− i)) > 0.

Use at most d+1 times the exact sequences (15) to prove the existence of such an integer
z. We now study the different possibilities that we have for the integer z just defined.

z = 1 Since Ared is a single point, Lemma 7 gives h1(P3, IE2(d − 1)) > 0. Hence x2 ≥
d + 1. Since by hypothesis d ≥ 4, x2 ≤ x1 and x1 + x2 ≤ 3d + 1, we have
x2 ≤ 2d − 1. Hence Lemma 4 applied for the integer d − 1 gives the existence of
a line R ⊂ P3 such that deg(E2 ∩ R) ≥ d + 1. Since Ared is a single point, we
also get that either Ared ∈ B \ (R ∩B) and B ∩ E2 = B ∩R t {Ared} or E2 ⊂ R.
In the latter case we have x2 = d + 1 and x3 = 0. Since h1(P3, IE2(d − 1)) >
0, we get h1(P3, IA∪B(d)) ≥ 2. Since x2 ≥ d + 1, we have x1 ≤ 2d. Since
h1(M1, I(A∪B)∩M1(d)) = 0, h1(M1, IB∩M1(d)) = 0, and A is connected, Lemma 4
gives the existence of a line L such that B∩M1 ⊂ L and (deg((A∪B)∩L)) ≥ d+2.
Since deg(A∩M1) ≤ 3, we have x1 ≤ d+4. Since no point of B∩M \Ared survives
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in E2, we have L 6= R.
First assume L ∩R 6= ∅. We have deg((A ∪B) ∩ (〈L ∪R〉) ≥ 2d+ 1, contradicting
the inequality x1 ≤ 2d.
Now assume L ∩ R = ∅. Since h1(IB(d)) = 0, we have ](B ∩ L) ≤ d + 1. Hence
Ared ∈ L. Since we assumed L ∩ R = ∅, we have Ared 6= R, B ⊂ L ∪ R and
either B ∩ E2 = B ∩ R t {Ared} or Ared /∈ B and B ∩ E2 = B ∩ R. Since
A2 * E2, we have M1 = 〈A3〉. Let H be a plane spanned by R and a point,
O, of B ∩ (L \ Ared). We have deg((A ∪ B) ∩ H) = deg(B ∩ H) = d + 2 and
(A ∪ B) ∩ H = B ∩ H = {O} ∪ (B ∩ R). Since h1(L ∪ R, IB∩R(d)) = 0, Horace
lemma (see [? ]) applied in H with respect to L gives h1(H, IA∪B(d)) = 0. Since
ResH(A ∪ B) = A ∪ (B ∩ L \ {O}), we have h1(M1, IM1∩ResH(A∪B)(d − 1)) = 0.
Since ResM1(ResH(A ∪ B)) = A3 and h1(P3, IA3(d− 2)) = 0, Horace lemma with
respect to M1 gives h1(P3, IResH(A∪B)(d − 1)) = 1. Hence h1(P3, IA∪B(d)) = 1,
contradiction.

z > 1 Since h1(Mz, IMz∩Ez
(d+1−z)) > 0, we have xz := deg(Mz∩Ez) ≥ d+3−z. Since

the function z 7→ xz is non-decreasing, we get xi ≥ d+3−z for all i ∈ {1, . . . , z+1}.
Since deg(A∪B) ≥ z(d+3−z), we get 3d+1 ≥ z(d+3−z). Hence either z ∈ {2, 3}
or z ≥ d (here we are assuming d ≥ 4).

z = d The condition h1(IMd∩Ed
(1)) > 0 says that either Md ∩Ed contains a scheme

of length ≥ 3 contained in a line R or xd ≥ 4. If xd ≥ 4, then we get
x1 + · · · + xd ≥ 4d, that is a contradiction. Hence we may assume x1 = 4,
xi = 3 for 2 ≤ i ≤ d and xd+1 = 0. Since x2 = 3, the maximality of the integer
x2 gives that E2 is in linearly general position. Since deg(E2) = deg(E1)−x4 ≤
3(d − 1) + 1 and E2 is in linearly general position, then h1(IE2(d − 1)) = 0.
Since z > 1. h1(M1, IE1∩M1(d)) = 0. Hence (15) with i = 1 and t = d gives a
contradiction.

z = d+ 1 The condition h1(Mi, IMz∩Ez ) > 0 only says xd+1 ≥ 2. Taking the first
integer y ≤ d such that xy ≤ 3 and Ey is not collinear, we get a contradiction
as above.

z = 2 Since 3d+ 1 ≥ x1 + x2 ≥ 2x2, we get x2 ≤ 2(d− 1) + 1. Since Ared is a single
point, the contradiction comes applying Lemma 4, unless m = 1, i.e. unless
E2∩M2 is contained in a line R. Since B is reduced and ](B∩R) ≥ d−2 > 0
then R is not contained in M1. Since E2 ⊂ R, while P3 is the Zariski tangent
space to A at P , then M1 must contain Z1. Since R * M1, we also get
M1 = 〈Z2〉. Hence we get that either ](B ∩ R) = d (case Ared /∈ B) or
](R ∩ B) = d + 1 (case Ared ∈ B). Let H be any plane containing R and
such that deg(H ∩ (A ∪ B)) ≥ d + 2; for instance we may take the plane
spanned by R and a point of B \ R ∩ B or the plane spanned by R and the
line 〈A2〉. First assume h1(H, I(A∪B)∩H(d)) > 0. Since deg((A ∪ B) ∩H) ≤
x1 ≤ 3d + 1 − x2 ≤ 2d, we may apply Lemma 4. We get a line L ⊂ H such
that deg((A ∪ B) ∩ L) ≥ d + 2. First assume L 6= R. Hence at least one
of the lines R,L is not the line 〈A2〉. Hence ](B ∩ (R ∪ L)) ≥ 2d. Since
Ared ∈ L ∩ R, 〈R ∪ L〉 is a plane. Hence deg((A ∪ B) ∩ 〈R ∪ L〉 ≤ x1 ≤ 2d.
Since Ared ∈ L, we get a contradiction (notice that deg(A∪B) ≤ 3d and hence
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x1 ≤ 2d − 1 if Ared ∈ B). Now assume L = R. Since h1(P3, IB(d)) = 0 (the
linear independence of S) we get Ared ∈ L. Since Ared is connected, Lemma
4 gives F2 = ∅, i.e. H ∩ B = L ∩ R. Since we could choose H containing a
point of B \R ∩B, we got a contradiction.

z = 3 Since x1 ≥ x2 ≥ x3 ≥ d, we get x2 = x3 = d, x1 ≤ d + 1 and the existence
of a line R ⊂ M3 such that E3 ∩M3 ⊂ R. Since M3 is a plane for which
deg(E3 ∩M3) is maximal, while there is a pencil of planes containing R, we
have E3 ⊂M3 and E4 = ∅. Now instead of M1 we take a plane M ′1 containing
R and at least another point of B. As above we get schemes E′i, planes M ′i
and a non-decreasing sequence of integers x′i, i ≥ 1, such that x′i ≥ d + 1.
Since x′1 ≤ x1, we get x′1 = x1 = d + 1. Hence the definitions of M ′2 and M2

gives that we may assume x′2 = d. Then we may assume z = 3 for this new
sequence of data E′i,M

′
i . We get the existence of a line R′ such that E′3 ⊂ R

and deg(E′3) = d. Since B is reduced and R ⊂ M ′1, we have R′ 6= R. Lemma
4 also gives A ∩ R 6= ∅, i.e. Ared ∈ R. Lemma 4 also gives A ∩ R′ 6= ∅, i.e.
Ared ∈ R′. Thus deg((A ∪ B) ∩ T ) ≥ 2d − 2, where T is the plane 〈R ∪ R′〉.
Thus x1 ≥ 2d− 2, contradiction.

Therefore we may conclude that rX3,d
(P ) = 3d− 2. 2

Remark 15. Fix P ∈ σ4(Xm,d) \ σ3(Xm,d), m ≥ 3 and d ≥ 4, for which A ⊂ Pm
and hence Z ⊂ Xm,d are as in Proposition 14. Here we want to describe and produce
algorithmically several sets of points S ⊂ Xm,d computing rXm,d

(P ).
Fix any 3-dimensional linear subspace M of Pm containing A and any smooth rational
normal curve T of M such that A ⊂ T . Set Y := νm,d(T ). Thus Y is a degree 3d rational
normal curve in its linear span. Since Z ⊂ Y , we have P ∈ 〈Y 〉. Since deg(Z) = 4 and Z
is contained in a rational normal curve, we have rY (P ) = 3d−2 (see [9] or [17], Theorem
4.1). Hence rY (P ) = rXm,d

(P ). Hence any S ⊂ Y computing rY (P ) computes rXm,d
(P ).

Sylvester’s algorithm produces one such set S (see [21], [9], [6], [11], [7]).

Remark 16. Observe that it cannot happen that the degree 4 zero-dimensional scheme
A ⊂ P3 defined in Notation 3 and such that 〈A〉 = P3 is simultaneously supported
on one point and it has a 2-dimensional Zariski tangent space. Indeed, since A has
a 2-dimensional Zariski tangent space at Ared, then Z ∼= A is not curvilinear. Since
dim〈ν3.d(A)〉 = 3, Z is linearly independent. Since Z is not curvilinear and deg(Z) =
dim(〈Z〉) + 1, Z is not as in case III of [14] (Vol 1.1, Theorem 1.3), it must be the first
infinitesimal neighborhood of Zred in its linear span (case II of [14], Vol 1.1 Theorem 1.3).
Hence Z has 3-dimensional Zariski tangent space at Zred, contradicting our assumption.

Proposition 15. Let A1 ⊂ P3 be a degree 3 non-reduced zero-dimensional scheme con-
tained in a smooth conic. Let A = A1 t {O} with O ∈ P3 a simple point such that
〈A〉 = P3. Then if Z ⊂ X3,d is as in Notation 2 and if P ∈ 〈Z〉 \ (σ0

4(X3,d) ∪ σ3(X3,d)),
then

rX3,d
(P ) = 2d.

Proof. Since P ∈ 〈ν3,d(A1) ∪ ν3,d(O)〉 we have that P is a linear combination of a
point P1 ∈ 〈ν3,d(A1)〉 and O itself. Since A1 is contained in a smooth conic C ⊂ P3,
then ν3,d(A1) is a degree 3 non-reduced zero-dimensional scheme contained in a degree
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2d rational normal curve, then rν3,d(C)(P ′) = 2d − 1 then rX3,d
(P ) ≤ 2d. Suppose that

rX3,d
(P ) ≤ 2d− 1 and take S ⊂ X3,d computing rX3,d

(P ). Let B ⊂ P3 be as in Notation
5 such that ν3,d(B) = S. We have deg(A ∪ B) ≤ 4 + 2d − 1 = 2d + 3. Lemma 1 gives
h1(P3, IA∪B(d)) > 0. Hence A∪B is not in linearly general position ([14], Theorem 3.2).
Thus there is a plane M ⊂ P3 such that deg(M ∩ (A ∪ B)) ≥ 4. Among all such planes
we take one, say M1, such that x1 := deg(M1 ∩ (A ∪ B)) is maximal. Set E1 := A ∪ B
and E2 := ResM1(E1). Notice that deg(E2) = deg(E1) − x1. Define inductively the
planes Mi ⊂ P3, i ≥ 2, the schemes Ei+1, i ≥ 2, and the integers xi, i ≥ 2, by the
condition that Mi is one of the planes such that xi := deg(Mi ∩Ei) is maximal and then
set Ei+1 := ResMi

(Ei). We have Ei+1 ⊆ Ei (with strict inclusion if Ei 6= ∅) for all i ≥ 1
and Ei = ∅ for all i � 0. We have again the exact sequence (15). Use at most d + 1
times the exact sequences (15) to prove the existence of such an integer z. We study now
the different possibilities we have for the integer z.

z = 1 Since Ared is a single point, Lemma 7 gives h1(P3, IE2(d−1)) > 0. Hence x2 ≥ d+1.
Since x2 ≤ x1 and x1 + x2 ≤ 2d+ 3, we have x2 ≤ d+ 1. Hence Lemma 4 applied
for the integer d − 1 gives the existence of a line R ⊂ P3 such that E2 ⊂ R. We
have deg(R ∩A) ≤ 2. Thus ](B ∩R) ≥ d− 1. Now one has either that x1 = d+ 2
and x2 = d + 1 or x1 = x2 = d + 1 and x3 = 0. Since h1(M1, I(A∪B)∩M1(d)) > 0
by assumption, there is a line L ⊂M1 such that deg((A ∪B) ∩R) ≥ d+ 2. Hence
x1 = d+2 and (A∪B)∩M1 ⊂ L. Now we have that L 6= R because B is a reduced
scheme and there is no point in B ∩M that still belongs to E2. In order to get
a contradiction it is sufficient to observe that it exists a plane N that contains L
with deg((A∪B)∩N) > deg((A∪B)∩L) = x1, and this contradicts the definition
of x1.

z ≥ 2 Since h1(Mz, IMz∩Ez (d+1−z)) > 0, we have xz := deg(Mz∩Ez) ≥ d+3−z. Since
the function z 7→ xz is non-decreasing, we get xi ≥ d+3−z for all i ∈ {1, . . . , z+1}.
Since deg(A∪B) ≥ z(d+ 3− z), we get 2d+ 3 ≥ z(d+ 3− z). Since 2 ≤ z ≤ d+ 1,
we get a contradiction.

Therefore it was absurd to suppose that rX3,d
(P ) ≤ 2d−1, then rX3,d

(P ) has to be equal
to 2d− 1. 2

5. Proof of the main theorem

We state here the last remark that will allow to simplify the proof of the main theorem.

Remark 17. Let Z ⊂ Xm,d be as in Notation 2 a zero-dimensional scheme that com-
putes the Xm,d-border rank of a point P ∈ Pnm,d . Assume the existence of an integer s
such that 1 ≤ s ≤ m − 1 and of an s-dimensional linear subspace Ms of Pn containing
Z. Let also A ⊂ Pm be as in Notation 3 such that νm,d(A) = Z. If Z ⊂ Ms then
dim(〈A〉) ≤ s; actually if 〈Z〉 ' Ps then also 〈A〉 ' Ps and νm,d(〈A〉) ' Xs,d ⊂ Pns,d ⊂
Pnm,d . Now, by [18], Proposition 3.1, or [17], Subsection 3.2, the integer rXm,d

(P ) is the
(νs,d(〈A〉))-rank of the same point P seen as a point in the linear span 〈νm,d(〈A〉)〉 ∼= Pns,d

of νs,d(〈A〉). In our case deg(Z) = 4, hence Z ⊆ M3 with dim(M3) = 3 and 〈Z〉 = M3.
Hence if P ∈ 〈Z〉 \ (σ0

4(Xm,d) ∪ σ3(Xm,d)) then

rXm,d
(P ) = rX3,d

(P )
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where X3,d = νm,d(〈A〉) ' ν3,d(〈A〉). Therefore, in order to prove Theorem 1, it is
sufficient to prove it in all cases with m ≤ 3.

We are now ready to give the proof of Theorem 1 stated in the Introduction.

Proof of Theorem 1. We want to classify the X-rank of a point P ∈ σ4(X) \ σ3(X)
where X is the Veronese embedding of Pm into Pn with n =

(
m+d
d

)
.

Now σ4(X) \ σ3(X) can be split into two components:

σ0
4(X) \ σ3(X) = {P ∈ σ4(X) | rX(P ) = 4}

(the set σ0
4(X) is defined in (6)) and

σ4(X) \ (σ0
4(X) ∪ σ3(X)) = {P ∈ σ4(X) | rX(P ) > 4}.

Obviously there is nothing to say on the X-rank of points belonging to σ0
4(X) \ σ3(X),

except that it is equal to 4. Therefore it remains to study only the X-rank of points
P ∈ σ4(X) \ (σ0

4(X) ∪ σ3(X)). In order to do that, as already showed in Section 1, we
have to study the X-rank of points belonging to the span of a degree 4 zero-dimensional
non-reduced sub-scheme Z ⊂ X computing the X-border rank of such a point P ∈
σ4(X) \ (σ3(X) ∪ σ0

4(X)) (as in Notation 2).
By Remark 17 we may restrict our attention to the case m ≤ 3. Therefore we study

separately the Xm,d-rank of a point P ∈ 〈Z〉 \ (σ0
4(Xm,d) ∪ σ3(Xm,d)) for Z ∈ Xm,d

non-reduced and of degree 4 and for m = 1, m = 2 and m = 3.

m = 1. In this case Z = νm,d(A) for A contained in a line L ⊂ Pm, hence rXm,d
(P ) =

rνm,d(L)(P ) = d− 2 (for [21], [9], [6], [11], [7] or [17], Theorem 4.1).

m = 2. The scheme A now is a degree 4 zero-dimensional scheme that is contained in a
plane but not in a line, hence it can intersect at least one line in degree 3 or it does
not exist any line that intersects A in degree 3.

– If deg(A∪L) = 3 for at least one line L ⊂ Pm then we distinguish the following
cases:

∗ If ResL(A) /∈ L then rXm,d
(P ) = d for Proposition 5.

∗ If ResL(A) ∈ L then we study the cardinality of the support of the scheme
A.
· If ](Supp(A)) = 1, then rXm,d

(P ) = 2d− 2 by Proposition 6.
· If ](Supp(A)) = 2, then either A is the union of two unreduced zero-

dimensional schemes both of degree 2 or A is the union of a simple
point O and a first infinitesimal neighborhood of another point Q ∈
P2. In the first case rXm,d

(P ) = 2d−1 by Proposition 7, in the second
case we have that P ∈ 〈O, Tν2,d(Q)X〉, but since TQX ⊂ σ2(X), then
P ∈ σ3(Xm,d).
· If ](Supp(A)) = 3, then rXm,d

(P ) = d+ 2 by Proposition 8.

– Now assume that deg(A ∪ L) < 3 for all lines L’s contained in Pm and
dim(〈A〉) = 2. In this case there exists a one parameter system of conics
containing A. We can have two cases: either the generic conic through A is
smooth or it is a union of two distinct lines.
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∗ If the generic conic throughA is smooth, then, by Proposition 9, rXm,d
(P ) =

2d− 1.
∗ If the generic conic through A is the union of two distinct lines L1, L2,

then rXm,d
(P ) = 2d − 2 in all possible configurations of A except if A =

A1 ∪ O1 ∪ O2 where A1 ⊂ L1 is a non-reduced scheme of degree 2, the
points O1, O2 ∈ L2 and {L1 ∩L2} /∈ {Supp(A1), O1, O2}, in this last case
we have that rXm,d

(P ) = d + 2 (see Proposition 10, Proposition 11 and
Proposition 12).

m = 3. Let us study the cardinality of the support of A with A such that 〈A〉 ' P3.

– If ](Supp(A)) = 1 we may assume that A is not the first infinitesimal neighbor-
hood of a point Q ∈ P3, otherwise P ∈ σ2(νm,d(〈A〉)) ⊂ σ2(Xm,d). Moreover,
by Remark 16 we can also suppose that it has not a 2-dimensional tangent
space. Hence A can only be a curvilinear scheme; in this case by Proposition
14 we have that rXm,d(P ) = 3d− 2.

– If ](Supp(A)) = 2 we may have the following cases.

∗ The scheme A is the union of a simple point O and a degree 3 zero-
dimensional schemeA′ supported on a pointQ ⊂ P3 such that dim(〈A′〉) =
2 and 〈ν3,d(A′)〉 ⊂ Tν3,d(Q)X. Therefore P ∈ 〈O, Tν3,d(Q)X〉 ⊂ 〈O, σ2(X)〉 ⊂
σ3(X).
∗ The scheme A is the union of two unreduced zero dimensional schemes

both of degree 2. Since 〈A〉 = P3 we are in the case of Proposition 14
where we get that rXm,d

(P ) = 2d.
∗ The scheme A is the union of a simple point and of a degree 3 curvilinear

zero-dimensional scheme supported on one point. Proposition 15 gives us
that rXm,d

(P ) = 2d.

– If ](Supp(A)) = 3 then A can only be the union of two simple points and a
degree 2 unreduced scheme. By Proposition 6 we have that rXm,d

(P ) = d+ 2.

All this cases prove the statement of the Theorem 1. 2
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