On generalized Kummer of rank 3 vector bundles over a genus 2 curve

A. Bernardi, D. Fulghesu

August 14, 2004

1 Introduction

Let X be a smooth projective complex curve and let $U_{X}(r, d)$ be the moduli space of semi-stable vector bundles of rank r and degree d on X (see [Se]). It contains an open Zariski subset $U_{X}(r, d)^{s}$ which is the coarse moduli space of stable bundles, i.e. vector bundles satisfying inequality

$$
\frac{d_{F}}{r_{F}}<\frac{d_{E}}{r_{E}}
$$

The complement $U_{X}(r, d) \backslash U_{X}(r, d)^{s}$ parametrizes certain equivalence classes of strictly semi-stable vector bundles which satisfy the equality

$$
\frac{d_{F}}{r_{F}}=\frac{d_{E}}{r_{E}}
$$

Each equivalence class contains a unique representative isomorphic to the direct sum of stable bundles. Furthermore one considers subvarieties $\mathrm{SU}_{X}(r, L) \subset$ $U_{X}(r, d)$ of vector bundle of rank r with determinant isomorphic to a fixed line bundle L of degree d. In this work we study the variety of strictly semistable bundles in $\mathrm{SU}_{X}\left(3, \mathcal{O}_{X}\right)$, where X is a genus 2 curve. We call this variety the generalized Kummer variety of X and denote it by $\operatorname{Kum}_{3}(X)$. Recall that the classical Kummer variety of X is defined as the quotient of the Jacobian variety $\operatorname{Jac}(X)=U_{X}(1,0)$ by the involution $L \mapsto L^{-1}$. It turns out that our $\operatorname{Kum}_{3}(X)$ has a similar description as a quotient of $\operatorname{Jac}(X) \times \operatorname{Jac}(X)$ which justifies the name. We will see that the first definition allows one to define a natural embedding of $\mathrm{Kum}_{3}(X)$ in a projective space (see section 4). The second approach is useful in order to give local description of $\operatorname{Kum}_{3}(X)$ by following the theory developed in $[\mathbf{B e}]$ (section 3).
We point out the use of $[\mathbf{C o C o A}]$ for local computations.
We want to thank Professor Dolgachev for his patient guidance and his generous suggestions and also Professor Ragusa for the good organization of Pragmatic summer school.

2 Generalized Kummer variety

Let A be an s-dimensional abelian variety, A^{r} the r-Cartesian product of A, and $A^{(r)}:=A^{r} / \Sigma_{r}$ be the r-symmetric power of A. We can define the usual $\operatorname{map} a_{r}: A^{(r)} \rightarrow A$ such that $a_{r}\left(\left\{x_{1}, \ldots x_{r}\right\}\right)=x_{1}+\cdots+x_{r}{ }^{1}$. This surjective map is just a morphism of varieties since there is no group structure on $A^{(r)}$. However, all fibers of a_{r} are naturally isomorphic.

Definition 2.1. The generalized Kummer variety associated to an abelian variety A is

$$
\operatorname{Kum}_{r}(A):=a_{r}^{-1}(0) .
$$

It is easy to see that

$$
\operatorname{dim}\left(\operatorname{Kum}_{r}(a)\right)=s(r-1)
$$

When $\operatorname{dim} A>1, A^{(r)}$ is singular. If $\operatorname{dim} A=2, A^{(r)}$ admits a natural desingularization isomorphic to the Hilbert scheme $A^{[r]}:=\operatorname{Hilb}(A)^{[r]}$ of 0-dimensional subschemes of A of length r (see [Go]). Let $p r: A^{[r]} \rightarrow A^{(r)}$ be the usual projection. It is known that the restriction of $p r$ over $\operatorname{Kum}_{r}(A)$ is a resolution of singularities. Also $\widetilde{\mathrm{Kum}}_{r}(A)$ admits a structure a holomorphic symplectic manifold (see [Be]).

2.1 The Kummer variety of Jacobians

Let X be a smooth connected projective curve of genus g and $\mathrm{SU}_{X}(r, L)$ be the set of semi-stable vector bundles on X of rank r and determinant which is isomorphic to a fixed line bundle L. Let $\operatorname{Jac}(X)$ be the Jacobian variety of X which parametrizes isomorphism classes of line bundles on X of degree 0 , or, equivalently the divisor classes of degree 0 . We have a natural embedding:

$$
\begin{gathered}
\operatorname{Kum}_{r}(\operatorname{Jac}(X)) \hookrightarrow \mathrm{SU}_{X}\left(r, \mathcal{O}_{X}\right) \\
\left\{a_{1}, \ldots, a_{r}\right\} \mapsto\left(L_{a_{1}} \oplus \cdots \oplus L_{a_{r}}\right)
\end{gathered}
$$

where $L_{a_{i}}:=\mathcal{O}_{X}\left(a_{i}\right)$. Obviously, the condition $a_{1}+\cdots+a_{r}=0$ means that $\operatorname{det}\left(L_{a_{1}} \oplus \cdots \oplus L_{a_{r}}\right)=0$ and $\operatorname{deg}\left(L_{A_{i}}\right)=0$ for all $i=1, \ldots, r$. Consequently the Kummer variety $\operatorname{Kum}_{r}(\operatorname{Jac}(X))$ describes exactly the completely decomposable bundles in $\mathrm{SU}_{X}(r)$ (from now on we'll write only $\mathrm{SU}_{X}(r)$ instead of $\left.\mathrm{SU}_{X}\left(r, \mathcal{O}_{X}\right)\right)$.

In this paper we restrict ourselves with the case $g=2$ and rank $r=3$. In this case $\operatorname{Kum}_{3}(\operatorname{Jac}(X))$ is a 4 -fold.

[^0]
3 Singular locus of $\operatorname{Kum}_{3}(\operatorname{Jac}(X))$

From now we let A denote $\operatorname{Jac}(X)$. Let us define the following map:

$$
\begin{aligned}
\pi: A^{(2)} & \rightarrow \operatorname{Kum}_{3}(A) \\
\{a, b\} & \mapsto L_{a} \oplus L_{b} \oplus L_{-a-b}
\end{aligned}
$$

This map is well defined and it is a $(3: 1)$ - covering of $\operatorname{Kum}_{3}(A)$. Let now $\rho: A^{2} \rightarrow A^{(2)}$ be the (2:1)-map which sends $(x, y) \in A^{2}$ to $\{x, y\} \in A^{(2)}$. If we consider the map:

$$
\begin{equation*}
p:=(\pi \circ \rho): A^{2} \rightarrow A^{(2)} \rightarrow \operatorname{Kum}_{3}(A) \subset A^{(3)} \tag{1}
\end{equation*}
$$

we get a $(6: 1)$-covering of $\operatorname{Kum}_{3}(A)$.
Notations: Let X and Y be two varieties and $f: X \rightarrow Y$ be a finite morphism. We let $\operatorname{Sing}(X)$ denote the singular locus of $X, B_{f} \subseteq Y$ the branch locus of f and $R_{f} \subseteq X$ the ramification locus of f.

Observation: $B_{\pi}=\pi\left(B_{\rho}\right)$.
Proof. Since $B_{\rho}=\left\{\{x, y\} \in A^{(2)} \mid x=y\right\}$ and $\pi(\{x, x\})=\{x, x,-2 x\} \in B_{\pi}$ we obviously get that $\pi\left(B_{\rho}\right) \subset B_{\pi}$.
Conversely, for any point $\{x, y, z\}$ of B_{π}, at least two of the three elements x, y, z are equal to some t. Therefore $\pi(\{t, t\})=\{x, y, z\}$, and hence $B_{\pi} \subset \pi\left(B_{\rho}\right)$.

Since A^{2} is smooth, we have $\operatorname{Sing}\left(A^{(2)}\right) \subset B_{\rho}$. Obviously $B_{\rho} \subset R_{\pi}$, hence $\operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right) \subset B_{\pi}$. As a consequence we obtain that $\operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right) \subseteq B_{\pi}$. Therefore we have to study the $(3: 1)$-covering $\pi: A^{(2)} \rightarrow \operatorname{Kum}_{3}(A)$.

Since π is not a Galois covering, in order to give the local description at every point $Q \in \operatorname{Kum}_{3}(A)$, we have to consider the following three cases separately:

1. $Q \in \operatorname{Kum}_{3}(A)$ s.t. $\pi^{-1}(Q)$ is just a point;
2. $Q \in \operatorname{Kum}_{3}(A)$ s.t. $\pi^{-1}(Q)$ is a set of two different points;
3. $Q \in \operatorname{Kum}_{3}(A)$ s.t. $\pi^{-1}(Q)$ is a set of exactly three points.

Let us begin studying these cases.
Case 3. When $Q \in \operatorname{Kum}_{3}(A)$ s.t. $\sharp\left(\pi^{-1}(Q)\right)=3$ we have that $Q \notin B_{\pi}$. Since $\pi\left(B_{\rho}\right)=B_{\pi}$ any point of $\pi^{-1}(Q)$ is smooth in $A^{(2)}$. Then Q is a smooth points of the Kummer variety.
Case 2. When $Q \in \operatorname{Kum}_{3}(A)$ s.t. $\sharp\left(\pi^{-1}(Q)\right)=2$ we fix the two points $P_{1}, P_{2} \in$ $A^{(2)}$ s.t $\pi\left(P_{1}\right)=\pi\left(P_{2}\right)=Q$. In this case $Q=\{x, x,-2 x\}$ with $x \neq-2 x$; let us fix $P_{1}=\{x, x\}, P_{2}=\{x,-2 x\}$. Let $U \subset \operatorname{Kum}_{3}(A)$ be a sufficiently small analytic neighborhood of Q such that $\pi^{-1}(U)=U_{1} \sqcup U_{2}$ where U_{1}
and U_{2} are respectively analytic neighborhoods of P_{1} and P_{2} and also $U_{1} \cap U_{2}=\emptyset$. Let \widetilde{Q} a generic point of U, so $\widetilde{Q}=\{x+\epsilon, x+\delta,-2 x-\epsilon-\delta\}$; the preimage of \widetilde{Q} by π is $\pi^{-1}(\widetilde{Q})=\{\{x+\epsilon, x+\delta\},\{x+\epsilon,-2 x-\epsilon-$ $\delta\},\{x+\delta,-2 x-\epsilon-\delta\}\}$, but $\{x+\epsilon, x+\delta\} \in U_{1}$ and $\{x+\epsilon,-2 x-\epsilon-$ $\delta\},\{x+\delta,-2 x-\epsilon-\delta\} \in U_{2}$, it means that P_{1} has ramification order equal to 1 and P_{2} has ramification order equal to 2 . Therefore there is an analytic neighborhood of P_{1} which is isomorphic by π to an analytic neighborhood of Q. This allows us to study a generic point of B_{ρ} instead of a generic point of B_{π}.
Case 1. When $Q \in \operatorname{Kum}_{3}(A)$ s.t. $\sharp\left(\pi^{-1}(Q)\right)=3$ we consider a point $P \in A^{(2)}$ s.t. $\pi^{-1}(Q)=P \Rightarrow Q=\{x, x, x\}$ s.t. $3 x=0 \Rightarrow x$ is a 3 -torsion point of A. Now our abelian variety is a complex torus of dimension 2 , so we have exactly $3^{2 g}=3^{4}=81$ such points.

Proposition 3.1. The singular locus of $\operatorname{Kum}_{3}(A)$ is a surface which coincides with the branch locus B_{π} of the projection $\pi: A^{(2)} \rightarrow \operatorname{Kum}_{3}(A)$ and it is locally isomorphic at a generic point to $\left(\mathbb{C}^{2} \times Q, \mathbb{C} \times o\right)$ where Q is a cone over a rational normal curve and o is the vertex of such a cone (see [Be]). Moreover there are exactly 81 points of $\operatorname{Sing}\left(\operatorname{Kum}_{3}(X)\right)$ whose local tangent cone is isomorphic to the spectrum of:

$$
\frac{\mathbb{C} \llbracket u_{1}, \ldots, u_{7} \rrbracket}{I}
$$

where I is the ideal generated by the following polynomials :

$$
\begin{aligned}
& u_{5}^{2}-u_{4} u_{6} \\
& u_{4} u_{7}-u_{5} u_{6} \\
& u_{6}^{2}-u_{5} u_{7} \\
& u_{3} u_{4}+u_{2} u_{5}+u_{1} u_{6} \\
& u_{3} u_{5}+u_{2} u_{6}+u_{1} u_{7}
\end{aligned}
$$

Proof. According to what we saw in Case 2, an analytic neighborhood of $Q \in$ $\operatorname{Kum}_{3}(A)$ such that $\sharp\left(\pi^{-1}(Q)\right)=2$ is isomorphic to a generic element of B_{ρ}. We have to study the $(2: 1)$-covering $A^{2} \rightarrow A^{(2)}$.
Since $A=\operatorname{Jac}(X), \mathrm{A}$ is a smooth abelian variety, this means that A is a complex torus $\left(\mathbb{C}^{g} / \mathbb{Z}^{2 g}\right)$ where g is the genus of X; in our case X is a genus 2 curve, $A \simeq\left(\mathbb{C}^{2} / \mathbb{Z}^{4}\right)$. Thus, in local coordinates at $P \in A, \widehat{\mathcal{O}_{P}} \simeq \mathbb{C} \llbracket z_{1}, z_{2} \rrbracket$, so we consider U_{P} (a neighborhood of $P \in A$) isomorphic to \mathbb{C}^{2}. Therefore we obtain that locally at $Q \in A^{2}, \widehat{\mathcal{O}}_{Q} \simeq \widehat{\mathcal{O}}_{P} \otimes \widehat{\mathcal{O}}_{P} \simeq \mathbb{C} \llbracket z_{1}, z_{2} ; z_{3}, z_{4} \rrbracket$.
We fix a coordinate system $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)$ in A^{2} such that $A^{2} \supset U_{P} \ni P=$ $(0,0 ; 0,0)$. Let Q be a point in U_{P}, in the fixed coordinate system $Q=$ $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)$. Since P is such that $\rho(P) \in B_{\rho}$, by definition of ρ, we have: $A^{(2)}=A^{2} /<i>$, where i is the following involution of U_{P} :

$$
\begin{align*}
i: U_{P} & \rightarrow U_{P} \tag{2}\\
i:\left(z_{1}, z_{2} ; z_{3}, z_{4}\right) & \mapsto\left(z_{3}, z_{4} ; z_{1}, z_{2}\right)
\end{align*}
$$

The involution i is obviously linear and its associated matrix is $M=e_{1,3}+e_{3,1}+$ $e_{2,4}+e_{4,2}$ (where $e_{i, j}$ is the matrix with 1 in the i, j position and 0 otherwhere).

Its eigenvalues $\lambda_{1}=-1$ and $\lambda_{2}=1$ have both multiplicity 2 , so its diagonal form is:

$$
\widetilde{M}=(1,1,-1,-1)
$$

which in a new coordinate system:

$$
\left\{\begin{array}{l}
x_{1}=\frac{z_{1}+z_{3}}{2} \\
x_{2}=\frac{z_{2}+z_{4}}{2} \\
x_{3}=\frac{z_{1}-z_{3}}{2} \\
x_{4}=\frac{z_{2}-z_{4}}{2}
\end{array}\right.
$$

corresponds to the linear transformation:

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1}, x_{2},-x_{3},-x_{4}\right)
$$

The algebra of invariant polynomials with respect to this actions is generated by the homogeneous forms $\left(x_{1}, x_{2}, x_{3}^{2}, x_{4}^{2}, x_{3} x_{4}\right)$. Let us now consider these forms as local coordinates $\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right)$ around $\rho(P)$, here we have that the completion of the local ring is isomorphic to the following one:

$$
\left(\frac{\mathbb{C} \llbracket s_{1}, \ldots s_{5} \rrbracket}{\left(s_{1}^{2}-s_{2} s_{3}\right)}\right) .
$$

Therefore B_{ρ} at a generic point is locally isomorphic to $\left(\mathbb{C}^{2} \times Q, \mathbb{C} \times o\right)$ where Q is a cone over a rational normal curve (we can see this rational normal curve as the image of \mathbb{P}^{1} in \mathbb{P}^{3} by the Veronese map $\left.\nu_{2}:\left(\mathbb{P}^{1}\right)^{*} \rightarrow\left(\mathbb{P}^{3}\right)^{*}, \nu_{2}(L)=L^{2}\right)$ and o the vertex of this cone. (What we have just proved in our particular case of $\operatorname{Kum}_{3}(A)$ can be found in a more general form in $\left.[\mathbf{B e}].\right)$ Therefore we have the same local description of singularity of $\operatorname{Kum}_{3}(A)$ out of the correspondent points of the 81 three-torsion points of A.

Now we have to study what happens at those 3 -torsion. Let Q_{0} be one of them, we already know that $p^{-1}\left(Q_{0}\right)=(x, x):=P_{0}$ is such that $3 x=0$. Let us fix $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right) \in \mathbb{C}^{2} \times \mathbb{C}^{2}$ a local coordinate system around P_{0} in order to describe locally the $(6: 1)$-covering $p: A^{2} \rightarrow \operatorname{Kum}_{3}(A)$. We observe that for a generic P in that neighborhood, the pre-image of $p(P)$ is the set of the following 6 points:

$$
\begin{gathered}
P_{1}:=\left(z_{1}, z_{2} ; z_{3}, z_{4}\right), \\
P_{2}:=\left(z_{3}, z_{4} ; z_{1}, z_{2}\right), \\
P_{3}:=\left(z_{3}, z_{4} ;\left(-z_{1}-z_{3}\right),\left(-z_{2}-z_{4}\right)\right), \\
P_{4}:=\left(\left(-z_{1}-z_{3}\right),\left(-z_{2}-z_{4}\right) ; z_{3}, z_{4}\right), \\
P_{5}:=\left(\left(-z_{1}-z_{3}\right),\left(-z_{2}-z_{4}\right) ; z_{1}, z_{2}\right), \\
P_{6}:=\left(z_{1}, z_{2} ;\left(-z_{1}-z_{3}\right),\left(-z_{2}-z_{4}\right)\right) .
\end{gathered}
$$

Observe that $i\left(P_{1}\right)=P_{2}, i\left(P_{3}\right)=P_{4}, i\left(P_{5}\right)=P_{6}$ where i is the involution defined in (2).
We now define a trivolution τ of $\mathbb{C}^{2} \times \mathbb{C}^{2}$ as follows:

$$
\begin{align*}
\tau & : \mathbb{C}^{2} \times \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \times \mathbb{C}^{2} \tag{3}\\
\left(z_{1}, z_{2} ; z_{3}, z_{4}\right) & \mapsto\left(z_{3}, z_{4} ;\left(-z_{1}-z_{3}\right),\left(-z_{2}-z_{4}\right)\right)
\end{align*}
$$

It is easy to see that:

$$
\begin{gathered}
P_{1} \xrightarrow{\tau} P_{3} \xrightarrow{\tau} P_{5} \xrightarrow{\tau} P_{1}, \\
P_{2} \xrightarrow{\tau} P_{6} \xrightarrow{\tau} P_{4} \xrightarrow{\tau} P_{2}
\end{gathered}
$$

The matrices that represent i and τ are respectively:

$$
i=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \quad \tau=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & -1 & 0 \\
0 & -1 & 0 & -1
\end{array}\right)
$$

furthermore $<\tau, i>\simeq \Sigma_{3}$, then the local description of $\operatorname{Kum}_{3}(X)$ around Q_{0} is isomorphic to A^{2} / Σ_{3}.

In what follows we have used $[\mathbf{C o C o A}]$ program in order to do computations. First we recall Noether's theorem ([CLO] pag. 331)

Theorem 3.2. Let $G \subset G L(n, \mathbb{C})$ be a given finite matrix group, we have:

$$
\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{G}=\mathbb{C}\left[R_{G}\left(z^{\beta}\right):|\beta| \leq|G|\right]
$$

where R_{G} is the Reynolds operator.
In other words, the algebra of invariant polynomials with respect to the action of G is generated by the invariant polynomials whose degree is at most the order of the group. In our case the order of G is 6 , so it is not hard to compute $\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right]^{G}$. Then, after reducing the generators, we obtain that $\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right]^{G}$ is generated by:

$$
\begin{array}{ll}
f_{1}:=z_{2}^{2}+z_{2} z_{4}+z_{4}^{2}, & f_{2}:=2 z_{1} z_{2}+z_{2} z_{3}+z_{1} z_{4}+2 z_{3} z_{4}, \\
f_{3}:=z_{1}^{2}+z_{1} z_{3}+z_{3}^{2}, & f_{4}:=-3 z_{2}^{2} z_{4}-3 z_{2} z_{4}^{2} \\
f_{5}:=z_{2}^{2} z_{3}+2 z_{1} z_{2} z_{4}+2 z_{2} z_{3} z_{4}+z_{1} z_{4}^{2}, & f_{6}:=-2 z_{1} z_{2} z_{3}-z_{2} z_{3}^{2}-z_{1}^{2} z_{4}-2 z_{1} z_{3} z_{4} \\
f_{7}:=3 z_{1}^{2} z_{3}+3 z_{1} z_{3}^{2} . &
\end{array}
$$

Let us now write $\mathbb{C}\left[z_{1}, \ldots, z_{4}\right]^{G}=\mathbb{C}\left[f_{1}, \ldots, f_{7}\right]$ as:

$$
\mathbb{C}\left[u_{1}, \ldots, u_{7}\right] / I_{G}
$$

where I_{G} is the syzygy ideal. It is easy to obtain that I_{G} is generated by the following polynomials:

$$
\begin{gathered}
u_{1}\left(u_{2}^{2}-4 u_{1} u_{3}\right)+3\left(u_{5}^{2}-u_{4} u_{6}\right) \\
u_{2}\left(u_{2}^{2}-4 u_{1} u_{3}\right)+3\left(u_{4} u_{7}-u_{5} u_{6}\right) \\
u_{3}\left(u_{2}^{2}-4 u_{1} u_{3}\right)+3\left(u_{6}^{2}-u_{5} u_{7}\right) \\
u_{3} u_{4}+u_{2} u_{5}+u_{1} u_{6} \\
u_{3} u_{5}+u_{2} u_{6}+u_{1} u_{7}
\end{gathered}
$$

and so we have the completion of the local ring at P :

$$
\widehat{\mathcal{O}}_{P} \simeq \frac{\mathbb{C} \llbracket u_{1}, \ldots, u_{7} \rrbracket}{I_{G}}
$$

Let now calculate the tangent cone in Q_{0} in order to understand which kind of singularity occurs in Q_{0}. With $[\mathbf{C o C o A}]$ aid we find that this local cone is:

$$
\operatorname{Spec}\left(\frac{\mathbb{C} \llbracket u_{1}, \ldots, u_{7} \rrbracket}{I}\right)
$$

where I is the ideal generated by the following polynomials:

$$
\begin{gathered}
u_{5}^{2}-u_{4} u_{6} \\
u_{4} u_{7}-u_{5} u_{6} \\
u_{6}^{2}-u_{5} u_{7} \\
u_{3} u_{4}+u_{2} u_{5}+u_{1} u_{6} \\
u_{3} u_{5}+u_{2} u_{6}+u_{1} u_{7} .
\end{gathered}
$$

The degree of the variety $V(I) \subset \mathbb{P}^{6}$ is 5 , this means that Q_{0} is a singular point of multiplicity 5 .

What we want to do now is to describe the singular locus of the local description. Let us start to calculate the Jacobian of $V\left(I_{G}\right)$, what we find is the following 5×7 matrix:

$$
J_{G}:=\left(\begin{array}{ccccccc}
u_{2}^{2}-8 u_{1} u_{3} & 2 u_{1} u_{2} & -4 u_{1}^{2} & -3 u_{6} & 6 u_{5} & -3 u_{4} & 0 \\
-4 u_{2} u_{3} & 3 u_{2}^{2}-4 u_{1} u_{3} & -4 u_{1} u_{2} & 3 u_{7} & -3 u_{6} & -3 u_{5} & 3 u_{4} \\
-4 u_{3}^{2} & 2 u_{2} u_{3} & u_{2}^{2}-8 u_{1} u_{3} & 0 & -3 u_{7} & 6 u_{6} & -3 u_{5} \\
u_{6} & u_{5} & u_{4} & u_{3} & u_{2} & u_{1} & 0 \\
u_{7} & u_{6} & u_{5} & 0 & u_{3} & u_{2} & u_{1}
\end{array}\right)
$$

Local equations define a fourfold, so we have to find the locus where the dimension of $\operatorname{Ker}\left(J_{G}\right)$ is at least 5 . In order to do it we calculate the minimal system of generators of all 3×3 minors of J_{G}, we intersect the corresponding variety with $V\left(I_{G}\right)$, we find a minimal base of generators of the ideal corresponding to this intersection and we compute its radical; the polynomials we find define, after suitable change of coordinates, the (reduced) variety of singular locus $V\left(I_{S}\right)$, where $I_{S}=\left(u_{6}^{2}-u_{5} u_{7}, u_{5} u_{6}-u_{4} u_{7}, u_{5}^{2}-u_{4} u_{6}, u_{3} u_{6}-u_{2} u_{7}, u_{3} u_{5}-\right.$ $u_{1} u_{7}, u_{2} u_{6}-u_{1} u_{7}, u_{3} u_{4}-u_{1} u_{6}, u_{2} u_{5}-u_{1} u_{6}, u_{2} u_{4}-u_{1} u_{5}, u_{2}^{2}-u_{1} u_{3}, u_{3}^{3}-u_{7}^{2}, u_{2} u_{3}^{2}-$ $\left.u_{6} u_{7}, u_{1} u_{3}^{2}-u_{5} u_{7}, u_{1} u_{2} u_{3}-u_{4} u_{7}, u_{1}^{2} u_{3}-u_{4} u_{6}, u_{1}^{2} u_{2}-u_{4} u_{5}, u_{1}^{3}-u_{4}^{2}\right)$. We verified that the only one singular point of $V\left(I_{S}\right)$ is the origin. Now, let us consider the map from \mathbb{C}^{2} to \mathbb{C}^{7} such that:

$$
\begin{equation*}
(t, s) \mapsto\left(t^{2}, t s, s^{2}, t^{3}, t^{2} s, t s^{2}, s^{3}\right) \tag{4}
\end{equation*}
$$

This is the parametrization of $V\left(I_{S}\right)$; as we have already done we can find relations between these polynomials and verify that the ideal we get is equal to I_{S}. Now we can consider the following smooth parametrization from \mathbb{C}^{2} to \mathbb{C}^{9} :

$$
(t, s) \mapsto\left(t, s, t^{2}, t s, s^{2}, t^{3}, t^{2} s, t s^{2}, s^{3}\right)
$$

(which is nothing but the graph of (4)) whose projective closure is the Veronese surface $\nu_{3}\left(\mathbb{P}^{2}\right)=V_{2,3}$ where $\nu_{3}:\left(\mathbb{P}^{2}\right)^{*} \rightarrow\left(\mathbb{P}^{9}\right)^{*}, \nu_{3}(L)=L^{3}$.
What we want to find now is the tangent cone in Q_{0} seen inside the singular locus. Using $[\mathbf{C o C o A}]$ we find that its corresponding ideal \widetilde{I}_{C} is generated by following polynomials:

$$
\begin{array}{ccccc}
u_{7}^{2} & u_{6} u_{7} & u_{5} u_{7} & u_{4} u_{7} & u_{4} u_{6} \\
u_{4} u_{5} & u_{4}^{2} & u_{6}^{2} & u_{5} u_{6} & u_{5}^{2} \\
u_{3} u_{6}-u_{2} u_{7} & u_{3} u_{5}-u_{1} u_{7} & u_{2} u_{6}-u_{1} u_{7} & u_{3} u_{4}-u_{1} u_{6} & u_{2} u_{5}-u_{1} u_{6} \\
u_{2} u_{4}-u_{1} u_{5} & u_{2}^{2}-u_{1} u_{3} . & & &
\end{array}
$$

The ideal \widetilde{I}_{C} has multiplicity 4 (the corresponding variety has degree four) and its radical is the following ideal:

$$
I_{C}=\left(u_{2}^{2}-u_{3} u_{1}, u_{4}, u_{5}, u_{6}, u_{7}\right)
$$

Then $V\left(I_{C}\right)$ is a cone and $V\left(\widetilde{I}_{C}\right)$ is a double cone.
This gives the description of the singularity at one of the 813 -torsion points.

4 Degree of $\mathrm{Kum}_{3}(A)$

To find the degree of $\operatorname{Kum}_{3}(A)$, we have to recall some general facts about theta divisors.

4.1 The Riemann theta divisor

Let X be a curve of genus g and $\Theta_{\mathrm{Jac}(X)}$ is the Riemann theta divisor. It is known that it is an ample divisor and

$$
\operatorname{dim}\left|r \Theta_{\mathrm{Jac}(X)}\right|=r^{g}-1
$$

(see $[\mathbf{G H}]$ Theorem p.317). Recall that for any fixed point $q_{0} \in X$ there exists an isomorphism:

$$
\psi_{g-1,0}: \operatorname{Pic}^{g-1}(X) \rightarrow \operatorname{Jac}(X)=\operatorname{Pic}^{0}(X)
$$

The set W_{g-1} of effective line bundles of degree $g-1$ is a divisor in $\operatorname{Pic}^{g-1}(X)$ denoted by $\Theta_{\operatorname{Pic}^{g-1}(X)}$. By Riemann's Theorem there exists a divisor k of degree 0 such that:

$$
\psi_{g-1,0}\left(\Theta_{\operatorname{Pic}^{g-1}(X)}\right)=\Theta_{\mathrm{Jac}(X)}-k
$$

In a similar way we can define the generalized theta divisor as follows:

$$
\Theta_{\mathrm{SU}_{X}(r, L)}^{g e n}=\left\{E \in \operatorname{Pic}^{g-1}(X): h^{0}(E \otimes L)>0\right\} .
$$

It is known that

$$
\operatorname{Pic}\left(\operatorname{SU}_{X}(r, L)\right)=\mathbb{Z}_{\mathrm{SU}_{X}(r, L)}^{g e n}
$$

and there exists a canonical isomorphism:

$$
\left|r \Theta_{\operatorname{Pic}^{g-1}(X)}\right| \simeq\left|\Theta_{\mathrm{SU}_{X}(r)}^{g e n}\right|^{*}
$$

(see [BNR]).

4.2 Degree of $\operatorname{Kum}_{3}(A)$

Let us consider the (2:1)-map

$$
\begin{gathered}
\phi_{3}: \mathrm{SU}_{3}(X) \longrightarrow\left|3 \Theta_{\operatorname{Pic}^{1}(X)}\right| \simeq\left|\Theta_{\mathrm{SU}_{X}(3)}^{g e n}\right|^{*} \\
E \longmapsto D_{E}=\left\{L \in \operatorname{Pic}^{1}(X): h^{0}(E \otimes L)>0\right\} .
\end{gathered}
$$

Definition 4.1. $\Theta_{\eta}:=\left\{E \in \mathrm{SU}_{X}(3): h^{0}(E \otimes \eta)>0\right\} \subset \mathrm{SU}_{X}(3)$ where η is a fixed divisor in $\operatorname{Pic}^{1}(X)$.
Observation: $\phi_{3}\left(\Theta_{\eta}\right)=H_{\eta} \subset\left|3 \Theta_{\operatorname{Pic}^{1}(X)}\right|$ and H_{η} is a hyperplane.
Since $\left.\phi_{3}\right|_{\operatorname{Kum}_{3}(A)}: \operatorname{Kum}_{3}(A) \rightarrow \phi_{3}\left(\operatorname{Kum}_{3}(A)\right)$ is a (1:1)-map (it is a well known fact but we will see it in the next section), we have that $\Theta_{\eta} \cap$ $\operatorname{Kum}_{3}(X) \simeq H_{\eta} \cap \phi_{3}\left(\operatorname{Kum}_{3}(X)\right)$. In order to study the degree of $\operatorname{Kum}_{3}(A)$ we have to take four generic divisors $\eta_{1}, \ldots, \eta_{4} \in \operatorname{Pic}^{1}(X)$ and consider the respective $\Theta_{\eta_{1}}, \ldots, \Theta_{\eta_{4}} \subset \operatorname{SU}_{X}(3)$. The intersection $\Theta_{\eta_{i}} \cap \operatorname{Kum}_{3}(A)$ is equal to $\left\{L_{a} \oplus L_{b} \oplus L_{-a-b} \in \operatorname{Kum}_{3}(X): h^{0}\left(L_{a} \oplus L_{b} \oplus L_{-a-b} \otimes \eta_{i}\right)>0\right\}=\left\{L_{a} \oplus\right.$ $\left.L_{b} \oplus L_{-a-b} \in \operatorname{Kum}_{3}(A): h^{0}\left(L_{a} \otimes \eta_{i}\right)>0\right\} \cup\left\{L_{a} \oplus L_{b} \oplus L_{-a-b} \in \operatorname{Kum}_{3}(A):\right.$ $\left.h^{0}\left(L_{b} \otimes \eta_{i}\right)>0\right\} \cup\left\{L_{a} \oplus L_{b} \oplus L_{-a-b} \in \operatorname{Kum}_{3}(A): h^{0}\left(L_{-a-b} \otimes \eta_{i}\right)>0\right\}$ for all $i=1, \ldots, 4$. If $L_{a} \oplus L_{b} \oplus L_{-a-b}$ is a generic element of $\operatorname{Kum}_{3}(A)$ and p is the $(6-1)$-covering of $\mathrm{Kum}_{3}(A)$ defined as in (1), then $p^{-1}\left(L_{a} \oplus L_{b} \oplus L_{a-b}\right) \subset A^{2}$ is a set of 6 points. It's easy to see that $p((a, b)) \in \Theta_{\eta_{i}} \cap \operatorname{Kum}_{3}(X)$ if and only if or $h^{0}\left(L_{a} \otimes \eta_{i}\right)>0$ or $h^{0}\left(L_{b} \otimes \eta_{i}\right)>0$ or $h^{0}\left(L_{-a-b} \otimes \eta_{i}\right)>0$ where $(a, b) \in A^{2}$ and $L_{a}, L_{b}, L_{-a-b} \in \operatorname{Pic}^{0}(X)$ are three line bundles respectively associated to $a, b,-a-b \in A$.

Let us recall Jacobi's Theorem ([GH] page: 235):
Jacobi's Theorem: Let X be a curve of genus $g, q_{0} \in X$ and $\omega_{1}, \ldots, \omega_{g}$ a basis for $H^{0}\left(X, \Omega^{1}\right)$. For any $\lambda \in \operatorname{Jac}(X)$ there exist g points $p_{1}, \ldots, p_{g} \in X$ such that

$$
\mu\left(\sum_{i=1}^{g}\left(p_{i}-q_{0}\right)\right)=\lambda,
$$

where

$$
\begin{aligned}
\mu & : \operatorname{Div}^{0}(X) \rightarrow \operatorname{Jac}(X) \\
\sum_{i}\left(p_{i}-q_{i}\right) & \mapsto\left(\sum_{i} \int_{q_{i}}^{p_{i}} \omega_{1}, \ldots, \sum_{i} \int_{q_{i}}^{p_{i}} \omega_{g}\right) .
\end{aligned}
$$

Since $\operatorname{Jac}(X)$ is isomorphic to $\operatorname{Pic}^{0}(X)$, this theorem has the following two corollaries:

1. if q_{0} is a fixed point of C, then for all $L_{a} \in \operatorname{Pic}^{0}(X)$, there are two points P_{1}, P_{2} in X such that $L_{a} \simeq \mathcal{O}_{X}\left(P_{1}+P_{2}-2 q_{0}\right)$;
2. Consider the isomorphism

$$
\begin{gathered}
\psi_{1,0}: \operatorname{Pic}^{1}(X) \xrightarrow{\sim} \operatorname{Pic}^{0}(X) \\
\eta \mapsto \eta \otimes \mathcal{O}_{X}\left(-q_{0}\right) .
\end{gathered}
$$

For every $i=1, \ldots, 4$ there are $q_{i_{1}}, q_{i_{2}} \in C$ such that $\eta_{i} \simeq \mathcal{O}_{X}\left(q_{i_{1}}+q_{i_{2}}-\right.$ $\left.q_{0}\right)$.
Now these two facts imply that $h^{0}\left(L_{a} \otimes \eta_{i}\right)>0$ if and only if $h^{0}\left(\mathcal{O}_{X}\left(P_{1}+P_{2}-\right.\right.$ $\left.\left.2 q_{0}\right) \otimes \mathcal{O}_{X}\left(q_{i, 1}+q_{i, 2}-q_{0}\right)\right)>0$, and this happens if and only if $h^{0}\left(\mathcal{O}_{X}\left(P_{1}+\right.\right.$ $\left.\left.P_{2}+q_{i, 1}+q_{i, 2}-3 q_{0}\right)\right)>0$.

Notations: Θ_{-k} is a translate of theta divisor by $k \in \operatorname{Pic}^{0}(X)$.
By Riemann's Singularity Theorem (see [GH], p. 348) the dimension $h^{0}\left(\mathcal{O}_{X}\left(P_{1}+\right.\right.$ $\left.P_{2}+q_{i, 1}+q_{i, 2}-3 q_{0}\right)$) is equal to the multiplicity of $\psi_{1,0}\left(P_{1}+P_{2}+q_{i, 1}+q_{i, 2}-3 q_{0}\right)$ in Θ_{-k} (by a suitable $k \in \operatorname{Pic}^{0}(X)$), i.e. it is equal to the multiplicity of $\left(P_{1}+P_{2}+q_{i, 1}+q_{i, 2}-4 q_{0}\right)$ in Θ_{-k}. It follows from this fact that $h^{0}\left(\mathcal{O}_{X}\left(P_{1}+P_{2}+\right.\right.$ $\left.\left.q_{i, 1}+q_{i, 2}-3 q_{0}\right)\right)$ is greater than zero if and only if $\left(P_{1}+P_{2}+q_{i, 1}+q_{i, 2}-4 q_{0}\right) \in \Theta_{-k}$.

Notations:

$$
\begin{aligned}
& \Theta_{i}:=\Theta_{-k-\eta_{i}+q_{0}} ; \\
& R_{i}:=\left\{(a, b) \in A^{2}:(a+b) \in\left\{-\Theta_{i}\right\}\right\} ; \\
& \Xi_{i}:=\left(\Theta_{i} \times A\right) \cup\left(A \times \Theta_{i}\right) \cup R_{i} .
\end{aligned}
$$

Now $\left(P_{1}+P_{2}+q_{i, 1}+q_{i, 2}-4 q_{0}\right) \in \Theta_{-k}$ iff $P_{1}+P_{2}-2 q_{0} \in \Theta_{i}$ which is equivalent to say that L_{a} belongs to Θ_{i}, but this implies that $p((a, b)) \in \Theta_{\eta_{i}} \cap \operatorname{Kum}_{3}(A)$ if and only if $L_{a} \in \Theta_{i}$ or $L_{b} \in \Theta_{i}$ or $L_{-a-b} \in \Theta_{i}$ (or equivalently L_{a+b} belongs to $\left.\left\{-\Theta_{i}\right\}\right)$, i.e. $(a, b) \in \Xi_{i}$.

Therefore we can conclude:
$(a, b) \in A^{2}$ is such that $p((a, b)) \in \operatorname{Kum}_{3}(A) \cap \Theta_{\eta_{i}}, i=1, \ldots, 4$ if and only if $(a, b) \in \Xi_{i}$.

The last conclusion together with the observation that $\sharp\left(p r^{-1}\left(L_{a} \oplus L_{b} \oplus\right.\right.$ $\left.\left.L_{-a-b}\right)\right)=6$ gives the following proposition:
Proposition 4.2. $\operatorname{deg}\left(\operatorname{Kum}_{3}(A)\right)=\frac{1}{6}\left(\sharp\left(\Xi_{1} \cap \Xi_{2} \cap \Xi_{3} \cap \Xi_{4}\right)\right)$.
Proof. $\sharp\left(\Xi_{1} \cap \Xi_{2} \cap \Xi_{3} \cap \Xi_{4}\right)=6 \cdot \sharp\left(\operatorname{Kum}_{3}(A) \cap \Theta_{\eta_{1}} \cap \Theta_{\eta_{2}} \cap \Theta_{\eta_{3}} \cap \Theta_{\eta_{4}}\right)=$ $6 \cdot \operatorname{deg}\left(\operatorname{Kum}_{3}(A)\right)$.

Notations:

$$
\begin{aligned}
& R_{j}^{a, i}=\left\{(a, b) \in A^{2}: a \in \Theta_{i} \text { and }(a+b) \in\left\{-\Theta_{j}\right\}\right\}, \\
& R_{j}^{b, i}=\left\{(a, b) \in A^{2}: b \in \Theta_{i} \text { and }(a+b) \in\left\{-\Theta_{j}\right\}\right\} \text { and } \\
& R_{1,2}=\left\{(a, b) \in A^{2}:(a+b) \in\left\{-\Theta_{1}\right\} \cap\left\{-\Theta_{2}\right\}\right\} .
\end{aligned}
$$

Instead of computing directly $\Xi_{1} \cap \Xi_{2} \cap \Xi_{3} \cap \Xi_{4}$, we will compute $\left(\Xi_{1} \cap \Xi_{2}\right) \cap$ $\left(\Xi_{3} \cap \Xi_{4}\right)$:
$\Xi_{1} \cap \Xi_{2}=\left(\left(\Theta_{1} \cap \Theta_{2}\right) \times A\right) \cup\left(A \times\left(\Theta_{1} \cap \Theta_{2}\right)\right) \cup\left(\Theta_{1} \times \Theta_{2}\right) \cup\left(\Theta_{2} \times \Theta_{1}\right) \cup\left(R_{b}^{a, 1}\right) \cup$ $\left(R_{2}^{b, 1}\right) \cup\left(R_{1}^{a, 2}\right) \cup\left(R_{1}^{b, 2}\right) \cup\left(R_{1,2}\right)$.
$\Xi_{3} \cap \Xi_{4}=\left(\left(\Theta_{3} \cap \Theta_{4}\right) \times A\right) \cup\left(A \times\left(\Theta_{3} \cap \Theta_{4}\right)\right) \cup\left(\Theta_{3} \times \Theta_{4}\right) \cup\left(\Theta_{4} \times \Theta_{3}\right) \cup\left(R_{b}^{a, 3}\right) \cup$ $\left(R_{4}^{b, 3}\right) \cup\left(R_{3}^{a, 4}\right) \cup\left(R_{3}^{b, 4}\right) \cup\left(R_{3,4}\right)$.
At the end we will obtain that $\sharp\left(\Xi_{1} \cap \Xi_{2} \cap \Xi_{3} \cap \Xi_{4}\right)=216$ (see also tables 1 . and 2.) and so:
Proposition 4.3. $\operatorname{deg}\left(\operatorname{Kum}_{3}(A)\right)=36$.
Proof. In the following two tables we write at place (i, j) the cardinality of intersection of the subset of $\Xi_{1} \cap \Xi_{2}$ which we write at the place $(0, j)$, with the subset of $\Xi_{3} \cap \Xi_{4}$ which we write at the place $(i, 0)$.

\cap	$\left(\Theta_{1} \cap \Theta_{2}\right) \times A$	$A \times\left(\Theta_{1} \cap \Theta_{2}\right)$	$\Theta_{1} \times \Theta_{2}$	$\Theta_{2} \times \Theta_{1}$
$\left(\Theta_{3} \cap \Theta_{4}\right) \times A$	0	4	0	0
$A \times\left(\Theta_{3} \cap \Theta_{4}\right)$	4	0	0	0
$\Theta_{3} \times \Theta_{4}$	0	0	4	4
$\Theta_{4} \times \Theta_{3}$	0	0	4	4
$R_{4}^{a, 3}$	0	4	4	4
$R_{3}^{a, 4}$	0	4	4	4
$R_{4}^{b, 3}$	4	0	4	4
$R_{3}^{b, 4}$	4	0	4	4
$R_{3,4}$	4	4	4	4

Table 1.

\cap	$R_{2}^{a, 1}$	$R_{1}^{a, 2}$	$R_{2}^{b, 1}$	$R_{1}^{b, 2}$	$R_{1,2}$
$\left(\Theta_{3} \cap \Theta_{4}\right) \times A$	0	0	4	4	4
$A \times\left(\Theta_{3} \cap \Theta_{4}\right)$	4	4	0	0	4
$\Theta_{3} \times \Theta_{4}$	4	4	4	4	4
$\Theta_{4} \times \Theta_{3}$	4	4	4	4	4
$R_{4}^{a, 3}$	4	4	4	4	0
$R_{3}^{a, 4}$	4	4	4	4	0
$R_{4}^{b, 3}$	4	4	4	4	0
$R_{3}^{b, 4}$	4	4	4	4	0
$R_{3,4}$	0	0	0	0	0

Table 2.
In order to be more clear we show some cases:
$\mathbf{R}_{\mathbf{2}}^{\mathbf{a}, \mathbf{1}} \cap \mathbf{R}_{\mathbf{4}}^{\mathbf{b}, \mathbf{3}}: R_{2}^{a, 1} \cap R_{4}^{b, 3}=\left\{(a, b) \in A^{2}: a \in \Theta_{1}\right.$ and $b \in \Theta_{3}$ and $(a+b) \in$ $\left.\left\{-\Theta_{2}\right\} \cap\left\{-\Theta_{4}\right\}\right\}$. Recall that $\Theta_{i} \cdot \Theta_{j}=2$. So $(a+b) \in\left\{k_{1}, k_{2}\right\}$ where $\left\{k_{1}, k_{2}\right\}=\left\{-\Theta_{2}\right\} \cap\left\{-\Theta_{4}\right\}$. Fix for a moment $(a+b)=k_{1}$. If we translate Θ_{1} and Θ_{3} by $-k_{1}$ we get that $a \in\left(\Theta_{1}\right)_{-k_{1}}, b \in\left(\Theta_{3}\right)_{-k_{1}}$ and $a+b=0$, then b must be equal to $-a$ and $a \in\left(\left(\Theta_{1}\right)_{-k_{1}}\right) \cap\left(\left(-\Theta_{3}\right)_{+k_{1}}\right)$. Then for fixed $a+b$ the couple (a, b) has to belong to $\left\{\left(h_{1},-h_{1}\right),\left(h_{2},-h_{2}\right)\right\}$ where $\left(\left(\Theta_{1}\right)_{+k_{1}}\right) \cap\left(\left(-\Theta_{3}\right)_{-k_{1}}\right)=\left\{h_{1}, h_{2}\right\}$.
Therefore $\sharp\left(R_{2}^{a, 1} \cap R_{4}^{b, 3}\right)=2 \cdot 2=4$.
$\left(\mathbf{\Theta}_{\mathbf{1}} \times \boldsymbol{\Theta}_{\mathbf{2}}\right) \cap \mathbf{R}_{\mathbf{3}, \mathbf{4}}:\left(\Theta_{1} \times \Theta_{2}\right) \cap R_{3,4}=\left\{(a, b) \in A^{2}: a \in \Theta_{1}, b \in \Theta_{2}\right.$ and $\left.(a+b) \in\left\{-\Theta_{3}\right\} \cap\left\{-\Theta_{4}\right\}\right\}$. Then, as in the previous case, we have $\sharp\left(\left(\Theta_{1} \times \Theta_{2}\right) \cap R_{3,4}\right)=4$.
$\mathbf{R}_{\mathbf{2}}^{\mathbf{a}, \mathbf{1}} \cap\left(\left(\mathbf{\Theta}_{\mathbf{3}} \cap \mathbf{\Theta}_{\mathbf{4}}\right) \times \mathbf{A}\right): R_{2}^{a, 1} \cap\left(\left(\Theta_{3} \cap \Theta_{4}\right) \times A\right)=\left\{(a, b) \in A^{2}: a \in \Theta_{1} \cap \Theta_{3} \cap\right.$ $\left.\Theta_{4},(a+b) \in\left\{-\Theta_{2}\right\}\right\}$, but since Θ_{i} are generic curves on a surface, their intersection two by two is the empty set, then $\sharp\left(R_{2}^{a, 1}\right) \cap\left(\left(\Theta_{3} \cap \Theta_{4}\right) \times A\right)=0$.

4.3 The degree of $\operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right)$

As we have already seen, the singular locus of $\operatorname{Kum}_{3}(A)$ is a surface. What we want to do now is to compute its degree. We use the notation from the previous section.

Let us fix two divisors Ξ_{1} and Ξ_{2} in A^{2}. We denote by Δ the diagonal of $A \times A$.

Proposition 4.4. $\operatorname{deg}\left(\operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right)\right)=\sharp\left(\Xi_{1} \cap \Xi_{2} \cap \Delta\right)$.
Proof. It is sufficient to consider the restriction to Δ of the map p defined as in (1) and get out the (1:1)-map $\left.p\right|_{\Delta}: \Delta \rightarrow \operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right)$.

Proposition 4.5. $\operatorname{deg}\left(\operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right)\right)=42$.
Proof. The following table is used in the same way as we used Table 1. and Table 2. in the previous section:

\cap	Δ
$\left(\Theta_{1} \cap \Theta_{2}\right) \times A$	2
$A \times\left(\Theta_{1} \cap \Theta_{2}\right)$	$/$
$\Theta_{1} \times \Theta_{2}$	$/$
$\Theta_{2} \times \Theta_{1}$	$/$
$R_{2}^{a, 1}$	4
$R_{1}^{a, 2}$	4
$R_{2}^{b, 1}$	$/$
$R_{1}^{b, 2}$	$/$
$R_{1,2}$	32

Table 3.

The following list describes Table 3.:
$\boldsymbol{\Delta} \cap \mathbf{A} \times\left(\boldsymbol{\Theta}_{\mathbf{1}} \cap \boldsymbol{\Theta}_{\mathbf{2}}\right)$: we have not considered the intersection points between Δ and $A \times\left(\Theta_{1} \cap \Theta_{2}\right), \Theta_{1} \times \Theta_{2}, \Theta_{2} \times \Theta_{1}$ because we have already counted them in $\left(\left(\Theta_{1} \cap \Theta_{2}\right) \times A\right) \cap \Delta$.
$\boldsymbol{\Delta} \cap \mathbf{R}_{\mathbf{2}}^{\mathbf{b}, \mathbf{1}}$: the previous argument can be used for $\Delta \cap R_{2}^{b, 1}$ and $\Delta \cap R_{1}^{b, 2}$: we have already counted these intersection points respectively in $R_{2}^{a, 1}$ and in $R_{1}^{a, 2}$.
$\mathbf{R}_{\mathbf{2}}^{\mathbf{a}, \mathbf{1}} \cap \boldsymbol{\Delta}$: we have now to show that $\sharp\left(R_{2}^{a, 1} \cap \Delta\right)=4$. The set $R_{2}^{a, 1} \cap \Delta$ is $\left\{(a, a) \in A \times A \mid a \in \Theta_{1}, 2 a \in\left(-\Theta_{2}\right)\right\}$ which is equal to $\{(a, a) \in A \times A$: $2 a \in\left(\left(-\Theta_{2}\right) \cap\left(2 \cdot \Theta_{1}\right)\right)$ and $\left.a \in \Theta_{1}\right\}$. Let now L_{1} be the line bundle on A associated to Θ_{1}. The line bundle L_{1}^{2} is associated to $\left(2 \cdot \Theta_{1}\right)$ and its divisor is linearly equivalent to $2 \Theta_{1}$. As a consequence of this fact we have that $2 a \in\left(2 \Theta_{1} \cap\left(-\Theta_{2}\right)\right)$ then $\sharp\left\{2 \Theta_{1} \cap\left(-\Theta_{2}\right)\right\}=4$. Now, since the map from Θ_{1} to $\left(2 \cdot \Theta_{1}\right)$ is $1: 1$ we get the conclusion.
$\mathbf{R}_{\mathbf{1}, \mathbf{2}} \cap \boldsymbol{\Delta}$: finally we have that $\left(R_{1,2} \cap \Delta\right)$ is equivalent to the set $\{a \in A \mid 2 a \in$ $\left.\left(\left(-\Theta_{1}\right) \cap\left(-\Theta_{2}\right)\right)\right\}$ whose cardinality is 32 .

5 On action of the hyperelliptic involution and $\operatorname{Kum}_{3}(A)$

Let X be a curve of genus 2. Consider the degree 2 map:

$$
\begin{gathered}
\phi_{3}: \mathrm{SU}_{X}(3) \xrightarrow{2: 1} \mathbb{P}^{8}=\left|3 \Theta_{\operatorname{Pic}^{1}(X)}\right| \\
E \longmapsto D_{E}=\left\{L \in \operatorname{Pic}^{1}(X) / h^{0}(E \otimes L)>0\right\}
\end{gathered}
$$

(see $[\mathbf{L a z}]$). Let τ^{\prime} be the involution on $\mathrm{SU}_{X}(3)$ acting by the duality:

$$
\tau^{\prime}(E)=E^{*}
$$

and τ the hyperelliptic involution on $\operatorname{Pic}^{1}(X)$:

$$
\tau(L)=\omega_{X} \otimes L^{-1}
$$

We will use the following well known relation:

$$
\tau \circ \phi_{3}(E)=\phi_{3} \circ \tau^{\prime}(E)
$$

On $\mathrm{SU}_{X}(3)$ there is also the hyperelliptic involution h^{*} :

$$
E \mapsto h^{*}(E)
$$

induced by the hyperelliptic involution h of the curve X.
We define $\sigma:=\tau^{\prime} \circ h^{*}$. It is the involution which gives the double covering of $\mathrm{SU}_{X}(3)$ on \mathbb{P}^{8}.
The fixed locus of σ is obviously contained in $\mathrm{SU}_{X}(3)$ and we recall:

$$
\begin{equation*}
\phi_{3}(\operatorname{Fix}(\sigma))=\text { Coble sextic hypersurface } \tag{5}
\end{equation*}
$$

(see [Laz]). By definition, the strictly semi-stable locus $\mathrm{SU}_{X}(3)^{s s}$ of $\mathrm{SU}_{X}(3)$ consists of isomorphism classes of split rank 3 semi-stable vector bundles of determinant \mathcal{O}_{X}. Its points can be represented by the vector bundles of the form $F \oplus L$ or $L_{a} \oplus L_{b} \oplus L_{c}$ with trivial determinant where L, L_{a}, L_{b}, L_{c} are line bundles and F is a rank 2 vector bundle. We want to consider the elements of the form $L_{a} \oplus L_{b} \oplus L_{c}$ (those belonging to $\operatorname{Kum}_{3}(A)$) and actions of previous involutions on them:

- $\tau^{\prime}\left(L_{a} \oplus L_{b} \oplus L_{c}\right)=\left(L_{a} \oplus L_{b} \oplus L_{c}\right)^{*}=L_{-a} \oplus L_{-b} \oplus L_{-c}$;
- $\tau^{\prime}\left(h^{*}\left(L_{a} \oplus L_{b} \oplus L_{c}\right)\right)=L_{a} \oplus L_{b} \oplus L_{c}$.

This implies that $\sigma\left(\operatorname{Kum}_{3}(A)\right)=\operatorname{Kum}_{3}(A) \subset \mathrm{SU}_{X}(3)$ which means that $\operatorname{Kum}_{3}(A) \subset$ $\operatorname{Fix}(\sigma)$ and then $\phi_{3}\left(\operatorname{Kum}_{3}(X)\right) \subset$ Coble sextic (see 5).

Let us now consider rank 2 semistable vector bundles of trivial determinant: $\mathrm{SU}_{X}(2)$. If we take its symmetric square, we obtain a semisable rank three vector bundle with trivial determinant:

$$
\mathrm{SU}_{X}(2) \rightarrow \mathrm{SU}_{X}(3) ; \quad E \mapsto \operatorname{Sym}^{2}(E)
$$

We want to study the action of involutions defined on the beginning of this paragraph on $\operatorname{Sym}^{2}(E)$ with $E \in \operatorname{SU}_{X}(2)$. Since $\operatorname{Sym}^{2}(E)^{*}=\operatorname{Sym}^{2}(E)=$ $h^{*}\left(\operatorname{Sym}^{2}(E)\right)$, then $\sigma\left(\operatorname{Sym}^{2}(E)\right)=\operatorname{Sym}^{2}(E) \subset \operatorname{SU}_{X}(3)$, so $\operatorname{Sym}^{2}\left(\operatorname{SU}_{X}(2)\right) \subset$ $\operatorname{Fix}(\sigma)$, and, again by $(5), \phi_{3}\left(\operatorname{Sym}^{2}\left(\mathrm{SU}_{X}(2)\right)\right) \subset$ Coble sextic.

Now we want to see the action of τ on $\left|3 \Theta_{\operatorname{Pic}^{1}(X)}\right|$. It is known that $\operatorname{Fix}(\tau)=\mathbb{P}^{4} \sqcup \mathbb{P}^{3}$.

Notations: We denote by \mathbb{P}_{τ}^{3} and \mathbb{P}_{τ}^{4}, respectively, the \mathbb{P}^{3} and the \mathbb{P}^{4} which are fixed by action of τ.

Since the image of $\operatorname{Sym}^{2}\left(\mathrm{SU}_{X}(2)\right)$ by ϕ_{3} in \mathbb{P}^{8} has dimension 3 and also $\phi_{3}\left(\operatorname{Sym}^{2}\left(\operatorname{SU}_{X}(2)\right)\right) \subset \operatorname{Fix}(\tau)$, we obtain

$$
\phi_{3}\left(\operatorname{Sym}^{2}\left(\mathrm{SU}_{X}(2)\right)\right) \subset \mathbb{P}_{\tau}^{4}
$$

Let $L_{a} \oplus L_{-a}$ be an element of $\operatorname{Kum}_{2}(X) \subset \operatorname{SU}_{X}(2)$, then $\operatorname{Sym}^{2}\left(L_{a} \oplus L_{-a}\right)=$ $L_{2 a} \oplus L_{-2 a} \oplus \mathcal{O} \in \operatorname{Kum}_{3}(A) \subset \operatorname{SU}_{X}(3)$. It means that $\operatorname{Sym}^{2}\left(\operatorname{Kum}_{2}(A)\right) \subset$ $\operatorname{Kum}_{3}(A)$.

Observation: Since $\left\{L_{2 a} \oplus L_{-2 a} \oplus \mathcal{O} \in \mathrm{SU}_{X}(3)\right\}$ is isomorphic to $S^{2}\left(\left\{L_{a} \oplus\right.\right.$ $\left.L_{-a}\right\}$), we can view $\left\{L_{2 a} \oplus L_{-2 a} \oplus \mathcal{O} \in \mathrm{SU}_{X}(3)\right\}$ as the image of $\operatorname{Kum}_{2}(A)$ inside
$\mathrm{SU}_{X}(3)$ under the symmetric square map. Moreover it follows from the surjectivity of the multiplication by 2 map [2]:A $\rightarrow A$ that the image of $\operatorname{Kum}_{2}(A)$ in $\mathrm{SU}_{X}(3)$ is isomorphic to $\operatorname{Kum}_{2}(A)$.
We have already observed that $\left.\phi_{3}\right|_{\mathrm{Kum}_{3}(A)}$ is a (1:1)-map on the image; this fact allows us to view $\phi_{3}\left(\operatorname{Kum}_{3}(A)\right)$ as the $\operatorname{Kum}_{3}(A)$ in $\left|3 \Theta_{\operatorname{Pic}^{1}(X)}\right|$. For the same reason we can view $\phi_{3}\left(\operatorname{Sym}^{2}\left(\operatorname{SU}_{X}(2)\right)\right)$ as $\operatorname{Kum}_{2}(A) \subset\left|3 \Theta_{\text {Pic }_{1}(X)}\right|$. Using this language we can say that $\operatorname{Kum}_{2}(A)$ is left fixed by the action of τ in $\operatorname{Kum}_{3}(A) \subset$ $\left|3 \Theta_{\operatorname{Pic}_{1}(X)}\right|$ because $\left|3 \Theta_{\text {Pic }^{1}(X)}\right| \supset \phi_{3}\left(\operatorname{Kum}_{3}(A)\right) \supset \phi_{3}\left(\operatorname{Sym}^{2}\left(\operatorname{SU}_{X}(2)\right)=\right.$ $=\operatorname{Kum}_{2}(A) \subset \mathbb{P}^{4} \subset \operatorname{Fix}(\tau) \subset\left|3 \Theta_{\text {Pic }}^{1}(X)\right|$.

Proposition 5.1. $\operatorname{Fix}(\tau) \cap \phi_{3}\left(\operatorname{Kum}_{3}(A)\right)=\phi_{3}\left(\operatorname{Sym}^{2}\left(\operatorname{Kum}_{2}(A)\right)\right)$.
Proof. By definition $\tau\left(L_{a} \oplus L_{b} \oplus L_{c}\right)=L_{-a} \oplus L_{-b} \oplus L_{-c}$ then $L_{a} \oplus L_{b} \oplus L_{c}$ belongs to $\operatorname{Fix}(\tau)$ if and only if $\{a, b, c\}=\{-a,-b,-c\}$.
Let P belong to $\{-a,-b,-c\}$ and $a=P$.

- If P is different from $-a$, suppose that $P=-c$, then $\{-a,-b,-c\}=$ $\{-a,-b, a\}$; moreover $a+b+c=0$ because $L_{a} \oplus L_{b} \oplus L_{c} \in \operatorname{Kum}_{3}(A)$, then $b=0$.
- Now, if $P=-a$ or, equivalently $a=-a$, then $a=0$ and $b=-c$.

In both cases $L_{a} \oplus L_{b} \oplus L_{c} \in \operatorname{Kum}_{3}(A)$ such that $\tau\left(L_{a} \oplus L_{b} \oplus L_{c}\right)=L_{a} \oplus L_{b} \oplus L_{c}$ are of the form $L_{a} \oplus L_{-a} \oplus L_{0}$. This means that they belong to $\operatorname{Kum}_{2}(A) \subset$ $\left|3 \Theta_{\text {Pic }^{1}(X)}\right|$.

The previous proposition tells us also that $\mathbb{P}_{\tau}^{3} \cap \operatorname{Kum}_{3} A=\emptyset$. So the projection of $\operatorname{Kum}_{3}(A) \subset\left|3 \Theta_{\mathrm{Pic}^{1}(X)}\right|$ from \mathbb{P}_{τ}^{3} to \mathbb{P}_{τ}^{4} is a morphism. It would be interesting to find its degree.

Our final observation is the following.
Proposition 5.2. $\operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right) \cap \operatorname{Kum}_{2}(A)=\operatorname{Sing}\left(\operatorname{Kum}_{2}(A)\right)$
Proof. Points of $\operatorname{Kum}_{2}(A) \subset \operatorname{Kum}_{3}(A)$ are of the form $(P,-P, 0)$. Singular points of $\operatorname{Kum}_{3}(A)$ are those which have at least two equal components, then Sing $\left(\operatorname{Kum}_{3}(A)\right) \cap \operatorname{Kum}_{2}(A)=\{(P,-P, 0)\}$ where $2 P=0$ that are exactly the 15 points of 2 -torsion and one more point $\left(\mathcal{O}_{X}, \mathcal{O}_{X}, \mathcal{O}_{X}\right)$ which are singularities of the usual $\operatorname{Kum}_{2}(A)$. This implies that $\sharp\left(\operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right) \cap \operatorname{Kum}_{2}(A)\right)=16$ and $\operatorname{Sing}\left(\operatorname{Kum}_{3}(A)\right) \cap \operatorname{Kum}_{2}(A)=\operatorname{Sing}\left(\operatorname{Kum}_{2}(A)\right)$.

References

[Be] A. Beauville, Variété Käheleriennes dont la première classe de Chern est nulle. J. Didderential Geom 18 (1983), 755-782.
[BNR] A. Beauville, M.S. Narasimhan, S. Ramanan, Spectral curves and the generalised theta divisor. J. reine angew. Math. 398 (1989), 169-179.
[CLO] D. Cox, J. Little, O'Shea, Ideals, Varieties, and Algorithms. Springer (1998).
[CoCoA] A. Capani, G. Niesi, L. Robbiano CoCoA, A system for doing Computations in Commutative Algebra, Available via anonymous ftp from: cocoa.dima.unige.it.
[Go] L. Göttsche, Hilbert schemes of points on surfaces.Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 483-494.
[GH] Griffiths - Harris, Principles of algebraic geometry. J. Wiley and sons (1978).
[Laz] Y.Lazlo, Local structure of the moduli space of vector bundles over curves. Comment. Math. Helvetici 71, (1996) 373-401.
[Se] C. S. Seshadri Fibrés vectoriels sur les courbes algébriques. Astérisque 96(1982).

[^0]: ${ }^{1}$ here $\left\{x_{1}, \ldots x_{r}\right\}$ mean an unordered set of r elements.

