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Abstract. Let C ⊂ Pn be a rational normal curve and let `O : Pn+1 99K Pn be any

tangential projection form a point O ∈ TAC where A ∈ C. In this paper we relate the
minimum number r of addenda that are needed to write a binary form p of degree (n + 1)

and defined over an algebraically closed field of characteristic zero as linear combination of

(n+1)-th powers of linear binary forms L1, . . . , Lr, with the minimum number of addenda
that are required to write `O(p) as linear combination of elements belonging to `O(C).

Introduction

In many applications, like Biology and Statistics, it turns out to be useful to develop
techniques for reducing the dimension of high-dimensional data (like Principal Component
Analysis [PCA]) that can be encoded in a tensor. In many cases this tensor turns out to
be symmetric and with many entries equal to zero. One of the main problem is to find a
minimal decomposition of those tensors in terms of other tensors of the same structure but
with the minimal number of entries as possible (in the literature this kind of problems are
known either as Structured Tensor Rank Decomposition in the Signal Processing language
–see e.g. [6]– or as CANDECOMP/PARAFAC in the Data Analysis context –see e.g. [7]–).
We want to address these questions from an Algebraic Geometry point of view (we suggest [9]
for a good description about the relation between Biology, Statistics and Algebraic Geometry
on these kind of questions).

Let V be a finite dimensional vector space defined over an algebraically closed field K of
characteristic zero. A symmetric tensor is an element T ∈ SdV . Since the space SdV is
isomorphic to the vector space of homogeneous polynomial K[x1, . . . , xdim(V )]d of degree d
in dim(V ) variables with the coefficients that take values over K, then one can translate the
questions on symmetric tensors into questions on homogeneous polynomials.

In this paper we study the case of homogeneous polynomials of certain fixed degree n+ 1
in 2 variables having one coefficient equal to zero.
Assume for a moment to have fixed an order between the generators of K[u, t]n+1 and to
have given a corresponding coordinate system, say {x0, . . . , xn+1}. A binary form with the
coefficient in the i-th position equal to zero can be obtained by projecting a binary form to the
hyperplane Hi ⊂ K[u, t]n+1 identified by the equation xi = 0. We will focus on projections
`O from a point O ∈ P(K[u, t]n+1) ' Pn+1 to P(Hi) ' Pn that corresponds to tangential
projections to the rational normal curve that is canonically embedded in Pn+1. This will allow
to relate the minimal decomposition of a binary form p of degree n+ 1 as sum of (n+ 1)-th
powers of linear forms Ln+1

1 , . . . , Ln+1
r ∈ K[u, t]n+1, with the minimal decomposition of the
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projected `O(p) ∈ P(Hi) (that is a binary form of the same degree n + 1 but with the i-th
coefficient equal to zero) in terms of `O(Ln+1

1 ), . . . , `O(Ln+1
r ). Explicitly if r is the minimum

number of addenda that are required to write p ∈ K[u, t]n+1 as

p = Ln+1
1 + · · ·+ Ln+1

r

then we will prove in Theorem 1 and in Theorem 2 that there is a dense subset of P(Hi) ' Pn

where r is also the minimum number of addenda that are required to write `O(p) as follows:

`O(p) = `O(Ln+1
1 ) + · · ·+ `O(Ln+1

r ).

We will also describe which is the relation between the minimal decomposition of p and the
minimal decomposition of `O(p) out of this dense subset, and we will prove that the number
of addenda required for `O(p) can be only either 1 or 2 less than the number of addenda
required in the minimal decomposition of p. The minimal decomposition of a generic binary
form of degree n+ 1 in terms of (n+ 1)-th powers of binary linear forms was firstly studied
by J. J. Sylvester in [10], then formalized with an algorithm in [5] (see also [3] for a more
recent proof).

Actually we will use this language of binary forms only in Section 3 in order to explain
what happens if we fix a canonical embedding of a rational normal curve and a particular
center of projection. In fact all along the paper we will use a more general setting. Let
C ⊂ Pn+1 be a rational normal curve of degree n+ 1 and consider any tangential projection
`O form a point O ∈ TAC \ {A}, with A ∈ C, to a Pn. The image of C via `O is a cuspidal
curve X ⊂ Pn. The elements of C parameterize binary forms that can be written as (n+1)-th
powers of linear binary forms Ln+1’s, and the elements of X correspond to `O(Ln+1)’s. After
the preliminary Section 1, that works for any non-degenerate projective variety and not only
for rational normal curves, we will give, in Section 2, the already quoted main results of this
paper that are Theorem 1 and Theorem 2 that will relate, for any tangential projection `O,
the minimal decomposition of an element p ∈ Pn+1 with respect to C, with the minimal
decomposition of its image `O(p) ∈ Pn with respect to X.

1. Preliminaries

We give here all the definitions and all the notation that we will need in the sequel. We
can state them in a general setting even if we will use them in the very particular case of
tangential projections of rational normal curves. So for this section we consider Y ⊂ PN to
be any non-degenerate projective variety.

Definition 1. The Y -rank rY (P ) of a point P ∈ 〈Y 〉 ' PN with respect to a non degenerate
projective variety Y is the minimum integer ρ for which there exists a reduced 0-dimensional
sub-scheme S ⊂ Y of degree ρ whose span contains P .

Definition 2. Let P ∈ 〈Y 〉 ' PN be a point of Y -rank equal to ρ. We say that a 0-
dimensional sub-scheme S ⊂ Y computes the Y -rank of P if it is reduced, of degree ρ and
such that P ∈ 〈S〉.

Notation 1. We indicate with σ0
s(Y ) ⊂ PN the set of points P ∈ Pn of Y -rank less or equal

than s.

Definition 3. The s-th secant variety σs(Y ) ⊂ PN is the Zariski closure of the set σ0
s(Y ) of

Notation 1.

Remark 1. Observe that if P ∈ σs(Y ) \ σ0
s(Y ) then rY (P ) > s.
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Definition 4. Let P ∈ 〈Y 〉 ⊂ PN . The Y -border rank brY (P ) of P is the minimum integer
w such that P ∈ σw(Y ).

Remark 2. Observe that, by Definition 3, the relation between the Y -border rank and the
Y -rank of the same point P ∈ PN is the following: brY (P ) ≤ rY (P ).

We borrow from [4] the following result (we only need the case in which Y is a rational
normal curve of Pn+1 with 2t ≤ n+ 2; thus the case we use is a particular case of [4], Lemma
2.1.5).

Lemma 1. Let Y ⊂ PN be a smooth and non-degenerate subvariety of dimension at most 2.
Fix an integer t ≥ 2 and assume dim〈Z〉 = deg(Z) − 1 for every 0-dimensional sub-scheme
Z ⊂ Y such that deg(Z) ≤ t. Fix P ∈ PN .

(i) P ∈ σt(Y ) if and only if there is a 0-dimensional scheme Z ⊂ Y such that deg(Z) ≤ t
and P ∈ 〈Z〉.

(ii) P ∈ σt(Y ) \ σt−1(Y ) if and only if t is the first integer such that there is a 0-
dimensional sub-scheme Z ⊂ Y with deg(Z) = t and P ∈ 〈Z〉.

Proof. Since Y is smooth and dim(Y ) ≤ 2, every 0-dimensional sub-scheme A of Y is smooth-
able, i.e. it is a flat limit of a family of unions of deg(A) distinct points ([8]). As remarked in
the proof of [4], Lemma 2.1.5, the assumption “dim〈Z〉 = deg(Z)− 1 for every 0-dimensional
scheme Z ⊂ Y such that deg(Z) ≤ t” is sufficient to use [3], Proposition 2.8 and get part (i).

Part (ii) follows from part (i) applied to the integers t and t− 1. �

Remark 3. By Definition 3 of secant varieties of a projective variety Y ⊂ PN we have the
following obvious chain of containments:

Y = σ1(Y ) ⊂ σ2(Y ) ⊂ · · · ⊂ σs−1(Y ) ⊂ σs(Y ) = PN

for certain integer s ∈ N.

Definition 5. Let Y ⊂ PN be a smooth and non-degenerate variety of dimension at most
2. Let P ∈ σw(Y ) \ (σ0

w(Y ) ∪ σw−1(Y )), then, by Lemma 1, there exists a non-reduced
0-dimensional sub-scheme W ⊂ Y such that P ∈ 〈W 〉. We say that such a W computes the
Y -border rank of P .

We can give now a lemma that will be used in the next section in the particular case of
tangential projections of rational normal curves, but since it can be stated in a general setting
and since it improves Lemma 1.4 in [2] we prefer to state it here in the general setting of a
non degenerate projective variety.

Lemma 2. Fix an integral and non-degenerate subvariety Y ⊂ Pn+x, n > 0, x > 0, and a
linear (x− 1)-dimensional subspace V ⊂ Pn+x such that V ∩ Y = ∅. Set X := `V (Y ). Then

(1) rX(`V (Q)) = min
P∈(〈V ∪{Q}〉\V )

rY (P ) for all Q ∈ Pn+x \ V.

Proof. First of all let us prove that rX(`V (Q)) ≥ rY (P ) for all P ∈ Pn+x\V . Since V ∩Y = ∅,
then obviously `V |Y is a finite morphism. Now `V |Y : Y → X is surjective, then for each
finite set of points S ⊂ X we may fix another finite subset SV ⊂ Y such that `V (SV ) = S
and ](SV ) = ](S). Since SV ⊆ Y , then SV does not intersect V for all S’s, therefore for any
such a choice of SV , the set S ⊂ X turns out to be linearly independent if and only if SV is
linearly independent and 〈SV 〉 ∩ V = ∅.
Now fix Q ∈ Pn+x \ V and take S ⊂ X computing rX(`V (Q)). Thus ](S) = rX(`V (Q))
and S is linearly independent by definition of a set that computes the X-rank of a point
(see Definition 2). Since S is linearly independent and since V ∩ 〈S〉 = ∅, for what proved
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above, we also have that SV is linearly independent and then 〈SV 〉 ∩ V = ∅. Now `V (Q)
is an element of 〈S〉, then 〈SV 〉 ∩ 〈V ∪ {Q}〉 6= ∅. Since 〈SV 〉 ∩ V = ∅, there is a unique
P ∈ (〈V ∪ {Q}〉 \ V ) such that {P} = 〈SV 〉 ∩ 〈V ∪ {Q}〉. Therefore since SV ⊂ Y , we have
rY (P ) ≤ ](SV ) = ](S) = rX(`V (Q)).

To get the reverse inequality we may just quote Lemma 14 in [2] but since it is quite easy
to be proved, we show here a shorter proof. Fix any P ∈ (〈V ∪ {Q}〉 \ V ) and any A ⊂ Y
computing rY (P ). Since P ∈ (〈V ∪{Q}〉\V ) we have `V (P ) = `V (Q). Now `V (P ) ∈ 〈`V (A)〉,
then rX(`V (Q)) ≤ rY (P ). �

2. Theorems

We can now focus on tangential projections X ⊂ Pn of rational normal curves C ⊂ Pn+1

for n ≥ 3. The two theorems that we are going to prove will give a complete description of
both the schemes that compute the X-border rank and the schemes that compute the X-rank
of a point P ∈ Pn with respect to a curve X ⊂ Pn obtained as the tangential projection of a
rational normal curve C ⊂ Pn+1. Moreover we will explain the relation between the schemes
that compute brX(P ) and rX(P ) and the schemes that compute brC(B) and rC(B) where
B ∈ Pn+1 is a point that is sent into P ∈ Pn by the tangential projection.

We fix here the notation that we are going to use. From now on we will always consider
the following situation.

Notation 2. Let C ⊂ Pn+1 be a smooth rational normal curve of degree n+ 1. Fix A ∈ C
and consider the line TAC that sometimes we will also indicate with 〈2A〉. Fix also a point
O ∈ TAC \ {A} to be the center of the projection `O : Pn+1 99K Pn that sends C into a curve
X := `O(C) ⊂ Pn. The curve X turns out to be a linearly normal curve of Pn with degree
n+1, arithmetic genus 1 and the ordinary cusp `O(A) ∈ X ⊂ Pn as its unique singular point.

In the following two theorems we give both a complete description of the schemes that
realize the X-border rank (Theorem 1) and the X-rank (Theorem 2) of a point P ∈ Pn with
respect to a curve X just described, and the precise value of the X-rank of such a point P .
In Theorem 1 we give the X-rank of a point P ∈ Pn that is the image via `O of a point
B ∈ Pn+1 whose C-border rank is smaller that its C-rank. In Theorem 2 the point P ∈ Pn

is the image of a point MPn+1 whose C-border rank is equal to its C-rank.

Theorem 1. Fix an integer n ≥ 3. Let C ⊂ Pn+1 be a rational normal curve and let also
X := `O(C) ⊂ Pn and O ∈ TAC \{A} for a fixed A ∈ C be as in Notation 2. Let w ≥ 2 be the
C-border rank of a point B ∈ σw(C) \ σ0

w(C) ⊂ Pn+1. Then there is a unique 0-dimensional
sub-scheme W ⊂ C that realizes the C-border rank of B.
Moreover the X-border rank of a point P := `O(B) ∈ Pn and the sub-scheme W ⊂ X are
completely classified by the following cases:

(1) If O ∈ 〈W 〉, then A ∈ Wred, A appears with multiplicity 2 in W and W \ 2A is
reduced. Moreover both the following cases may occur:
• either rX(P ) = w − 1 and `O(Wred) computes rX(P )
• or w ≥ 3, rX(P ) = w − 2 and `O(W \ 2A) computes rX(P ).

(2) If O /∈ 〈W 〉 and A /∈Wred, then rX(P ) = n+ 3− w.
(3) If O /∈ 〈W 〉 and A ∈ Wred, then A appears with multiplicity 1 in W and rX(P ) =

n+ 2− w.

Proof. Since C is a rational normal curve of Pn+1, every 0-dimensional sub-scheme Z ⊂ C
such that deg(Z) ≤ n + 2 is linearly independent, i.e. dim〈Z〉 = deg(Z)− 1, with the usual
conventions deg(∅) = 0, 〈∅〉 = ∅ and dim(∅) = −1. Thus if Z1, Z2 are 0-dimensional sub-
schemes of C and deg(Z1) + deg(Z2) ≤ n + 2, then 〈Z1〉 ∩ 〈Z2〉 = 〈Z1 ∩ Z2〉, where Z1 ∩ Z2
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denotes the scheme-theoretic intersection. Let 2A denotes the degree 2 effective divisor of C
with A as its reduction.

First of all observe that since the sub-scheme W ⊂ C computes the C-border rank of B ∈
Pn+1 then W is not reduced. Let us first prove the uniqueness of such a sub-scheme W ⊂ C.
Assume that W1 ⊂ C is another such a sub-scheme, then B ∈ 〈W 〉 ∩ 〈W1〉, by Definition 5
the point B /∈ 〈W ′〉 for any W ′ $ W and deg(W ) + deg(W1) = 2 deg(W ) = 2w ≤ n + 2.
Hence W1 ∩W = W , that means that W1 = W .

Now recall that, since B ∈ σw(C) \ σ0
w(C) by hypotheis, then rC(B) = n+ 2−w (see [3],

Theorem 3.8).

(1) Notice that O ∈ 〈W 〉 if and only if 〈{O,B}〉 ⊆ 〈W 〉. We study now the case of
O ∈ 〈W 〉. Fix any point Q ∈ 〈{O,B}〉 \ {O}. Since Q ∈ 〈W 〉, we have brC(Q) ≤ w.
Thus (by the so called Sylvester algorithm, see e.g. [3]) either rC(Q) = brC(Q) or
rC(Q) = n + 3 − brC(Q) ≥ n + 3 − w = rC(B). If the latter case occurs for all
Q ∈ 〈{O,B}〉 \ {O}, then, by Lemma 2, rX(`O(B)) = n+ 3− w.
Assume the existence of Q ∈ 〈{O,B}〉\{O} such that rC(Q) = brC(Q). Take S1 ⊂ C
computing rC(Q). Since Q ∈ 〈W 〉, the proof of the uniqueness of W gives S1 ⊆ W
but since W is not reduced, then obviously S1 $ W . Since Q 6= O, and B /∈ 〈S1〉,
Q is the only point of the line 〈{O,B}〉 contained in 〈S1〉. Since O ∈ 〈2A〉, we get
〈{O,B}〉 ⊆ 〈2A ∪ S1〉. Thus the uniqueness of W gives W ⊆ S1 ∪ 2A, in which if
A ∈ S1, then S1 ∪ 2A is the only divisor with S1 as its reduction, reduced outside A
and with multiplicity 2 at A. Since O ∈ 〈2A〉, deg(2A)+deg(W ) = 2+w ≤ n+2 and
O 6= A, we get that A appears with multiplicity at least 2 in W . Thus W = S1 ∪ 2A
and either ](S1) = w − 2 if A /∈ S1, or ](S1) = w − 1 if A ∈ S1. In both cases 2A is
the only unreduced connected component of the scheme W ⊂ C.
We want to show that both cases occur for certain points B and we also want to
describe all points B for which they occur.
If W = 2A, then P = `O(B) ∈ X and hence rX(P ) = 1.
Now assume W 6= 2A, i.e. w ≥ 3. Take any S2 ⊂ X such that ](S2) = w − 2, and
A /∈ S2. Set S1 := S2 ∪ {A}. Set W := S2 ∪ 2A. Since w ≤ n + 2, we saw that
W is linearly independent. Take as B any point of 〈W 〉 not contained in the linear
span of a proper sub-scheme of W . Fix any S1 ⊂ C such that ](S1) = w − 2. Set
W := S1 ∪ 2A and take as B any point of 〈W 〉 not contained in the linear span of a
proper sub-scheme of W .

(2) Here we assume O /∈ 〈W 〉 and that A /∈Wred. In this case the dimension of 〈2A∪B〉
is w+1 because deg(2A∪W ) = 2+w. Hence 〈2A〉∩〈W 〉 = ∅ and 〈2A〉∩〈{A}∪W 〉 =
{A}. Since O ∈ 〈2A〉 and O 6= A, we get that O /∈ 〈{A} ∪W 〉. Now fix any point
Q ∈ 〈{O,B}〉 \ {O}. Since B ∈ 〈W 〉 and O ∈ 〈2A〉, we have Q ∈ 〈2A ∪W 〉. Thus,
by [3], Proposition 2.8, brC(Q) ≤ w + 2. Since B ∈ 〈W 〉 ⊂ 〈{A} ∪W 〉, O ∈ 〈2A〉,
O /∈ 〈{A} ∪W 〉, Q 6= A and 〈{A} ∪W 〉 ∩ 〈2A〉 = {A}, then Q /∈ 〈{A} ∪W 〉.
We want to prove now that the C-border rank of Q is actually w + 2 and that
2A∪W is the scheme that computes it. Assume the existence of a proper sub-scheme
G $ 2A ∪W such that Q ∈ 〈G〉. Since Q /∈ 〈{A} ∪W 〉 there is G1 $ W such that
Q ∈ 〈2A∪G1〉. Since O ∈ 〈2A〉, we get B ∈ 〈2A∪G1〉. Since deg(2A∪G1)+deg(W ) ≤
2 +w− 1 +w ≤ n+ 2, we get 〈2A∪G1〉 ∩ 〈W 〉 = 〈G1〉, contradicting the assumption
brC(B) = w. Thus there is no proper subset G of 2A ∪W such that Q ∈ 〈G〉. Thus
brC(Q) = w+2 ([3], Proposition 2.8). Thus, by [3], Theorem 3.8, rC(Q) = n+3−w.
Now our Lemma 2 gives rX(P ) = n+ 1− w.
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(3) Assume A ∈Wred and that A appears with multiplicity 1 in W .
Then A ∈ 〈W 〉 and deg(W ∪ 2A) = w + 1. Set W1 := W \ {A} and W2 := W1 ∪ 2A.
Thus deg(W2) = deg(W1) + 2 = w + 1. By step (1) we have O /∈ 〈W 〉. Fix any
Q ∈ 〈{O,B}〉 \ {O}. Since B ∈ 〈W 〉 and O /∈ 〈W 〉, then Q /∈ 〈W 〉. Since O ∈ 〈2A〉,
then Q ∈ 〈W2〉. Thus brC(Q) ≤ w + 1. Since 2(w + 1) ≤ n + 2, we also know that
brC(Q) is computed by a unique scheme Γ and that Γ ⊆W2. Since B ∈ 〈2A∪Γ〉, we
also have W ⊆ Γ ∪ 2A. Hence either Γ = W2 or Γ = W or Γ = W1. Since Q /∈ 〈W 〉,
we have Γ = W2. Thus brC(Q) = w + 1. Since rC(Q) = n+ 3− brC(Q) = n+ 2−w
([3], Theorem 3.8), Lemma 2 gives rX(P ) = n+ 1− w.

Now assume that A appears with multiplicity at least 2 in W . Since O ∈ 〈2A〉,
we get O ∈ 〈W 〉. Hence this case was discussed in step (1). �

The following remark will turn out to be useful in the construction of algorithms for the
computation of the X-rank of points P ∈ Pn with respect to the arithmetic genus 1 cuspidal
linearly normal curve X of degree n+ 1.

Remark 4. Let S ⊂ C be a reduced 0-dimensional sub-scheme that computes the C-rank of a
point B ∈ Pn+1 with respect to a rational normal curve C ⊂ Pn+1. Let also `O : Pn+1 99K Pn

be the tangential projection from O ∈ TAC for a fixed A ∈ C, A 6= B, that sends C into
an arithmetic genus 1 cuspidal linearly normal curve X ⊂ Pn of degree n + 1. Then the
sub-scheme S′ := `O(S) ⊂ X computes the X-rank of the point P = `O(B). Moreover all
the sub-schemes S′ ⊂ X that compute the X-rank of a point P ∈ Pn are the projections via
`O of schemes S ⊂ C that compute the C-rank of a point B ∈ Pn+1 such that `O(B) = P .

Theorem 2. Fix an integer n ≥ 3. Let C ⊂ Pn+1 be a rational normal curve and let
also X := `O(C) ⊂ Pn and O ∈ TAC \ {A} for a fixed A ∈ C be as in Notation 2. Let
M ∈ Pn+1 \ {O} be such that rC(M) = ρ with ρ such that 2 ≤ ρ ≤ b(n + 2)/2c. Let E ⊂ C
be a finite set that computes the C-rank of M . Then the scheme E is unique if 2ρ ≤ n + 1.
Call P ∈ Pn the point obtained as `O(M) =: P . Therefore the following hold:

(i) If 2ρ ≤ n, then rX(P ) = ρ and `O(E) is the unique subset of X computing rX(P ).
(ii) If n+ 1 ≤ 2ρ ≤ n+ 2, then ρ− 1 ≤ rX(P ) ≤ ρ.

(iii) If n is even and 2ρ = n + 2, then there is a non-empty open subset U of Pn+1 such
that rC(M) = ρ and rX(P ) = ρ− 1 for all M ∈ U .

Proof. Let us first check that O /∈ 〈E〉.
Assume O ∈ 〈E〉. Thus O ∈ 〈2A〉 ∩ 〈E〉. Since deg(2A) + deg(E) = 2 + ρ ≤ n + 2, we get
O ∈ 〈2A〉 ∩ 〈E〉 = {A}. Since E is reduced and O 6= A, we got a contradiction. Therefore
O /∈ 〈E〉.

Assume just for now that 2ρ ≤ n+ 1.
By [3], Theorem 3.8, we have brC(M) = ρ. The proof of the uniqueness of a non-reduced
0-dimensional scheme W ⊂ C that computes the C-border rank of a point M ∈ Pn+1 in
Theorem 1, gives that E ⊂ C is the unique 0-dimensional sub-scheme T of C such that
deg(T ) ≤ ρ and M ∈ 〈T 〉. Since `O|C is injective, ](`O(E)) = ρ. Obviously, `O(B) = P ∈
〈`O(E)〉. Thus rX(P ) ≤ ρ. But we have just proved that O /∈ 〈E〉, i.e. dim(〈`O(E)〉) = ρ.

(i) Here we assume 2ρ ≤ n. Take S ⊂ X computing rX(`O(M)). In this case it is
sufficient to prove that S = `O(E). Since `O|C is injective, there is a unique S′ ⊂ C
such that `O(S′) = S. Since P = `O(M) ∈ 〈S〉, we have M ∈ 〈{O}∪S′〉 ⊂ 〈2A∪S′〉.
Thus M ∈ 〈2A∪S′〉∩〈E〉. Since deg(2A∪S′)+deg(E) ≤ 2+2ρ ≤ n+2, the scheme
2A ∪ S′ ∪ E is linearly independent. Thus 〈2A ∪ S′〉 ∩ 〈E〉 is the linear span of the
scheme-theoretic intersection (2A∪S′)∩E. Since E is reduced and M /∈ 〈E′〉 for any
E′ $ E, we get that either S′ = E or S′ ∪ {A} = E. If A /∈ E, then we get S′ = E,
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as wanted.
Assume A ∈ E, if S′ = E we are done, so assume that S′ 6= E, i.e. S′ = E \ {A}.
In the ρ-dimensional linear space 〈2A ∪ S′〉, the linear subspace 〈E〉 and 〈{O} ∪ S′〉
are different hyperplanes, because O /∈ 〈E〉. Hence the line 〈{O,M}〉 ⊂ 〈2A ∪ S′〉
intersects E in a unique point. Since S′ $ E, we have M /∈ 〈S′〉. Thus P 6= M . Since
P ∈ 〈S′〉 and M ∈〉E〉, we get 〈{O,M}〉 ⊆ 〈E〉, that is a contradiction.

(ii) Here we assume n+ 1 ≤ 2ρ ≤ n+ 2. We can almost reproduce the same proof of the
step (i) above: the only part that failed in step (i) is that one in which we use the
inequality deg(2A ∪ S′) + deg(E) ≤ 2 + 2ρ ≤ n+ 2. However, to apply the first part
of the proof of the theorem it is sufficient to have deg(2A ∪ S′ ∪E) ≤ n+ 2. That is
true because deg(2A) = 2, deg(E) = ρ and deg(S′) ≤ ρ − 2, and 2A is independent
both with E and with S′.

(iii) Assume n even and 2ρ = n + 2. A general P ∈ Pn+1 satisfies rC(P ) = brC(P ) =
(n + 2)/2. A general P ′ ∈ Pn satisfies rX(P ′) = brX(P ′) = n/2. A general P ′ ∈ Pn

is of the form `O(P ) with P general in Pn+1. �

Remark 5. In the same setting of the two theorems above with the respective hypothesis,
we can observe that, since all the points Q 6= O contained in the line 〈{O,B}〉 ⊂ Pn+1 are
sent by `O into the same point P = `O(B) ⊂ Pn, then all the points Q ∈ 〈{O,B}〉 \{O} have
the same C-rank.

Remark 6. Take the set-up of part (1) of Theorem 1. Notice that the closure CA of `A(C \
{A}) in Pn is a rational normal curve of Pn. Hence both the CA-border rank and the CA-rank
of the point `A(B) ∈ Pn are algorithmically computable via the so called Sylvester algorithm
(see e.g. [3], §3).
Notice that the closure C2A of `〈2A〉(C\{A}) in Pn−1 is a rational normal curve of Pn−1. Hence
both the border C2A-rank and the C2A-rank of the point `〈2A〉(B) ∈ Pn−1 are algorithmically
computable (again via the Sylvester algorithm, [3], §3) and to know their value it is not
necessary to know W .
Thus to check these ranks and these border ranks it is not necessary to know W .

If B ∈ 〈2A〉, then rX(`O(B)) = 1. Thus from now on we assume B /∈ 〈2A〉. Now we will
check that brCA

(`A(B)) = w if and only if A /∈ Wred (and if and only if brCA
(`A(B)) ≥ w)

and that brC2A
(`A(B)) = w − 1 if and only if A appears with multiplicity 1 in W .

Since deg(A) + deg(W ) = 1 +w ≤ n+ 2, we saw that A /∈Wred if and only if dim(〈{A} ∪
W 〉) = w. Thus if A /∈ Wred, then `A(W ) is a degree w zero-dimensional sub-scheme of the
rational normal curve CA such that `A(B) ∈ 〈`A(W )〉 and `A(B) /∈ 〈Z〉 for every Z $ `A(B).
Since w = deg(`A(W )) ≤ n + 1 = deg(CA) + 1 and CA is a rational normal curve, we have
brCA

(`A(B)) = w. Thus if A /∈Wred, then `A(B) has CA-border rank w.
Conversely, if A ∈ Wred, then `A(B) is contained in the linear span of the degree w − 1

scheme `A(W −A). Since w − 1 ≤ deg(CA) + 1, we get brCA
(`A(B)) ≤ w − 1.

Similarly, A appears with multiplicity 1 in W if and only if `2A(B) is contained in the linear
span of a degree w−1 sub-scheme of C2A (i.e. `2A(B) ∈ 〈`2A(W −A)〉), but `2A(B) /∈ 〈Z〉 for
any Z $ `2A(W −A). Thus A appears with multiplicity 1 in W if and only if brC2A

(`A(B)) =
w − 1.

Remark 7. Take the set-up of part (2) of Theorem 1. The closure CA of `A(C \ {A}) in
Pn−1 is a rational normal curve of Pn. Hence both the CA-border rank and the CA-rank of
the point `A(P ) ∈ Pn are algorithmically computable and to compute it, it is not necessary
to know E ([3], §3).
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Notice that A ∈ E if and only if rCA
(`A(B)) < ](E) and that in this case rCA

(`A(B)) =
](E)− 1.

3. Polynomial description

We give here a description of what we have proved in the previous section in terms of
binary forms of degree n+ 1.

Let C ⊂ Pn+1 be the rational normal curve parameterized by the map

P1 → Pn+1

[u, t] 7→ [un+1, unt, un−1t2, . . . , utn, tn+1].

Let O = [0, 1, 0, . . . , 0] ∈ Pn+1. Then the curve X ⊂ Pn obtained as a tangential projection
`O : Pn+1 99K Pn of C form O is parameterized by

P1 → Pn

[u, t] 7→ [un+1, un−1t2, un−2t3 . . . , utn, tn+1].

Now the Pn+1 = 〈C〉 can be interpreted as the projectivization of the vector space of binary
forms in degree n + 1 defined over an algebraically closed field K of characteristic 0, i.e.
Pn+1 = 〈C〉 ' P(K[u, t]n+1). If we think the elements of Pn+1 as projectivization of binary
forms of degree n+ 1, i.e.

(2) p =
n+1∑
i=0

aiu
itn+1−i ∈ Pn+1,

then the elements of the Pn obtained with the projection `O can be described as projectiviza-
tion of binary forms of degree n + 1 over K without the terms in unt, i.e. if {x0, . . . , xn+1}
is a system of coordinates of Pn+1, then Pn = 〈X〉 is the following:

(3) 〈X〉 = {[x0, . . . , xn] ∈ Pn+1 | x1 = 0} = P(〈un+1, un−1t2, un−2t3 . . . , utn, tn+1〉).
Hence if p is as in (2), then

(4) p̃ := `O(P ) =
∑

i=0,2,3,...n+1

aiu
itn+1−i ∈ Pn

Moreover, with this language, the elements of C ⊂ Pn+1 are all of the type [Ln+1] where L
is a binary linear form, and the elements of X ⊂ Pn are all projectivization of binary forms
of degree n+ 1 obtained from (n+ 1)-th powers of binary linear forms by dropping the term
in unt; i.e. if

Ln+1 = (au+ bt)n+1 =
n+1∑
i=0

(
n+ 1
i

)
(au)i(bt)n+1−i ∈ C,

then

(5) L̃n+1 = `O(Ln+1) =
∑

i=0,2,3,...n+1

(
n+ 1
i

)
(au)i(bt)n+1−i ∈ X

and all the elements of X are of this type.
Saying that a binary form p ∈ K[u, t]n+1 has C-rank equal to r means that r is the

minimum number of binary linear forms such that a linear combination of their (n + 1)-th
powers gives p:

(6) p = Ln+1
1 + · · ·+ Ln+1

r

and such an r is minimal.
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Saying that a binary form p̃ ∈ 〈X〉 (as in (3)) has X-rank equal to s means that s is the
minimum number of binary linear forms such that a linear combination of the projection via
`O of their (n+ 1)-th powers gives p̃:

(7) p̃ = L̃n+1
1 + · · ·+ L̃n+1

s

and such an s is minimal.
What is proved in Theorem 1 and in Theorem 2 is that if the minimal decomposition of

p ∈ K[u, t]n+1 via (n + 1)-th powers of linear forms is made by r addenda as in (6), then
there is an open subset of 〈X〉 = Pn (as in (3)) where p̃ can be minimally decomposed as in
(7) with precisely r addenda. Moreover we precisely describe which is the X-rank of p̃ out
of that open subset: what it turns out in Theorem 1 and in Theorem 2 is that it can drop
only by 1 or 2 with respect to the the C-rank of p.
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[4] J. Buczyński, A. Ginensky and J. M. Landsberg, Determinantal equations for secant varieties and the
Eisenbud-Koh-Stillman conjecture, arXiv:1007.0192 [math.AG].

[5] G. Comas, M. Seiguer,On the rank of a binary form. 2001, Preprint

http://arxiv.org/abs/math/0112311.
[6] P. Comon, Structured Matrices and Inverses, In A. Bojanczyk and G. Cybenko, editors, Linear Algebra

for Signal Processing, volume 69 of IMA Volumes in Mathematics and its Applications, pp. 1–16. Springer

Verlag, 1995.
[7] L. De Lathauwer, B. De Moor, J. Vandewalle, Higher-order only blind identification via canonical decom-

position of the cumulant tensor, Internal Report 94-91, ESAT-SISTA, K.U.Leuven (Leuven, Belgium),

1994., Lirias number: 179995.
[8] J. Fogarty, Algebraic families on an algebraic surface. Amer. J. Math 90 (1968) 511–521.

[9] P. Huggins, L. Pachter, B. Sturmfels, Toward the Human Genotope, Bulletin of Mathematical Biology

(2007).
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