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Abstract

Size Theory has proven to be a useful geometrical/topological approach to shape analysis and comparison. Originally

introduced by considering 1-dimensional properties of shapes, described by means of real-valued functions, it has

been subsequently generalized to take into account multidimensional properties coded by functions valued inR
k.

In the context of Size Theory, this generalization has led tointroduce a shape descriptor calledk-dimensional size

function, and a distance to compare size functions, namely thek-dimensional matching distance.

This paper proposes a novel computational framework to dealwith the 2-dimensional case of Size Theory. More

precisely, some new theoretical results about approximating the 2-dimensional matching distance are presented, lead-

ing to the formulation of an algorithm for its computation (up to an arbitrary error threshold).

Keywords: multidimensional size function, Size Theory, shape comparison

1. Introduction

Shape Comparison and Retrieval are challenging issues in Computer Vision, Computer Graphics, Image Analysis

and Pattern Recognition. Shape models, including 2D imagesand 3D objects, possess a considerable amount of visual

and semantic information that, to be fully exploited, needsthe definition of powerful description, classification and

retrieval techniques [22, 23]. Recently, Persistent Topology – including Size Theory and Persistent Homology – has

considerably grown in popularity and has been proven to provide both theoretical and computational tools for shape

comparison.

The main idea behind this research field is to take into account topology shape features with respect to some

geometric properties conveyed by real functions defined on the shape itself [3, 9, 16]. In formal settings, that means

that a shape is represented by a pair(X, ϕ), whereX is a topological space andϕ : X→ R is a continuous real-valued

function calledmeasuring (or filtering) function. Size Theory was introduced in the early 90’s to allow one to store

quantitatively some qualitative information about(X, ϕ). In particular, itssize functionℓ(X,ϕ) is a shape descriptor

Email addresses:silvia@ge.imati.cnr.it (Silvia Biasotti),cerri@dm.unibo.it (Andrea Cerri),frosini@dm.unibo.it (Patrizio
Frosini),daniela@ge.imati.cnr.it (Daniela Giorgi)

Preprint submitted to Pattern Recognition Letters August 5, 2010



encoding the evolution of the 0-th Betti number in the sublevel sets ofX induced byϕ. Size functions are complete

and stable descriptors, admitting a simple and compact representation made up of a multiset of points in the Euclidean

plane, and are compared using a suitable matching distance [3].

In their original formulation, size functions have been widely studied and applied to Pattern Recognition prob-

lems [4, 7, 13, 24, 25]. Over the years, similar ideas have been re-proposed by Persistent Homology according to a

homological approach and have found applications in shape description and data simplification [14, 15].

Considering the general scenario of shape analysis, a single real-valued measuring function is not enough to cope

with the shape description problem. In fact, data are often characterized by two or more properties; this happens for

example with physical simulations, where several measurements are made about an observed phenomenon, or when

data have multidimensional features, such as colors in the RGB model. These considerations have recently drawn the

attention to the study of a multidimensional setting [1, 2, 6, 14, 19]. The term multidimensional, or equivalentlyk-

dimensional, is related to considering measuring functions taking value inRk, that is,~ϕ : X→ R
k, and the subsequent

extension of shape descriptors to this case.

Despite the need of managing multi-dimensional data, not somuch has been done from the point of view of

applications. This is due to the fact that acomplete, discrete and stablerepresentation for the Persistent Topology

shape descriptors seems not to be available in the multidimensional setting, differently from what happens in the 1-

dimensional situation. The arising computational difficulties have been faced following different strategies [1, 5, 10],

but not completely solved.

As a partial solution, in [1] the authors studied the conceptof k-dimensional size functionsand proved that the

restrictions of ak-dimensional size function to suitable subsets of its domain turn out to be 1-dimensional. This

allowed the definition of a stable matching distance betweenk-dimensional size functions, namely thek-dimensional

matching distance, building on existing results for the 1-dimensional case. Unfortunately, [1] does not explain how to

approximate the matching distance in a way to obtain a good compromise between computational cost and quality of

results. Indeed, the straightforward application of the method could require a very huge number of calculations (see

also [2]).

This paper yields a theoretical and computational solutionof the problem whenk = 2. The theoretical results

proven in Lemma 3.1, Lemma 3.3 and Theorem 3.4 allow us to bound the computational error in evaluating the

matching distance between 2-dimensional size functions. On these bases we develop an algorithm to approximate

the 2-dimensional matching distance up to an arbitrary error threshold, which represents the maximum admissible

error. Experimental results on 3D objects represented by surface meshes demonstrate the efficiency of the algorithm

to reduce the number of calculations required to approximate the matching distance.

The remainder of the paper is organized as follows. In Section 2 we overview main definitions and properties

about size functions; the study of the 1-dimensional case (Section 2.1) is necessary as it provides the basis for the

definition of a complete representation for size functions in the 2-dimensional case (Section 2.2). Our new results

are given in Section 3, along with the novel algorithm we propose (Section 3.2). Then, experiments on 3D models
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Figure 1:(a) The topological spaceX and the measuring functionϕ. (b) The associated size functionℓ(X,ϕ). To compute the value ofℓ(X,ϕ) at the

point (c,d), it is sufficient to count how many of the three connected components in thesublevelX〈ϕ ≤ d〉 contain at least one point ofX〈ϕ ≤ c〉: it

can be easily checked thatℓ(X,ϕ) (c,d) = 2.

(Section 4) are shown to validate our proposal. Some discussions in Section 5 conclude the paper.

2. Preliminary results

In this section we review some basic concepts that have been introduced in Size Theory. For further details the

reader is referred to [3].

2.1. 1-dimensional size functions

Size functions are shape descriptors that code the topological evolution of the sublevel sets of a spaceX, according

to the increasing values of a real functionϕ : X → R defined on it;ϕ is called 1-dimensional measuring function.

Indeed, size functions count the number of connected components which remain disconnected passing from a lower

level set ofX, Xu = {P ∈ X : ϕ (P) ≤ u}, to another. Since the sequence of lower level sets is drivenby the real

functionϕ, size functions encode the geometrical properties ofX captured byϕ in the topological evolution ofXu.

More formally,

Definition 2.1. Given asize pair(X, ϕ) with X a non-empty, compact and locally connected Hausdorff space andϕ a

continuous function, and denoting∆+ = {(u, v) ∈ R × R : u < v}, thesize functionof (X, ϕ) is ℓ(X,ϕ) : ∆+ → N with

ℓ(X,ϕ) (u, v) equal to the number of connected components of the lower level setXv = {P ∈ X : ϕ (P) ≤ v}, containing

at least one point of the lower level setXu.

Figure 1 shows an example of a size pair(X, ϕ) together with the size functionℓ(X,ϕ). Figure 1(a) shows the size

pair (X, ϕ), whereX is the curve drawn by a solid line, andϕ is the ordinate function. Figure 1(b) shows the associated

1-dimensional size functionℓ(X,ϕ). The domain∆+ = {(u, v) ∈ R2 : u < v} is divided into regions. Each one is labeled

by a number, coinciding with the constant value thatℓ(X,ϕ) takes in the interior of that region.

Roughly speaking, each 1-dimensional size function can be seen as a linear combination (with natural numbers

as coefficients) of characteristic functions associated to the (possibly unbounded) triangles laying on the domain∆+
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[17]. The bounded triangles are of the form{(u, v) ∈ ∆+ : α ≤ u < v < β}, while the unbounded ones are of the

form {(u, v) ∈ ∆+ : η ≤ u < v}. Hence, a simple and compact representation is obtained by associating the set

{(u, v) ∈ ∆+ : α ≤ u < v < β} to the point(α, β), and the set{(u, v) ∈ ∆+ : η ≤ u < v} to the point at infinity(η,∞). The

points of a formal series having finite coordinates are called proper cornerpoints, while the ones with a coordinate at

infinity are said to becornerpoints at infinityor cornerlines. For example, the size functionℓ(X,ϕ) shown in Figure 1(b)

admits the representation by formal series given byr + p1 + p2 + p3 + p4, wherer is the only cornerpoint at infinity,

with coordinates(0,∞) [17].

The combinatorial representation of size functions using cornerpoints implies that size functions can be compared

via a suitable distance between formal series, namely thematching distance, see details in [12]. Roughly speaking,

the matching distancedmatch can be seen as a measure of the cost of transporting the cornerpoints of a 1-dimensional

size function into the cornerpoints of another one.
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Figure 2: (a) The size function corresponding to the formal seriesr + p+ q. (b) The size function corresponding to the formal seriesr′ + p′. (c)

The matching between the two formal series, realizing the matching distance between the two size functions.

Formally, let us consider the 1-dimensional size functionsℓ1, ℓ2 and their multisetC1 (respectivelyC2) of cor-

nerpoints forℓ1 (resp. ℓ2), counted with their multiplicities and augmented by adding the points of the diagonal

{(u, v) ∈ R2 : u = v} counted with infinite multiplicity. If we denote by∆∗ the set∆+ extended by the points at infinity

of the kind(a,∞), i.e.∆∗ = ∆+ ∪ {(a,∞) : a ∈ R}, the matching distancedmatch(ℓ1, ℓ2) is then defined as

dmatch(ℓ1, ℓ2) = min
σ

max
P∈C1

δ (P, σ (P)) ,

whereσ varies among all the bijections betweenC1 andC2 and

δ
(
(u, v) ,

(
u′, v′

))
= min

{
max

{
|u− u′|, |v− v′|

}
,max

{
v− u

2
,
v′ − u′

2

}}
,

for every(u, v), (u′, v′) ∈ ∆∗, with the convention about∞ that∞− v = v−∞ = ∞ whenv , ∞,∞−∞ = 0, ∞2 = ∞,

|∞| = ∞, min{c,∞} = c and max{c,∞} = ∞.

The pseudometric1 δ measures the pseudo-distance between two points(u, v) and(u′, v′) as the minimum between

1A pseudo-distanced is just a distance missing the conditiond (X,Y) = 0⇒ X = Y, i.e. two distinct elements may have vanishing distance

with respect tod.
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the cost of moving one point onto the other and the cost of moving both points onto the diagonal, with respect to

the max-norm and under the assumption that any two points of the diagonal have vanishing pseudo-distance. As

different 1-dimensional size functions may in general have a different number of cornerpoints,dmatch allows a proper

cornerpoint to be matched to a point of the diagonal: This matching can be interpreted as the deletion of a proper

cornerpoint, see Figure 2(c).

The matching distance is stable with respect to perturbations of the measuring functions. Indeed, the following

Matching Stability Theorem has been proven [11, 12] (see also [9]):

Theorem 2.2(Matching Stability Theorem). If (X, ϕ), (Y, ψ) are two1-dimensional size pairs with X, Y homeomor-

phic, then dmatch

(
ℓ(X,ϕ), ℓ(Y,ψ)

)
≤ infh:X→Y maxx∈X |ϕ (x)−ψ (h(x)) |, where h varies among all possible homeomorphisms

from X to Y.

Remark2.3. The hypothesis thatX andY are homeomorphic is not so restrictive. Indeed, in [18] it has been proven

that, in most of applicative contexts of pattern recognition, the use of the multidimensional setting allows us to

substituteX andY with a unique compact setK ⊂ R
m.

2.2. 2-dimensional size functions

Let X be a non-empty, compact and locally connected Hausdorff space, as in the 1-dimensional case, and~ϕ =

(ϕ1, ϕ2) : X → R
2 be a continuous function, called 2-dimensional measuring function. The following relations�

and≺ are considered inR2: for ~u = (u1,u2) and~v = (v1, v2), ~u � ~v (resp. ~u ≺ ~v) if and only if ui ≤ vi (resp.

ui < vi) for i = 1,2. Moreover, we set
∥∥∥~u

∥∥∥
∞
= maxi=1,2 |ui |. For every~u,~v ∈ R

2, the lower level set is defined as

X〈~ϕ � ~u 〉 = {x ∈ X : ϕi (x) ≤ ui , i = 1,2}, whereas we denote∆+ = {
(
~u,~v

)
∈ R2 × R2 : ~u ≺ ~v}.

Extending the definition of size functions to the 2-dimensional case is straightforward:

Definition 2.4. The (2-dimensional) size functionof the size pair
(
X, ~ϕ

)
is the functionℓ(X,~ϕ) : ∆+ → N, defined by

settingℓ(X,~ϕ)
(
~u,~v

)
equal to the number of connected components in the setX〈~ϕ � ~v 〉 containing at least one point of

X〈~ϕ � ~u 〉.

To combinatorially represent 2-dimensional size functions in terms of cornerpoints as in the 1-dimensional case is

not straightforward, and consequently to define a stable andcomputable distance between 2-dimensional size functions

is not trivial.

The rest of this Section shows how the framework of 2-dimensional size functions can be reduced to the case

k = 1, by a change of variable and the use of a suitable foliation,using a strategy similar to the one in [1]. The main

idea is to provide a parameterized family of half-planes inR
2 × R2, and prove that the restriction of a 2-dimensional

size functionℓ(X,~ϕ) to each of these half-planes turns out to be a particular 1-dimensional size function. This implies

that we can build on the results proved in the 1-dimensional case to develop the theory in the 2-dimensional case.
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First of all, let us define the collection of half-planes foliating∆+. The foliation we introduce here slightly differs

from the one given in [1, Def. 7] and corresponds to a re-parameterization of the half-planes that does not affect the

stability results (see [8] for details).

Definition 2.5. A pair
(
~λ, ~β

)
, with ~λ = (λ1, λ2) ∈ R

2 and~β = (β1, β2) ∈ R2, is linearly admissibleif: (a) λ1, λ2 > 0;

(b) λ1 + λ2 = 1; (c) β1 + β2 = 0. Denoting byLadm2 the set of all linearly admissible pairs inR2 × R
2, for every

(
~λ, ~β

)
∈ Ladm2, let us define the half-planeπ(

~λ,~β
) of R2 ×R2 by the parametric equations~u = σ~λ + ~β, ~v = τ~λ + ~β, with

σ, τ ∈ R andσ < τ.

The next proposition shows the main properties of the collection
{
π(
~λ,~β

)
}
(
~λ,~β

)
∈Ladm2

.

Proposition 2.6. For every
(
~u,~v

)
∈ ∆+ there exists one and only one linearly admissible pair

(
~λ, ~β

)
such that

(
~u,~v

)
∈

π(
~λ,~β

). Moreover, for every
(
~λ, ~β

)
∈ Ladm2, the half-planeπ(

~λ,~β
) is contained in∆+.

Proof. If
(
~u,~v

)
∈ ∆+ and

(
~λ, ~β

)
∈ Ladm2, it can be easily verified that~u = σ~λ+~β,~v = τ~λ+~β if and only if, for i = 1,2,

λi =
vi − ui

∑2
j=1

(
v j − u j

) , βi =
ui

∑2
j=1 v j − vi

∑2
j=1 u j

∑2
j=1

(
v j − u j

) , σ = u1 + u2 , τ = v1 + v2.

On the other hand, it is trivial to check that each half-planeπ(
~λ,~β

) : ~u = σ~λ+ ~β, ~v = τ~λ+ ~β, with σ, τ ∈ R andσ < τ, is

contained in∆+ provided that
(
~λ, ~β

)
∈ Ladm2.

On the basis of Proposition 2.6 it is possible to reduce the 2-dimensional setting to the casek = 1.

Theorem 2.7(Reduction Theorem). Let
(
~λ, ~β

)
∈ Ladm2, and let F~ϕ(

~λ,~β
) : X→ R be the function defined by setting

F~ϕ(
~λ,~β

) (x) = max

{
ϕ1 (x) − β1

λ1
,
ϕ2 (x) − β2

λ2

}
.

Then, for every
(
~u,~v

)
=

(
σ~λ + ~β, τ~λ + ~β

)
∈ π(

~λ,~β
) it holds thatℓ(X,~ϕ)

(
~u,~v

)
= ℓ(

X,F~ϕ

(~λ,~β)

) (σ, τ).

The proof of Theorem 2.7 can be straightforwardly derived from the proof of [1, Thm. 3].

Roughly speaking, the Reduction Theorem 2.7 states that, oneach half-plane of the collection
{
π(
~λ,~β

)
}
(
~λ,~β

)
∈Ladm2

,

the restriction of a given 2-dimensional size function coincides with a particular size function in two scalar variables,

i.e. a 1-dimensional one. A first important consequence is the possibility of representing a 2-dimensional size function

ℓ(X,~ϕ) by a collection of formal series of points and lines, following the machinery described in Subsection 2.1 for the

casek = 1. Therefore, the matching distance between 1-dimensionalsize functions can be applied to every half-

plane of the foliation
{
π(
~λ,~β

)
}
(
~λ,~β

)
∈Ladm2

, showing that it is stable with respect to perturbations of the multidimensional

measuring functions and to the choice of the leaves of the foliation (cf. [1, Propositions 2 and 3]). These stability

properties lead to the following definition of a distance between 2-dimensional size functions2 (see also [1, Def. 8]).

2[8] has proven that the distance in Definition 2.8 coincides with the restriction to the 2-dimensional case of the one givenin [1, Def. 8], which

is stable.
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Definition 2.8. Let
(
X, ~ϕ

)
and

(
Y, ~ψ

)
be two size pairs, with~ϕ, ~ψ valued inR2. The 2-dimensional matching distance

Dmatch

(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

is the (extended3) distance defined by setting

Dmatch

(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
= sup(

~λ,~β
)
∈Ladm2

d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
,

where

d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
= min

i=1,2
λi · dmatch

ℓ
(
X,F~ϕ

(~λ,~β)

), ℓ(
Y,F

~ψ

(~λ,~β)

)

 .

Taking a non-empty and finite subsetA ⊆ Ladm2 and replacing sup(~λ,~β
)
∈Ladm2

by max(~λ,~β
)
∈A in Definition 2.8, we

obtain a stable and computable pseudo-distance between 2-dimensional size functions.

3. Efficient computation of the 2-dimensional matching distance

This Section describes a method able to automatically approximate the 2-dimensional matching distanceDmatch

between two 2-dimensional size functionsℓ(X,~ϕ) andℓ(Y,~ψ
) up to an error thresholdε. Using the notation introduced in

Section 2.2, this means to opportunely define the subsetA ⊆ Ladm2 so as to reach a compromise between computa-

tional cost and quality of approximation.

3.1. New approximation results

Given the threshold valueε, our algorithm automatically provides as output the distanceD̃match

(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

such

that
∣∣∣∣∣Dmatch

(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
− D̃match

(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)∣∣∣∣∣ ≤ ε.

Let us consider the 2-dimensional size pairs
(
X, ~ϕ

)
and

(
Y, ~ψ

)
, and assume thatX andY are homeomorphic, so that

Dmatch

(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
< ∞ (this is a not so restrictive requirement as discussed in Remark 2.3). The first step toward

the formulation of our algorithm is to estimate the changingof d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
, the pair

(
~λ, ~β

)
varying in Ladm2,

i.e. when moving from one leaf to another in the half-plane foliation of∆+.

We start by observing thatLadm2 =
{(
~λ, ~β

)
= (λ1, λ2, β1, β2) ∈ R2 × R2 : λ1 + λ2 = 1, β1 + β2 = 0, 0 < λ1 < 1

}
=

{(a,1− a,b,−b) ∈ R2 × R2 : 0 < a < 1}. In what follows, for every~λ = (a,1− a) with a ∈ (0,1), we shall denote the

value min{a,1− a} by µ
(
~λ
)
.

The next Lemma 3.1 claims that the evaluation ofd(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

can be avoided in a large part ofLadm2. Fix

C = max
{
maxx∈X

∥∥∥~ϕ (x)
∥∥∥
∞
,maxy∈Y

∥∥∥~ψ (y)
∥∥∥
∞

}
, and consider the set

Ladm∗2 = {(a,1− a,b,−b) ∈ Ladm2 : |b| < C}.

3The term “extended” refers to the fact that, if the spacesX andY are not assumed to be homeomorphic, the multidimensional matching

distanceDmatchstill verifies all the properties of a distance, except for the fact that it may take the value∞
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Lemma 3.1. Let
(
~λ, ~β

)
∈ Ladm2 \ Ladm∗2, with

(
~λ, ~β

)
= (a,1− a,b,−b). Then it follows that

d(
~λ,~b

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
=



µ
(
~λ
)

a · dmatch

(
ℓ(X,ϕ1), ℓ(Y,ψ1)

)
, if b ≤ −C;

µ
(
~λ
)

1−a · dmatch

(
ℓ(X,ϕ2), ℓ(Y,ψ2)

)
, if b ≥ C.

Proof. It is sufficient to observe thatb ≤ −C implies F~ϕ(
~λ,~β

) (x) = ϕ1(x)−b
a for everyx ∈ X, andF

~ψ(
~λ,~β

) (y) = ψ1(y)−b
a for

everyy ∈ Y, while b ≥ C impliesF~ϕ(
~λ,~β

) (x) = ϕ2(x)+b
1−a for everyx ∈ X andF

~ψ(
~λ,~β

) (y) = ψ2(y)+b
1−a for everyy ∈ Y. From the

definition of the 1-dimensional matching distancedmatch (see also [8, Proposition 2.2]) the claim easily follows.

Remark3.2. From Lemma 3.1 the maximum ofd(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

over
{(
~λ,~b

)
= (a,1− a,b,−b) ∈ Ladm2 : b ≤ −C

}

is assumed whena ≤ 1
2, and it equalsdmatch

(
ℓ(X,ϕ1), ℓ(Y,ψ1)

)
. Analogously, the maximum value ford(

~λ,~β
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

over{
(
~λ, ~β

)
∈ Ladm2 : b ≥ C} is assumed whena ≥ 1

2, and it equalsdmatch

(
ℓ(X,ϕ2), ℓ(Y,ψ2)

)
.

According to Lemma 3.1 and Remark 3.2, in order to know the valuesd(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

when
(
~λ, ~β

)
∈ Ladm2 \

Ladm∗2, it is sufficient to consider just two suitable points of that region, e.g., the points whose coordinates are
(

1
2 ,

1
2 ,C + 1,−(C + 1)

)
and

(
1
2 ,

1
2 ,−(C + 1),C + 1

)
.

It only remains to study the changing ofd(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

when
(
~λ, ~β

)
∈ Ladm∗2. To this aim, we need the next

result.

Lemma 3.3. Assume
(
~λ, ~β

)
∈ Ladm∗2 and

(
~λ′, ~β′

)
∈ Ladm2, with

∥∥∥∥
(
~λ, ~β

)
−

(
~λ′, ~β′

)∥∥∥∥
∞
≤ δ. Then it follows that

∣∣∣∣∣d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
− d(

~λ′,~β′
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)∣∣∣∣∣ ≤ δ · (16C + 2) .

Since the proof of Lemma 3.3 is rather technical, we prefer toconfine it in Appendix A.

The previous Lemmas 3.1 and 3.3 can be merged together to obtain the following more general result.

Theorem 3.4(Error Bound Theorem). If
(
~λ, ~β

)
,
(
~λ′, ~β′

)
∈ Ladm2, and

∥∥∥∥
(
~λ, ~β

)
−

(
~λ′, ~β′

)∥∥∥∥
∞
≤ δ, then it follows that

∣∣∣∣∣d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
− d(

~λ′,~β′
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)∣∣∣∣∣ ≤ δ · (16C + 2) .

Proof. Set
(
~λ, ~β

)
= (a,1− a,b,−b),

(
~λ′, ~β′

)
= (a′,1− a′,b′,−b′). By Lemma 3.3, we only need to prove our statement

when
(
~λ, ~β

)
,
(
~λ′, ~β′

)
∈ Ladm2 \ Ladm∗2.

Let us first assume thatb,b′ ≤ −C. By Lemma 3.1, we have that

∣∣∣∣∣d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
− d(

~λ′,~β′
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)∣∣∣∣∣ = dmatch

(
ℓ(X,ϕ1), ℓ(Y,ψ1)

)
∣∣∣∣∣∣∣∣

µ
(
~λ
)

a
−
µ
(
~λ′

)

a′

∣∣∣∣∣∣∣∣
≤ 2C

∣∣∣∣∣∣∣∣

µ
(
~λ
)

a
−
µ
(
~λ′

)

a′

∣∣∣∣∣∣∣∣
, (1)

where the last inequality follows from Theorem 2.2.

If µ
(
~λ
)
= a andµ

(
~λ′

)
= a′, then it holds that

µ
(
~λ
)

a =
µ
(
~λ′

)

a′ = 1. Therefore, in (1) we have
∣∣∣∣∣
µ
(
~λ
)

a −
µ
(
~λ′

)

a′

∣∣∣∣∣ = 0, thus

implying that
∣∣∣∣∣d(

~λ,~β
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
− d(

~λ′,~β′
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)∣∣∣∣∣ = 0.
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If µ
(
~λ
)
= a andµ

(
~λ′

)
= 1− a′, thena ≤ 1

2, a′ ≥ 1
2 and we can write (observe that|µ

(
~λ
)
− µ

(
~λ′

)
| ≤ |a− a′|)

∣∣∣∣∣∣∣∣

µ
(
~λ
)

a
−
µ
(
~λ′

)

a′

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

a′µ
(
~λ
)
− aµ

(
~λ′

)

aa′

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

a′µ
(
~λ
)
− aµ

(
~λ
)
+ aµ

(
~λ
)
− aµ

(
~λ′

)

aa′

∣∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣∣

µ
(
~λ
)
(a′ − a) + a

(
µ
(
~λ
)
− µ

(
~λ′

))

aa′

∣∣∣∣∣∣∣∣
≤

a|a′ − a|
aa′

+
a|a− a′|

aa′
= 2
|a− a′|

a′
≤ 4δ, (2)

thus implying that
∣∣∣∣∣d(

~λ,~β
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
− d(

~λ′,~β′
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)∣∣∣∣∣ ≤ 8δC, satisfying the claim since 8δC ≤ δ (16C + 2).

Similarly, we can show that, ifµ
(
~λ
)
= 1−a andµ

(
~λ′

)
= a′, then

∣∣∣∣∣d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
− d(

~λ′,~β′
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)∣∣∣∣∣ ≤ 8δC.

If µ
(
~λ
)
= 1 − a andµ

(
~λ′

)
= 1 − a′, then it holds thata,a′ ≥ 1

2. Moreover,
µ
(
~λ
)

a = 1−a
a ,

µ
(
~λ′

)

a′ =
1−a′

a′ and hence∣∣∣∣∣
µ
(
~λ
)

a −
µ
(
~λ′

)

a′

∣∣∣∣∣ =
|a′−a|
aa′ ≤ 4δ, leading to the inequality

∣∣∣∣∣d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
− d(

~λ′,~β′
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)∣∣∣∣∣ ≤ 8δC, which satisfies

the claim since 8δC ≤ δ (16C + 2). Thus, whenb,b′ ≤ −C our statement remains proved.

Similar arguments can be used to prove our statement ifb,b′ ≥ C.

To conclude the proof we need to consider the case|b|, |b′| ≥ C with bb′ < 0. Since
∥∥∥∥
(
~λ, ~β

)
−

(
~λ′, ~β′

)∥∥∥∥
∞
≤ δ, it

follows thatC ≤ δ
2. Moreover, the Matching Stability Theorem 2.2 implies thatdmatch

(
ℓ(X,ϕi ), ℓ(Y,ψi )

)
≤ 2C for i = 1,2.

In the light of these considerations, we can then write
∣∣∣∣∣d(

~λ,~β
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
− d(

~λ′,~β′
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)∣∣∣∣∣ ≤ max

{
d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
,d(

~λ′,~β′
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)}
≤ (3)

≤ max
{
dmatch

(
ℓ(X,ϕ1), ℓ(Y,ψ1)

)
,dmatch

(
ℓ(X,ϕ2), ℓ(Y,ψ2)

)}
≤ 2C ≤ δ, (4)

where the first inequality in (4) is a consequence of Lemma 3.1. Clearly, (3)-(4) imply the claim, thus concluding the

proof.

Remark3.5. It is possible to prove thatd(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
≤ 2C for every

(
~λ, ~β

)
∈ Ladm2 (this is a trivial consequence

of [1, Thm.4]); thus
∣∣∣∣∣d(

~λ,~β
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
− d(

~λ′,~β′
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)∣∣∣∣∣ ≤ 2C. Now, let us observe that ifδ ≥ 1

8 then 2C ≤

δ · (16C + 2). Consequently, the inequality claimed by the Error Bound Theorem 3.4 is trivial whenδ ≥ 1
8.

The results proved in Lemma 3.1, Lemma 3.3 and Theorem 3.4 canbe exploited to develop an algorithm able to

effectively approximate the 2-dimensional matching distanceDmatch

(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
.

By Definition 2.8 it follows that, in general, a direct computation ofDmatch

(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

is not possible, since we

should calculate the valued(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

for an infinite number of pairs
(
~λ, ~β

)
. On the other hand, as stressed at the

end of Section 2, if we choose a non-empty and finite subsetA ⊆ Ladm2, and substitute sup(~λ,~β
)
∈Ladm2

with max(~l,~b
)
∈A

in Definition 2.8, we get a computable pseudo-distance, sayD̃match

(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
, to be used in concrete applications.

If we think of D̃match

(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

as an approximation ofDmatch

(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
, it is reasonable to guess that the

larger the setA ⊆ Ladm2, the smaller the difference between the two values can be. On the other hand, the smaller

the setA, the faster the computation of̃Dmatch is. Following these considerations, we implement an algorithm in

order to find a setA representing a compromise between these two situations. Additionally, given an arbitrary

9



real valueε > 0 as error threshold, we wantA depending onε in a way that the output̃Dmatch

(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
=

max(~λ,~β
)
∈A d(

~λ,~β
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

satisfies the inequality
∣∣∣∣∣Dmatch

(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
− D̃match

(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)∣∣∣∣∣ ≤ ε.

The next section describes the algorithm in detail.

3.2. Algorithm

First of all, let us observe that the setLadm2 = {(a,1− a,b,−b) ∈ R
2 × R

2 : 0 < a < 1} can be identified with

the subset ofR2 given by{(a,b) ∈ R
2 : 0 < a < 1} = (0,1) × R. More precisely, a bijective correspondence exists

betweenLadm∗2 = {(a,1− a,b,−b) ∈ Ladm2 : |b| < C} and the set(0,1)× (−C,C), as well as betweenLadm2 \ Ladm∗2

and the set(0,1) × (R \ (−C,C)). Therefore, the finite setA we are looking for can be associated with a finite subset

of (0,1) × R. The setA can be computed as follows.

1. Start by fixing the error thresholdε, and settingδ = 1
16 (cf. Remark 3.5);

2. InitializeP = {Pn}, where the pointsPn define a finite and regular (square) grid in(0,1) × R. Choose the setP

in a way that, taking the square centered inPn with side equal to 2δ, i.e. Qδ (Pn) = {P ∈ R2 : ‖Pn − P‖∞ ≤ δ},

the collectionQ = {Qδ (Pn)} covers the set(0,1) × (−C,C) (see Figure 3 and the following pseudo-code for

details about the setsP andQ). Under these assumptions, and due to the bijective correspondence existing

between(0,1) × R andLadm2, by Remark 3.5 and Theorem 3.4 we can control the variation ofthe values of

d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

associated to the points in each setQδ (Pn), and hence inLadm∗2;

3. Take the two pointsP− =
(

1
2 ,− (C + 1)

)
,P+ =

(
1
2 ,C + 1

)
∈ (0,1)× (R \ (−C,C)). Lemma 3.1 allows us to com-

pute the maximum ofd(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

overLadm2\Ladm∗2 just by considering the valuesd(
~λ−,~β−

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

andd(
~λ+,~β+

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
, with

(
~λ−, ~β−

)
=

(
1
2 ,

1
2 ,− (C + 1) ,C + 1

)
and

(
~λ+, ~β+

)
=

(
1
2 ,

1
2 ,C + 1,− (C + 1)

)
. By

Remark 3.2, this is equivalent to computedmatch

(
ℓ(X,ϕ1), ℓ(Y,ψ1)

)
anddmatch

(
ℓ(X,ϕ2), ℓ(Y,ψ2)

)
;

4. For everyPn = (an,bn) ∈ P, consider the associated pair
(
~λn, ~βn

)
= (an,1− an,bn,−bn) ∈ Ladm2, and compute

the valued(
~λn,~βn

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
;

5. Compute the maximum between maxPn∈P

{
d(
~λn,~βn

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)}

, dmatch

(
ℓ(X,ϕ1), ℓ(Y,ψ1)

)
anddmatch

(
ℓ(X,ϕ2), ℓ(Y,ψ2)

)

to obtain a first approximation ofDmatch

(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
, sayD̄. Now,

(a) If the inequalityδ · (16C + 2) ≤ ε holds, by Definition 2.8 and by applying Theorem 3.4 it follows that∣∣∣∣∣Dmatch

(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
− D̄

∣∣∣∣∣ ≤ ε. Therefore the algorithm ends, giving as outputD̃match

(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
= D̄.

Clearly, the setA considered for the computation of̃Dmatch

(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

is given by the finite set of the

linearly admissible pairs associated withP ∪ {P−,P+};

(b) Otherwise, the algorithm deletes each pointPn ∈ P such thatD̄−d(
~λn,~βn

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
> δ · (16C + 2), and

the associated setQδ (Pn) ∈ Q. Indeed, Theorem 3.4 ensures thatD̄ will not be achieved (or exceeded)

by computing the valuesd(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

over these sets. Moreover, eachQδ (Pn) still in Q is split into

four sets, and each pointPn is substituted with the four pointsPn++, Pn+−, Pn−+, Pn−− as shown in Figure
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4 (see the pseudo-code in Listing 1 for details about this procedure). Finally,δ is replaced byδ2, and the

algorithm restarts from step 4.

10 a

b

−C

C

P−

P+

Figure 3: The starting covering for the set(0,1) × (−C,C) described in the algorithm at step 2.

Qδ (Pn)

Pn

Qδ/2 (Pn−+)

Pn−+

Qδ/2 (Pn++)

Pn++

Qδ/2 (Pn+−)

Pn+−

Qδ/2 (Pn−−)

Pn−−

Figure 4: An application of the procedure described at step 5(b). The setQδ (Pn) is split into the four setsQδ/2 (Pn−+), Qδ/2 (Pn++), Qδ/2 (Pn+−),

Qδ/2 (Pn−−), while the pointPn is substituted withPn−+, Pn++, Pn+−, Pn−−.

3.3. Computational complexity

As it can be seen in Listing 1, the operations involved in the computation of the 2-dimensional matching distance

between two modelsX andY are the computation of the 1-dimensional size functions ofX andY for each point in

the setP, and their corresponding 1-dimensional matching distances. The cost of computing a 1-dimensional size

11



function on a mesh withm vertices takesO
(
mlogm

)
. Computing the 1-dimensional matching distance between two

1-dimensional size functions takesO
(
p2.5

)
, beingp the total number of cornerpoints of the two descriptors [3].Hence,

the overall computational complexity depends on the complexities above, multiplied by the number of points inP.

The worst case cardinality of the setP, that is without any point cancellation, isO
(

C
2δ2

)
that corresponds to cover the

set(−C,C) × (0,1) with squares of side 2δ. Sinceε = δ (16C + 2) we obtainO
(

C
2δ2

)
= O

(
2C(8C+1)2

ε2

)
. Denoting byC

the constant 2C (8C + 1), the number of point inP is O
(

C
ε2

)
. Moreover, we can estimate that the number of iterations

of the algorithm is log2
8C+1

2ε . At any rate, in our experiments this number is considerablylower (up to 4% of the worst

case estimate) thanks to our cancellation strategy, see Section 4.

4. Experiments

We present some experiments on 3D surface mesh models taken from the SHREC 2007 database [20]. In these

experiments, the 2-dimensional measuring function is~ϕ = (ϕ1, ϕ2), with ϕ1 the integral geodesic distance [21] andϕ2

the distance from the principal vector defined in [1, Section6.2]. The values of~ϕ are normalized so that they range in

the interval [0,1]. This implies that the constantC is equal to 1.

We fix the error thresholdε equal to 5% of the constantC, that is,ε = 0.05. Settingδ = 1
16, six iterations are

required to the valuet = δ · (16C + 2) to become smaller thanε.

Figures 5, 6, 7, 8, 9 show some results, obtained by computingthe approximation of the 2-dimensional matching

distance on five pairs of 3D models. Each plot shows the valuesof d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

outside and insideLadm∗2. In the

color coding, red corresponds to higher values, whereas blue corresponds to lower values. OutsideLadm∗2, following

step 3 of our algorithm, it is sufficient to computedmatch

(
ℓ(X,ϕ1), ℓ(X,ψ1)

)
anddmatch

(
ℓ(X,ϕ2), ℓ(X,ψ2)

)
, corresponding to the

values ofd(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

at the two pointsP− andP+. respectively. InsideLadm∗2, we use the procedure described

at step 5 of the algorithm to reduce computational costs and obtain an evaluation of max(~λ,~β
)
∈Ladm∗2

d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

up to the chosen error thresholdε. The approximated value of the 2-dimensional matching distance is then the greatest

of the considered values.

If the computation were done using a single tiling strategy of Ladm∗2, without the point cancellation procedure

introduced above, a total amount of 240284 computations ford(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

would be required. We show in the

examples that the number of computations actually needed ismuch lower, up to 4% of the original number. The drop

in the number of computations is more evident when comparingobjects belonging to different categories (Figures 5,

6, 7) than when same-class objects are compared (Figures 8, 9).

5. Discussion and Future work

In this paper we presented a new framework to compute an approximation of the matching distance between 2-

dimensional size functions. More precisely, some new theoretical results have been introduced, in order to bound the

computational error in evaluating the 2-dimensional matching distance. These results lead to the definition of a new
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Figure 5: Comparison of an airplane model and an octopus one. The values ofd(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

at pointsP+ andP− are equal to 0.178103

and 0.244962, respectively. After 6 iterations we get 0.460318 as the maximum value taken byd(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

in Ladm∗2. The approximated

2-dimensional matching distance is given by the greatest of the previous three values and is obtained by considering 13080computations, about

the 5% of those needed without the cancellation strategy.

Figure 6: Comparison of a human model and an octopus one.d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

at pointsP+ andP− is equal to 0.118791 and 0.257325. InLadm∗2,

after 6 iterations we get 0.416100 as the maximum value taken byd(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
. This value is obtained by considering 13588 computations,

thus reducing of the 94% the number of operations.
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Figure 7: Comparison of a human model and a table one.d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

at pointsP+ andP− is equal to 0.187161 and 0.159492. InsideLadm∗2,

after 6 iterations we get 0.459919 as the maximum value taken byd(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
. This value is obtained by considering 9480 computations,

thus reducing of the 96% the evaluations done.

Figure 8: Comparison of two human models.d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

at pointsP+ and P− is equal to 0.176755 and 0.019991. InLadm∗2, after 6

iterations we get 0.200139 as the maximum value taken byd(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
. This value is obtained by considering 88456 computations; i.e. the

37% of the those needed without cancellation strategy.
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Figure 9: Comparison of two human models.d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)

at pointsP+ andP− is equal to 0.176755 and 0.060072. InsideLadm∗2, after 6

iterations we get 0.186972 as the maximum value taken byd(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
. This value is obtained by considering 109536 computations,i.e.

the 45% of those without cancellations.

algorithm to compute an approximation of the matching distance between 2-dimensional size functions in the discrete

case. Our algorithm takes as input an arbitrary error threshold, representing the maximum error we are disposed to

accept, giving as output an approximation of the 2-dimensional matching distance up to the chosen error threshold.

The algorithm can be used in Computer Vision and Computer Graphics to compare digital shapes, as shown by some

examples on 3D surface models represented by triangle meshes. It has to be noted that the definition ofk-dimensional

size functions and their matching distance holds for anyk [1]. Whereas in this paper we have found a computational

solution for the casek = 2, we are currently studying how to extend the algorithm to higher dimensions.
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Appendix A: Proof of Lemma 3.3

This appendix is devoted to the proof of Lemma 3.3. To this aim, we first need to introduce the following

Lemma A.1. For every u1,u2, v1, v2 ∈ R it holds that

|max(u1,u2) −max(v1, v2) | ≤ max(|u1 − v1|, |u2 − v2|) . (1)

Proof. Without loss of generality, we can assume that max(u1,u2) = u1. If max(v1, v2) = v1 the claim trivially

follows. It only remains to check the case max(v1, v2) = v2. We have that

max(u1,u2) −max(v1, v2) = u1 − v2 ≤ u1 − v1 ≤ |u1 − v1| ≤ max(|u1 − v1|, |u2 − v2|) .
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In the same way, we obtain max(v1, v2) − max(u1,u2) = v2 − u1 ≤ max(|u1 − v1|, |u2 − v2|), thus proving that

|max(u1,u2) −max(v1, v2) | ≤ max(|u1 − v1|, |u2 − v2|).

We are now ready to prove Lemma 3.3.

Proof of Lemma 3.3.Let
(
~λ, ~β

)
= (a,1− a,b,−b) and

(
~λ′, ~β′

)
= (a′,1− a′,b′,−b′). From the definition ofdmatch (see

also [8, Proposition 2.2]), we can writed(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
= dmatch

ℓ
(
X,µ

(
~λ
)
·F~ϕ

(~λ,~β)

), ℓ(
Y,µ

(
~λ
)
·F

~ψ

(~λ,~β)

)

 for every considered

(
~λ, ~β

)
. Therefore it holds that

∣∣∣∣∣d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
− d(

~λ′,~β′
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)∣∣∣∣∣ = (2)

=

∣∣∣∣∣∣∣∣
dmatch

ℓ
(
X,µ

(
~λ
)
·F~ϕ

(~λ,~β)

), ℓ(
Y,µ

(
~λ
)
·F

~ψ

(~λ,~β)

)

 − dmatch

ℓ
(
X,µ

(
~λ′

)
·F~ϕ

(~λ′ ,~β′)

), ℓ(
Y,µ

(
~λ′

)
·F

~ψ

(~λ′ ,~β′)

)



∣∣∣∣∣∣∣∣
≤ (3)

≤ dmatch

ℓ
(
X,µ

(
~λ
)
·F~ϕ

(~λ,~β)

), ℓ(
X,µ

(
~λ′

)
·F~ϕ

(~λ′ ,~β′)

)

 + dmatch

ℓ
(
Y,µ

(
~λ
)
·F

~ψ

(~λ,~β)

), ℓ(
Y,µ

(
~λ′

)
·F

~ψ

(~λ′ ,~β′)

)

 , (4)

where the last inequality comes from a trivial extension of the triangular inequality to the case of four elements. In

this way we can apply the Matching Stability Theorem 2.2 to get a bound for each term in(4). Indeed, we obtain

dmatch

ℓ
(
X,µ

(
~λ
)
·F~ϕ

(~λ,~β)

), ℓ(
X,µ

(
~λ′

)
·F~ϕ

(~λ′ ,~β′)

)

 ≤ max
x∈X

∣∣∣∣∣µ
(
~λ
)
· F~ϕ(

~λ,~β
) (x) − µ

(
~λ′

)
· F~ϕ(

~λ′,~β′
) (x)

∣∣∣∣∣ , (5)

dmatch

ℓ
(
Y,µ

(
~λ
)
·F

~ψ

(~λ,~β)

), ℓ(
Y,µ

(
~λ′

)
·F

~ψ

(~λ′ ,~β′)

)

 ≤ max
y∈Y

∣∣∣∣∣µ
(
~λ
)
· F

~ψ(
~λ,~β

) (y) − µ
(
~λ′

)
· F

~ψ(
~λ′,~β′

) (y)
∣∣∣∣∣ . (6)

By Lemma A.1, and from the definition ofF~ϕ(
~λ,~β

) andF
~ψ(
~λ,~β

) (cf. the Reduction Theorem 2.7), in(5) and(6) we can

write respectively

max
x∈X

∣∣∣∣∣µ
(
~λ
)
· F~ϕ(

~λ,~β
) (x) − µ

(
~λ′

)
· F~ϕ(

~λ′,~β′
) (x)

∣∣∣∣∣ ≤

≤ max
x∈X

max

{∣∣∣∣∣µ
(
~λ
)
·
ϕ1 (x) − b

a
− µ

(
~λ′

)
·
ϕ1 (x) − b′

a′

∣∣∣∣∣ ,
∣∣∣∣∣µ

(
~λ
)
·
ϕ2 (x) + b

1− a
− µ

(
~λ′

)
·
ϕ2 (x) + b′

1− a′

∣∣∣∣∣
}
, (7)

max
y∈Y

∣∣∣∣∣µ
(
~λ
)
· F

~ψ(
~λ,~β

) (y) − µ
(
~λ′

)
· F

~ψ(
~λ′,~β′

) (y)
∣∣∣∣∣ ≤

≤ max
y∈Y

max

{∣∣∣∣∣µ
(
~λ
)
·
ψ1 (y) − b

a
− µ

(
~λ′

)
·
ψ1 (y) − b′

a′

∣∣∣∣∣ ,
∣∣∣∣∣µ

(
~λ
)
·
ψ2 (y) + b

1− a
− µ

(
~λ′

)
·
ψ2 (y) + b′

1− a′

∣∣∣∣∣
}
. (8)

Let us now distinguish three cases:(i) µ
(
~λ
)
= a andµ

(
~λ′

)
= a′, (ii ) µ

(
~λ
)
= 1 − a andµ

(
~λ′

)
= 1 − a′ and(iii )

otherwise.
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(i). If µ
(
~λ
)
= a andµ

(
~λ′

)
= a′, then in(7) we have

max
x∈X

max

{∣∣∣∣∣µ
(
~λ
)
·
ϕ1 (x) − b

a
− µ

(
~λ′

)
·
ϕ1 (x) − b′

a′

∣∣∣∣∣ ,
∣∣∣∣∣µ

(
~λ
)
·
ϕ2 (x) + b

1− a
− µ

(
~λ′

)
·
ϕ2 (x) + b′

1− a′

∣∣∣∣∣
}
= (9)

= max
x∈X

max

{∣∣∣ϕ1 (x) − b− ϕ1 (x) + b′
∣∣∣ ,

∣∣∣∣∣a ·
ϕ2 (x) + b

1− a
− a′ ·

ϕ2 (x) + b′

1− a′

∣∣∣∣∣
}
= (10)

= max

{∣∣∣b− b′
∣∣∣ ,max

x∈X

∣∣∣∣∣a ·
ϕ2 (x) + b

1− a
− a′ ·

ϕ2 (x) + b
1− a′

+ a′ ·
ϕ2 (x) + b

1− a′
− a′ ·

ϕ2 (x) + b′

1− a′

∣∣∣∣∣
}
= (11)

= max

{∣∣∣b′ − b
∣∣∣ ,max

x∈X

∣∣∣∣∣∣(ϕ2 (x) + b) ·

(
a

1− a
−

a′

1− a′

)
+

a′

1− a′
·
(
b− b′

)
∣∣∣∣∣∣

}
≤ (12)

≤ max

{∣∣∣b′ − b
∣∣∣ ,max

x∈X
|ϕ2 (x) + b| ·

|a− a′|
(1− a) (1− a′)

+
a′

1− a′
· |b− b′|

}
≤ (13)

≤ max{δ,2C · δ · 4+ δ} = max{δ, δ · (8C + 1)} = δ · (8C + 1) , (14)

where the inequality in(14) holds since 1− a ≥ 1
2 and 1− a′ ≥ 1

2.

Analogously, in(8) we obtain

max
y∈Y

max

{∣∣∣∣∣µ
(
~λ
)
·
ψ1 (y) − b

a
− µ

(
~λ′

)
·
ψ1 (y) − b′

a′

∣∣∣∣∣ ,
∣∣∣∣∣µ

(
~λ
)
·
ψ2 (y) + b

1− a
− µ

(
~λ′

)
·
ψ2 (y) + b′

1− a′

∣∣∣∣∣
}
≤ δ · (8C + 1) , (15)

and hence, whenµ
(
~λ
)
= a andµ

(
~λ′

)
= a′, it follows that

∣∣∣∣∣d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
− d(

~λ′,~β′
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)∣∣∣∣∣ ≤ δ · (16C + 2) . (16)

(ii). Working similarly to the previous case, whenµ
(
~λ
)
= 1− a andµ

(
~λ′

)
= 1− a′ we are led to the inequality

∣∣∣∣∣d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
− d(

~λ′,~β′
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)∣∣∣∣∣ ≤ δ · (16C + 2) . (17)

(iii). We can confine ourselves to the case whenµ
(
~λ
)
= a andµ

(
~λ′

)
= 1− a′. Indeed, the case whenµ

(
~λ
)
= 1− a

andµ
(
~λ′

)
= a′ works similarly.

Let us consider the linear path inLadm2 whose end points are
(
~λ, ~β

)
and

(
~λ′, ~β′

)
, that is,γ : [0,1]→ Ladm2, with

γ (t) = (1− t) ·
(
~λ, ~β

)
+ t ·

(
~λ′, ~β′

)
. Sinceµ

(
~λ
)
= a andµ

(
~λ′

)
= 1−a′, there exists at least one (exactly one when~λ , ~λ′)

t∗ ∈ [0,1] such thatγ (t∗) = (1− t∗) ·
(
~λ, ~β

)
+ t∗ ·

(
~λ′, ~β′

)
=

(
~λ∗, ~β∗

)
, with ~λ∗ =

(
1
2 ,

1
2

)
. Moreover, from the assumption∥∥∥∥

(
~λ, ~β

)
−

(
~λ′, ~β′

)∥∥∥∥
∞
≤ δ we have

∥∥∥∥
(
~λ, ~β

)
−

(
~λ∗, ~β∗

)∥∥∥∥
∞
≤ t∗ · δ and

∥∥∥∥
(
~λ′, ~β′

)
−

(
~λ∗, ~β∗

)∥∥∥∥
∞
≤ (1− t∗) · δ. Thus we can write

∣∣∣∣∣d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
− d(

~λ′,~β′
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)∣∣∣∣∣ ≤ (18)

≤

∣∣∣∣∣d(
~λ,~β

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
− d(

~λ∗,~β∗
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)∣∣∣∣∣ +

∣∣∣∣∣d(
~λ∗,~β∗

)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)
− d(

~λ′,~β′
)
(
ℓ(X,~ϕ), ℓ

(
Y,~ψ

)
)∣∣∣∣∣ ≤ (19)

≤ t∗ · δ · (16C + 2) + (1− t∗) · δ · (16C + 2) = δ · (16C + 2) , (20)

where the inequality in(20) comes from(16) and(17).

By considering the bounds for the three cases(i), (ii ), (iii ), we obtain the claim.
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Listing 1: Approximation of the 2-dimensional matching distance

D̃ = ApproximateMatchingDistance (shape X, shape Y, fmis ~ϕ = (ϕ1, ϕ2), fmis ~ψ = (ψ1, ψ2), double ε)

{

% initialize

1. δ := 1
16;

2. C := max
{∥∥∥~ϕ

∥∥∥
∞
,
∥∥∥~ψ

∥∥∥
∞

}
;

3. thresh := δ · (16C + 2);

% computate D̄ in Ladm2 \ Ladm∗2

4. ℓ_X_ϕ1 = ComputeOneDimensionalSizefunction \left(X,ϕ1\right );

5. repeat the same for \left(X,ϕ2\right), \left(Y,ψ1\right), \left(Y,ψ2\right );

6. d+ = ComputeOneDimensionalMatchingDistance \left(ℓ_X_ϕ1,ℓ_Y_ψ1\right );

7. d− = ComputeOneDimensionalMatchingDistance \left(ℓ_X_ϕ2,ℓ_Y_ψ2\right );

8. D̄ext = max{d+,d−};

% start computing D̄ in Ladm∗2

9. P = CreateGrid\left(Ladm∗2,2δ\right );

10. for each Pn = (an,bn) in P {

% define F~ϕ
n as in Theorem 2.6

11. F~ϕ
n = ComputeReductionMeasuringFunction \left(X, ~ϕ, (an,1− an), (bn,−bn)\right );

12. F
~ψ
n = ComputeReductionMeasuringFunction \left(Y, ~ψ, (an,1− an), (bn,−bn)\right );

13. ℓ_X_F~ϕ
n = ComputeOneDimensionalSizefunction \left(X,F~ϕ

n\right );

14. ℓ_Y_F
~ψ
n = ComputeOneDimensionalSizefunction \left(Y,F

~ψ
n \right );

15. Dn = ComputeOneDimensionalMatchingDistance \left(ℓ_X_F~ϕ
n ,ℓ_Y_F

~ψ
n \right );

16. Dn = min{an,1− an} · Dn;

17. }

18. Dint = max{Dn};

19. D̄ = max{Dext,Dint};

% refine the approximation until the threshold is met

20. while thresh≥ ε {

21. for each Pn = (an,bn) in P {

22. if D̄ − Dn > thresh

23. P = P \ Pn;

24. else {

25. set Pn++ = (an + δ,bn + δ), Pn+− = (an + δ,bn − δ), Pn−+ = (an − δ,bn + δ), Pn−− = (an − δ,bn − δ);

26. P = {P \ Pn} ∪ {Pn++,Pn+−,Pn−+,Pn−−};

27. }

28. }

29. repeat from line 10. to line 17.

30. D̄ = max{D̄,Dint};

31. thresh = thresh \2;

32. }

% return the approximated distance

33. D̃ = D̄;

34. return D̃;

}
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