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Introduction

The problems studied in this thesis originate from classical problems in algebraic geometry (and
commutative algebra). Actually, the story begins with a number theory question: in 1770 E. Waring
in [War]| stated (without proofs) that:

“Every natural number is sum of at most 9 positive cubes.”
“Every natural number is sum of at most 19 biquadratics.”

Moreover, he believed that:

“for all integers d > 2 there exists a positive integer g(d) such that each n € Z* can be

written as n = af + - + ag(d) witha; > 0,i=1,...,9(d).”

Waring belief was showed to be true by Hilbert in 1909.
An analogous problem can be formulated for homogeneous polynomials of given degree d in
S := K|xyg,...,z, where K is an algebraically closed field of characteristic zero:

“Which is the least g(d) € Z* such that each degree d homogeneous polynomial f in S
is the sum of at most ¢g(d) d-th power of linear forms?”

This problem is classically known as the “Little Waring problem”.
We always indicate with Sy the degree d part of S.
Our work starts form the problem that is known as the “Big Waring problem”:

“Which is the least G(d) € Z* such that the generic form f € S; is sum of at most
G(d) d-th powers of linear forms?”

This problem is completely solved by J. Alexander, A. Hirschowitz in [AH]. In order to see how
the result in [AH] enter the problem, consider S = Klzy,...,2,] and R = Klyi,...,yn]|, two

polynomial rings, and the action of R on S given by interpreting the y;’s as % , the partial
derivatives of the x;’s; this action is called “Apolarity”.

1X



CHAPTER 0. INTRODUCTION

If I is an homogeneous ideal of R, the “Inverse System” I~! of I is the R-submodule of S
containing all the elements of S annihilated by I (by the apolarity action).

When X = Proj(S/I(X)) is a projective scheme then the Hilbert function H(X,d) of X in
degree d is dim(((I(X))™)4). So we can switch from the study of the Hilbert function of a scheme
to the study of the inverse system of its ideal and vice-versa.

Via inverse systems, one can check (see [Ge]) that the least G(d) € Z* solving the Big Waring
problem is also the minimum G(d) such that the Hilbert function in degree d of the union of the
first infinitesimal neighborhoods of G(d) generic points in P™ is maximal, i.e. G(d) (";rd). In [AH]
the Hilbert function of these kind of schemes has been computed.

A connection with another classical problem in algebraic geometry is given by a secant varieties
question.

Let X C PN be a projective variety of dimension n; the “(s — 1)-Secant variety of X" is

Seco1(X) = |J <P,....P>

We recall that the “Veronese variety” of degree d and dimension n can be viewed as the image
of the embedding

v P(S)) = (P")* P(S@:(P("ﬁd)*l)*
(L) = [L]]

Y

hence it parameterizes the set of d-th powers of linear forms.

It is not difficult to prove that the (s — 1)-secant variety to v4(IP") parameterizes the closure of
the set of forms which can be written as sums of s d-th powers of linear forms. Therefore solving the
Big Waring problem is equivalent to finding the least integer G(d) such that Secgq)—1(va(P")) =
p("i*)-1,

The study of the dimension of the secant variety of a projective variety X is actually a classical
problem. In fact if X C PV is a reduced irreducible variety of dimension n, there exists an expected
dimension for Secs_1(X), i.e. min{ns+s—1, N}. When dim(Secs_1(X)) < expdim(Sec,_1(X))
one says that Secs_1(X) is “defective” with defect d5(X) = expdim(Secs_1(X)) — dim(Secs_1(X)).

In the thesis we will consider also a more general problem with respect to the Big Waring one:

“Which is the least integer G(d) such that the generic element of S; can be written as
Ny + -+ + Ng@ where each N; = MY M,glj)(k) and Ml(f]).(l M9

. 17.7(1) )7 ey k,](k) belong to
Sj(1ys - - - » Sk Tespectively?”

The geometric translation of this algebraic problem is the following:



CHAPTER 0. INTRODUCTION

“Let ¢ be the map defined as follows:

gb . P(Sj(l)) X - X P(Sj(k)) — ]P)(Sd)
(Ml M) = [IMayjay - Mg

where Y7 j(l) = d. We define now a variety X as the closure of the image of

this map. The integer G(d) we are looking for is the least integer G(d) such that
dim(Secg(a)-1(X)) = ("7 — 1.7

When the generic element of Sy can be written as F' = Ny +-- -+ N, where Ny,..., N, are some
specific kind of forms (e.g. powers of linear forms in the Waring problem), it is used to say that F’
is a “Canonical Form”. In this thesis we are interested in developing three types of canonical forms
and, more generally, in determining the dimension of the secant varieties associated to them. The
third case is a generalization of this kind of problems to tensors (forms can be viewed as symmetric
tensors).

1. Let Lq,...,Lg be linear forms of S and Fi,...,F, € S,
F=LI*FR +- + LTFF,, (1)

2. Let ng) be linear forms of S fori=1,...,dand 7 =1,...,s,

F=rV...LW 4. 4. (2)

3. Let Vi, ..., V, vector spaces on K, a tensor 7' € V" ® --- ® V" is said to be “decomposable”
if there exist vectors v; € V* such that T'=v{ ® - - - ® v}. “Which is the minimum integer s
such that the generic tensor 7" of V* ® - -+ ® V;* is sum of s decomposable tensors?”

First problem. Let X C P" be a projective variety of dimension n. Let Oj x p be the k-th
osculating space to X at P € X. Let X; C X be the dense set of smooth points where Oy, x p
has maximal dimension. The “k-th osculating variety to X” is defined as

We prove that the geometric problem associated to the canonicity of the form (1) is equivalent
to the fact that Sec,_1 (O, pn)) fills P".

The first important result we use is Terracini’s Lemma (see Lemma 2.6.1).

The method we use for the study of dim(Sec,_1(Ok,,,n))) is the following:

x1



CHAPTER 0. INTRODUCTION

L. let W; := Tp,(Ogpy@ny) and W =< Wy, ..., W, >; try to compute directly dim(WV); if
this is not possible, then

2. compute the degree d part I, of the inverse system I of W C Sy and the degree d part Ig)
of the inverse system IV of W;. Now if Z = Proj(R/I) and Z¥) = Proj(R/I"), so that
Z=7MU-..uZ® we can prove that the schemes Z depend only on n, k and not on
d and that the Z® are 0-dimensional projective schemes of length (kj;") + n, such that
if ; are the ideals of points P; which are the support of Z(®), then pFt! o 10) 5 oF+2;

3. compute, if it is possible, the Hilbert function of Z, then dim(Sec,_1(Oky,m@n))) =
H(Z,d)— 1.

4. When it is not possible to compute directly H(Z,d), one could use the following con-
struction: consider

Xi = Proj(S/p*"), Yi = Proj(S/pi*?), X =X, U---UX,, Y =YiU---UY,, (3)

3 3

then X CZCY.

We prove a crucial lemma (see Lemma 3.3.6) that allows us to move in many cases
the problem from the study of dim(Sec,_1(Ogy,@ny)) to the study of X and Y. This
is very interesting not only because it makes the defectiveness or the regularity of
Secs—1(Ogy@ny) be dependent on the regularity of the Hilbert functions of X and Y,
but also because we didn’t find any example where Sec,_1(Oyp,@n)) is defective but X
and Y are regular. We conjecture that this fact never happens.

In the case of P?, we are able to prove our conjecture for small values of s. Let X, Z be projec-
tive schemes defined asin (3), n = 2and 3 < s < 9; then: H(Z,d) = min { H(X,d) + 2s, (df) }.
The proof mainly uses “La méthode d’Horace” (e.g. see [Hi]) on a scheme Z’ which is a spe-
cialization of Z. It consists in considering a curve C through P, ..., P, with t < s, and in
studying the residual scheme Res¢(Z’) whose representative ideal is (I(Z’) : I(C)); then, if C
is a fixed component of multiplicity v, H(Z',d) = H(Res¢(Z'),d — tv).

Studying this problem we find many varieties which are “very defective” (i.e. ds >> 0), e.g.
the secant varieties of Oy, ps) C P*'. When s = 2 we have that expdim(Seci (Oy,ps))) =
431 but we get that the defect is 6o = 86. When s = 3,4 the defects are 03 = 44 and 6, = 9.
Eventually, Secs(Oy,,ps)) = P! So, even if we expect that Secy(Oy,,ps)) should fill up
P46! even the 3-secant variety doesn’t. In terms of forms we get that neither we can write a
generic f € (K|xg,...,z6])5 as f = L1y + LoFy + L3F3 with L; € Ry and F; € Ry (as we
expect), nor as f = L1 Fy + - -+ + L4 F}y, but we need five addenda.

x1i



CHAPTER 0. INTRODUCTION

Second problem. We define the Split variety Split,(P") as the closure of the following map:

gb . I\P(Sl) X+ X P<Sll — P(Sd)

(Ll (La) — [T La]

The problem of studying (2) is equivalent to studying the dimension of Sec,_1(Split,(P™)).
Our first interest in this problem came from a conjecture stated in [Eh]|, for which we find a
counterexample. Let G(k,n) be the Grassmannian of k-spaces in P". Ehrenborg conjectures

that the least positive integer s such that Sec,_1(G(n — 1,7+ d — 1)) fills up P("i) 1 is the

same s such that Secg_;(Split,(P")) = P("i) =1, If this conjecture were true, we would be able

to compute the dimension of Secs_;(Split,(P")) in many cases. It is a known result (see for
example [CGG3|) that Secs_1(G(3,6)) is defective: one would expect that Secy(G(3,6)) =
P34, but dim(Secy(G(3,6))) = 33; only Sec3(G(3,6)) = P3. Unfortunately this fact does not
imply the same for Sec, ;(Split,(P?)): in fact Secy(Split,(P?)) = P3*. The only case where
we are able to prove Ehremborg conjecture is when d = 2 for which Splity(P") = Oy ,,pn) =
Secy (v2(P™)) and many things are known (see [CGG2]).

For the study of Sec,_1(Split,(P")) we follow two directions:

e First we prove, by using consequences of Terracini’s Lemma (see Corollary 2.6.2 and
Proposition 2.6.3), that if d > 2 and n > 3(s — 1), then

dim(Secs_1(Split,(P"))) = expdim(Sec,_1 (Split,(P"))).

e Second we study the intersection between G(n — 1,n + d — 1) and Split,(P").
We can prove that G(n — 1,n + 1) N Splity(P?) is set-theoretically represented by the
locus of the (n — 1)-spaces of P"*! that are (n — 1) secant to the rational normal curve
Vni1(P'). We can partially generalize this result and prove that the locus {(n — 1) —
spaces that are (n — 1) —secant to v, q_1(P')} is contained in Split,(P")NG(n —1,n+
d —1). In the case of d = 3 we compute that also the reverse inclusion is true.

Third problem. The geometric problem associated at this last algebraic problem is the study of

the dimension of the secant varieties to the Segre varieties. Let P" = P(V;) for i = 1,...k,
be the Segre variety which is defined as the image of the following map:

P x ... x P — Pluatl)-(ng+1)—1

1 1 k k 1 k .
(@, aly @) = (e e )

xiil



CHAPTER 0. INTRODUCTION

The interest in the knowledge of the dimension of Secs_1(Seg(P™ x --- x P™)) is mostly
motivated by its connections with questions in representation theory, coding theory, algebraic
complexity theory and statistics (see [BCS]).

For this problem we do an exposition of results in [CGG1] and in [LM1].

In [CGG1] the authors solve some cases of this problem using Inverse Systems and “La
méthode d'Horace”.

Our exposition of [LM1] needs an introduction on Representation Theory; then we will
present the firs part of that paper where the authors develop an algorithm to compute the
decomposition of the degree d part of the ideal of Secs_1(Seg(P™ x --- x P™)). We conclude
this section by enunciating the statements of the main result of [LM1] that is the proof of
the Garcia, Stillman, Strumfeld conjecture (see [GSS]) on the generation of the ideal of the
first secant variety to the first secant variety to the Segre variety in the case of three factors:
Secy(Seg(P™ @ P @ P)).

I wish to thank firstly my advisor Prof. Alessandro Gimigliano for the many ideas and
explanations he gave me and his good deal of patience. Secondly I want to thank all that gave me
suggestions and ideas (and in some cases a place to sleep) for the work done in this thesis, in
particular E. Arrondo, M.V. Catalisano, I. Dimitrov, A.V. Geramita, I. Huges, M. Ida, G.
Kemper, J. M. Landsberg, A. Lanteri, M. Roth and B. Van Geemen. I would like also to thank all
the people that, with their work, allowed me to participate to the many conferences and to spend
various months of my PhD program abroad.
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Chapter 1

Big Waring Problem

Let K be an algebraically closed field of characteristic zero. We will work on the projective space

P = P*(K). The polynomial ring S := KJzo,...,x,] is a graduated ring and so we can write it

as K[xo,...,zn] = @450 Sa where Sy =< wd xd ey, ..., 2 > is the vector space of homogeneous
: . d :

forms of degree d. It is a well known fact that dimg(S;) = ;:n ) In a geometric language

those vector spaces Sy are called Complete Linear Systems of hypersurfaces of degree d in P™.

Sometimes we will write P(S5;) in order to mean the projectivization of Sy, therefore P(S5;) will be
n+d

a P("2) 7! whose elements will be classes of forms of degree d: [F] € P(S,) with F' € S.

1.1 The Big Waring Problem

We want to introduce a number theory question presented by E. Waring in 1770 in [War|. He
stated without any proof that “every positive integer is sum of at most 9 positive cubes”, “every
positive integer is sum of at most 19 fourth powers”... Waring believed that for every d € Z* there
exists an integer g(d) such that every n € N may be written as

n:ail_i—_i_a;l(d)

In 1909 Hilbert proved that such a g(d) exists for every d > 2 and he computed it.
An analogous problem can be formulated for homogeneous polynomials of Sy. It is the so called
Little Waring Problem:

“find the minimum s € Z such that all forms F' € S; are sum of at most s d-th powers
of linear forms.”



The Big Waring Problem

The problem we are interested in is a slightly different form of the little Waring problem, it is called
the Big Waring Problem and it is formulated as follows:

“Which is the minimum s € Z such that the generic form F € Sy is a sum of at most
s d-th powers of linear forms?”

F=L%+...4L°

In order to know which elements of S; can be written as sum of s d-th powers of linear forms,
we study the image of the map

¢:S x--x8 — Sy, ¢(Ly,..., L) =L+ + L% (1.1)

S

The Big Waring problem asks to find the smallest s such that Im(¢y) = Sy (we just observe that
if we require dim(¢4) = Sy we would solve the little Waring problem).
The map ¢ can be viewed as a polynomial map between affine spaces:

55 ARy AV,
In order to know the dimension of the image of such a map we look at its differential
do|p : Tp(ASHD) — AN,

Let P = (Ly,...,Ly) € A" and v = (M, ..., M,) € Tp(A*"D) ~ A"+ where L;, M; € S,
fori=1,...,s. Let us consider the following parameterizations t — (L1 + Mit, Lo+ Mot, ... L+
Mit) of a line C passing through P whose tangent vector at P is M. The image of C via ¢ is
O(Ly + Myt, Ly + Mot, ..., Ly + Myt) = 7 (L; + M;t)%. The tangent vector to ¢(C) in ¢(P)
is hmt_,o % (Zle([/z + Mzt)d> = limt_@ ijl d(LZ + Mz‘t)dilMi = Zle dL;i_lMZ 1\IOW7 as v =
(M, ..., M,) varies in A*"*1 the tangent vectors we get span < L{~'S;,..., LIS >,

Hence we can say:

Proposition 1.1.1. Let Ly, ..., Ly be linear forms in S = K|z, ..., x,], where L; = a;,xo+ -+
a;, T, and
¢: 8 XX Sy — Sg, ¢(La,..., L) =L{+---+ LY
~—_————

S

then

.....

It is very interesting to have a look at how the problem of determining this dimension has been
solved, because the solution involves many algebraic and geometric tools.

2



Inverse Systems

1.2 Inverse Systems

1.2.1 Definition and observations
This section is an exposition of inverse systems techniques, and it follows [Ge].

Definition 1.2.1. Let S = Klxy,...,x,| and R = K[y1,...,yn| be polynomial rings and consider
the action of R on S (called Apolarity of R on S) defined as follows:

0 0, ifi#j
yioxj:<8—%>($j)={ 1. przfi ;

i.e. we view the polynomials of R as “partial derivative operator” on S.

Now we can extend this action to the whole rings R, S by linearity and using properties of

differentiation:
Ri X Sj — Sj_i

Ty X 85 :=T;08;

in particular

o B 0, if a £ 6;
ozl = no ) fea
Y [T, %xﬁ , ifa < g
where 2% := 2% ... 2 when 8 = (b1,...,b,) and b; > 0, and also a = (aq,...,a,) < 3 iff a; < b,
for all i = 1,...,n, that is equivalent to 2 divides 2 in S.

Remarks:

e The action of R on S makes S a (non finitely generated) R-module (but the converse is not
true);

e the action of R on S lowers the degree;
e the apolarity action induces a non-singular K-bilinear pairing:
RixS;— K Vj=0,1,...

that induces two bilinear maps; !

Let V x W — K be a K-bilinear parity given by v x w — v o w. It induces two K-bilinear maps:
¢ : V — Homg (W, K) such that ¢(v) := ¢, and ¢,(w) = vow and x : W — Homg (V, K) such that x(w) := xu
and x, (v) = vow.
V x W — K is not singular iff for all the bases {w,...,w,} of W the matrix (b;; = v; o w;) is invertible.

3



Inverse Systems

e Notice that if {y*} and {z®} are bases of R; and S; respectively, they are not exactly
dual bases. The dual bases of R; and S; are: {y,...,y4} and {éx“‘l, ey c—ltfo} for an
appropriate choice of coefficients ¢;. So {y1,...,y,} in Ry is a dual base of {xy,...,x,}, base
of Sy, with respect to the apolarity action, but for j > 1 this is no longer true.

Definition 1.2.2. Let I be a homogeneous ideal of R. The Inverse System I~' of I is the R-
submodule of S containing all the elements of S annihilated by I.

Remarks:

o If /= (F,....,F;j)CRand Ge€ RthenGe I"' & FfoG =--- = F,0G = 0. Finding
all such GG’s means finding all the polynomial solutions for the differential equations defined
by the F}’s, so one can notice that determining 7! is equivalent to solve (with polynomial
solutions) a finite set of differential equations;

e /! is a graduated submodule of S but it is not necessarily multiplicatively closed and in
general 1! is not an ideal of S.

We need now a digression on the Hilbert function.

1.2.2 Hilbert Function and Inverse Systems

For this paragraph we refer to [EH].
Let X C P*"(K) be a closed subscheme whose representative homogeneous ideal is [ := I(X) C
S. Let A = S/I be the homogeneous coordinate ring of X; A; will be its degree d component.

Definition 1.2.3. The Hilbert Function of the scheme X is:
H(X,):N—=N;
H(X,d) = dimg(Ay).
We can easy observe that
H(X,d) =dimg(Ay) = dimg(Sy) — dimg (Iy).

Let us introduce the following theorem known as “Hilbert Theorem?”:

Theorem 1.2.4. There exists an unique polynomial P(X,d) in the variable d (the Hilbert polyno-
mial) such that H(X,d) = P(X,d) for all sufficiently large d.

4



Inverse Systems

Remark: The degree of the Hilbert polynomial is the dimension of X:
deg(P(X,d)) = dimg (X)

and so if dimg(X) = 0 then P(X,d) = constant = deg(X).
This observation will be useful in order to prove that the Hilbert function of a 0-dimensional
scheme X is such that H(X,d) = H(X,d,) for certain dy and for any d > dy.

Definition 1.2.5. Let X C P" be an n-dimensional projective scheme, and let lc(P(X,d)) be the
leading coefficient of P(X,d), then the degree of X is

deg(X) = n! - le(P(X, d)). (1.2)

Remark: If X is a 0-dimensional scheme of degree § then P(X,d) = J (in general one has
H(X,d) <4).

In our work the importance of inverse systems will be given by the following theorem, for a
particular choice of the ideal I:

Theorem 1.2.6. The dimension of the part of degree d of the inverse system of an ideal I C R is
the Hilbert function of R/I in degree d:

dimg (I71)y = codim(Iy) = H(R/I,d) |. (1.3)

e if [ is a monomial ideal then I di =< monomials of R, that are not in I; >
e (INJ)y t=I1t+J L

In order to discover which kind of ideals we need to consider to solve the big Waring problem
via inverse system we need to introduce the study of zero-dimensional schemes.

2If V. x W — K is a non degenerate bilinear form and V; is a subspace of W, then V;* is a subspace of W and
precisely: Vit = {w € W/vow=0Vv e Vi}={we W/xy,(V1) =0}. Let Vx W — K be non singular simmetry
with dimg (V) = dimg (V1) = ¢, then dimg (ViH) =n —t.
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1.3 Reduced 0-dimensional schemes

Let X = {P,..., P,} C P"aset of s distinct points and p; C S = K[z, ..., ,] be the prime ideals
corresponding to the point P; with ¢ = 1,...,s. With X we indicate the projective 0-dimensional
scheme whose support is X and with representative ideal I = @ N---N p,. Moreover if we indicate
with I; and Ay the degree d part of an ideal I and a ring A respectively, then I = @ ,., I4 and the
coordinate ring of X is A(X) := S/I = @ A(X)a. -

So the Hilbert function of X is

1.3.1 Hilbert function of reduced 0-dimensional schemes

We will consider an example of Hilbert function of simple points in the plane (sometime we say
“simple points” instead of “reduced 0-dimensional schemes”).

Example: Let X = {P,, P», P35, P,} C P2. We already know that P(X,d) = 4.
If we want to study the Hilbert function of X in any degree d we have to distinguish three cases:

1. X contained in a line L having equation [ =0

e The only line containing X is L, so H(X,1) = dimg(S;) — dimg () =3 —1 = 2.

e If ¢ = 0 is the equation of a plane conic containing X then, by Bezout Theorem, ¢
must be identically zero on L, i.e. ¢ = 0 gives the union of L with another line, and

the equations of the conics containing X give the tridimensional space of the forms Im,
m € S1. Then H(X,2) = dimg(S2) — dimg(lo) =6 —3 = 3.

e Suppose that d > 3.
Let X’ € X be a subscheme of X with support on three points; consider the curves
made by d lines, three of them passing through a different point of X’ each. Such a
curve is of degree d, it contains X’ but it does not contain X. Moreover we can find
such a curve for any X’ C X whose support is made by three points. This implies that
the vanishing in 4 points imposes 4 independent conditions to the forms of degree d, so

H(X,d) =4 for all d > 3.
2. Only three points on a line.

e There is not any linear form in I(X) = H(X,1) = 3.

6
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e With the same argument of the previous case, all plane quadrics containing three points
on L must contain L; this means that all quadrics containing X are union of L and
another line through the fourth point. Since the linear space corresponding to the lines
through the fourth point is 2-dimensional, the space of the quadrics containing X is
2-dimensional, then H(X,2) =6 —2 = 4.

e With the same argument of the previous case one can see that H(X,d) =4 for all d > 3
(better: since H(X,2) = 4 we can conclude that H(X,d) = 4 for all d > 2).

3. No three points on a line.

e the scheme X does not lie on a line so H(X,1) = 3.

e For any three points of X one can find a quadric through them not containing the fourth
point, so X imposes four independent conditions to quadrics and H(X,d) = 4 for all
d>2.

We treat now the general case of s simple points on P".

Definition 1.3.1. With Sy(Py, ..., P;) we indicate the vector subspace of Sq whose elements are
forms of degree d which are zero at the points Py, ..., P, € P™.

The goal is to write the dimension of Sy(P, ..., Ps) C Klzg, ..., x,]q in terms of Hilbert func-
tion.
Let My, ..., My, with N = (d+"), be a monomial base of S;: if F' € S; then F' = ¢y M; + -+ +

exMy with ¢; € K foralli=1,...,N.
Let Py, ..., P, € P"; the degree d forms vanishing on those points are the solutions of the following

linear system
Ml(Pl)Cl + -+ MN(Pl)CN =0
: (1.4)
My(Ps)er + -+ -+ My(Ps)en =0

Let My be the matrix defined as follows:

My(Py) -+ Mny(FP)
My =
My(P;) -+  M(FPs)
€1
Therefore (1.4) can be written: M, - : = 0.
CN

Now the linear solutions of those equations gives exactly the vector space I;, and dimg(1;) =

7
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N — k(M) = (“F") — rk(M); hence
H(S/I1,d) = (d j; n> — dimg (1) = rk(My).

For any s we can choose Py,..., P, such that the matrix M, has maximal rank for all d € Z™*,
since the s-uples Py, ..., P, for which the rank of M, is not maximum form a closed set (where all

the maximal minors are zero):
rk(My) :min{s, < d;;n )}

Proposition 1.3.2. If X = {P,,..., P,} C P" is the support of a projective 0-dimensional reduced
scheme X where the P;’s are generic, then:

H(X,d) = min {s, (d?;”> } .

Now we try to study the non-reduced case, which turns out to be not so simple.

In conclusion we have:

1.4 Non reduced 0-dimensional schemes

Let us introduce the problem of computing the Hilbert function of a non-reduced 0-dimensional
scheme with some examples.

1.4.1 Examples

The elements of Sy(P, ..., Ps), defined as in 1.3.1, correspond to hypersurfaces of degree d which
pass through Pi,..., P;.
It is clear that if the points P, ..., Py are in general position the dimension of Sy(Pi, ..., Ps) is

dimg (Sy(P,, ..., P)) = K” ; d) _ sr

where [z]* := max{z, 0}.
If the points are not in general position then:

dimy (Sy(Ps, ... Py) > K”;d> - sr
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Definition 1.4.1. We call the number [(";d) - S]+ the Virtual Dimension of Sq(Py, ..., Ps).

Notice that this is actually the value of the Hilbert Polynomial of the reduced scheme X given
by the P;’s in general position.

Now we want to compute the dimension of the subspace of S; of hypersurfaces which not only
pass through some fixed points P; but also have some singularities in those P;: this fact is equivalent
to find the polynomials of degree d which vanish in P; with all their partial derivatives up to a
certain order.

Notation: With Sy(P[", Py?,..., P*) we indicate the subspace of Sy of hypersurfaces of degree
d which pass through P;, i = 1,...,s, and which have in those points singularities of multiplicity
grater or equal to «;.

What we expect is that each P imposes (

generic Py, ..., P;, we have:

conditions. So we can ask whether choosing

(1) z (rro )] L5)

In this case we do not have an immediate answer as in case of simple points where if P, ..., P, are
in general position, then the dimension is always the expected one. We can only say that

(d;n) _g(m?:q)r

1. Let us consider Sy(P?, P?) C K|zg, 11, T2
If (1.5) were true it would happen that

dimg (So(PE, PY)) = KQ ; 2) — 2<3>r =6-6=0

but this is clearly false: there is always a line through 2 points of P? and so the double line
through P, e P, belongs to Sy(P?, P#) and this implies that dimg (Sy(PE, P7)) =1 # 0 (it is
easy to see that there cannot be another conic in the system).

n+(j;fl)

dimp (Sa(P1, ... P)) =

dimg (Sq(P™, ..., P™)) >

There are some simple counterexamples:

2. Let us consider Sy(PZ, ..., P?) C K|[zg, 71, 724
If (1.5) were true it would happen that

dimg (Sy(PE, ..., P2)) = (4;2> —-5. (;’) =15-15=0

9
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but there is always a plane conic passing through 5 points so the double conic through
Py, ..., Psis aplane quartic through P?, ... P? and this implies that dim (Sy(P?, ..., P?)) >

1+0.

1.4.2 Fat points

Definition 1.4.2. Let P,...,Ps € P"; o1,...,0s C S = Klzg,...,x,| be the associated prime
ideals and aq, . ..,as € N. The projective scheme defined by the ideal

AL
1s called a scheme of Fat Points in P" and we denote it as:

X:(Pl,...,Ps;Cl/l,...,Cl/S).

Remark: Not all zero-dimensional schemes are made of fat points; a 0-dimensional scheme whose

coordinate ring is Klxg, z1]/(z3, ¥?) is neither a reduced scheme nor a fat point because it is not

possible to write its representative ideal I = (x5, %) as the intersection of some powers of ideals of

points.

Our goal is the study of H(S/I,d) when S/I is the coordinate ring of a fat point, but we think
that it can be useful to have a look on what happens also with those non-reduced 0-dimensional
schemes which are not fat points.

We will look first at what happens in the affine case, but we want to recall first a few remarks
on the degree of a scheme: the degree we have defined in (1.2) is given for a projective scheme but
we are going to work with affine schemes. Now we will give a general definition and we will see
later that it is equivalent to (1.2), thus implying that the degree of a scheme is independent on the
immersion.

1.4.3 Degree of a scheme

Recall that in paragraph 1.3.1 we have defined the degree of a projective n-dimensional scheme X
on P" as deg(X) = nllc(P(X,d)) and if X is 0-dimensional then deg(X) = P(X,d) = §. Consider
a scheme X embedded in P*; let S = K]|xy,...,z,] be the polynomial ring. We now denote with
Xeq the reduced scheme whose support is the point P = [1,0,...,0] € P". Its representative ideal

is the prime ideal m = (z1,...,z,) and its Hilbert function is:
d d
H(Xreda d) = dlm(Sd) — dlm(md) = ( ;n) — <( j;n) — 1) =1.

10
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Suppose now to have a 0O-dimensional scheme X whose support is P but X is not necessarily
reduced. We want to know its degree. We have to study S/I, where I is the representative ideal
of X. Let us introduce the following Proposition (See Propos. 1.7.4. on [Hart)):

Proposition 1.4.3. Let M be a finitely generated graded module over a noetherian graded ring S.
Then there exists a filtration 0 = M° C M' C ... C M" = M by graded submodules, such that
for each i, M'/M™' ~ (S/p;)(l;) where @; is a homogeneous prime ideal of S, and l; € Z. The
filtration is not unique, but for any such filtration we have:

1. if p is a homogeneous prime ideal of S, then p O Ann(M) < o D @; for some i. In
particular, the minimal elements of the set {p;...,p,} are just the minimal primes of M,
i.e., the minimal elements in the set of all primes containing Ann(M);

2. for each minimal prime of M, the number of times which o occurs in the set {p1, ..., } is
equal to the length of M, over the local ring S, (and hence is independent on the filtration).

Definition 1.4.4. If o is a maximal prime of a graded S-module M, the “multiplicity” of M at p
is the length of M, over S,,.

Considering a 0-dimensional non reduced scheme whose support is only one point and let I be
its associated ideal. Then the module S/I has only one associated prime ;. Then it must exist a
filtration

S)IT=M=M"2---2M"={0} (1.6)
such that M*/M*~ !~ S/m =K. So

dimg (S/I) =r =1(S/I). (1.7)
Consider now the following exact sequence
0—-M"1—-M-—S/m—D0.

One has that for a sufficiently large d the Hilbert function H(M,d) = H(M"™ ' d) + H(S/m,d);
since H(S/m,d) =1 we have H(M,d) = H(M"',d) + 1.
Also
H(M',d) = HM°,d)+1=H({0},d)+1=0+1=1 and
H(M?,d) = HM' d)+1=1+1=2
then, with d >> 0:
H(M,d) =r; (1.8)

11
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but when d >> 0, if X is a 0O-dimensional scheme, it also happens that
H(M,d) = P(M,d) = deg(X). (1.9)

By (1.6), (1.7), (1.8) and (1.9) we can conclude that if X is a zero-dimensional scheme whose
support is only one point then

deg(X) = H(S/I,d) = r = dimg(S/I) = 1(S/I)

where [(S/I) is the length of the filtration (1.6).

Now we are ready to study the affine case (see [EH]).

1.4.4 A few remarks on 0-dimensional schemes

After this digression on the degree of a scheme we want to give some examples of what a non
reduced O-dimensional scheme of low degree can be. We will work in the affine case, since for
0-dimensional schemes this does not make much difference.

Notation: Let X be an affine 0-dimensional scheme. In this paragraph, but only here, we will say
that X is a “d-uple” point if deg(X) = d.

A double point in A':

We consider the scheme X = Spec(K[z]/(z?)) viewed as a subscheme of A! via the map induced
by the quotient map K[zr] — K[z]/(2?). The support of X is only one point but X is different
from Spec(K') = Spec(K|[x]/(z)), both as a subscheme of A' and as an abstract scheme.

e As an abstract scheme:
there exist on X regular functions (for example ) which are not the zero function, but which
assume the value 0 at the only point of X.

e As a subscheme of Al

a form f € K[z] on A! vanishes on X if and only if both f and it is first derivative f’ vanish
at 0. To give a function on X is equivalent to give the values at 0 of both a function on Al
and of its first derivative. That’s why X is called “first order neighbourhood of 0 in A'”.

In general the ideal (2") C K|z] defines a subscheme X C A! with coordinate ring K[z]/(z");
a function f(z) on A becomes zero on X if and only if f vanishes in 0 with all its first n — 1
derivatives.

12
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A double point in A?

Let X be the scheme we saw in the previous example: X = Spec(K[z]/(z?)). Let Y be a subscheme
of A? = Spec(K|z,y]) supported at the origin and isomorphic to X. Let R be its coordinate ring
and ¢ : K[z,y] — R the surjection which defines the inclusion ¥ C A% Let m be the unique
maximal ideal of R; its inverse image via ¢ is the ideal (x,y). By definition of R the square m? is
0, hence the map ¢ vanishes on (z,y)? and so it factorizes through a map ¢ : K[z, y]/((x,y)?) —
R. Equivalently, Y must be contained in the subscheme Spec(K|[z,y|/(z% zy,y?)) but the ring
Klx,y]/(2* zy,y?) is a three-dimensional vector space on K, while R is only two-dimensional.
Therefore ker(yp) contains a non-zero homogeneous linear form ax + By for some «, § € K. Let us
define
X, = Spec(K[z,y]/ (2%, zy, v*, ax + By)) — A®.

It can be characterized as:

e the subscheme of A? associated to the ideal of the functions f € Klz,y| vanishing in the
origin and having partial derivatives such that 3 % — ag—i = 0;

e the image of X C A! by the inclusion A — A% x+— (Bx, —ax).

The scheme X, g is classically viewed as the point (0, 0) and another point “infinitely near to (0, 0)”
in the direction specified by the line defined by axz + Sy = 0.
This fact leads us to observe that a zero-dimensional scheme of degree 2 in A2 must be isomorphic

to K[z]/(«?), in fact, as we have just seen, in our case R = —(x%y{{y[fﬁiwy) with (o, 3) # (0,0); and
if we suppose 3 # 0 then R = Klz.y] ~ Klz] ~ Kz

(@2 zyy?,e—y) — (22a(a’z),(/2)2,0) — (22)°
How can we find schemes as X, 3?7 The answer is: as curve intersections or as the limit of

reduced subschemes.

e As curves intersections:

Example: Consider a line L and a conic C' tangent to each other:
— if we consider their intersection just set theoretically, we will miss the point that this is
a “double intersection”;

— if we try to view C'N L as a “point of multiplicity 2”, this is not satisfactory too, because
in this way we miss on which line the scheme is;

— the satisfactory definition is that C'N L is the subscheme of A? defined by I + I, where
Ic and I are the defining ideals of C' and L respectively. (For example: the ideal
(y) + (y — %) corresponds to the scheme X, = Spec(K|[z,y]/(2?,y)).)

13
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e As limit of reduced subschemes:

Consider the scheme X whose support is a set of two points (0, 0), (a,b) in the plane A? and
X = Spec(K [z, 5]/ () N (& — 0,2 — b))
Suppose that (a,b) moves along a curve (a(t),b(t)), where a(t) e b(t) are polynomials in the
variable ¢, such that (a(0),b(0)) = (0,0); i.e. we are working with X; = {(0,0), (a(t),b(t))}.
We want to define X such that

X =lim X,.

—0
Let us define X by imposing that its representative ideal is the limit of I, = (z,y) N (z —
a(t),y — b(t)) for t — 0. We take this limit as a codimension 2 subspace in K|z, y| viewed as
vector space on K.

We can observe that I, = (2% — a(t)z, zy — b(t)z, vy — a(t)y, y* — b(t)y) where lim; .o(z? —
a(t)r) = 2%, limy_o(xy — b(t)x) = 2y, limy_o(zy — a(t)y) = xy and lim;_o(y? — b(t)y) = v
so those polynomials belong to I = lim;_q I;.

We can also observe that [; contains all linear forms (a(t)y — b(t)x) = ((zy — b(t)x) — (xy —
a(t)y)), therefore, for t # 0, also M = a1y —bix+t(---). The ideal I contains the limit
limy_ w = a1y + byx then I D (22, 2y, y?, a1y — byz) where (2%, 2y, y* a1y — bix) has
codimension 2 as vector space in K[z, y| then I = (22, zy, y*, a1y — bix) so lim;_o(X;) = X, 5,
with « = b e 6 = —ay.

The subscheme X C A? “does not forget” the direction that approximates (a(t), b(t)); we can
look at it as the origin with a tangent direction along the line with equation a;y — bz = 0.
This line is the limit of the set of lines that connect (0,0) and (a(t),b(¢)) i.e. the tangent line
to the curve parameterized by (a(t),b(t)) in the origin.

One double points on K are always isomorphic to another since S ~ K|z]/(2?); but this is no
longer true if we have higher multiplicity.

Triple Point

Let Z = Spec(K[x1,...,x,]/I) be a zero-dimensional scheme of degree 3 with support at the origin;
then either

or

and

7 ~ Spec(K|z]/(2%)) = X
Z ~ Spec(Klz, yl/ (2%, 2y, y")) =Y

X2Y
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However, any triple point is isomorphic to either of these. In particular all rings K|z, ..., z,]/I of
a tridimensional vector space on K can be generated over K by two linear forms in the x;. From
a geometric point of view this means that any triple point in A" lies on a A2 C A", In A? we can
realize two kind of triple points: those isomorphic to X which come from 3 points approaching each
other along a non-singular curve, and those isomorphic to Y which are realized by the approaching
of two points to a third one along two different directions.

Quadruple Point

We have just observed that a triple point can always be contained in a plane: this is no longer
true for a quadruple point: for example consider: K|z, 2]/(x,y, 2)?; its maximal ideal cannot be
generated by two elements.

Now we come back to the main goal of this section: studying fat points and their postulation (i.e.
their Hilbert function).

1.4.5 Fat Points

The main reference of this section is [Ge].

Notation: In this section and in the following ones, when we will say “d-uple point” we will mean
a fat point (P, d). Sometime we will call (P, d) also a “d-fat point”.

We begin with the study of a single point.

One single point

Let us suppose we have a projective scheme whose support is P = [1,0,...,0] € P" and let
o= (x1,...,2,) C S = Klzg,...,x,] be its representative (prime) ideal.

Let F' € p be a homogeneous polynomial of degree d; we dehomogenize it with respect to xy and
we obtain f € S, with f = fo+ fi+ -+ fn. e deg(f;) = i. Since F' € p then

fo=0and P=0¢€ A",

0 0
f1:a1l‘1+"-+anxn:( f> x1+"'+< f)
0 83377,

Oy
are not all zero, then P is said to be a “Simple Point” of V(f) and

n-

0

We recall that if the %

K3

s
0
f1 is the equation of Tp(V'(f)).
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Definition 1.4.5. If p = (z1,...,2,) C S, a polynomial f belongs to * if and only if <§7f>‘ =0
i/ 1o

foralli =1,...,n and this is exactly the definition of a singular point of V(f) (in this case it is
at least a double point).

Therefore if I = p* then I, contains all forms of degree d having a singularity at P. This vector
space gives us a classical example of a linear system of hypersurfaces in P".

Consider now the Taylor Polynomial of f at 0.
Let ansyayp be a term of fo, then

(Bzfga:g) ‘0 if 7£ ﬁ
()], 5o
The polynomial f belongs to ? if and only if all its second partial derivatives vanish in P; that is

equivalent to say that P is a singular point of V'(f) of multiplicity greater or equal then 3.
More generally:

aaﬁ =

Definition 1.4.6. Let P € P", o C S be its representative prime ideal and f € S. Then the order
of all partial derivatives of f wvanishing in P is almost t if and only if f € ™ ie. iff P is a
singular point of V(f) of multiplicity grater or equal than t + 1.

(d+”>, ifd<t
n

H(S/p" d) = : (1.10)
Y (t_2+n),ﬁd2t

Therefore:

It is easy to conclude that

Proposition 1.4.7. One t-fat point of P"* has the same Hilbert function of (tf:r") generic distinct
points of P™.

Remark: By (1.10) we can notice that the degree of a t-fat point in P™ is not the same of the
degree of a t-fat point of P"! in fact if p; C K[z, ..., ,] and o C K[xg, ..., Z,.1] are two prime
ideals representing two points P; € P* and P, € P""! respectively, then H(K|z,...,z,]/¢},d) #
H(K|xg,...,Tn1]/eh, d) for all d > 0.

On the contrary let X be a t-fat point of P* with coordinate ring K|z, ..., z,]/I, then the degree
of X is dim((K[zo, ..., xn]/I)q) for d >> 0. Suppose now to embed X into P"*!; what happens
is that the degree of X does not change, in fact deg(X — P") = dim((K[xo,...,zn|/1)a) =
dim((Kxo, ..., znu1]/(I + K[z, ..., Tp]Tni1))a) = deg(X — P"); but now X — P! is no
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longer a fat point of P+,

Similarly the degree of a scheme X does not change if we consider X embedded before in the affine
space A" and after in the projective space P": we can indifferently study the degree of the scheme
we are interested in either in A™ or in P™.

Form this observation we can notice that, for example, the degree of X = Spec(K|x,y]/(x,y)?) C A?
is the same as the degree Y = Spec(K|z]/(z*)) C A! but X is 2-fat point of A? and YV is a 3-fat
point of A! (we are using an abuse of notation: in the definition 1.4.2 a fat point is a projective
scheme; when we say a that X is a t-fat point of A™ we are meaning that the coordinate ring of X
is isomorphic to K[z1,...,x,]/¢", where g is the maximal ideal of Klxy,...,z,]).

Example: Let P, = (0,t), P, = (t,0), P = (t,t) € A*(K) be the support of a scheme with
representative ideals (x1, xo—t), (1 —t, xa), (x1—t, x5 —t) respectively. The scheme X = PUP,UP;
has as representative ideal I = (x1, 29 —t) N (z1 —t,22) N (21 — ¢, z2 — t) which can be written also

I = (z1(xy —t),x0(x0 — 1), (x1 — t) (12 — 1)).
Now the limit of I for t — 0 is:
limy_ol = (22,23, 11205) = (21, 72)?
which is the ideal of a double fat point.

Example: Let Y be the scheme of P? with support P = [0,0, 1] and representative ideal I = *
and so with coordinate ring A = K|[zg, 1, 23]/ (x], T371, T023, 23).
Then dimg(A) = dim < 1,7, 77, z_%, m,z_% >=0.

In classical algebraic geometry those schemes are called “infinitesimal neighbourhoods” rather
then “fat points”: a fat point with representative ideal ' was called “(t — 1)-th infinitesimal
neighbourhood”.

Let p be a prime ideal of S = K|[xy,...,z,] and the representative ideal of a point P € P". An

element f of ©? is such that f(P) = 0 and also (%) ‘ =0fori=0,...,n. Those n+1 conditions
i/lp

can be interpreted as n independent points infinitesimally near to P.
A triple point is characterized by the vanishing of f(P) and of all its first and second partial
derivatives. Besides the n conditions on first derivatives, one has also those ones from the vanishing
of all the second derivatives that can be viewed as another set of points infinitesimally near to P
but not “so near” as those one individuated by the vanishing of first partial derivatives.

Consider Proj(S/g"), the required order of vanishing for partial derivatives increases; so we can
think at those schemes as a series of neighbourhoods around P whose “radius” become grater while
the order of vanishing partial derivatives increases.
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More than one Fat Point

Let X = (Py,...,Ps;ay,...,q,) be a scheme made of fat points. We want to study the Hilbert
function of such a scheme.
When s = 1 then the Hilbert function of S/" is the same of that of (t_if”) distinct points of P
in general position.

If we have more than one point what happens is not the same: the Hilbert function of s «;-fat
points in general IS NOT equal to the Hilbert function of "7 (O‘Fi”‘) distinct points of P" in
general position.

Examples:

1. Let P, P, be two points of P?, o; C S = K|xg, 1, To] their associated prime ideals and let
a1 = ap = 2 so that [ = o7 N 3. Is the Hilbert function of I equal to the Hilbert function of
6 points of P? in general position? No, because the Hilbert function of 6 general points of P?
is 136 6... and this means that I should not contain conics, but this is clearly false because

the double line through P; and P; is contained in I (we refer to the first example of Section
1.4.1).

2. Let P, ..., P5 be five points of P? in general position and gy, .., 05 C S = K[zg, 21, 72| the
corresponding prime ideals. If I = p? N --- N ©2 then its Hilbert function is not equal to the
Hilbert function of 5-3 = 15 points of P? in general position, which is 1 3 6 10 15 15... In
fact I contains the double conic (a quartic) through Py, ... Ps (we refer to the second example
of Section 1.4.1).

3. Another example (see [Mi]) is given by plane curves of degree 93 with multiplicity 57

at one point and 28 at other seven. The virtual dimension of Se3(Py7, P2, ..., P28) is
+
[07 93(296) B 57(258) B 7(28;(29)] —[0,=31]* = 0.

Then we expect that dim(Sez(P57, P2, ..., P?®)) = 0. But there is always a plane cubic
through seven points which is double in one of them, moreover there is always a sestic through
8 points which is triple at one of them. Let C;, 7 = 1,...,7, be seven cubics with a double point
at Py and not passing through P;. Let also S be a sestic with a triple point in /4 and a double
one in the other seven P;. Then 5S + 32;:1 C; gives an element of So3(Py7, P28, ..., P),
hence 893(P057, P128, ce ,P728) 7& {O}

We gave those examples only in order to show that there are many problems in computing the
dimension of Sy(P;, ..., P®). The general problem is not yet solved: there is only a conjecture
due first to Beniamino Segre (rephrased also by B. Harbourne, A. Gimigliano, A. Hirschowitz and
others) which describes how the element of Sy(Py*, ..., P*) should be done when it has not the
expected dimension.
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Non reduced 0-dimensional schemes

Definition 1.4.8. Let Py,..., Ps be s points of P" in general position. If Sq(P{™, ..., P*) is a

S
linear system whose dimension is not the expected one, it is said to be a Special Linear System.

Conjecture 1.4.9. If Sy(P™, ..., P*) C Klxo,x1,23] is a special linear system, then there is a
fized double component for all curves through (Py, ..., Psoq, ..., qq).

The considerations on Inverse Systems led us to the equality (1.3). By applying it to an ideal
of fat points we can translate the problem of determining the dimension of Sy;(P™,..., P®) to a
problem of inverse systems. If I = ' *!'N...np®* € S = Ky, ..., x,] with p; prime ideals of the
points Py, ..., Ps € P"and P, = [piy, Piyy - - - Pin)s Lp, = PigYo+Piu i+ +0i,yn € R = Klyo, ..., Yn]
then

(1) = Ry, for d < max{a;}
d= L%:O“Ral 44 L?{O‘SRQS, for d > max{a; + 1}

and also

dimg (Rq), for d < max{o;}

7 -1 _
H(5/1,d) = dimg(I™")q = { dimg (< L& Ray, .o, LS Ry, >),  for d > max{a; + 1}

(1.11)
This last result gives a link between the Hilbert function of a set of fat points and ideals
generated by sums of powers of linear forms. This implies that:

Proposition 1.4.10. If I = ™' n--.np®t c S = Klxg,..., 2] then (I7Y)y C Ry =
K[yo, ..., Ynla is the d-th graded part of the ideal (L?{‘“, o ,LCII{O‘S) C R for d > max{a; + 1, i =
1,...,s}.

Finally the link between the big Waring problem and inverse systems is clear. If in (1.11) all
the «; are equal to 1, the dimension of the vector space < L‘Iiglel, ce L‘ElRl > is at the same
time the Hilbert function of the inverse system of a scheme of s double fat points, and the rank of
the differential of the application ¢ defined in (1.1).

Thus we can say:

Theorem 1.4.11. Let Ly, ..., Lg be linear forms of R = K[yo, ..., Yn| such that:
Li = aiyyo + -+ + @i, Yn
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and let Py, ..., P € P" such that:
Pi = [aio, e ,ain].

Let also p; C S = Klxg,...,x,| be the prime ideal associated to P; fori=1,...,s and

¢:R1X"‘XR1—>Rd
—_—
with
¢<L17---,LS)=L‘%+--.+L§;

then
rk(d¢)|(L1 77777 Ly) = dimg < L(li_lRl, . ,Lg_lRl > .

And by (1.3), we have:

S
dim(< LSRRy, ..., LRy >) = H (2—,d) :
PiN-- Nl

In conclusion solving the big Waring problem is equivalent to finding the minimum s € Z such

that H (W, d) = (";d). This problem was completely solved by J.Alexander e A.Hirschowitz
1 s

(see [AH]):

Theorem 1.4.12. (J. Alexander, A. Hirschowitz) Let X = {P,,..., Ps} be a set of s generic
points in P". Let o; C S = K|xy,...,x,| the prime ideal associated to P; fori=1,...,s and let
alsod > 3. Then:

H (ﬁ,d) = min{(n + 1)s, dimg (Sy)}
except for:

en=2d=4,s=05;

en=3d=4,s=09;

en=4,d=4, s=14;

en=4,d=3,s5=1.

Another very interesting fact is that the big Waring problem has also a geometric interpretation
and the solution via Inverse System allows to solve this other problem too. We are going to present
it in the next section.
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1.5 The geometric point of view

1.5.1 Veronese variety

The geometric object that is related with the previous problem is the “Veronese variety”. We recall
that the Veronese variety is the image of the following embedding:

vg:P" — P(ngd)_l
d—1 d

(o : .. iuy) = (ud s uld g s ud g ).

This embedding can also be dually characterized as:

va: P(S) = (B — P(Sy) :(P(”Zd)—l)*
[L] = L.

Therefore we can think to the Veronese variety as the variety that parameterizes d-th powers of
linear forms. If we want to study the variety that parameterizes sums of s d-powers of linear forms
of K[zo,...,x,] we have to consider the (s — 1)-secant variety of v4(P").

In the next section we will study the Secant Variety of a projective variety and the problem of
finding its dimension.

1.5.2 Secant Variety

Definition 1.5.1. Let X C PV be a projective variety of dimension n; we define Secs_1(X) the
(s — 1)-secant variety of X as follows:

Sece1(X):= |J <P,....P>
Py, PeX
where < Py, ..., Ps > is the (s — 1)-projective space containing Py,..., P; € X.

In other words Secs_ (X)) parameterizes sums of s elements of X and moreover the (s—1)-secant
variety of X is a projective variety.

By definition Seco(X) = X. It is clear that if X is not degenerate than X & Seci(X). The first
secant variety of X is obtained by adding to X all the points which are linearly spanned by a pair
of points of X and then taking closure of this set. If Sec;(X) is not linear we can continue in this
process of partial linearization of X and we construct Secs(X), and so on, until we find an s € N
such that Sec, 1(X) = PV. Finally we have the following obvious chain of inclusions (if X is not

degenerate):
X = Seco(X) C Seci(X) C Secy(X) C -+- C Sec,_1(X) =PV,
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As consequence:

n = dim(X) < dim(Sec; (X)) < dim(Seca(X)) < - -+ < dim(Secs_1 (X)) = N.

Definition 1.5.2. The smallest s € 7Z such that Sec,_1(X) =P is the Typical Rank of X.
The typical rank of X is an invariant of the embedded variety X.

Example: If we consider the d-uple Veronese embedding of P" it can be viewed as the subset of
K|z, ..., z,]q made by all forms which can be written as d-powers of linear forms. From this point
of view the typical rank s of the Veronese variety is the minimum integer such that the generic
form of degree d in n + 1 variables is a linear combination of s powers of linear forms in the same
number of variables.

Example: Let us consider the Segre product as the image of the following map:

Vngm : P? X P ey Prmtntm

1.12
yn,m((xOV"7$n)7(y07---7ym)) = ($0y07x0y17"'7xnym)- ( )

The Segre product is then the subset of ((n + 1) x (m + 1))-matrices having rank equal to 1.
Therefore the typical rank s of v, ,,(P" x P™) is the minimum integer s such that the generic
matrix of order (n + 1) x (m + 1) is a linear combination of s matrices of rank 1, i.e. it has rank
equal to s. Hence the value of s for all n and m is completely solved: s = min{n + 1, m + 1}.
Something more complicated occurs if we consider Segre product with more factors: P* x - - - x P%,
which can be viewed as the set of m-dimensional ((a; + 1) X -+ X (@, + 1))-tensors of “rank 1”
(admitting we know what “rank 1”7 means for a generic tensor). For more details (but not complete
answers) on the problem of finding this typical rank we refer to [CGG1]. We will come back later
to this example.

The following analysis is from [Ch].

Let X C PY be a non-linear, reduced, non-degenerate projective variety, let P € PY \ X be a fixed
point of PY and A, B € X. Let also p : X — P¥~! be the projection of X from P to a generic
hyperplane of PV. Now if P €< A, B >, it is clear that p(A) = p(B), i.e. if P € Sec;(X) ~ X
than the projection p is not injective. The viceversa is obviously true. This proves the following
proposition.

Proposition 1.5.3. Let X be a projective variety of PN and p : X — PN~ the projection of X
from a generic point P ¢ X to a generic hyperplane, then p(X) ~ X if and only if P ¢ Sec;(X).
This result is equivalent to the following statement: p(X) ~ X iff the typical rank s is bigger then
2.
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If we iterate this idea we obtain that if P ¢ Secy(X) and if A, B,C € X are three independent
points of X, they remain independent after the projection.

Proposition 1.5.4. If the typical rank of a projective variety X C P is bigger than 3, then the
projection p : X — PN~ from a generic point P ¢ X preserves the linear independence of any
three points of X, i.e. p(X) has no new trisecant lines.

One can generalize.

Theorem 1.5.5. The typical rank s of a projective variety X C PV is the mazimum integer such
that the projection p : X — PN~ from a generic fived point P € PV ~ X to a generic hyperplane
preserves the independence of elements of a set of s points of X.

We want to study the problem of determining the dimension of (s — 1)-secant varieties of an
n-dimensional projective variety X C PV.
Let X¥:= X x -+ x X, Xy C X be the open subset of regular points of X and Us_;(X) be the
—_—

subset of X* deﬁnedS as
Us—1(X)=A{(P,...,Ps) € X*°| P, € XoViand the P,’s are independent}.
Therefore for all (Py,...,P,) € Uy,_1(X) the span < Py,..., P, > is a P51,

Definition 1.5.6. The (s — 1)-abstract secant variety of X is the incidence variety:

AbS*HX) = {(Q,m) € PV x U, 1(X) | Q € 7}

The dimension of the variety AbS*~1(X) is
dim(AbS* (X)) =n(s — 1) +n+s— 1.
With this definition we can consider the usual projection
p1: AbSSTHX) — PV,
the (s — 1)-secant variety of X is just the image of the map p;:
Secs_1(X) = Im(py : AbS*—1(X) — PN).

Now, if dim(X) = n, it is clear that, while dim(A4bS* (X)) = ns + s — 1, the dimension of
Secs_1(X) can be smaller: it suffices that the generic fiber of p; has positive dimension to impose
dim(Sec, 1(X)) < n(s —1)+n+s— 1. So it is a general fact that if X € PV and dim(X) =n
then:

dim(Secs—1(X)) < min{N, sn + s — 1}.
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Definition 1.5.7. A projective variety X C PN of dimension n is said to be (s — 1)-defective if
dim(Secs_1(X)) < min{N,sn + s — 1} and 0, 1(X) := min{N,sn + s — 1} — dim(Secs_1(X)) is
called the (s — 1)-defect of X.

Example: A classical example of defective projective variety is the quadric Veronese surface:
dim(AbS* (15(P?))) = min{5,2 - 2 + 1} = 5 but dim(Sec; (v»(P?))) = 4.

1.5.3 Secant varieties of Veronese varieties and fat points

With this new point of view, it is not difficult to understand that if the variety X is precisely a
Veronese variety v4(P"), then Sec,_1(v4(P")) parameterizes sums of s d-powers of linear forms of
Klzg, ..., ).

As an easy consequence of this fact we have the following proposition that is another way to
attack the big Waring problem:

Proposition 1.5.8. The generic element of Sq = K|x, ..., Ts|a can be written as a sum of s d-th
powers of linear forms if and only if Secs_1(vg(P")) = PN~ with N = (";d).

What about the dimension of Secs_1(v4(P"))? The link between the big Waring problem and
the secant variety of Veronese variety shows that the differential of the map ¢ defined in (1.1) gives
the parameterization of the tangent space to Secs_1(v4(P™)) at a point on < Pj,..., P > where
each P, has as representative prime ideal p; = (L;) C S with L; € Sy for ¢ = 1,...,s. So the
problem can be rephrased in terms of Hilbert functions of 2-fat points as follows:

Theorem 1.5.9. If vy s the d-uple Veronese embedding of P" into P("i) " and pi C S =
Klxg,...,z,), i=1,...,s, are prime ideals of points Py, ..., Ps, then

dim(Sec,_1 (va(P™))) = H (L d) 1

Corollary 1.5.10. The (s — 1)-secant variety of the d-th Veronese variety of p("i)- fills up the
whole P("a%)~1 if and only if 3N --- N2 ={0}.

Thanks to Alexander Hirschowitz’s Theorem (see 1.4.12), Theorem 1.5.9 allows us to know the
dimension of Sec,_1(v4(P™)). If we try to compute dim(Sec,_1(v4(P"))) in an heuristic way, we have
to
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S
A\

e consider an s-uple (Py, ..., P;) € Ir/d(IP’") X +oe X I/d(IP’"S = (vg(P™))® (then dim(vy(P™))* = ns);

e consider s generic points of P" (they span a P¥~! C ]P’<njird)_1);

so we expect that dim(Secs_1(v4(P"))) =ns+s—1 unlessns+s—1> (";d) — 1 where we expect

n+d

that Secs_1(vq(P")) = P("i)~1, In other words

expdim(Sec,_; (vg(P")) = min { (" ; d) 1, (n+1)s — 1} = dim(AbS*(vy(P™))).

Now the Alexander Hirschowitz Theorem tells that the dimension of the s-secant variety to the

Veronese variety is not always the expected one ad we will be able to list all of them:

Theorem 1.5.11. (via Alexander-Hirschowitz) If X = Secs_1(v4(P")), for d > 2. Then:

dim(X) = min { (n jz_ d) —1,s(n+1) - 1}

except for:
e d=2,n>2 s<n;
ed=3,n=4,s=17,(0=1);
ed=4,n=2,s=5, (0=1);
ed=4,n=3,s=9, (6=2);
ed=4,n=4,s=14, (§=1).

Proof. Cases with d > 3 come directly from 1.4.12. The case d = 2 is classically known, and a

proof can run as follows.

For all s < n we should have (";“2) — s(”zl) quadrics through s 2-fat points. Consider the P*~! con-

taining the s simple points; there are (n— s+ 1) linear forms through it, let them be Ly, ..., L, 1.
Then L2, LyL,,...,L?_, ., are quadrics in p? N--- N p? and they are ("5*7) in number, which is
always bigger than (”;2) — s(”zl). ]
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Chapter 2

Algebraic generalization

2.1 Definition of canonical forms

We have seen how determining the Postulation of s double fat points in P can solve the big Waring
problem and compute the dimension of the (s—1)-secant variety to the Veronese variety. If we study
the postulation of other zero-dimensional schemes, we will be able to solve more general problems.
In this section we want to study some known results in terms of the algebraic generalization of
the big Waring problem and to describe some varieties related with this algebraic problem. Let us
consider the following question:

“Which is the least integer G(d) such that the generic element of K|xy,...,2,|s can be

written as
F:Nl—l--"—l—Ng(d) (2.1)
where each N; = Ml(f]).(l) e Mlgg(k) and Ml(fj).(l), o M,i?;(k) belong to K|z, ..., %,);a),
., Klxo, ..., an]j), respectively?”

Definition 2.1.1. We will say that (2.1) is a “Canonical Form” in Klxo,...,x,]q if the generic
element of Klxo,...,x,lq can be written as F' = Ny + --- + Ny as above.

Example: For the proves of the following three examples see [ER).
1. If Q1,Q2, Q3 € K|[zo, 1, T3)2, then F = Q1Qs + Q3 € K[z, z1,72]4 is a canonical form;

2. if Ly, Lo, L3 € K[z, 1, T2]1, then there exists ¢ € K such that F = L3+ L3+ L3 +cLyLoL3 €
K|[xg, x1, 25]3 is a canonical form;
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3. if Ll, ey LQS c K[l’o, e 7I2s—1]1 then F' = L1L2 + L3L4 +-- L23_1L25 € K[$0, e ,1325_1]2
is a canonical form.

With this definition the big Waring problem can be rephrased:

“If Ly,..., L, are linear forms of K|xy,...,z,|, which is the least integer s such that
the form F = L{ + .- 4+ L% € S, is canonical?”

We have seen that the geometric equivalence of the big Waring problem is:

“Which is the least integer s such that the (s — 1)-secant variety to the d-uple Veronese
embedding of P" fills up the whole p("a) 19

We have already defined (see Definition 1.5.2) the typical rank of a projective variety X C PV,
as the least integer s such that Sec, ;(X) = PV.

Consider F,N;, M{% € Sy = Klzy,...,w,]q defined as in (2.1), for i = 1,...,G(d) and | =
1,...,k. Let ¢ be the map defined as follows:

P(Sq)
(M- - My jn)]

where Zle j(1) = d. We define now a variety X as the closure of the image of this map:

X = Im(o). (2.2)

We will also say that such a X is the projective variety that parameterizes forms like the N;’s, i.e.:

k
n4d\ _ * .
X = {[f] € (P( ') 1) f = M) My, Mo € Klzo, . zaljo =1, kY j(l) = d}-
I=1
Therefore the form F' = Ny +- - -4 Ng(q) defined in (2.1) is canonical if and only if the (s —1)-secant
variety of X fills up the whole <P<n;d)_1) :

We will come back later on this problem. Now we do a little digression on the history on the
study of canonical forms.



Some known results on canonical forms

2.2 Some known results on canonical forms

The problem to check if a form is canonical or not is an old problem. Many mathematicians in the
past have tried to find ways to establish some criteria.

Looking at the references about the study of canonical forms, we found some interesting results
in following papers: [Du], [ER], [Gu|, [KR] and [Wak]. In the following tables we summarize
some of those. The tables are made in the following way:

in the first column there is the polynomial ring we are working in,

in the second column there is the degree of the form we are considering,

in the third column there is a not canonical (in Table 1) or canonical (in Table 2) form,
in the fourth column there is one reference.

In our notation L; and @); are always forms of degree 1 and 2 respectively.

When we write d,,,(n) = h, in the third column, we mean that the generic form in K[z, ..., Ty,
can be written as a sum of h + 1 n-th powers of linear forms.

The binary forms of degree 3 and 5 that are in Table 2 are all the possible canonical ones.

An “(S)” in the last column means that the corresponding result is due to Sylvester.

Table 1.
’ Polynomial ring \ degree \ NOT canonical forms \ references ‘
| Kn,z] | 2] L3 | [Wak] |
K|z, xo, 3] 2 L?+ L2 [Wak|
K[xq, 29, 23] 4 Li+---+ L} [ER|,[Wak]
| Klzy,...,x5) | 3 | L¥+---+L3 | [ER], [Wak] |
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Table 2.
’ Polynomial ring degree canonical form references
Klz1, 23] 2] =p>4 L+ + L +cli--- L7 [ER]
K[:El, IQ] d=2r+1 ZZI h; (X)LZ (X)Qriki [ER]
con h; € Ry,—1,> oo ki=r
Klx1, 23] 2j — 1 e (S) [ER],[Wak]
Kz, xo) 2nconn#l [ L3+ + L2+ 2Mm[?.. L2 [Wak]
K|z1, o) n LY +---+Lp, [Du]
[3]+1
Klx1, 29,73 1 L, (d3(1) = 0) [Du]
K[$17£L'2,(L'3] 2 L% + L% —+ L%, (d3(2) = 2) [Du]
K.]?l,xg,l‘g 3 L?+—|—L2, (d3(3):3) [Du]
K T1,X2,T3 3 L? + L% + Lg + CL1L2L3 [ER},[GH]
K T1,T2,T3 3 L1L2L3 —|— L4L5L6 [Wak]
Klzy,29,%3 4 Q1Q2 + Q3 [ER],[Du]
Kz, 22, 5] 5 LY+ + L3 [ER],[Wak],[Du]
K[.Il,l’g,afg] 2h L%h++L§l}2(h+3) + - [Du]
(ds(2h) > §h(h +3))
K[z1, 22, x3) n L111+"'+Lg(n+4)(n71)+1+"' [Du]
(ds(n) > t(n+4)(n—1)+1)
K[{I,‘l, (EQ,LL‘g,iC;;] 1 L7 (d4(1) = O) [Du]
Klxi, 29,23, 4] 2 L3+ 4+ L3, (da(2) = 3) [Du]
K[[L‘l, T, T3, .%'4] 3 LiLoLs+ LyLsLg [ER]
K[Il, o, X3, SE4] 3 L% =+ 4 Lg (S) [ER],[Wak],[Du]
Klzy, 22, 23, 24] 3 Z?:l L} +6 Zf}:] ApLqLiyLs [Gu]
{p.q,m sy ={1,2,3,4}
Vp € {1,2,3,4}
Klzq,...,z4] with even ¢ 2 LiLy+LsLy+---+ Ly_1L, [ER]
Klzi,...,2q4 1 L, (dys(1) =0) [Du]

2.3 Join variety

The problem of canonical forms can be generalized with respect to (2.1). Suppose that N and M
are two forms of S; such that the projective varieties X and Y parameterizing forms like N and M
respectively are two different varieties. A form F' = N + M is canonical if and only if the projective

variety parameterizing forms like N + M fills up P("i)=1. Such a variety is called “Join variety”
of X and Y (if X =Y the join variety is the first secant variety of X).
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Let X, Y C P" be two disjoint proiective varieties and let G(k,n) the projective Grassmannian
of subspaces of P" of dimension k. Let us define j as:
j:XxY — G(1,n)
(P,Q) — <PQ>
Remark: If X NY # () then j is a rational map: j: X XY --» G(1,n). The image of this map is
the closure of the locus of lines PQ) with P € X, QQ € Y and P # Q.

Definition 2.3.1. The image of the map j defined as in (2.3) is the “Variety of lines joining X
and Y ” and it is denoted by J(X,Y).

(2.3)

Definition 2.3.2. The “Join of X and Y7, denoted by J(X,Y) C P", is closure of the union of
all the lines L € J(X,Y).

We can observe that J(X,Y) is a subvariety of the Grassmanian, and J(X,Y) is a subvariety
of P (for details see [Harr]).

This is just a digression because we are interested in the case of forms whose geometric associated
problem is in terms of secant varieties.

2.4 Inverse Systems

In the previous chapter we have introduced the concept of “Inverse Systems” that gave a way of
solving the big Waring problem and, more generally, of finding the dimension of all secant varieties
to the Veronese variety. This procedure can give some results also in a general case. Suppose that
X is a projective variety of dimension n that parameterizes forms like F' € K|z, ..., x,]qs i.e. X is
the set of all classes of forms [f] in n + 1 variables and of degree d for which there exists a change
of coordinate ¢; : K"t — K™% such that ¢(f) = F. Then Secs_;(X) parameterizes all forms
that are linear combinations of s elements of X, i.e. if there exist [Fy],...,[Fs] € X such that
f=F+---+ Fs then [f] € Secs_1(X) . Now if we are interested in the dimension of Secy_1(X)
the most natural thing is to study the affine dimension of its tangent space. If we know explicitly
the form F we can apply the same procedure we used in the paragraph 1.1 in order to compute the
elements of Tiz(Sec,_1(X)). Now if it is possible to find a projective scheme Z with representative
ideal I(Z) C Klyo, - - - ,ys] whose inverse system is, in some degree d, the space Tif(Sec,—1 (X)), it
is sufficient to compute the postulation of such a scheme Z in order to compute the dimension of

Secs—1(X):
H(Z,d) = dim(Sa) — dim(T(Z)) = dim((1(Z) 1)) = dim(T}(Sec, 1(X))).

This procedure seems to be very complicated but in many cases it is easier to compute the projective
scheme Z such that (I(2));" = Tjy(Secs_1(X)) rather than to compute directly the dimension of

Ty (Secsr (X)),
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2.4.1 An example of how to use apolarity

We have seen that the problem (2.1) is equivalent to find the least integer G(d) such that the
(G(d) — 1)-secant variety to the variety X defined in (2.2) fills PV, with N = (":;d) -1
Suppose now we fix s points [fi],. .., [fs] of X; the question:

“Is F = fi1 +---+ fs a canonical form of K{zo,...,x,]q?”
is a “stronger” question than:
“is Sec,_1(X) equal to PV?”.

Since [f1],...,[fs] € X are fixed, then F' is canonical if the linear space V' =< [fi],...,[fs] > is
equal to PV. Clearly if V' = PV then also Sec, 1(X) = P¥ because V' C Sec,_1(X), but the least
s € N such that the fixed F' € K|z, ..., z,|q is canonical could be bigger than the least G(d) such
that Secg(q)-1(X) = PV,

Example: Let L; and @, for i = 1,...,s, be linear and quadratic forms of K|xg,z1, x5, respec-
tively; for which s the form F' = L{2Q, + - - - 4+ L% 2(Q, is canonical?

It is not very difficult to find out that there exist Py, ..., P, € P? such that the degree d part
of the representing ideal I(X) of the O-dimensional scheme X = (P,..., Ps;3,...,3) has inverse
system: < LY72Qy, ..., L¢2Q, >.

12
1,...,s, then Vs > s(d) the form > 5, L{72Q; is canonical except for

PI'OpOSitiOH 2.4.1. ]f 8<d> = "W-‘; Lz € K[l’g,xl,l’g]l and Qz € K[SL’Q,Q?l,I‘Q]Q fO’/”i =

1. d=1,2, when s(d) = 1;
2. d =3, when s(d) = 3;
3. d =6, when s(d) = 6.

Proof. This proposition is proved in [Hi]. We show why these three cases are not expected.

1. Ifd=1,2,if p C S = K[, z1, 7] is the prime ideal associated to P € P?, then H(S/p>, 1) =
H(S/0",2) = 0

2. If d = 3 and s = 2 we expect that H((Py, Py;3,3),3) is equal to he Hilbert function in degree
3 of 6 generic points of P2, that is zero. This is false because if [ = 0 is the equation of
the line < P, P, >C P? and 1, gy C K|[xg, x1, 5] are the prime ideals associated to Pp, Py
respectively, then I* € (p3 N ©3)3.
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3. If d =6 and s = 5 we expect that H((Py,..., P5;3,...,3),6) = H((P1,..., P3;1,...,1),6)
0, but if C = 0 is the equation of the conic passing through Pi,..., Ps and @1,...,05 C
K|xg, x1, T9] are the prime ideals associated to Py, ..., Ps € P? then C* € (p3 N --- N pd)s.

]

Example: The study of the Hilbert function of a projective scheme X = (P,..., Ps;n,...,n) C P?
of s n-fat points on P? leads to the study of the canonicity of the form F = L¢™"N; +--- L¢"N, €
K[xg, 21, 29]q where L; and N; are ternary forms of degree one and n respectively. The problem
is not completely solved because it is only possible to know the expected dimension of X but the
exceptions are not all known yet (there is a conjecture about that, but we will consider this later).

Remark: If s(d) = {%-‘, L; € Klxg,x1, 7)1 and N; € K|xg, 21,22, for i = 1,... s, then

Vs > s(d) the form >°°_, L9™™ N, is canonical, if and only if the Hilbert function of Proj(K [z, 71, 72] /(7N
-+ N ")) has the expected dimension in degree d.

2.5 Inverse Systems and Canonical Forms

In this section we want to work out some examples which show the use of Inverse Systems to
compute Canonical Forms. We will look at some particular cases in degrees 2, 3 and 4.

2.5.1 Degree two

Let L;, M; be generic linear forms of Klxg,...,x,] fori=0,...,2s — 1 and j =0,...,2k — 1; the
possible kinds of forms we can find in K|z, ..., z,|s are of the following three types:

L L+ -+ L2,
2. LoLy + -+ + Los_9Lys 1,
3. MoMi+ -+ Moy_oMoy_q + L§ + - - + L2.

The first case has been throughly analyzed in the previous chapter via the study of the (s)-
secant varieties to the Veronese varieties v5(P™) (see Theorem 1.5.11).

The second case corresponds to Sec(,_1)(Splity(IP")). We will show in Section 4.1 that it is also the
(s — 1)-secant variety to the tangential variety to the Veronese variety vo(P™); Their dimensions

can be found in [CGG2], Proposition 3.3.
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For the third case we need the notion of Join variety introduced in Section 2.3: the variety that
parameterizes forms like

Fo=L}+ -+ L*+ LyLoo+-+ Ly 1Ly
is
J (Secs(l/g(]P’”)), Sec%_l(SplitZ(P")D .
Proposition 2.5.1. If s <n and n — s is even, then
F=L3+ -+ L>+ Loy Leo+ -+ Ly 1L, (2.4)

1 a canonical form.

Proof. We denote with X the variety J <Secs(u2(]Pm)), Sec%fl(SplitZ(IP’"))) and with W the affine
cone over the tangent space Tp(X) at a smooth point P = [L3+- -+ L%+ Ly Leio+--+Ln 1L, €

X. It turns out that W =< LySy,...,L,S1 >= Sy, then X = P(n;Q)_l, so the form (2.4) is
canonical. n

We want to see what happens if we eliminate some terms from (2.4).

Without one square

Along all this section we will always assume that (n — s) is a positive even integer. Let us take out
from (2.4) the first term L32; we obtain the form:

FO,s,n = L% +o Lg + Ls+1Ls+2 +- 4 Ly Ly (25)
which is parameterized by
Tosm = J (Secs_l(ug(IP’”)), Sec%_l(SplitQ(P”)) .

Then the affine cone W on the tangent space Tp(Jys,) at a smooth point P = [L} + -+ + L% +
Ls+1Ls+2 + -+ Ln—an] € JO,s,n 18

W =< LlSl,...,Ln51>.
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Since the number of forms that appear in F' is less then n 4+ 1 we can choose L; € S; to be x; for
alli=1,...,n. So theideal I C R = K|[yo, ..., yn] such that (I"!); = W turns out to be:

I= (yg) )
hence

@ﬂ%wgzmmmo—1:<";3-n

but

eXpdim(J0757n):min{N—l,sn—i—s—l—i—?nn;S—|—n_s—1+1}:

_min{N—l,n2+n;S—l}

with N = ("}?).
Observe that min{N —1,n? + 242 — 1} =N—1forall s >—n?+2n+2, but (—n*+2n+4) <0
for all n > 3, so, since s > 0, min{N —1,n%+ ”TJ“S — 1} = N —1 for all n > 3. Therefore for n > 3
the variety expdim(Jys,) = N — 1 = dim(Jys,) + 1.

Hence we have proved the following:

Proposition 2.5.2. If0<s<n—2and (n—s) € Z" is even, then

dim (J <Secs_1(u2(IP’”)), Sec%fl(SplitQ(IP’”)D) = (n ;_ 2) -2

and

J (J <Secs_1(u2(IP’")), Sec%fl(SpliQ(P”)))) = 1.

General case

Assume for all this section that 0 <i < s < j —2 < n — 2 and that both (n — j) and (j — s) are
even positive integers. Consider a form obtained from (2.4) by taking out the terms L2, ..., L? and
LS+1L5+2, e ,Lj,lei

-

Fisjn=L3+ + L3+ L3+ + L2+ LaLoa+ -+ L1 L+ LipaLjta + - + La_1 Ln
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Such a form is parameterized by
Tisi = (Secs,i,l(yg(]P’”)), sec%j_1<spht2(w>>> . (2.6)

The affine cone W over the tangent space at a smooth point P = [Lg+---+ L? + L7 | +---+ L2+

—

LoiLowo+ -+ L, 1L+ Liy1Ljso + -+ + Ly_1 L] of this variety is
W =< Li+151, c. ,LS,S'l, Lj+1Sl7 R ,Lnsl > .

Again, since the number of independent forms that appear in Fj;;, is less than the number of
variables, we can choose each L; € Klxo,...,x,]1 to be x;, hence the ideal I C R such that
(I7h)y =W is

I = (yOa"-7yi’ys+1,-~ayj)2)
then

while

expdim(.J; 5 ;) = min {N —L(s=in+(s—i)—1+nn—7j)+ % -1+ 1} :

Observe that min { N — 1, N —1,(s —i)n+ (s —i) — 1+ n(n — j) + %32} = N — 1 if and only if

n>14i4+j—s+/(s—1—i—j)2=2s+2i+j+2:=n(i,s,j). (2.7)

The defect 0 of J; 5, is

5(Ji,5,j,n):mm{N_L(s—i)m(s—z)—1+n(n—j)+%j}—(N— (¢+1+]2'—5+2) _1)

B (”jg”?’) if n > n(i,s,7);
S\ ns—ni—nj—n+2j+ij —is— js+ 3i_35+n2;i2+j2+82 +2 ifn <n(is,j).

We can state the following:

Proposition 2.5.3. I[f0<i<s<j—2<n—2and, (n—j) and (j —s) are even positive integers

and n(s,i,7) is defined as in (2.7), then
n2\  (i+j-s+3)
2 2

dim (J (Secyi-1(v2(P"), Secus_, (Splity(P")) ) )
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and the defect is
(75 ifn>n(i,s, j);
ns —mi—nj —n+2j +ij —is — js + EBHHTETES |9 yrn < n(i s, 5).

0(Jisjm) = {

Example: Suppose that ¢ = 0, then
Fosjn = L% +-+ L? + Loy Lgyo+ -+ L1 Lj+ Ljt1Ljyo-+++ Ly 1Ly,

the value n(i, s, j) defined in (2.7) is:

n(0,5,7) =1 —s+j+ /3 —4s — 2js + 3j + 52 + j2

and
3_‘78_1_%’ if n >n(0,s,7);

ns—nj—n+2j—js+w+2, if n < n(0,s,J).

0(Josjm) = {

e [fi=0,s=1and j=2h+12> 3, for h € N, then

FO,l,j,n - L% + L2L3 + e + Lj_le + Lj+1Lj+2 + te + Ln_an,

n(0,1,5) = j + V72 +j
and
| 4 3 if n > n(0, 1, 5);
L—nj+j+"5 ifn <n(0,1,5).

0(Jo14n) = {

—Ifi=0,s=1,j=3andn=2k+1>5, for k € N, then 6 < n(0,1,3) < 7, the form
we are considering is
Foi3n = L3+ LyLs+ -+ L, 1L,

and the defect 0(Jy1,3,) is

10, ifn>T;
O oan) = { 6 ifn=>5
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—Ifi=0,s=1,j=5andn=2k+12>7, for k € N, then 10 < n(0,1,5) < 11; the form
we are considering is
Foi5n = L3+ LgLy+ -+ L,y Ly,

and the defect of Jy 15, is

21 ifn>11;
6(Jo,1,5.n) :{ 2437 I,
% —b5n, if n <10.

Therefore:

x if n = 7, then F0717577 = L% + L6L7 S K[Qfo, e ,ZL’7]2 have 5(J0717577) = 8.

x Ifn= 9, then F0717579 = L% + L6L7 + L8L9 S K[Qfo, e ,xg]g have (5(J071,579) = 14.

x Ifn 2 11, then 5(']0,1,5,71) = 21.

—Ifi=0,s=1,j=7andn=2k+12>9, for k € N, then 14 < n(0,1,7) < 15, the form
we are considering is
Forrn = L% + LgLg+ -+ Lyp_1L,

and the defect 0(Jo17,) is

36, if n > 15;

0(Jo1,7,n) = { 2465 -
n3 —Tn, ifn <14

Therefore:
* if n =09, then Fyy79 = L} + LgLg € K[z, ..., xq]z have §(Jy179) = 10.
x Ifn =11, then Fy 1711 = L2+ LgLo+ LigL11 € K[wo, ..., 711)2 have §(Jo17.11) = 16.
x If n = 13, then Fyi713 = L? + LgLg + LigL11L1aL1z € Klzo,...,x13)2 have
8(Jo1713) = 26.
« If n > 15, then 6(Jy17,) = 36.

Example: Suppose that ¢ = 1, then

—

Flojm=L3+ -+ L+ Ls+/1L\s+2 +o+ LjaLj+ LjaLjo+ -+ Ly Ly,
the value n(i, s, j) defined in (2.7) is

n(l,s,j):2—8+j+\/8—6s—|—5j+32—2j3+j2

and 4 2 2
S( o) = 4 05T TR gy 2 LS5
T ns— 24— nj + 3 — js + TEEEES it <n(l,s, ).
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Example: Suppose that i = 2, then
Foujn=L3+ + L2+ Lo Lo+ + Ly L+ Lia Lo+ + Ly L,

the value n(i, s, j) defined in (2.7) is

n(2,5,j) =3 —s—+j+ /15— 85+ 7j + 52 — 2js + 52

and

. 95 —9s+752+s5> : .
10—js+%, if n>n(2,s,7);

ns—3n+7—nj+4j—js+%, if n <n(2,s,7).

5(J2,s,j,n) = {

Example: Suppose we want to compute the defectivity of J(Secsq(v2(P*?)), Secio(Splity(PE))). We
have that n = 80,] =54 and s =41 +7/, hence in,41+i,54,80 = L?Jrl—'—' : ‘+L4211+i+L55L56+' . '+L79L80.
N'OW7 27 < n(z,41 + 1, 54) <28=n=80>28 = 5(Ji,s+i,54,80) = 120.

2.5.2 Degree three
For the degree 3 case we study in this section two different kinds of forms:

1. in the first case F' € S3 = K|z, ..., x,]3 is a form involving exactly n+1 linear forms without
any repeated one, i.e. if 1 <a+1<b<n—2and (b— a) even, then

F=Ly+ -+ L 4+ L*Lgy1+- -+ L} oLy 1+ LyLyy1Lyyo+ -+ Ly oLy 1L, (2.8)
where L; are all independent linear forms for ¢ = 0,...,n.
2. In the second case F' € S3 is such that
F = Lo(L1Ly+ -+ Los1Ly)

where s < n, s even and L; € S; are all independent.

Cubic forms involving exactly n+1 independent linear forms and without any repeated
term

In the list below we enumerate all the cases we have studied for the first kind of forms. Consider
the map

¢251X"'X51 — Sg
—_——

n+1 (29)
(Lo,...,Ln) — F,
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where F' is as in (2.8) for some a,b € N such that a < b <n — 2.

Let X be the projective variety obtained as the closure of the image of the map ¢ defined in
(2.9).

For all this section the space W will be the affine cone over the tangent space to X at a smooth
point P=[L3+ -+ L3 |+ L2Lo1+ -+ L} oLy 1+ LyLysiLyo+ -+ Ly oL, 1L, € X.

Since the number of linear forms involved in (2.8) is exactly n+ 1 we can suppose, without loss
of generality, that each L, = x; € K|xg,...,z,]; fori=0,...,n.

For all the cases we are going to list below, the ideal I C Rl[yo, ..., y,] will be the ideal such
that ([71)3 =W.

e F=L3+ - -+L3

- W =<1L%S,...,[2S; >

— I = (Yiyyr),
withi#j,i 4k, j#kandi,j,k=0,...,n
e F=L3+ .- +L3 ,+L2 |L,

— This case makes sense if and only if n > 2
- W =< L(%Sl, - 7L37,—2Sh Li_lSl, L, 1L,5 >
— I = (Y3, YnYi> Y YkYn),

with: ¢ =0,...,n —2;
{jah}v{jvk}v{hak}#{n_17”} and]#kaj%}%k#h

F=L3+---+L3 ,+12 ;L, »+L2 |L,
- W =< LgSIJ cee 7L$Lf4517 Ln—3Ln—QSl7 L72173517 Ln—anSh L121—151 >
— I = (Yo Yo, Ui _o¥is Yali> YnYrkL),

with: i #n—3,n—2and j #n,n — 1,
{hak}7{h7l}7{k7l}%{n_?’vn_2}7{n_]—7n} andh#ku h#lu k%l

F=L2L, +---+L2 L,

— This case makes sense if and only if n € NT is odd
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- W =< L0L151, L%Sl, ey Ln—anSI; Li,lsl >
— I = (Y1 Yars1Yio Yaloye),
with: ¢ # 2k + 1 fork:O,...,”T_l,
{a,b},{a,c},{b,c} # {2h,2h + 1} for hzO,...,”T’l, and a #b,a#c,b#c

— We will see in the next chapter that the variety X which parameterizes forms F =
L3Ly + -+ + L2_,L, is the (" — 1)-secant variety to the tangential variety to the
Veronese v3(P™).

o F = L(3) + -+ Li73 + Ln_an_an
— This case makes sense if and only if n > 3
- W =< L(zjsla o 7L%73SI7 Ln—anSh Ln—2LnSI7 Ln—2Ln—ISI >
= I = (Yn—2: Yn—1> Yn» Yor—2¥is Yn—1Ys> Y s Ya¥sle),
with: 4,7,k #n,n—1,n— 2,
{&76}7{aac}7{b>c} 7é {n_ 27n_ 1}7{n_ 2,%},{71— 17”} and a 7é b7 a 7A Cy b7é ¢
F = Lg +-+ Lf;_ﬁ + Ly 5Ly 4Ly 3+ Ly oLy 1Ly,

— This case makes sense if and only if n > 6

- W =< L(%Sl, o ,Li_ﬁSl,
Ln74Ln73Sb Ln75Ln73Sb Lnf5Ln74Sl> LnfanSb Ln72LnSl> LanLnflsl >

— I = (U}, Y2 5Yar Yo _s¥bs Yo3Yer Yo oYds Yo—1Yer Yol s Y5YnUk),

with: i =n—>5,...,n,

a,b,c#£#n—5n—4,n—3,

de, f#n—2,n—1,n,

{4, h}, {7, k}, {h, k} #{n—-5n—4},{n—-5n—-3},{n—4,n—-3}{n—2,n—-1},{n—
2,np,{n—1,n}and j#h,j#k, h#k

F = LoL Ly + -+ Ly 2Ly 1Ly

— This case makes sense if and only if n + 1 = 3k.

— W =< L1 LSy, LoLa Sy, LoLa S, - .., Lo Ly 151, Ly—2 L, S, L1 L, Sy >
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o ' =

F—

F =

I = (yi, yfyj, Ya¥ble),

with: 0 < h,i < n,

ifi=0mod3=j#i+1,71+2,

ifi=1lmod3=7#i—-1,i+1,

ifi=2mod3 =7 #i—1,i—2,

{a,b},{a,c},{b,c} # {3a,3a+ 1}, {3c,3ac + 2}, {3a + 1,3cc + 2} for 3a =0,...,n — 2
and a #b, a# ¢, b# ¢

We will show in Chapter 4 that the projective variety X that parameterizes forms F' =
Lol Lo+ ---+ L,_5L, 1L, is the ("T“ — 1)-secant variety to the variety that we will
call the Split variety Split,(IP").

Lg + -+ Li_5 + Lﬁ_4Ln—3 + Ln—ZLn—an

This case makes sense if and only if n > 5

W =< L%‘S’l; cee 7L%75517 Lnf4Ln73Sh L72174517 Ln72Ln71517 Ln72LnSb LnfanSI >
I = (U3, Y2 _s¥ar Y2_o¥bs Yo 1Yer Y2Ya, YnYi k),

with: i =n—-3,...,n

a#n—4,n—3,and b,c,d#n—2n—1,n

{h, i}, {h,k}, {j, k} #{n—4,n -3} ,{n—2,n—1},{n —2,n},{n — 1,n} and j # h,
J#Fk, h#k

Lg 4+ .4+ Li_,? + Lﬁ_GLn_5 + Lﬁ_4Ln_3 + L, 2Ly 1L,

This case makes sense if and only if n > 7.

W =< L(%SI; .o ,Liqsl, L, _6L,_551, LZ,651, L, _4L, 351, Li7451,
Ly 9Ly 151, Lpy_oLySi, Ly—1L,51 >

I = (Y}, Yn—5Yar Yn—3Ybs Yn—2Ye: Yn—1Yds Ynes YnYs k),
with: i=n—-5n—-3,n—-2,n—1,n,
a#zn—5n—6b#n—4n—-3,c,d,e#n—2,n—1,n,

{h,7},{h,k},{j, k} #{n—6,n—=5},{n—4,n—-3},{n—2,n—1},{n—2,n},{n—1,n}
and h#£j, h#k j+k

Lng +oe 4+ Li74Ln—3 + Ln—2Ln—1Ln
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This case makes sense if and only if n > 4 and n € N even.
W =< L0L151, L%Sl, ey Ln_4Ln_351, L%74Sh Ln_QLn_lSl, Ln_gLnSl, Ln_anSl >
I = (U}, Y Yn, YaWb¥e),

with: 1 =n—2,n,2k+1for k=0,...,5 —1;

ifj<n—-3=7=2k+1,h#j—1,

ifj=n—-2=h#n-—1,n,

itj=n—1=h#n-2n,

ifj=n=h#n-2n-1;
{a,b},{a,c},{b,c} # {2k, 2k +1},{n—2,n—1},{n—2,n},{n—1,n}for k=0,...,5 -2
and a #b,a#c, b#c

The projective variety that parameterizes forms F' = L3Ly+---+L? L, 3+L, 2L, 1L,

is J (Se(:(n;z_l) (T (v3(P™))), Split3(IP’”)> where T'(v3(P")) is the tangential variety to
2

V3(]Pm).

o F= Lg +-+ Lf;_s + Lﬁ_7Ln—6 + Ln_sLy_4Lly 3 + Ly 2Ly 1Ly

This case makes sense if and only if n > 8.

W =< L3S1,..., L2 ¢S1, Ly 7Ly 651, L2 751, Lyn—5Ly—451, Ly 5Ly 351, Ly—aLn 351,
Ln—QLn—ISh Ln—QLnSh Ln—anSI >

I = (Y2, Y2 _6Yar Yo 5Ybs Yo aler Yo sYds Yo —oYer Yo 1Y fs Yobg, YiUnYk),
with: ¢ > n — 6;

a#n—"7n—06bc,d#n—-5n—-4n—-3,¢e f,g#n—2,n—1,n;

{j,h}, {7, k}, {h,k} Z{n—6n—-T}{n—-5n—4},{n—5n—-3}{n—4,n—-3},{n—
2n—1}{n—2,n},{n—1,n}and j#h, j £k h#k

F = L?) + Lr31_10 + erl_gLnfS + Lr21_7Ln76 + Ln75Ln74Ln73 + LanLnfan

This case makes sense if and only if n > 10.

W =< LﬁSh ce >L721_1051, Ln_gL, g5, L?L_gs’la Lyp_7L, 651, Li_'rsla
Ln—5Ln—4Sh Ln—5Ln—3517 Ln—4Ln—3517 Ln—QLn—lsla Ln—ZLnSh Ln—ansl >

T = (Y3, Y2 Vs Y2 6Ubs Y2 Yo Yo s¥ds Yo sYer Y2 oUts Y2 1Ygs Y2 U, YjUkYL),

with: i=n—-8n—-6,n—5n—-4n—-3,n—2,n—1,n,
a#n—9n—8 b#n—"T7n—06;
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c,d,e #n—5mn—4,n—3,

{, k3,0, L4k £A#{n—-9n—-8}{n—7,n—6},{n—5n—4},{n—5n—3}{n—
4n—-34h{n—-2n—-1}{n—-2n},{n—1,ntand j#k, j#I, k#I

F= Lng + -+ L121_7Ln—6 + Ln—5Ln—4Ln—3 + Ln—ZLn—an

— This case makes sense if and only if n > 7 and n € N is odd.

- W=< LOLISL L(Q)Sla s 7Ln—7Ln—6Sh Li_7sla Ln—BLn—4SIa Ln—5Ln—351a Ln—4Ln—37
Ln—ZLn—lsla Ln—2Ln51a Ln—ansl >

— I = (Y2, 2Yj Y2 _5Yas Yo a¥bs Yo 3Yer Yo oYds Yo 1Yes YoYU s YmUrlg)

with: i =2k +1,n—5n—3,n—1;for k=0,..., %52,
[=2h+1,j#l—1and h=0,..., %55

a,bc#En—5n—4n—-3;d,e,f #n—2,n—1,n

{m,r}, {m,q},{r,q} #{n—-2,n—-1}{n—-2,n},{n—1,n},{n—-5n—-4},{n—-5n—
3h.{n—4,n =332k, 2k + 1} for k=0,...., %5 and m#r, m#q, r # ¢

— The projective variety X that parameterizes forms F = LZL; + --- + L2 L, ¢ +
LosLnaLns + Lol 1Ly is J <SeC(D_1)(T(l/3(IP’”))), Secl(Sphtg(]P’”))>.

o F = Lg + -+ Li,a,3 + L2 Ln—a—l + Ln—aLn—cx—i-an—a—l-Z +oo 4+ Ln—ZLn—an

n—a—2
— This case makes sense if and only if & > 2 and o + 1 = 3k.

- W =< L(Z)Sl, c ,Lz_a_?)Sl, Ln_a_QLn_a_lsl, L? Sl, Ln—aLn—a—l—lSly

n—a—2

Ln—aLn—a+2Sh Ln—a+1Ln—a+251> ey Ln—ZLn—lsla Ln—ZLnSIa Ln—anSI >
= I = (Y}, Yn_ 0 1Y) YnYk> YaUble),
with: t=n—a—1,...;nand j #n—a—2,na — 1;

h#k {hk}#{n—a—-2n—a—-1},{n—a+3n—a+3l+1},{n—a+3l,n—a+

3l+2} {n—a+3l+1n—a+3l+2}for [ =0,..., %2
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a#b,a#c b#c

ora,b,c<n—a—3,

or {a,b}, {b,c},{a,c} #{n—a+3ln—a+3l+1},{n—a+3l,n—a+3l+2},{n—

a+3l+ln—a+3l+2},{n—a—-2n—a—1}forl=0,...,9>
F= Lg +o +L§1—o¢—5 +L121—a—4Ln—a—3 +Lr21—a—2Ln—a—1+
+LnfaLnfoz+1Lnfa+2 + +Lnf2Ln71Ln

— This case makes sense if and only if n > a+ 5, a+1 =3k and a > 2.

2
— W =<L3S,...., L2, 551, Ly—o-aLln o35, na4517 Ly oLy 0151, L%, 551,
LTL aLn a—i—lSl;Ln aLn a-i-QSla n— oc+1Ln a+2517--- n— 2L 1517 n—QLnSb —1Ln51 >

— I = (yz s ykyjy yaybyc)7

with: i=n—a—-3n—a—-1,n—an—a+1,...,n;
k>n—a—-3,k#j,iftk=n—-a-3=j#n—a—-4n—a-3,iftk=n—a—-1=
j#En—a—2n—a—1,

{k,j} #{n— a+31n a+3l+1}, {n—a+3l,n—a+3l+2}, {n—a+3l+1,n—a+31+2}
forl =0,...,%=

a # b, a;«éc b%c

ora,bc<n—a-—>5

or {a,b},{b,c}, {a,c} #{n—a+3l,n—a+3l+1},{n—a+3l,n—a+3l+2},{n—

a+3l+1,n—a+3l+2},{n—a—2,n—a—1}{n—a—4n—a—3}forl =0,..., %2

F = L(2)L1 + -+ Ln a— 2Ln—a—1 + Ln—aLn—a+1Ln—a+2 + -+ Ln—ZLn—an

— This case makes sense if and only if n > a+2, a > 2, (n—«) is even and n—a+ 1 = 3k.

— W =< LoL1 51, L3Sy, ..., Ly—o-—2Lp—0-151, L% _ 2517

Ln aLn a—l—lSl)Ln aLn a—i—QSh n— a+1Ln a+2817'~‘ n— 2Ln 1517 n— 2Ln517Ln—1LnSI >
— 1 = (Y, Y5 YaWs¥e),

with: : >n—aori=2k+1for k =0,. ——1

1fh§n—0z—1:>h—2k:+1and]7£h 1, h

but ithn—a:>{h,j}7é{n—a+3k,n—a+3k+1},{n—a+3k,n—a+3k—|—
2} {n—a+3k+1n—a+3k+2}for k=0,...,%2 and h # j

{a,b},{b,c},{a,c} #{n—a+3kn—a+3k+1},{n—a+3kn—a+3k+2}{n—

45



Inverse Systems and Canonical Forms

o+ 3k +1n—a+3k+ 20 {2020+ 1} for k=0,...,%2 and [ = 0,...,%=2 — 1 and
a#b a#c b#c

The projective variety X that parameterizes forms F = L2Ly + -+ L2 oL, o1+
Ln—aLn—a+1Ln—a+2+' . '+Ln_2Ln_1Ln isJ (Sec(nfgflfl) (T(Vg(IPn))), SeC(QTH*Q (SplltS(]Pm):

o F— L(z)L]_ -+ L2L3L4 + 4 LanLnfan

This case makes sense if and only if n — 1 = 3k and n > 4.
W =< L§Sy, LoL1 S, LaL3St, LoLyS1, L3LySh, ..., Ly—oLy 151, Ly—2L,S1, Ly—1L,S1 >
I = (Y2, Y355 Yol YoYelds YelYg)

with: 1=1,...,n, 5 #0,1,

ifa=0mod3=b#a—1,a+1,

ifa=1mod3=b#a—1,a—2

ifa=2mod3=0#a+1,a+2,

c#d>2={c,d} #(2+3k,2+3k+1) fork;:(),...,”T_4

{ef}.{f, 9} {e, g} # {243k, 2+3k+1}, {243k, 2+3k+2}, {243k +1,24+3k+2},{0,1}
fork::O,...,"T_4
The projective variety X that parameterizes forms F' = L3L1+L2L3L4+- L, oL, 1L,

is J (T(z/g(IP’")), Sec(un ) (Splitg(P"))) .

Since no one of the previous ideal I C R is (0) we can conclude that no one of the forms F

written above is canonical.

We can summarize the long list of the previous pages as follows.
A degree 3 form F involving exactly n + 1 linear forms and without any repeated term can be

written as (2.8), i.e.:

F=Ly+ 4L} +L: a1+ -+ Ly yLy1 + LyLoyr Lyo + -+ 4 Lo Ly 1 L.

Then the affine cone over the tangent space to the projective variety X defined as the closure

of the image of the map ¢ defined in (2.9) at a smooth point P = [L3 +---+ L3 | +L?Loy1+---+
Lg_QLb_l + LbLb+1Lb+2 + -+ Ln_QLn_an] € Xis
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W =< LﬁSl, cey Liﬂsh Lish LoLai15, ... >Lgf251, Ly_oLy—154,
LyLyy1S1, Ly Lyy2S1, Lyy1 Ly 2St, ..o Ly—oLy 151, Lo Ly S1, L1 L, St > (2.10)
and the ideal I C R such that (I71)3 = W is

I = (Y}, Y3 Yn, Yiymyr)
with:

e i=0,...,m
or

i=a+2k+1
keZ
()S/.{;SIJ—GLT—2

j=a+2k+1
keZ
OSkSHT*Q

hetj—1
or

coms g £ b {G Ry # {b+3k b+ 3k+ 1}, {b+3k, b+ 3k +2}, {b+3k+1,b+ 3k +2};

j=b,.
k€Zik=0,... 002

e lmr<a-1;

or

{Im}, {l,r}, {m,r} # {a+2k,a+2k+1}, {b+3L,b+31+1},{b+3,b+30+2}, {b+3l+
1,b+ 30+ 2}, forl:oa-..,”_THandk::[),'”,b—a—l

2 I

and [l #m, [ #r, m#r.

Cubic form obtained as the product of a linear form and a quadric without repeated
terms
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Now we want to study the forms of type:
F = Lo(LlLQ + e+ L2571L2s) (211)

where L; are generic linear forms for ¢ = 0,...,2s and 2s < n.
How can we view the variety that parameterizes forms F? Consider the following two maps:
Qo ]P(Sl) X X ]P(Sl) — ]P)(Sl) X ]P)(SQ)

TV
2s+1

([Lol; [La)y -+ -y [Las]) = ([Lol; [LaLa + « -+ + Las—1 L))

and
ﬁ : P(Sl> X P(Sg) — P(Sg),
(L], 1Q) — [LQ].
Their composition turns out to be:
P(S1) x - x P(S)) 5 P(S1) x P(Ss) L P(Ss),

([Lo); [L12]S;+1 S Lesl) = ([Lols [LiLo + -+ - 4 Los—1Las|) +— [Lo(LiLa+ -+ Las_1Ls)].

The closure of the image of § o « is the variety parameterizing forms of type (2.11). We view
it as P" x Sec,_1(Splity(P™)). Which is its expected dimension? The dimension of Split,(P") is 2n,
then the expected dimension of Sec,_;(Splity(IP")) is min { (”;2) —1,2ns 4+ s — 1}; hence

2
expdim(P" x Sec,—_1(Splity(P"))) = min { (n;— ) —1,2ns+s—1+ n} :

Let W be the affine cone over the tangent space to P x Secs_1(Splity(P™)) at a smooth point
P =[Lo(LiLy + -+ Los 1Ls,)], and let I C R = K[y, .. .,yn| the ideal such that (I71); = .
The form (2.11) can be written as

F = LoLLy+ LoLsLy+ -+ LoLos_1Los.

Consider the variety Splits(P"). If n > 3 we can choose the forms Ly, L;, L; € K|z, ..., x,]; to be
xg, T;, xj respectively. We will see in Section 4.1.1 that if n > 3 then the ideal Iy; ; C R such that
(I5}:)s is the affine cone over the tangent space to Splits(P") at the point P = [LoL;L;] is

0,7,5
[O,i,j = (yga yfa y?) + (?/3»%2,%2)(917 e Y1, Ykt - Y1, Y41 - - >yn)+
+<y07 Yi,s yj)<y17 e Ui Yik 1y - -5 Yi—15 Y41 - - 7yn>2+
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3
F(Y1s Y1 Yty Y15 Yl Yn)”
Hence, since n > 2s, we can choose the forms L; to be x; for i = 0,...,2s; moreover we can

write the ideal [ as:
I'=1Tp12NIp340 N 1o2s-12s

If we compute it we obtain:

2s—1
T= (08 + W) Wasrn )+ Y, W Ui ) W Uit B G Uiy, - Yn)F
il2 = 12
(Yo, s Yas) Wast1s - Yn) + Z (Yis Yir1) W Yj+1) (Yres Yier1) +
L k=1,..., 25— 1
+ Z (Wi Yi+1) W) Y1) | (W2ssts -5 Yn) + (W2ss1, -, yn)*+
[i]2 :i[J;]ézj: (12
h,j=1,...,2s =1
+ > (ivirysyi4) | + (0)® + > (Yis Yir1) (Y, Y1)
lil2 = [il2 = [1]2 [il2 = [il2 = [1]2
iF# g i FE ]
i,j=1,..., 2s —1 h,j=1,..., 2s —1

Now the dimension of P x Sec,_1(Splity(P")) is dim(W) — 1 = H(R/I,3) — 1 that is ("}°) —
1—[2s+14+n—25+2s(n—2)+ (2s+1)(">, ") +8(5) +4(n —s)(5) + ("%, )], hence
dim(P" x Sec,_;(Splity(P"))) = 3s — 25 + 3ns — 1.
Therefore we can compute the defect ¢:

. _ 2__
25 —ns — 2s +n, if n > 4=l =T

nZJQFBn +2s% — 35— 3ns + 1, otherwise.

(P x Sec,—1(Split,y(P"))) = {

2.5.3 Degree four

For the degree 4 forms we study the general case of a quartic involving exactly n + 1 linear forms
but without any repeated term and the case of a quartic obtained as a product of a linear form
and a cubic which involves exactly n terms and without any repeated one. We will study also
the particular case of the forms that can be written as L3L3 + -+ + L%, L2 where L; € S for
t=20,...,2s and 2s < n.
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Quartics involving n + 1 terms and without repeated terms

We can work in the same way as we did for the case of degree 3 forms.
Let us consider the map:

¢ . \]P)(Sl) X oo X ]P)(Sl) — ]P)(S4)

e (2.12)
([Lols - [Ln]) = [F]
where F'is
F=1Lo+ -+ Lo+ LaLopa+ -+ Ly Ly 1 + LiLiy + -+ L2, L0+ (2.13)

+L2Lei1Leyo+ -+ Ly 3La—oLa1 + LaLat1LayoLavs + -+ + Ln_sLy_oL, 1Ly,

for0<a<b<c<d<n;(c—0b),(b—a)even; (d—c)=3aand (n+1—d)=40.

Let X be the projective variety obtained as the closure of the image of the map ¢ defined in (2.12).
Let W be the affine cone over the tangent space Tp(X) at a smooth point P = [F| where F is that
one of (2.13). Let also I C R be the ideal such that (I71), = W.

We observe that:

W =<L3S,....,L} S1,L2La1S1, L3Sy, ..., Li oLy 1S1, L} 55,
LyL3, 151, Ly Ly Sty .- Le—oL? 1 S1, L2 yLe_1 5,
LeLew1LeyoSt, L2Ley1S1, L2Ley2St, - -y La—aLa—oLa—151, L5_3La-151, L _3La—2Sh,
Li1LgroLg3St, LaLlayoLay3S1, LaLgi1Lay3St, LaLlayiLay25, - . -,
Ln—QLn—anSh Ln—BLn—anSh Ln—3Ln—2Lnsla Ln—3Ln—2Ln—181 > .

Since the number of liner forms that appear in (2.13) is exactly n+ 1 we can choose each L; € S} =
K|z, ..., x,]; with the monomials x; for i = 0,...,n, then the ideal I is:

I = (Y5, YU Yl s Yo Yplas YrYsYelu)
with
e —a<i<b—1land (i—a)=1 (mod?2)
—1>b

e j # h and

—a<j<b-—1land (j—a)=1 (mod?2)
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b<j<c—1
— < {4 ht#{b+2a,b+200+ 1}
a=0,...,%-1
. . if (j—¢)=0 (mod3)=h#j,j+1,7j+2
_ < d_
fesjsd-1= if (j —c¢)=1,2 (mod 3) = any h
—j=d
e k=1 and
—k<a-1
—I<a-1
Ak} #{a+ 20,0+ 20+ 1}
a=0,...,5*—1
(k,1) # (c+2a,c+2a+ 1), (¢ + 2a, ¢ + 2a + 2)
- a=0 d—c—3
oy 5
—k>d
—-1>d

* pFGpFm,qFm

-—m<a-—1

f(m—a)=0 (mod 2) =pg#m+1

—ifa<m<b—1= m_a)_l(mon):forallp,

if (m—10)=0 (mod 2) = p,g#m+1
f(m—0)=1(mod2) =pg#m—1

if (m—c¢)=0 (mod 3) =p,g#m+1,m+2
if(m c)=1(mod3)=pg#m—1m+1
if (m—c)=2(mod3) =pqg#m-—1,m-—2

—ifbgmgc—lj{

if(m—d)=0 (mod4) =pg#m+1,m+2m+3
. if(m—d)=1(mod4) =p,g#m—1,m+1,m+2
ifm=d= if(m—d)=2(mod4) =p,qg#m—1,m—2,m+1
if(m—d)=3 (mod4) =p,g#m—-—1,m—-2,m—3

e 1. s, t,u different each other,
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— {r,s,t},{r,s,u}, {s, t,u},{r,t,u} # {c+20,c+2a+1,c+2a+2},{d+46,d+ 45 +
L,d+48+2},{d+48,d+ 48+ 1,d+48+3},{d+48,d+ 48+ 2,d+ 45+ 3}, {d+ 45+

Ld+45+2,d+ 46 +3} for a=0,..., 552 and 5 =0,..., 2=

The particular case of LZL + -+ L3, L2

The variety that parameterizes a quartic that can be written as L3L? can be viewed by looking at
the composition of the following two maps:

and

- P(S) xP(S) % P(S,) 2 P(Sy)
([Lol, [L1]) + [LoL1] +— [L§L3].

The closure of the image of vy o a is v5(Splity(P")); its dimension is 2n. The variety that pa-
rameterizes forms LZL3 + -+ + L3, L3, is Sec,_(v2(Splity(P"))) whose expected dimension is
min{(”f) —1,2sn + s — 1}.

Proposition 2.5.4. If2s — 1 < n then

dim(Secs—_1(v2(Splity(P")))) = expdim(Secs_1 (v2(Splity(P™)))) = 2sn + s — 1.

Proof. By hypothesis 2s — 1 < n, then
. : . n+4
expdim(Secs_1 (vo(Splity(P™)))) = min i) 1,2sn+s—1p =2sn+s— 1.
Let us consider the following parameterization:

¢151X"'X51HS4

(b(LO? <. 7L2571) = Lng Tt LgszLgsfl

where, as usually, S = K[z, ...,,| and L; are linear forms.
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Let Ag, ..., Ass_1 € S1, we define 2F” as lim,_, [%((Lo + AAo)? (Lo + MNA)2 + -+
+(Las—2 + AMas_2)*)(Los—1 + AAgs_1)?] =
= limy .o [2(Lo + MAg) Ag(Lo + AAL)? + 2(Lo + ANAg)? Ay (Lo + MNAy) + -+
+2(Los—o + Mos_2) Ass—o(Los—1 + AMAos_1)* 4+ 2(Los_o + NAas_2)? Ags_1(Los_1 + ANas_1)] =
= Z(LoLgAO —+ LgLoAl -+ LQL%AQ -+ L%L3A3 + 4 L2372L35_1A2872 —+ L%S_ngsflAzsfl).
Let W be the space spanned by the forms that appear in F”.
Since n > 2s — 1, then we can assume that L; = z; for all : =0,...,2s — 1, hence

2 2 2 2 2 2
W =< ZL‘OC(,’lSl, C(ZofL‘lSl, ZL‘Q.I’?,Sh .1721'351, . ,ZE2S_21E23_151, JZQS_QZEQS_lSl > .

By construction
dim(Secs_1(v2(Splity(P")))) = dim(W) — 1.

In order to study the dimension of W we consider the ideal I C R = Klyo,...,ys] such that
(I"'); = W. By inverse system theory it is clear that dim(W) = dim(Sy) — H(R/I,4) where
H(R/I,4) is the Hilbert function of I in degree 4. The ideal I turns out to be the following:

L= (Y}, Y3 Yn, VeYE> Yo YoYas YrYoltYu)
where 4, 7, h, k,l,m,p,q,r,v,t,u are chosen in the following way:
1. y; witht=0,...,n;
2. yj»’yh with:
° h#j,

. ifj§25—1then{ ho g+ 1, it s even;

h#j—1, if jis odd;

e j=2s,...,n and any h;
3. yiyi with:
.« kAL

o ifk:§25—1then{ [ #k+1, if kis even;

l#k—1, sekisodd;

e k=2s,...,n and any [;
4. y2ypy, with:

e m, p, q different each other,
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p,q #m -+ 1, if m is even;

o< 9
e and if m < 2s 1then{p’q7ém_1’ if m is odd;

e m =2s,...,n and for all p # ¢;
5. YrYuYiYy With 7, v, t, u different each other.

Let now Ay, ..., As be the sets of the element of R, previously described at the “points” from 1.
up to 5.. We can now verify that:

1. ]jA1:7l+1,

2. fAs =2s(n—1)+ (n —2s+ 1)n,

Therefore H(R/I,4) = 57 (n* + 10n® + 35n® + 50n) — 2ns — s + 1 that is equivalent to:
4
H(R/I,4) = (”Z ) —1—(2ns+s—1)

so dim(W) = 2ns + s which proves

dim(Secs_1 (v2(Splity(P")))) = expdim(Secs_1 (vo(Splity(P™)))) = 2sn + s — 1.

Quartics obtained as a product of a linear form and a cubic form involving n terms
and without repeated terms

We want to follow a procedure similar to the one we used for cubics.
Let 2<a<b—2<n-—4,(b—a) € Neven and (n —b) = 3a+ 2 for @ € N. Consider first the
composition of the two following maps:
Qo P(Sl) X+ X P(Sl) — P(Sl) X P(Sg)

J/

TV
n+1

([Lol; [La], -+ [Ln]) = ([La], [F5])
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where

Fys=L3+ - -+ L3 +L2Loy+--+ L oLy 1+ LyLy 1 Lyio+---+ Ly_oLy 1L, €53 (2.14)
and

ﬁ : P(Sl> X P(Sg)

(L. [cn

— [LC).
Let ¢ :== Foa:
G P(S) x - xP(S)) S P(S) xP(S;) 2> P(Sy),

J

nIl
(LO;Lly--'aLn) = (Lo,Fg) — L()Fg.

Let X be the projective variety obtained as the closure of Im(¢).
Let W be the affine cone over the tangent space Tp(X) at a smooth point P = [F3] where Fj is as
in (2.14).
Let also I C R be the ideal such that: (I7!); = W.
Therefore:

F=LoFy=Lo(Li+- 4L+ L2Law1+ -+ Ly oLy1+ LyLys1Lpro+ -+ LyoLy_1Ly,),

W =< SlF, LW >
where F3 is the form (2.14) and

W =< LSy, ..., L2 S, L3S, LaLat1S1, - .-, Ly 551, Ly—oLy— 151,

LyLyi1S1, Ly Ly+251, Lyy1 Ly 2Sh, - -« Ly—oLp—151, Ly—oLpS1, Ly—1 L, 51 >;

SO:
W =<1L138,...,L3 S1,L?Lqi1Sy, ..., L} yLo_1S1, LyLys1Lyi2St, ..., Ly_sLy_1L,Sh,
LoL3Sy, ..., LoL? Sy, LoL2Sy, LoLaLay1S1, . .., LoL} 5S1, LoLy—_oLy_1S1,
LoLyLyi1S1, LoLy L4251, LoLyy1 Ly 251, - . ., LoLn—2Ln_1S1, LoLyn—2Ln Sy, LoLn_1L, Sy > .
We can assume that L; = x; € 51, for e = 0,...,n, then

I = (U5 Y5 yn: Vel » Yo YpYar YrUsYelu)
with j £ h; k#1; m # p,m # q,p # q; r, s, t,u different each other:

e i=0andi>a
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J=0

ifagjgb—1:>[

if (j—a)=0
if(j—a)=1

j=b

ﬁk:0$[

ﬁleé{

[>b

k>0

if0<k<a—-1=1+#0,
fo<i<a—-1=k#0,

ifagkgb—lé{

ifa§l§6—1:>{

if (k—a)=0 (mod 2) =1
if (k—a)=1 (mod 2) =1

if k> b= any [,

if | > b= any k;

ftm=0=

*

*

*

ifp<a—1= anyg,
ifg<a—1= any p,
ifa<p<b-—-1=
~if(p—a)=0(mod 2) = qg#p+1
cif(p—a)=1(mod 2)=qg#p—1
fa<g<b-—1=
~if(g—a)=0(mod 2) =p#q+1
~if(g—a)=1(mod 2)=p#q—1
ifp>b=
~if(p—b)=0(mod 3)=q#p+1,p+2
cif(p—b)=1(mod 3)=qg#p—1,p+1
~if(p—b)=2(mod 3)=q#p—1,p—2
ifqg>b=
~if(g—b)=0(mod 3)=p#q+1,q+2

26

(mod 2) = h #£0,j + 1
(mod 2) = any h

a<l<b—1land (I —a)=1 (mod 2)

a<k<b—1and (k—a)=1 (mod 2)

£0,k+1
£k—1

if (l—a)=0(mod2)=Fk#0,l+1
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~if(g—b)=1(mod3)=p#qg—1,q+1
~if(g—b)=2(mod3)=p#qg—1,g—2
—if0<m<a—1=p,q#0;
—ifa<m<b-—-1=
* if (m—a)=0 (mod 2) = p,q#0,m+1
x if (m —a) =1 (mod 2) = {p,q} # {0,m — 1}
—ifm>b=

« if (m —b) =0 (mod 3) = {p,q} # {0,m + 1}, {0,m + 2}, {m + 1,m + 2}
« if (m—0) =1 (mod 3) = {p,q} #{0,m —1},{0,m +1},{m —1,m + 1}
x if (m —b) =2 (mod 3) = {p,q} #{0,m — 1},{0,m — 2}, {m — 1,m — 2}

o {r st} {r,s,ul, {r t,u}l,{s, t,u} #{0,a+2a,a+1+2a}, {b+35,0+1+35,0+2+35},{0, b+
38,b+1+30},{0,b+36,b+2+35},{0,b+ 1+ 35,b+ 2+ 35} for a:O,...,”*Ta — 1 and

for 3=0,...,0=0=2

2.6 Three classes of canonical forms

In this section we want to present the three problems that we will study along all this thesis.
We will consider three classes of forms (in the last case they will actually be tensors, whose case
corresponds to studying multi-degree (1, ..., 1) forms in a multi-graded ring). We will be interested
in discovering when they are canonical. We will study this problem also from a geometric point of
view and the most important result we will need is the so called “Terracini’s Lemma”.

We have previously described how to move the problem for the computation of the dimension
of the secant varieties to a variety X to the problem of the evaluation of the Hilbert function of a
projective scheme (and vice versa). This passage can be made easier by using Terracini’s lemma
(see [Tel, or [Ad]), which we give here in the following form:

Lemma 2.6.1. (Terracini’s Lemma) Let X be an irreducible variety in PN, and let Py, ..., P,
be s generic points on X. Then, the projectivised tangent space to Secs_1(X) at a generic point
Q €< Py, ..., P, > is the linear span in PV of the tangent spaces Tp,(X) to X at B, i =1,...,s,
i.e.

TQ(SGCsfl(X)) =< jﬂ’p1 (X), C 7TPS<X) > .
This “Lemma” can be proved in many ways, we present here a proof “made by hands”.
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Proof. We have already used the notation X* for X x --- x X taken s times. Suppose that
dim(X) = n. Let us consider the following incidences variety:

I={(P;P,....,P)eP"x X°| Pe< Py,..., P>, with P,,..., P generic in X} C P" x X*,

and the two following projections:
71 I — Secs_1(X)

and
my I — X°.

The dimension of X* is clearly sn. If (P, ..., P,) € X* the fiber 7, *((Py, ..., P;)) is generically a
Ps~! s < N. Then dim(I) = sn + s — 1. If m; has finite fibers the (s — 1)-secant variety to X is
regular, otherwise it is defective with defect equal to the dimension of the generic fiber.

Suppose that each P, € X C PV has coordinates P, = [a;,...,a;n] for i = 1,...,s; around
each P; the variety X can be locally parameterized with some functions f;; : K" — K" for
1=1,...,sand j =0,..., N that are zero at the origin:

xo = a0+ fio(tio, ..., Uin)
X :
oy = a;n + fin(Uio, .. Uin)

Now we need a parameterization ¢ for Secs_1(X). Consider a point in the subspace spanned by s
points of X (for simplicity of notation we omit the dependence of the f;; from the variables w; ;):

<(ar0+ f1.0,- -y a1 N+ Fin)s -y (aso+ fs0, .-, asn+ fs,n) >; an element of this subspace is of the
form: \j(ai o+ f10, ... a1,n+fin)FA2(ago+ fa0, .- ae v+ fon)+ - As(As0F fo0s - as N+ fon)
for some Ay, ..., A\s € K (we can assume that \; = 1). Therefore a parameterization of the (s —1)-

secant variety to X can be obtained by (a1 o+ fi0,.-.,a1.n8 + fin) + (Ao +12)(a21 — a1+ fo1 —
fr00--aen—ar N+ fon—fin) o F(As+ts) (asi—aro+ fsi— fio, - - asn—ar,n+ fs,n— fin) for

some parameters to, ..., ts, i.e. in coordinates the parameterization ¢ that we are looking for is that
one that sends an element (uy,... U1 n, U2 0y- .., Uy - - JUs 0y -y sy oy o ooy ts) € KSHFDHs—L
into

(. PN CLLj + f17j + ()\2 +t2)(a2’j — aLj + f27j - f17j) +-- ()\5 - t5)<(l5’j — alyj -+ fSJ‘ - fljj), . ) < KN+1.

For simplicity we have written only the j-th element of the image. Therefore we are able to write
the Jacbian of . We are writing it in three blocks: the first one is (N + 1) x (n + 1), the second
one is (N + 1) x (s —1)(n + 1) and the third one is (N + 1) x (s — 1):

of1, 0fis
Jo(SO):((l—Az—"'—)\s)ai% | /\z‘aiﬁi | am‘—al,j>,
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withi=2,...,s;,7=0,...,N and k =0,...,n. Now the first block is a base of the tangent space
to X at Pp, and in the second block we can find the bases for the tangent spaces to X at P, ..., P;
the rows of

Ofio .. Ofio
Ou; 0 Ou; N
Ofin . Ofin
Oui,o Ou; N
give a base for Tp, (X). O

Corollary 2.6.2. Let (X, L) be an integral, polarized scheme. If L embeds X as a closed scheme
in PN, then
dim(Sec, 1 (X)) = N —dim(h°(Zzx ® L))

where Z is the union of s generic 2-fat points in X.

Proof. By Terracini’s Lemma, dim(Secs_1(X)) = dim(< Tp,(X),...,Tp(X) >), with Pi,..., P;
generic points on X. Since X is embedded in PY = P(H%(X,L)*), we can view the elements
of H°(X, L) as hyperplanes in PV; the hyperplanes which contain a space Tp,(X) correspond to
elements in H°(Zyp, x @ L), since they intersect X in a subscheme containing the first infinitesimal
neighborhood of P,. Hence the hyperplanes of PV containing the subspace < Tp, (X), ..., Tp (X) >
are the sections of H%(Z; x®L), where Z is the scheme union of the first infinitesimal neighborhoods
in X of the points P;’s. O

Remark: A hyperplane H contains the tangent space to a projective variety X at a smooth point
P if and only if the intersection X N H has a singular point at P.

In fact the tangent space Tp(X) to X at P has the same dimension of X and Tp(X N H) = HN
Tp(X). Moreover P is singular in HNX if and only if dim(7p(XNH)) > dim(XNH) = dim(X)—1
and this happens if and only if H D Tp(X).

Example: Consider the Veronese surface of P5. Let P be a general point of Sec;(15(P?)) and
suppose that P €< R, Q > where R,Q € 15(P?). By Terracini’s Lemma Tp(Sec;(1»(P?))) =<
Tr(v2(P?)), To(ra(P?)) >. The expected dimension for Secy (v2(P?)) is 5, so dim(Tp(Sec; (15 (P?)))) <
5 if and only if there exists a hyperplane H containing Tp(Seci(v5(P?))). The Remark above tells
us that this happens if and only if there exists a hyperplane H such that H N vy(P?) is singular at
R, Q.

Now v5(P?) is the image of P? via the map defined by complete linear system of quadrics hence
vo(P?) N H is the image of plane conics. Let R/, Q' be the pre-images via v, of R, (Q respectively.
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Then 2 < R', Q)" > is a plane conic singular at R’ and @’; it corresponds to the hyperplane section
of v5(IP?) which is singular at R, Q. Since 2 < R’, Q' > is the only one plane conic singular at R, Q’
we can say that dim(Tp(Sec;(v2(P?)))) =4 < 5.

Since the 2-Veronese surface is defined by the complete linear system of quadrics, the Corollary
2.6.2 allows to rephrase the defectivity of Secy(15(P?)) in terms of number of conditions imposed by
2-fat points to forms of degree 2; i.e. “two 2-fat points of P? do not impose independent conditions
to the degree 2 forms of K[xg,x1, z5]”.

Corollary 2.6.2 can be generalized to non complete linear systems on X.

Notation: Let D be any divisor of an irreducible projective variety X. With |D| we indicate the
complete linear system defined by D. Let V' C |D| be a linear system. We use the notation

V(mlpl, . ,mSPS)

for the subsystem of divisors of V' passing through the fixed points P, ..., P, with multiplicities at
least myq, ..., ms respectively.

When the multiplicities m; are equal to 2 for ¢ = 1,... s, the problem of the knowledge of
dim(V (2P, ...,2Ps)) is equivalent to that of the dimension of the (s — 1)-secant variety to a
variety obtained as the closure of the image of the map we are going to define.

Suppose that V' is associated to a morphism ¢y : Xg — P (if dim(V') = r) which is an embedding

on a dense open set Xy C X. We will consider the variety oy (X)).
In general we expect that if dim(X) = n then

expdim(V (2P, ...,2P)) = dim(V) — s(n + 1).

Proposition 2.6.3. Let Xbe an integral scheme and V' be a linear system on X such that the
rational function @y : X --+ P" associated to V, is an embedding on a dense open subset Xy of X.

Then Sec,_4 (ng(Xo)) is defective if and only if for general points Py, ..., P; € X

dim(V(2Py,...,2P;)) > min{—1,7 —s(n+ 1)}.

2.6.1 Three questions

In this work we want to focalize our attention on three particular questions.
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Osculating varieties to Veronese varieties

Let Ly, ..., L be generic linear forms of S = K|z, ..., x,] and Fy, ..., F be generic forms belonging
to Sj; the first case we are interested in is:

“which are the conditions on s, k,d € Z such that the following form is canonical:

L{*F 4+ LEFRY

The results which we are going to present about this problem are for the most part in the joint works
[BCGI] and [BC] (we will prove in the next chapter that a form F = L{*F 4 --- + L¥*F, € S,
is canonical if and only if the (s — 1)-secant variety to the k-th Osculating variety to a Veronesean
fills up the ambient space). Let us first look at some peculiar examples.

Example: If d = 3, k = 2 and n = 4 one would expect that a generic f € K[xy,...,z4]3 could
be written as f = LI} + LoFy with L; € S; and F; € Sy, but actually we need three addenda:
[ =LiF\ + Ly Fs + LsFs.

Example: If d = 3, k = 2 and n = 5 we cannot write a generic f € Klzg,...,z5]3 as f =
LiFy + Lo Fs + L3F37 but OIlly as f =LF+ -+ L4F} for L; e Sy and F; € Ss.

Example: If d = 4, k = 3 and n = 6 one would expect that a generic f € K][xy,...,zg|s could
be written as f = L1Fy 4+ LoF5 + L3F3, with L; € S; and F; € Ss, but not only it is not possible
to write a generic f as a sum of three addenda, but it is not even possible to write it as a sum of
four. In fact f can only be written as f = L1 Fy + -+ L5F5.

Split varieties
Let ng) be generic linear forms of S = K|[xzg,...,x,] fori=1,...,dand j=1,...,s;
“which is the least integer s such that the following form is canonical:

AR A Y Y A

The motivation of this study comes from a conjecture in [Eh]. Let G(k,n) be the Grassmannian of
k-spaces of P"; with Split,(IP") we indicate the variety that is obtained as the closure of the image
of the following map:
¢ . EP(;SH) X e X P(Sl> — P(Sd),
D (2.15)
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hence the Split variety can be viewed as the locus:
Sphtd(Pn) = {[f] € K[l’o, c. ,l‘n]d | f = Ll cee Ld with Ll € K[l’o, ce ,.ﬁ[’n]l}.

In the paper we cited above Ehrenborg observed that for a positive integer d, the varieties Split,(P")

and G(n—1,n+d—1) are embedded in the same P(ngd)*l, and moreover he found many examples
where the typical rank of the two variety is the same. Therefore he stated the following conjecture.

Conjecture 2.6.4. (Eherenborg) The typical ranks of G(n — 1,n + d — 1) and of Split,(P") are
the same.

If this conjecture were true, we would be able to compute the dimension of Sec,_1(Split,(P"))
in many cases. Unfortunately things are not so simple and the following example shows that the
conjecture is false.

Example: It is a known result (see for example [CGG4]) that Secs_1(G(3,6)) is defective with
defect 63 = 1, i.e one expects that Secy(G(3,6)) = P3* but dim(Secy(G(3,6))) = 33; we need
Sec3(G(3,6)) in order to fill up P**. This means that the typical rank of G(3,6) is not 3, as expected,
but 4. Unfortunately this fact does not imply that the least integer s such that Sec,_;(Split,(P?))
fills up the ambient space is 4 too; in fact Secy(Split,(P?)) = P3* (we made computations with
[CoCoA]).

Anyway, we have that Ehremborg’s conjecture is true for d = 2.

Proposition 2.6.5. The (s — 1)-secant varieties of G(1,n + 1) and of Splity(P") have the same
dimension for all s.

Proof. The embedding of G(1,n + 1) into p("s) 1 ~ P(K|xg,...,x,)2) allows us to view the
Grassmannian as the set of quadrics whose representative (n 4+ 2) X (n + 2) matrices are skew
symmetric and of rank at most 2 (we will present this construction in details in Section 4.4, in
particular see (4.11) and (4.12)). Therefore

Secs_1(G(1,n+ 1)) >~ {M € M,»(K) | M is skew symmetric and rk(M) < 2s},

then

codim(Secs 1(G(1,n + 1)) = (" 2= 25).

2
In the same way Splity(P") ~ {M € M, 1(K) | M is symmetric and rk(M) < 2}; therefore

Secs—1(Splity(P")) ~ {M € M, 1(K) | M is symmetric and rk(M) < 2s},
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then

codim(Secs_; (Split,(P")) = (n 2= 28).

2
[l

Notice also that when d = 2 the variety Split,(P™) is the variety that parameterizes forms of
the type L4 *F with L€ S;and F € S, 1 <k <d=2.

Segre Varieties

Let us give the following definition:

Definition 2.6.6. Let Vi,...,V; vector spaces on K, a tensor T € V¥ ® --- @ V;* is said to be
“decomposable” if there exist vectors vy € V;* such that T = v} @ - - - ® vy.

A well known problem is:

“which is the minimum integer s such that the generic tensor 7" of V* ® - - - ® V;* is the

sum of s decomposable tensors? This minimum integer s is called the “typical rank” of
T‘”

The geometric problem associated at this last algebraic problem is the study of the dimension
of the secant varieties to the Segre varieties. Let P = P(V;) for i = 1,... k, be the Segre variety
which is defined as the image of the following map:

P" x ... x P% — Plath-(neg+1)-1

1 1 k k 1 k .
(@, al) @)y = (e a )

In the last chapter, two different ways to approach the study of secant varieties of Segre varieties:
the first one uses Inverse System theory and it is due to M.V. Catalisano, A.V. Geramita and A.
Gimigliano (see [CGG1]); the second one is strictly connected to Representation Theory and it
is due to J.M. Landsberg and L. Manivel (see [LM1]). In this last paper the authors give two
different algorithms to compute the equations of the secant varieties to Segre varieties. The most
important result contained in [LM1] that we will present is the solution of the Garcia, Stillman,
Sturmfels conjecture (see Conjecture 5.6.32) on the generation of the ideal of the chordal variety
to Segre variety in the case of three factors.
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Chapter 3

Secant varieties to the Osculating
varieties of Veronese varieties

In this chapter we want to give a partial solution to the first problem presented in Section 2.6.1:

“which is the least integer G(d) such that the generic form of S; = K]xy,...,z,]qs can
be written as sums of G(d) forms of the type LY *F where L € S; and F € S,?”.

Accordingly with the technique presented in Section 2.4, we look for a variety parameterizing those
kind of forms and, after that, the knowledge of the dimensions of its secant varieties, when we
are able to compute them, will solve the problem. We will see that this variety will be given by
osculating spaces to the Veronese v4(P"); in the case k = 1 the tangential variety is the one involved.

Definition 3.0.7. Let X C PV be a projective, reduced and irreducible variety. The tangent star
to X at P s defined as follows:

TH(X) = U limy—o < y(t), z(t) >.
y(t),2(t) € X
y(0) = 2(0) =

Definition 3.0.8. Let X C PV be a projective, reduced and irreducible variety. Define the tangen-
tial variety of X, 7(X) C PN by
= mx

pPeX
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VARIETIES

We can observe that if the variety X is smooth the definition of Tangential variety that we have
just introduced coincide with the following:

Definition 3.0.9. Let X C PV be a projective, reduced and irreducible variety. Let Xo C X be the
dense subset of regular points of X. We define the tangential variety to X as

T(X):= |J Tr(x)

PEXO
where Tp(X) is the tangent space to X at P.

A reason for using Definition 3.0.8 rather than Definition 3.0.9 is given by Fulton Hansen
Theorem (see [FHan]) that can be applied for 7(X) of Definition 3.0.8 and not for T'(X) of
Definition 3.0.9.

Theorem 3.0.10. (Fulton Hansen) Let X C PV be a projective variety. Then either:
e dim(7(X)) = 2n and dim(Sec; (X)) =2n+1, or
o 7(X) = Sec;(X).

We have already observed that when X is smooth, T5(X) is just Tp(X), so T(X) = 7(X).
When X is singular, for 7(X) Theorem 3.0.10 holds, while for 7'(X) it does not.

Example: Consider the Del Pezzo surface X := v3(P?) C P? which parameterizes cubics of P?
made of a single triple line. Then T'(X) is a 4-fold in P? and we will see that it parameterizes forms
of type [LM?], where L, M are linear forms in S := K[z, 21, ¥5]; such variety is singular along X.
Let us consider the variety T'(T'(X)). At every point [LM?], we have that T2 (T(X)) corresponds
to < M2S;, MLS; >, hence T(T(X)) parameterizes all cubic forms which are limit of something
of the form [M F|, where L is a line and F' a conic.

Notice that this shows that T'(7(X)) = O2(X), the second osculating variety to X, which has
dimension 7, hence T'(7'(X)) is defective (it should have dimension 8), and this defectivity is not
surprising, since along any tangent space Tp(X) we have that all To(7T'(X)), @ € Tp(X), have
Tp(X) in common.

If we consider 7(7'(X)), instead, Hansen-Fulton theorem 3.0.10 gives us that 7(7(X)) = Secy(T'(X)),
since it is known that Sec;(7'(X)) is defective (see [CGG2]) and has dimension 8 (it actually pa-
rameterizes all singular cubics).

Definition 3.0.11. A (2, 3)-point in P™ is a 0-dimensional scheme in P with support at one point
P, whose ideal is of the type ©* + I} where | C P" is a line through P with defining ideal I; and @
15 the ideal of P.
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If X = yy(P?), the tangential variety to X can be dually viewed as the locus {[L¢'M] €
P(Sq) | LM € S1} C (P(n;d%l)*. In [CGG2] it is shown, via inverse systems’ theory, that
dim(Secs_1(T'(va(P™)))) = H(Z1,1) — 1, where Z; is the union of s generic “(2,3)—points” (i.e.
the intersection of a 3-fat point with a double line). In that paper the defectivity of T'(v4(P™))
was studied and a conjecture regarding all defective cases was stated (see also [Ba]). The authors
proved that if Py,..., Ps € v4(P"), 9; C R = Klyo,...,yn] are the prime ideals associated to P;,
and Q €< Py, ..., P, > then it is possible to find s prime ideals [; C R representing lines through
P; such that the dimension of Tg(Secs_1 (T (va(P™)))) is equal to H(R/(p3NEZ)N---N(p2Ni?),d).

The forms parameterized by T'(v4(P")) suggest that, if we want to find the variety parameterizing
forms LY*F with L € S; and F € S, we have to look at the k-osculating variety to v4(P").

3.1 The k-th osculating space

3.1.1 Definition and remark

Let X C IP" be a projective variety of dimension n.

Let Uy C C™ be an open neighborhood of 0 := (0,...,0) € C" in the Euclidian topology; and let
{ui,...,u,} be a set of coordinates in C".

Now let F': Uy — X such that F'(0) = P is a local parametrization.

Definition 3.1.1. Let X C P" be a projective n-dimensional variety, and let F' be a local parame-
terization as above. The k-th osculating space to X at a reqular point P € X 1is the linear projective
space obtained as the projectivization of the following affine subspace of C™+1:

Orxp:= <F,0),...,F, (0);
Fu1u1 (9)7 Fu1u2 (Q)7 ceey Funun (Q>’

Fopo(0)y ooy Foyoigu, (0)5 oo o, (0) >

h
where F,,(0) = 57(0), and Fu ., (0) = 5-225—(0).
An equivalent definition of k-th osculating space can be given as follows:

Definition 3.1.2. Let X C P" be a projective n-dimensional variety, consider all the curves t —
x(t) such that x(t) € X for allt € K and x(0) = P, then the k-th osculating space to X at P can
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be defined as

x(t) C

(0)

Example: Let Uy C C! and X the 1-dimensional projective variety locally defined by the following
parameterization:

F:Uy— X, F(u) = (u,u® u?)

then

Oox0 = {0} = P,

Ol,X,O =<< (1,2u,3u )lO >=< ( ,0, 0) >,

027)(,0 =< (170,0) (O 2 6u)]0 >= (1, ,O), (0,2,0) >
037X70 =< (1,0,0) (0,2,0) (0 0 6) >.

3.1.2 Intersection between a projective variety X and its k-th osculat-
ing space at one point

The goal of this section is the following proposition:

Proposition 3.1.3. The intersection between a projective variety X C P" and its k-th osculating
space Oy x p at a regular point P is at least a (k + 1)-fat point, i.e. there exists v’ € Z, ' < r such

that Spec <1K[m1—km’“])> D Spec <ml—);ﬁ'])
Let P =0, F : Uy — X be a local parametrization such that F(0) = 0 and

F(uy, ... up) = (filug, ..o un), ooy fr(ur, ..o up)).

We want to start by studying the case of the tangent space Tp(X).

Tangent space

According with the previous definition, the affine tangent space to X at the point P = 0 is the first
osculating space O x o:

oF oF
To(X) =< 8—M(Q)a . -,a—un(Q) >=

_ (%(o) SZ( >> (Slf;@ SI{;( )) -
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Let us consider the following system:

r1 = fi(ug, ..., up)
. (3.1)
T = fr(ug, ..., up)
By elimination of the u;’s we can find polynomials Fi, ..., Fs € K[xq,...,z,]| such that the variety
X is defined (locally, at 0), by:
Fi(xy,...,z.) =0
: (3.2)

Fy(xq,...,2,) =0

and so its defining ideal I(X) C Klxy,..., x| is, locally, I(X) = (F,..., Fy). If we substitute the
equations (3.1) into (3.2) we find out

F1<f1<ul, Ce ,’U,n), .. .,fr(ul, Ce ,Un)) =0

(3.3)
Fo(fi(ug, ..o un), .o, fr(ug, ... uy,)) =0
that implies 0 = OF; — =3 gfi giui‘ =3 gf gf:h for all j = 1,..., s and therefore the equations
of TH(X) are determlned by the following system:
oF _
Zh 1 aa;,ll( ) zp =0
(3.4)
OF, _
Zh 1 Brh( ) =0
and so
0F; 0F; OF, OF;
I(Ty(X)) = [ 220 o )2, 220 0)z, ) € Kla,. ..,z
B00) = (G oo G G+ 4 G20 ) € Koo

Let us write Fj = Fjo + Fj1 + - - - + Fjq, where Fj; is the homogeneous part of degree [ of F} for all
j=1,...,s. Since F]-(Q)—Q WehaveFjonfor all j=1,...,s then F; = Fj; + -- —i—F]dJ Let
F}'l = (ljl.fL'l 4+ 4+ ajrzr then

Fj:CLj15L’1+---+aijr+Eg+-~~+]7jdj.
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It is clear that gTFZ(Q) = aj; and so
I(TH(X)) = (an1z1 + - + a1y, ... a5121 + -+ + Qg Ty).
Let us consider now the following intersection:
K[ml,...,xr]) Klzy,...,2,]
Spec (— N Spec | ————
1(X) I(To(X))

this is equal to

9y Klzy, ..., x,] _ Spec Klay, ... 2] _
svee () E o) = <<F RS B zhlzfgmh))

~

= Spec ( Kz, ] >
((22:1 alixi) + (Zfi2 Fli)ﬂ SRR (22:1 CLSZ':L}) (Zz 2 Fsz) Zz 1 A1iTiy v vy Z;l asz’xz’>

Klzy, ..., 2]
= Spec di ds r r
(Zi:2 Fiy .., Zz‘:2 Fg, zz‘:1 a1;Tiy - - - Zz’:l asixi)

that is isomorphic, for some Fj € K|zy,...,7,1] and aj; € K (if (aq,...,as) # (0,...,0)), to

K[xl, y Lp— 1]
Spec a1 —1 —1_, =
(Zi:Q Fli’ s Zz 2 sz’ Zz 1 a’lzx“ e Zz 1 s 11371)

12

~S K[I’l,.._,l‘l] =S K[*rlv"'vxl]
- ~ Spec = = = Spec | —= . 2 .
(it Py >0 Fli) (Fio+ -+ Fia, .., Fo+ -+ Fyq,)

for some F; € K|y, ... xl]andr—s<l<randanyz—1 S
Now, since the ideal (Fig+ -+ + Fig,, ..., Fao+ -+ Fyq) C K[a:l, ..., x| is generated in degree
at least 2, it means that

Spec ( _ _ ['Ilu ,;’El] _ ) 2 Spec ( [.731, 7x12]) )
(F12+"'_'_F1d17---7F32+"'+Fsds) (xla"'vxl)

This means that the intersection between a variety X and its tangent space at the point P =0 is
at least a double fat point.
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The k-th osculating space

Second osculating space

Now we want to study the intersection between a projective variety X and its second osculating

space at P = 0.
By definition

OZ,X,Q =< FU1(Q)J s 7Fun(Q)7 Fulul(Q)7Fu1u2(Q)7 DR Funun(g> >=

__(oh Ofr Of o () -
=< (a—m(g),,a—m@)> s (aUn(Q),..-,a—un(Q)) ;

02f1 anr 82f1 anr anl anT
(550 550) (0 e ) o (o0 e i),

a2fl 82fT 82fl a2fr anl a2fr
(6u28u1 @ Oupduy (Q)> ’ (8u§ (@, Ou? (Q)) T (augaun @, OusOuy, (Q)) ’

0 fy 0 f, 0% fi % f, 821, 9, -
(Gt @ g @) (G O e ©) (G 0 5 @) ==

2 2 2 2 2 2
(2550, 52 @) o (325 0 525 ) (520 SR ) >

Therefore the affine dimension of O, x ¢ is at most (""2“) +n. Since Og x is an affine linear vector
space through the origin and the ideal (X) is contained in K[z, ..., x,], there exist m polynomials
in Klzy,...,2.]1, with m > r — (";’1) —n, that define (O3 x ) C Klxy,...,x,]; let them be:

a1T1 + -+ Q1T = 0

(3.5)

Am1T1 + 0+ Ty = 0
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The k-th osculating space

where the a;; are determined by the relations:

(@i, v a) - (52(0),. ., 3E(0) =0, Vi=1,...mVi=1,. .. n; 56
2 2 . .. :
(@1, ..y ai) - 3“?15;2 (Q)”“’auig;@ (Q)) =0, Vi=1,...,m; Viy,ip € {1,...,n}.
Now, using Taylor’s formula, the system (3.1) can be rewritten:
( T :fl(ul,.. un): , ;
d ) 9
- Zz 1 851 ( )ul + % zZﬂé:l 8ui1£1u'2 <Q)uilui2 + % Ez,iz,irs:l Guilauleﬁui:s (Q>ui1ui2ui3 e
Ly :fr(u17-~ un>: .
Ofr o fr 1 0° fr
\ - Z?zl 3£ ( )uZ +3 le 12=1 auzlgm (O)uilub + 3! Zz,iz,zﬁ:l 8Ui18u{28ui3 (Q)uilulzuu +
(3.7)

Then, by using (3.7), we have that the relations of (3.5), for all i = 1,...,m, are determined as
follows:

0= a1+ -+ QT = (a/i17"'7az’r’> (x17"'ax7‘) -
afl —~  hH - P fi
= (a1, ..., ap) <Z 5 (i + Z FI 0)ui,usy + Z B B D (0w, iy + -
=1 t 7,1,7,2 1 u 12 ' 11,12,i3=1 “ 2 3
— O, 1« > f,
C L~ Qu, (Q)ui + 2 Z i, Ous, (O i, + ! Z Ou;, Ou;, Oy, D e g Qi Uity - | =
=1 i1,i9=1 i1,82,i3=1
- 8f1 afr
= (ajy,-..,q;) <i:1 0)ui, - .. Zam
0? f1 - 0? fr
+ai, .-, 6) < Z 8u“8u12 Quitizs -5 Z au“&uzz Dty | +
i1,02=1 7,1,7,2 1

a fl 83fr
i1 - i O)ug Uipthzy + -+ ... 0) s, wip iy + -
+a @i ) (3' Z 8u“8uz26u13( Jotiy iy Ui+ 3' Z 8u“8u12@u13( Jotiy iy iy +

i1,42,i3=1 i1,02,i3=1

Now, by (3.6), we know that (a;,...,a;,) - <Z?:1 g—ﬁ(Q)ui, e g{; (Q)uz> = (a;,,...,a;) -
(Z@ . _%h (0) iy Winy oy Do 02 r (Q)uiluiQ) =0 then a,z1 + -+ - + a2, =

11,82=1 Qu;; Ouy, 11,82=1 Ouy, Ouy,

_ 1 - O*fi ¢ P*f,
= 5(azl, Ce ) ( s D, O, ————————(0)uy, i uiy + - Z Dy s, O ———————(0)uy, upugy + -

11,i2,i3=1 11,i2,83=1
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The k-th osculating space

foralle=1,...,m.

Now, since K[zy,...,x,] D I(X) = (F1,..., Fy) asin (3.2), we want to consider, forall j =1,...,r

. . . O)F, 5 OF; \ _
and for any u;,,u;, € {1,...,n}, the following equality and compute it: 0 = m = Bury <auiﬂ2> =
0 (N OB Ofn \ N 0 (OF; Ofn |
8’“7;1 Zh:l oxy, auig - Zh:l 6“2‘1 oxp, 6ui2 -

=5 0 (OE )\ Ofn 4 OF (0 (Ofn =5 0 (OF )\ Ofn y OF; 0% _
- h=1 61.%1 333h 6’11,1'2 6xh 6’!.1,1'1 6ui2 h=1 333h 6uil 6ui2 Bxh 8ui1 8’!1,1'2
N7 0 (N 9F; of O o (0K & ) _ N v 0K ofi | OF; _9°fi \ Ofa
o Zh:l <<81’h <Zl=1 Oz Ougy Ou;o +Zh=1 Oz Oujy Ouiy | Zh:l Zl:l Oz 0z Ousy + Oz, OxpOuyy | Ouy, +
v (OF _9%h ) _ N7 v O%F; Ofy | OF; 9fi | O v (OF 9% ) _
Zh=1 <8mh auilaui2 - Eh:l Zl:l B.Z‘ha:vl Buil + 6l‘h Buil 8’1,62'2 + Eh:l 6$h 8ui18ui2 -

N - O*F; OF;\ 0fi \ Ofx " (OF; O*f,
B - (Z ((%h@xz * &L‘h> du;, | Ouy, * ; (8_xh 3%13%2) : (3.8)

h= =1

This implies, by (3.6), that

> (Z (m0+520) ) Y (S0n) eroe ©9)

h=1

where I(Oz x0) = (@111 + -+ - + a1 Ty - ooy Q11 + -+ -+ ApaTy).

Consider now
SeC(K[xl,...,xr]>_SeC( Klzq,. ..,z )_
PENT(X N Osx0) PENT(X) + 1(On.x0)

S ( Klzy,...,2,] )
= eC T '
P (Fh---an,Zi:l alz‘Iz‘,---,Zizl amz‘l‘i)

—Spec( Kz, ..., x,] )'—A
- d ds r r T
(21;1 Fii, ..., Zi:l Fy, Zz’:l a1iLiy - - - zz‘:1 AniTs)

Since TQ(X) g OQ’X’Q then

L Z;;:l %(Q)!Eh S ](X N OQ,XQ) then

Klzy,. .., x,]

=B
(Zjiz F1i7 DR Zjig Fsia 22:1 A13Tiy v vy Z;‘":l amixz‘))

A ~ Spec (
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The k-th osculating space

2. together with (3.9), >7) ., %(O)xhxl € I(X N Og,xp) then

K cey Ty
B ~ Spec ( T T [l‘l) . y L ] " ) = C
(Zizg Fli? RN Zi:g Fsi; Zi:l A1§Lgy - - - 721‘:1 a’miwi)

because, as in the case of the tangential space, if Fjo = bj11x§+bj12x1x2+- . -+bjrrxz forall j =

02 F; o o r 0% F;
1, ey S and some bj,h,l € K, then 0z,, Oxry (Q) = bji1i27 ans so Fj72 = Zil,igzl W(Q)xhxlz

C ~ Spec ( Kley,... 2] )

But now

(B FL SR )

for some Fj € K[ry,...,xp] forall j=1,...,s andr—("f)—ngr’grand

Klai, ... 20 K1, ... a0
Spec a CAIREE J 2 Spec (—[xl ’ 3]) :
O Fliy oo > FL) (T1, ..., 2)

Therefore the intersection between X and O x is at least a 3-fat point.

The k-th osculating space

We can generalize the argument of the tangent space and of the second osculating space to the k-th
osculating space.

Proof. of Proposition 3.1.5 .

e From (3.3) we always know that
O F;

= .

e If we write it in function of x,...,z, we find an expression of the type:

. OFF; OFLF; oF; \ 0 0
Z ( J + J ot 7) fhl... fhk_|_
By el &rhl te 6xhk a’Ehl T 8mhk_1 al‘hl 8ui1 8u,k

- FUE F; 2 0
+ Z ( 0 J _|_..._|_89)( 8fh1 afhl... fhk*1_|_..._|_

B =1 3xh1 cee axhk_l 8[Eh1 8ui18ui2 8UZ‘3 8qu
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The k-th osculating space

anhkA afiu afth) +

8U¢k,1auz‘k 8ui1 auik—2
"\ OF; oF
RS J S =0
hie1 8.§L’h1 81% v 8uzk

from which we get that the elements of the type:

T O'F; O E OF,
(11 Z—l <axi1 0y, O+ 04, -+ 0wy, @)+ -+ 31’2‘1@)) Tiy oo Ty | o0 F

g O*F; OF;
4ot < > (m(Q)Jr 8&:“( ):U“:L’m) +Z axl

i1,i2=1

belong to I(Og x) by using the perpendicularity relations:
(ail, ce ,air) : Fu”uz =0

l

for all w;,,...,u; € {us,...,u,}, for all | <n, and where the a;1,...,a; are the coefficients
of the defining system of Oy x o:

a1ry + - +apr, =0

Am1T1 + -+ Qe Ty = 0

and m > 38 (") > dim(Oy, xp).

e Now, if we observe that

we should be able to proove the following chain of isomorphisms:

S ec(K[xl,...,x]>_S ec( Klzy, ..., 2] )N
P (Xﬂokxo) P (Fh-‘~uFS;Zgzlalixia-~wz::1amz‘$i) B

 Spec ( Ko, )] ) N
- d ds r r
(2;2 TATRN Z’i:2 Fg, Zi:l a1iLi, - - 7Zi:1 Ani'T;)
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The k-th osculating space

- d ds r r
(E :iig Fu, ..o, E :izg Fg, E :izl A15Lgy - -« E :izl amz‘ﬂﬁi)

~ ...~ Spec K, m] ~
(Z?;k;-pl Fiy ..o, Z;‘iik;_irl Fg, Z::l A15L5y -« vy 2211 amil'i)

K I K I o
~ Spec a Lt ,$d] D Spec < - xk+]1)
(Z 1 F1177Z,Lik+1 FS’L) (.:Cl,...,.’]j,r/>

i=k+1

with Zle ("j’) <7 <r.
The statement of Proposition 3.1.3 follows.

We can also prove Proposition 3.1.3 in a shorter way.

Proof. Let Uy C C"™ be an open neighborhood of 0 € C" in the Euclidian topology; and let
{uy,...,u,} be a set of coordinates in C".
Now let F': Uy — X be a local parametrization such that F'(0) = P and

Fluy, ... up) = (filug, .. upn), o fr(ug, ..o u)).
Fix the following notation:

" f,

o fi
f (9)7,&6—%(9)) =:(ap,...,ar) (3.10)

(‘9ui1 e Uih

Fup oy, (0) = (

if I = (’i17...,7:h) and il,...,ih S {1,,n}
The affine k-th osculating space to X at P is spanned by:

Ok,X,P =< <a017~‘-aa()r)a"'7(ally‘-'7aIr>7"'7(aN1)-"7aNr) >
where I = (i1,...,ip), h < kand N ={n,...,n}.
——

k
Let M be the matrix whose columns are the vectors spanning Oy, x p, i.e.:

apy ... aj; ... ani

aor ... Qrp ... QApNp
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The k-th osculating space

and let m = rk(M). Then there exist b, ; € K, withi=1,...,m and j =1,...,r, such that
](Ok’)(’p) =<bpyxy+---+ blrxry ey bmlxl + -+ bmrxr >C K[l’l, - 7ZL’T].

Now
F*(bi1$1 —+ -+ birxr) = bilfl(ul, PN ,Un) R birfr(ul, Ce ,un) (311)

foralle =1,...,m. Each f; can be decomposed via Taylor’s polynomial around P = 0, in particular
there exist some coefficients ¢; € K such that

deg(f;)
filur, ..o uy,) = Z C]a[qu + Z claljul
|I|<k |I|=k+1
where the ar;’s are defined as in (3.10) and u/ = w;, ---u;, if I = (i1,...,is). Hence (3.11) can be

rewritten as

b | D cranu! | 440y [ D capu’ | +

[1|<k [7|<k
deg(f1) deg(fr)
2 : I 2 : I
+bi1 crariu + -+ bir Crar,u
|T|=k+1 |I|=k+1

Now, the first » addends of the above summand are all zero since bj;xq + - -+ + bz, = 0 for all
(z1,...,2,) € Ogx.p. This means that bz + -+ + byx, € P! where g is the prime ideal

associated to P. Then
Klxy,..., 2, Klxq,. .., 2]
S — ' - | DS — " .
pee (1(X N OM@P)) = opee < Pkt

3.1.3 Dimension of the k-th osculating space

We are interested in discovering the dimension of the k-th osculating space of an n-dimensional
projective variety X C P" at a smooth point P € X.

Since Oy, x,p is spanned by all the first k£ partial derivatives of the polynomials defining a parame-
terization of X around a smooth point P, it is clear that

dim(Oy x p) < min {7’, (n —]L_ k) — 1} = e.
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The k-th osculating space

It is also clear that if P € X is a flex point (for a definition of flex point see Definition 4.1.3) and
e = (”Zk) — 1 then dim(Oy x,p) < e because if F' : Uy — X is a local parametrization around
the point P such that F(ui,...,u,) = (fi(u1,...,un), ..., fr(us,... u,)) and Fy,(0) and Fyy;(0)
are defined as in Definition 3.1.1 then the vectors F,,(0), Fy.,;(0) are not independent for all
ij=1,....n

Example: Suppose that max;_;_,{deg(f;)} = m then dim(Oyxp) < ("}*) — 1 for all & > m;
n+k

. ) — 1 it always happens that dim(Oy x p) < e.

hence for the integers £ > m such that e = (

Example: Consider a projective variety X C P" having around [0] € X the following parameteri-
zation:

CrxC" — CN
(UL, ey Uy V1, e ey U)o (gl(ul,...,un),...,g@)(ul,...,un);

fi(vr, . om), . fr_(z)(vl, R .))

such that
gl(ul, Ce ,Ul) = U’f,
go(uq, ... up) = u’f’luQ,
g(z)(ula s ,Uk) = uﬁ
Then

. M:()forizl,...,r—(’;) and j=1,...,n;

o L wlhetn) _ () forj—1,. .. (") andiy,....i € {1,...,(")}.

6u¢1---auik+1 k

Therefore, if (”J”,?Jrk) —1<randh >k+1, then dim(Op, x p) < ("H}'f’h) —1- Zlh:kH (’;)

Example: Let C' be a non degenerate projective curve. Let

v:C — P
t — (fO(t)>"'afn<t))

be a local parameterization of C' such that v(ty) = P € C. We use the following notation:

v (t) = ‘gzg The k-th osculating space to C' at P is

Or.c,p = v(to)+ < vW(tg),...,v¥ (1) > .
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The k-th osculating varieties to Veronese varieties

It has the expected dimension if and only if
U(tg) N U(l)(to) VANEIVAY "U(k)(to) 7é 0.
Suppose in fact that v(tg) A v (tg) A --- Av¥)(tg) = 0 and that w(te) := v(te) A v (tg) A+ A

v (t5) # 0, these imply that there exist oy € C, for i = 0,...,k — 1, such that:

k—1
v (ko) = anw@(to). (3.12)
=0

Moreover
wM(tg) = vW(tg) AvD(tg) A -+ Av*D (t)+
+o(te) A v@ (tg) Av@ () A -+ Av*D (t)+

So, by (3.12), we have

Hence there exist ¢ = (¢, ..., ¢,) € C" such that

w(ty) = c- e 10 =y, ..., c,] € P".
Therefore for a generic t € C the vectors v(t), vV (¢), ..., v =1 (¢) span the same P*~!, then v(t) €
PE=1 for a generic t, so the curve C' C P*~! that is a contradiction since C' is not degenerate in P".
3.2 The k-th osculating varieties to Veronese varieties

Definition 3.2.1. Let X C PV be a variety and let Xy C X be the dense set of the smooth points
where Oy x,p has mazimal dimension. The k-th osculating variety to X is defined as:

Orx = |J Orxr.

PeXo
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We are interested in the study of the k-th osculating variety to the Veronese variety vy(PP™). We
set Ok,n,d = Ok,l’d(P”)’

For all this section we will assume that N := (”;rd) — 1.

Let us assume (and from now on this assumption will be implicit) that d > k. If L € S; is a
linear form, we can write a point P € v4(P") as P = [L9]. It is easy to see that the k-th osculating

space to v4(P") at a point P = [L9] is

Ok wyey.p = {[M] € P(Sy) | M = LY"F, where F € Sy} (3.13)

Notice that Oy ,,@n),p has maximal dimension dim(Sy) —1 = (kj;”) — 1 for all P € yy(P"). This
can be seen in the following way: the fat point (k + 1) P on v4(P") gives independent conditions to
the hyperplanes of PV, since it gives independent conditions to the forms of degree d in P™.
Hence, Oy pa = Upeyd(]}m) Ok vy(pr),p-

As we have already noticed, for k& = 0 the equality (3.13) gives Oy, @) p = {P} = {[L%]}, and for
k =1 it becomes Oy ,,pn).p = Tp(va(P")) = {[M] € P(S4) | M = L 'F, where F € S;}.

In general, we have:
Opma = {[M] €P(Sy) | M = L“*F, where L € S;, and F € S;}.

In the following we also need to know the tangent space T (Oyn.a) of O 4 at the generic point
Q = [L**F] with L € S; and F € Sy, ; one has that the affine cone over T (O 4) is

W =W(L,F) =< L“*R,, L™ *'FR, > . (3.14)

Lemma 3.2.2. The dimension of Oy, 4 is always the expected one, that is:

dim(Og q) = min {N, n—+ <k + n) — 1}

n

Proof. By (3.14), the dimension of Oy, 4 is dim(W (L, F)) — 1, for a generic choice of L € S;
and F' € Sy, so that we can assume that L does not divide F. When P(IW) # PV, we have
dim(W) = dim(< L*S;, >) + dim(< LSPIES) >) — dim(< L9FRS, > N < L&FIRES) >) =
(k+n) +(n+1)—1= (H") + n, since there is only the obvious relation between LSy and F'Sj,

n n

namely LF — FL = 0. O
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3.3 The (s — 1)-secant variety to Oy, 4

What we present in this section for n > 2 is also described in the joint work [BCGI].
From the analysis of the previous section it is now obvious that the (s — 1)-secant variety to the
k-th osculating variety to the Veronese vy4(P") is

Sec, 1(Ogna) = {[M] € P(Sy) | M = LY *Fy+- - -+ LT *F,, where L; € S; and F; € S, fori=1,...

Hence if we are interested in answering to the question:

“which is the minimum integer s such that the form M = LY Fy+- . .+ LI*F, where L; €
St and F; € S, fori=1,...,s, is canonical”,

we have to answer to:
“which is the minimum integer s such that Sec_1(Oy. 4) is equal to PN?”,

In this chapter we will study the dimension of Secs_1(Ok.n.q)-

Notice that, since d > k, one has dim(Oy,,4) = N if and only if (d:”) <n+ (kj;"), hence for
all such k,n,d and for any s we have dim(Secs_1(Ogn.a)) = expdim(Secs_1(Ogna)) = N
So we have to study this problem when (dzn) > n+ (k:;") and s > 2; it is easy to check that whenever
n > 2 this condition is equivalent to d > k-+1; on the other hand the case n = 1 (osculating varieties
of rational normal curves) can be easily described (we will prove that Sec,_1(O 1.4) have always
the expected dimension), thus the question becomes:

“For all k,n,d such that d > k + 1, n > 2, describe all s for which

dim(Secs—1(Okna)) < min {N, s (n + (k * n) — 1) + 55— 1}

n

Remark: Terracini’s Lemma 2.6.1 says that dim(Secs_1(Ogna)) = N — h°(Zx ® Opn (1)), where
X is a generic union of 2-fat points on Oy, 4; we are not able to handle directly the study of
h(Zx ® Opn (1)), nevertheless, Terracini’s Lemma says that the tangent space to Secs_1(O n.q) at
a generic point of < Py, ..., Py >, with P, € Oy, qfori=1,..., s, is the span of the tangent spaces
of Oy na at each P;; i.e. if Tp (Ogpna) = P(W;), then

dim(SeCS_l(Okm,d)) = dim(< Tpl (Ok‘m,,d)a R aTPS(Ok,md) >) = dim(< Wl, ey W, >) —1.
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We want to prove, via Macaulay’s theory of “inverse systems”, that there exists a 0-dimensional
projective scheme Z = Z(k,n), that we will analyze further, such that for a single W;,

dim(W;) = N +1 — (P, Z5(d))
and, if Y =Y (k,n, s) is a generic union in P" of s 0-dimensional schemes isomorphic to Z, then
dim(< Wy,..., W, >) = N + 1 — h°(P", Zy(d))

Hence,
dim(Sec,_1(Ogna)) = dim(< Wy, ..., W, >) — 1 = N — h%(P", Iy (d)).

Notation: If W C S; = K|z, . .., Zn]a, we indicate with W+ C Ry = K]yo, . . ., yu]a the orthogonal
to W with respect to the Inverse System perfect pairing, i.e. (W)~ =W.

Lemma 3.3.1. There ezists a 0-dimensional projective scheme Z(k,n,d) € P" such that the degree
d part of the inverse system of its defining ideal is equal to the affine cone over the tangent space
to Ogma at a generic point QQ € Ok pnq. Moreover, if O € P™ is the support of Z(k,n,d), then for
all k,n and d > k + 2, we have:

(k+1)0 C Z(k,n,d) C (k + 2)O.

Proof. Let W =< L47kS, L¥*1FS; >C S, be the affine cone over T(Oy.,.q4) at a generic point
Q = [L**F], with L € S; and F € S,. Without loss of generality we can choose L = x, so that
W =< xg_k_lxoSk,mg_k_lFsl >, hence < xg_kSk >C W c< xg_k_lskﬂ >. So for any (k,n,d),

< gl FlS L >t W c<al S, >t (3.15)
Now, denoting by @ the ideal (z1,...,xz,), we have:
(2818t =< {0 -2l | S0y = dyig < d —t — 1} >=
=< (9")a, o(9" Na-1s- -, 25 THET e >= (9"
Let us view everything in (3.15) as the degree d part of an homogeneous ideal; we get:

(©"*)a € (I(Z(k,n,d))), C (9" )a.

Let (z1,...,x,) be local coordinates in P™ around the point O = (1,0, ...,0); the above inclusions
give, in terms of 0-dimensional schemes in P":

(k+1)0 cC Z(k,n,d) C (k+2)O.
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Lemma 3.3.2. For any k,n,d with d > k+2, the length of Z = Z(k,n,d) defined in Lemma 3.3.1

is: I(Z) = dim(W) = ((k . n) " ”) |

Proof. We have seen that Z(k,n,d) C (k+2)O, with O € P". Setting X := (k+2)O, the condition
d >k + 2 then gives (“7") > I(X) = (") > 1(2).
We have W # S; by assumption, since d > k+2 implies (d+") > (k+2+") = (k+”) + (k+") + (k+1+") >

n n n n—1 n—1
(") +n.

Hence, dim(I;) = dim(W+) = (d:”) — dim(W), hence if we prove that dim(/,) = (d:") —U(2), i.e.
Z imposes indipendent conditions to the forms of degree d, thesis follows.
One (k 4 2)-fat point always imposes independent conditions to the forms of degree d, and since
(d:”) > (X)), then h'(Zx(d)) = 0. The cohomology of the exact sequence:

0— Ix(d) — Iz(d) — .’Z-Z’X(d) >~ OD — 0
where D is a O-dimensional scheme of length [(X) — I(Z) then gives h'(Zz(d)) = 0. O

Now we have seen that our problem can be translated into a problem of studying certain schemes
Z(k,n,d) C P"; we want to check that actually these schemes are the same for all d > k + 2, say
Z(k,n,d) = Z(k,n).

Lemma 3.3.3. For any k,n and d > k + 2, we have Z(k,n,d) = Z(k,n,k + 2). Henceforth we
will denote Z(k,n) = Z(k,n,d), for all d > k + 2.

Proof. By the previous lemmata we already know that Z(k,n,d) and Z(k,n, k + 2) have the same
support and the same length, hence it is enough to show that Z(k,n,d) C Z(k,n, k+2) (as schemes)
in order to conclude. This will be done if we check that I(Z(k,n,k+2))y C 1(Z(k,n,d))s; in fact,
since both ideals are generated in degrees < d, this will imply that I(Z(k,n, k+2)); C I(Z(k,n,d));,
for all j > d, hence the inclusion will hold also between the two saturations, implying Z(k,n,d) C
Z(k,n, k+2).

Let f € I(Z(k,n,k+2))4, then f = hyg1 +-- -+ h,g,, where hj € Sy_j_o and g; € I(Z(k,n, k+
2))k12; since I(Z(k,n,d))qis the perpendicular (via apolarity duality) to W =< LS, L&F1FS) >
it is enough to check that h;g; € W+, j = 1,...,r. Without loss of generality we can assume L = z;
hence, since g; €< L2Sy,, LFS; >*, g; = xog + ¢", with ¢',¢" € K[zy,...,z,] and ¢ € (FS))*. It

will be enough to prove z - - - aing; = afPt! ... xing' 42l - aing” € W for all 4, . .., i, such that
ig+ - +i, =d—k—2. It is clear that 2} - - - zing" € W, since iy < d — k —2; on the other hand,
a0t ging' € (13775, )t again by looking at the degree of xg, while 20T - - - zing’ € (xd *tFS))*
since ¢’ € (F'S)*. O
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Remark: From the lemmata above it follows that in order to study the dimension of Secs_1(Ok n.d),
for all d > k42, we only need to study the postulation of unions of schemes Z(k,n). Ford = k+1,
we will work directly on W, see Proposition 3.3.9

What we got is a sort of “generalized Terracini” for osculating varieties to Veronesean, since the
formula dim(Secs_1(Og.na)) = N — h°(Zy(d)) reduces to the one in Corollary 2.6.2 for k = 0.
Instead of studying 2-fat points on Oy, 4, Wwe can study the schemes Y C P".

Definition 3.3.4. Let Y C P" be a 0-dimensional scheme; we say that Y is Regular in degree d,
d > 0, if the restriction map p : H°(Opn(d)) — H°(Oy(d)) has mazimal rank, i.e. if

Y (Zy (d)) - b (Zy(d)) = 0.

We set exp(h®(Zy(d))) := max{0, (d:n) [(Y)}; hence to say that'Y is reqular in degree d amounts
to saying that h°(Zy (d)) = exp(h°(Zy(d))).

Since we always have h"(Zy (d)) > exp(h°(Zy(d))), we write
R (Zy (d)) = exp(h°(Zy (d))) + 6,

where § = 0(Y, d); hence whenever (‘H") —1(Y) > 0, we have § = h'(Zy(d)), while if (d+”) (V) <
0,0 = (") = UI(Y) + h}(Zy(d)); in any case, by setting exp h!(Zy(d)) := max {0,{(Y) — (*")},
we get: W (Zy(d)) = exp(h' (Zy(d))) + 6.

Remark: For any k,n,d such that d > k+1, let Z = Z(k,n) be the scheme defined and studied in
Lemmas 3.3.1 and 3.3.3, let Y = Y (k,n,s) C P™ be the generic union of s 0-dimensional schemes
isomorphic to Z(k,n) and § = §(Y,d). Then

dim(Secs—1(Okn,a)) = expdim(Secs_1(Ona)) — 6.
In particular, dim(Secs_1(Ogna)) = expdim(Secs_1(Oynq)) if and only if:
e 1°(Zy(d)) = 0, when (d:”) <s (k+”) + sn;

o W(Zy(d)) = N+1-U(Y) = (*'")—s(* ") —sn (i.e. B (Zy(d)) = 0), when (*1") > s(**") +sn.

Example: In the case of n =1 every Secs_1(Ok1.4), with d > k + 2, has the expected dimension;
in fact here Z(k,1) = (k + 2)O, and the scheme Y = {s (k + 2)-fat points} C P! is regular in any
degree d. Notice that for d = k + 1 we trivially have Oy 11 = P,

The case of n = 2 will be treat in the next section.
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Example: If £ = 1 we have already observed at the beginning of this chapter that O;,q =
T(vq(P")), i.e. the tangential variety to the Veronese variety. In [CGGZ2] it is shown that Z(1,n)
is a “(2,3)—scheme” (i.e. the intersection in P" of a 3-fat point with a double line); this is easy to
see, e.g. by choosing coordinates so that L = zy and F' = ;.

The postulation of generic unions of such schemes in P", and hence the defectivity of Secs_1(O1 5,.4).
has been studied. Moreover, a conjecture regarding all defective cases is stated there:

Conjecture 3.3.5. ([CGG2]) The variety Secs_1(O1.n.4) is not defective, except in the following
cases:

1. ford=2 andn > 2s, s > 2;
2. ford=3 andn =s=2,3,4.

In [CGG2] the conjecture is proved for s < 5 (any d,n), for s > 2("1?) +1 (any d, n); for d = 2
(any s,n), for d > 3 and n > s+ 1, for d > 4 and s = n. In [Ba], the conjecture is proved for

n=2,3 (any s,d).

The following lemma describes what can be deduced about the postulation of the scheme Y from
information on fat points:

Lemma 3.3.6. Let P, ..., P, be generic points in P", and set X .= (k+1)PLU---U (k+ 1)P;,
T:=(k+2)PLU---U(k+2)P;. Now let Z; be a 0-dimensional scheme supported on P;, (k+1)P; C
Z; C(k+2)P;, with (Z;) =1((k+1)P;) +n for eachi=1,...,s,, and setY := Z; U---U Z;.
Then:

1.'Y s regular in degree d if one of the following (a) or( b) holds:
(a) h'(Zr(d)) =0, (hence (d:") > S(k+Z+1)),'

(b) h°(Zx(d)) =0, (hence (dzn) < s(k+”)).

n

2.'Y is not reqular in degree d, with defectivity ¢, if one of the following (a) or (b) holds:

(a) W (Ix(d)) > exp, hH(Ty(d)) = max{0,l(Y) — (©*")}; in this case & > h'(Ix(d))) —
exp(h(Zy (d)).

(b) h°(Zr(d)) > exp(h®(Zy(d))) = max{0, (“*") — U(Y)}; in this case § > h°(Zr(d)) —
exp(h°(Zy(d))).
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Proof. The statement follows by considering the cohomology of the exact sequences:
0— IT(d> — Iy(d) — ij(d) — 0

and
0 — Iy(d) — Ix(d) — I)Qy(d) — O

where we have: h'(Zyr(d)) = h'(Zxy(d)) = 0 since those two sheaves are supported on a 0-
dimensional scheme. O

Lemma 3.3.7. Let s>n+2andd < k+1+2 (%) Then Secs_1(Okn.a) is not defective and
Secs—l(Ok,n,d> = PN.

Proof. Let Y C P" be as in Lemma 3.3.6; we have to prove that h°(Zy(d)) = 0 in our hypotheses.

Let {Py,..., P} be the support of Y; we can always choose a rational normal curve C' C P"
containing n + 2 of the P’s . For any hypersurface F' given by a section of Zy (d), since nd <
(k+1)(n+2), by Bezout we get C' C F. But we can always find a rational normal curve containing
n + 3 points in P", so this would imply that any P € P™ is on F', i.e. Zy(d) = 0. [

Lemma 3.3.8. Assume s=n-+1;ifd<k+1+ %, then Secs_1(Ogna) = PV,

Proof. Since d > k+1, we can set d = k+j with j > 0; let W; =< LS, L' F;S, > with F} € S},

fori=1,...,s;since s = n+ 1, without loss of generality we can assume that L; = xg,..., L, =
Tp. '
Hence Wy + -+ + W, contains U := xS} + --- + 2/ S; now in U the missing monomials are

2l - in with 4, < j — 1 for each [ = 0,...,n, and d = deg (z{ - - - %) < (n +1)(j — 1). Hence if
d>(n+1)(j—1),ie. d<k+1+5L weget U=5,.

If d = (n+1)(j — 1) the only missing monomial in U is )
one of the F}’s in a proper way to get Wy +--- + W, = Sy.

Ifd = (n+1)(j—1)—1,ie d=k+1+"2 the n+1 missing monomials in U are 23" -2l >+ i~

7

with ¢ = 0,...,n and again it is possible to choose the F;’s so that Wy +--- 4+ W, = Sy. O

1 i o
-+ 2271 hence it is enough to choose
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3.3.1 The case of Oy, ;11

The description for k£ = 1 given in [CGG2], together with following proposition, describes this case
completely.

Proposition 3.3.9. Ifs > 2, k > 2 and d = k+1, consider the secant variety Secs_1(Ognq) C PV
then:

k+n
n

5:82_S+8(k+n)+(n—s~l—d) N
n d

2. if s <n —1 and the expected dimension is N = (d:") — 1 then

1. if s <n—1 and its expected dimension is s( ) + sn — 1, then Secs_1(Okni+1) s defective

with defect

(a) Secs_1(O4_1,na) is defective with defect § = ("57%) —s(n—s+1) if s < 1("2*79);
() Secy 1(Oa1na) =PV if s > 52+

3. if s > n then Secs_1(Og—1n.4) = PV.

Proof. 1. We have that W = Wy + -+« + W, =< xSk, ..., xs_15k; F151, ..., F,S1 > in Sg. We
can suppose that the Fj’s, i = 1,...,s are generic in K|z, ..., z,]q—1 := S}, and we have

that % ~ % Then, since (F,..., Fs)q =< F151,..., F:S; > and the F}’s are generic,

dim(Fy, ..., Fy)g =min { ("), s(n — s + 1) }.

From this, and from our hypothesis about the expected dimension, we immediately get that
dim(W) = N — ("5 + s(n — s + 1), and hence that the defectivity is § = s* — s+ s(*"") +
(n—s—l—d) - N
p .
2. If s(”+:f_1) + ns > (”Zd) we expect that Secs_1(Og_14) = PV. Proceeding as in the pre-
vious case, in order to compute dim(W) we can actually just consider the vector space
< F\Sy,...,F,S; >; whose dimension is min {("_fl+d), s(n — s+ 1)}; so we get that

(a) if s(n—s+1) < (”_fler), then Secs_1(Og—1n.4) is defective. This happens if and only if

s < é(”d_ird), in this case the defect is § = ("_§+d) —s(n—s+1).

(b) if s(n —s+1) > ("72“1), then Secy 1(O4-1n4) = PV (for example this is always true
for d > n);
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3. Tt suffices to prove that Sec, 1(Og_1,4) =PV for s = n.

If s=n and d = k + 1, then the subspace W + - -- + W, can be written as follows:
< x9Sk, F151,...,2p_1Sk, F,,S1 >; it turns out to be equal to < x¢Sk,...,Tp_15%,T
Sk+1, SO Secn71<0d71,n,d) =PV,

L

n

O

Example: Let us consider the secant varieties of the 4"-osculating variety Oy 65 C P!, We begin
with Secy (Oy65); we are in case 1. of Proposition 3.3.9, and we expect that dim(Sec;(O465)) = 431,
but we get that the defectivity is § = 86 so that dim(Sec;(O465)) = 345.

When s = 3,4 we are in case 2. of Proposition 3.3.9, and § = 44 for Secs(Oy65), while 6 =9
for Sec3(O465). Eventually, Secy(O,65)) = P40

So, even if we expect that Secy(O,65) should fill up PV, even the 3-secant variety does not.

In terms of forms we get that neither we can write a generic f € (K|[xzg,...,x¢])s as f =
L1Fy + Lo Fy + L3F3 with L; € Sy and F; € Sy (as we expect), nor as f = L1 Fy + -+ + L4Fy, but
we need five addenda.

3.3.2 Some examples for d=k+2 and d=Fk + 3
The case of d =k + 2

e Let us consider first the Veronese surface v o(P?).

Corollary 3.3.10. Assume d =k + 2 and n = 2. Then, Secs_1(Ok2x+2) is not defective for
s >3 and k > 1, and Secs_1(Ok2x+2) is defective for s =2 and k > 1.

Proof. By Lemma 3.3.7 and Lemma 3.3.8, Secs_1(Og2x+2) is not defective for s > 3 and
d > 3,1ie. k > 2; the case k = 1 is already known by [Ba].

For s=2and k > 1,let Y = Y (k,2) C P? be the 0-dimensional scheme defined in 3.3.6; it is
easy to check that exp(h(Zy(d))) = exp(h®(Zr(d))) = 0, where T' denotes the generic union
of two (k + 2)-fat points in P2. Since T is not regular in degree d = k + 2 for any k > 1, we
conclude by Lemma 3.3.6 case 2.(b) that Secs_1(Ognx12) is defective with defectivity grater
or equal than h(Zr(d)) = 1 (the only section is given by the (k + 2)-ple line through the two
points). O

e Let us now consider the case of vy o(P3).

Corollary 3.3.11. Assume d = k+2 and n = 3. Then, Secs_1(Og3ri2) = PV for s >
n+1=4 and k > 1, while Secs_1(Ok 3 k12) is defective for s < 3.
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Proof. The case s < 3 will be treated in Proposition 3.3.15.

If s =4and k = 1, Sec3(O133) = PV by [CGG2], (4.6). If s = 4 and k = 2, we have
Sec3(0234) = PN by Lemma 3.3.8.

If s>5and k> 1, or s =4 and k > 3, the thesis follows by Lemmata 3.3.7 and 3.3.8,
respectively. O]

o As last case we consider vy o(P4).

Corollary 3.3.12. Assume d = k+2 and n = 4. Then, Sec, 1(Ogapi2) = PN for s > 5
and k > 1, while Secs_1(Ogak+2) s defective for s < 4.

Proof. The case s < 4 will be given by Proposition 3.3.15.

If s >5and k=1, Sec,_1(0143) = PY by [CGG2], (4.6) and (4.5). If s =5 and k = 2,3,
we have Secy(Og 4 x12) = PV by Lemma 3.3.8.

[fs>n+2=6and k> 2, or s =5 and k > 4, thesis follows by Lemmata 3.3.7 and 3.3.8,

respectively. O

The case of d =k + 3

For the Veronese surface we can prove the following:
Corollary 3.3.13. Assume d =k + 3 and n = 2. Then:
1. for s =2 and k = 1,2: dim(Sec,(Op2413)) = s("3?) + 25 — 1 (the expected one);

2. for s =2 and k > 3: Secy(Okary3) is defective;
8. for s >3 and k > 1: Secs_1(Ogaprs) = PV,

Proof. If s> n+2=4and k > 2, or s =3 and k£ > 4, the thesis follows by Lemmata 3.3.7 and
3.3.8, respectively.

If s >3 and k =1, Secs_1(0;2413) = P by [CGG2], (4.5).

If s =3 and k = 2,3, we have Sec; (O 2x13) = PV by Lemma 3.3.8.

Ifs=2and k=1,0r s=2and k =2, Sec;(Ogar:+3) # PV is not defective by [CGG2], (4.6) and
[BF1], Theorem 1, respectively.

If s =2 and k > 3, then, in the notations of Lemma 3.3.6, we have :

for k = 3,4 exp(h'(Zx(d))) = exp(h'(Zy(d))) = 0, and the union X of 2 (k + 1)-fat points is not
regular in degree d = k + 3;

for k > 5 exp(h®(Zy(d))) = exp(h®(Zr(d))) = 0, and the union T of 2 (k + 2)-fat points is not
regular in degree d = k + 3; so we conclude by 3.3.6, cases 2.(a) and 2.(b). [
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3.3.3 Partial results for s <n+1

If we want to study the (s — 1)-secant variety to Oy, 4 and we know that s < n + 1 we can
deeply use the Inverse System theory because we can always choose a particular tangent space to
Secs—1(On,q) in such a way we can be sure that it is not a restrictive hypothesis.

Proposition 3.3.14. If s <n+1,d>2k+1 and k > 2 then Secs_1(Oy n.q) is regular.

Proof. We have to study the dimension of the vector space Wi+ - -+W, =< LI%S, L& 1R S, ...
Lg_kSk, Lg_k_lFsSl >, where L4, ..., Ls are generic in S7 and F7, ..., F, are generic in Si. Since s <
n+1, without loss of generality we may suppose L; = x;_; fori =1,...,s. Since d > 2k+1, for § =
d—k > 3, the vector space Wi+ - -+W, can be written as < ngk, xg_lFlSl, e ,xf_lsk, xf__llFSSl >,
If we show that for a particular choice of Fi,...,F, € Si the dimension of Wi + --- + W, =
expdim(Secs_1(Ogn.a))+1 we can conclude by semi—continuity that Secs,l(Ok,nyd) has the expected

dimension. Let us consider the case F; = xZ:L'lHF fore =1,. -2, F,_1 = xs 120F;_1 and
F, = xoxlFS, where the F s are generic forms in Sy_o, j = 1 ,n+ 1. Let < xﬁsk >=: A;
and < mf_lFiHSl >=: Al i = 0,...,5 — 1; then we get A, =< x;@_ ml+1xz+2Fl+1SI , 1=
(),.. —-3; AL, =< xﬂéms,lxoﬁs,lSl > and A, | =< xﬁ}lxoxlF S1 >. Now Wi + -+ +

Z A + 3 1A/ We can easily notice that A, N (Z A + 23 -y A;) — AN

1 -1 ~
(Z] 0,]75114 + ZS A/) = Az N A; =< fok >N< LC? ZIZ',L'+1.I',L'+2F1Z‘+151 >=< $?Ii+1$i+gﬂ+1 >

for any fixed i = 0,...,s — 3 (analogously if i = s — 2,5 — 1). So we have found exactly s rela-
tions and we can conclude that dim(W; + --- + W) = dim (Zs VA ) + dim (ZS ! A’> — 5=
(k+") + s(n+ 1) — s, which is exactly the expected dimension. O

Proposition 3.3.15. If s < n and k+ 2 < d < 2k then Secs_1(Ogna) is defective with defect ¢
such that:

1. 0 > (" SH) if the expected dimension is (d;;") —1;

2.6 > ( )(2k d+") iof the expected dimension is s(“”) +sn — 1.

n

Proof Let ﬁ =d—Fk> 2 we can rewrite the vector space Wi + - - - + Wy as follows:
<IOSk,LUO FlSl, Sk, FSl

1. We can observe that K[z, ..., x,]aN(Wi+- - -+Wy) = {0}, so if we expect that Secs_1 (Ok n.a) =

PN we get a defect § > ("577).
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2. Suppose now that s [(k+n) +n] < (dzn). If Secs—1(Og.na) were to have the expected di-
mension we would not be able to find more relations among the W;’s other than :17;6 F i e<
fo’k >N< :vf_l H—lSl > fori=0,...,s—1 (as it happens in Proposition 3.3.14. But it is
easy to see that x; a:ﬂF e< xﬁSk > ﬂ < xﬁSk > with ¢ # j and F' € Sy_3. We have exactly
(;) such terms for any choice of F' € S;_g. We can also suppose that the F; € S that appear

in Wy 4+ --- 4+ W, are different from $’6F for any F' € Sy_g and 7 = 0,...,s — 1, because

Fi, ..., F, are generic forms of Sg. Then we can be sure that the form x T o belonging to

< fok >N< fok > is not one of the z; EH that belongs to < fok >N< xlﬁ 'F, F; 15 >

Now dim(Sy_3) = (kiﬁ +”) so we can find (;) (kfg +”) independent forms that give defectivity.

Hence in case s [(H") + n} (dj;") we have dim(Secs_1(On.q)) < expdim(Secs_1(Ogna)) —

(3) (") = expdim(Secs 1 (Opna)) = (3) (77)-

n

]

Proposition 3.3.16. Ifs = n+1, k+2 < d < 2k and expdim(Sec,,(Ogna)) = (n+1) ((k+") + n) 1
then Secy,(Ok.na) is defective with defect 6 > (”;rl) (2’“7;”").

Proof. The proof of this fact is the same as case 2. of the previous proposition. n

Proposition 3.3.17. If s =n+1, n > 52 k42 < d < 2k and expdim(Sec,(Oyna)) = N then
Secy, (Og.n.a) is defective with defect 6 > ( d k=1)= dH))

Proof. If k 4+ 2 < d < 2k, then 2 < B :=d—-k < k and we have to study the dimension of
Wi+ 4+ Wy =< xOSk,xO FlSl, . ,xﬁSk,xﬁ_anHSl >. It is easy to see that a monomial
of the form f = ’GO- e with Y7 8 = dand 0 < 3 < B —2 for all i € {0,...,n} is
a form of degree d Which does not belong to Wy + --- + W,41. In fact f can be written as
el 0TRE2) g Onth ) it Sorovi=nd—(n+1)(k+2)and 4 > 0foralli=0,...,n and
these forms are exactly ("H"H)(d k=2)- d) = (("H)(d k1)~ (d+1)). In order for these forms to exist,
one needs that (n+1)(d —k —2) —d > 0, i.e. that n > 2~ This is sufficient to show that if we

expect that Sec,, (Ok,q) =PV, and if n > dE—IL_EQ and k + 2 < d < 2k, then Sec,, (O n.q) is defective.

Let us notice that what we just saw is not sufficient to say that the defect 9 is exactly equal to
(("H)(d k=1)=(d+1) ) because in Sy~ < W + - W,41 > we can find also monomials like z° - .CI?B"

with 7 3 = d, at least one 3; = 3 — 1 and each of the others 3; < § — 2. Hence § >
((n+1)(d k— 1) (d+1))‘ O

n

All the results on defectivity lead us to formulate the following:
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Conjecture 3.3.18. The variety Secs_1(O.na) is defective only if Y is as in case 2. (a) or 2. (b)
of Lemma 3.3.6.

The conjecture amounts to say that the defectivity of Y can only occur if defectivity of the fat
points schemes X or 1" imposes it.

Remark: In many examples the defectivity of Y is exactly the one imposed by X or by T (i.e.
the inequalities on § in Lemma 3.3.6 are equalities), but this is not always the case: for example if
we consider the variety Secy(Oy56) (see the example after Proposition 3.3.9), here we get that the
corresponding scheme Y has defectivity 86 in degree 5. Here we have that X is given by two 5-fat
points in P, and it is easy to check that h(Zx(5)) = 126 (all 5-tics through X can be viewed as
cones over a 5-tic of a P4), so that its defectivity is 84. Hence, even if Y is “forced” to be defective
by X, its defectivity is bigger, i.e. Y should impose to 5-tics 12 conditions more than X, but it
imposes only ten conditions more.

It is easy to find similar behavior if d = k + 1, for instance forn =8 s =3, d=k+1=2or
n=10,s=3,d=k+1=2.

3.4 The secant varieties to the osculating varieties to the
Veronese surface

In this section we want to study the particular case of Sec,_1(Oy2,4). Since for all this section we
will work with n = 2, we write O, instead of Oy .

What we are going to present here is in part contained in the joint work [BC]: in that note we
proved the Conjecture 3.3.18 for cases n = 2 and s = 3,4,5,6,9 (with some omitted details); here
we want to give all the detailed proofs and to show that Conjecture 3.3.18 holds also for n = 2 and
s=1,8.

In [Ba] and [BF1] the authors study the (s — 1)-secant varieties of Oy, for k = 1,2 and they
prove the following results:

Proposition 3.4.1. For k = 1, the (s — 1)-secant variety of the tangential variety to va(P?) has
the expected dimension, unless s =2 and d = 3.
Proposition 3.4.2. For k = 2, the (s — 1)-secant variety of 2-osculating variety to vq(P?) has the

expected dimension, unless s = 2 and d = 4.

Remark: In general it is a hard problem to determine the postulation for a union of m-fat points.
There is a conjecture for the postulation of a generic union X C P? of s m-fat points (e.g. see
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[Harb]): for s > 10, the conjecture says that X is regular in any degree d. This has been proved
for m < 20 in [CCMOJ, and, when s is a square, by L.Evain in [Ev]. For s <9 all the defective
cases are known (e.g., see [CCMO)] or [Harb]), more precisely, for any m € N and s < 9 the cases
in which X C P? is not regular are:

1. s=2, andm <d <2m — 2;
2. s=3,and37m§d§2m—2;
3. s:5,and2m§d§%;
4. 3:6,and127m§d§%;

5. s:7,and217m§d§%;

_ 48m 17m—2
6. s =38, and * <d < =

Notation: Only for this section, since we are studying the case n = 2, we indicate with S the
coordinate ring K|z, y, z].

Proposition 3.4.3. Ford =k +1 and s > 2, we have Sec,_1(O},q4) = PV.
Proof. 1t is an easy consequence of Proposition 3.3.9, point 3. Since for d = k + 1 we have that
Sec; (Or.q4) = PV then the statement holds for s > 2. O

Notation: Let P = [L4*F] be a generic point of Oy 4 with L € S; and F € Sy, and let Tp(Oy 4)
be the tangent space of Oy 4 at P. The affine cone over Tp(Ogq) is

W =< Lk, LIF1pS > .

Terracini’s Lemma says that the tangent space of Secs_1(Oy 4) at a generic point of < P, ..., Py >
for Py,..., Py € Oyg, is the span of the tangent spaces to O 4 at P, = [LSFF] with L; € S; and
F, € Sy for 1 <i<s. If Tp, , p, = P(W;) = P(< LISy, LYF ' E,S, >), then

dim(Secs_l(Ohd)) = d1m(< T’p1 (Ok,d); R 7TPS(Ok,d> >) = d1m(< Wl, ey W, >) — 1. (316)

With an abuse of notation we consider Wf C Sy, for all 1 <i < s. It generates an ideal in S
defining a scheme Z;(k,d) C P2. Let Y be a generic union of s schemes

Zi(k,d) C P?, (3.17)

for 1 <i < s. Since dim(< Wy,..., W, >) —1 = N —dim[< Wy,..., W, >]* = N —dim(Wi 0
- NWE) = N — (P2, Zy(d)), we have:
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dim(Sec,_1(Ogq)) = N — h*(P*, Iy (d)) = H(Y,d) — 1 (3.18)

where H(Y,d) is the Hilbert function of Y in degree d.
For d > k + 2, the schemes Z;(k,d) are zero-dimensional, and do not depend on d, in fact we
can rephrase the Lemmata 3.3.1, 3.3.2, 3.3.3 as follows:

Lemma 3.4.4. Let Z(k,d) = Z;(k,d) be one such scheme with support at P. For d > k + 2, we
have:

1. (k+1)P C Z(k,d) C (k+2)P;
2. the length of Z(k,d) is 1(Z) = (*1?) +2;
3. Z(k,d) = Z(k,k +2).

Henceforth for d > k + 2 we will denote Z(k,d) by Z(k), or Z, if k is obvious by the context.
From (3.18) and the lemma above it follows that for d > k 4 2 in order to study the dimension
of Secs_1(Oy.q), we only need to study the postulation of unions of generic schemes Z (k).

Remark: Let d > k + 2. Recall that Z(k) is defined by the ideal generated by W+ C S, where
W =< LFS,, L&F RS, >, with L € S; and F € Si. Now we choose the scheme Z(k): set
L =z and F = y*; we get

W =< 2758, 247" 1yh S, >

hence
wi— < md—k—lyk—1227 o ’xd—k—lyzk’ xd—k—lzk—&—l, xd—k—ka—i-Q’ xd—k—ka—&-lz, .
d—k—2, _k+1 ,d—k—2 k+2 ,.d—k—3, k+1 d—k—3, k d—k—3, k .d—k—3 k+1
T yzim AR Yy x Yz, ..o yz" x 2T
d—1 d—2 d—2 ..d-1 ,d ,d—1 d-1 .d
Yy’ Yy Tz, eyt Tyt T ey 2 >

Let I be the ideal generated by W+. By a direct computation, it is easy to show that the
saturation of I is the ideal

(1) = (y,2)" 0 ((5.2)" + (%)) (3.19)
that defines a scheme supported at a point of P2, whose structure is given by the union of its k-th

infinitesimal neighbourhood, with the intersection of its (k+1)-th infinitesimal neighbourhood with
a double line.

Notation: We fix, as in the previous section, the following notation:
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e let P, ..., P, be s generic points in P?;

e let X be the union of s generic (k + 1)-fat points in P?, with support in Py, ..., Ps;
e let T be the union of s generic (k + 2)-fat points in P?, with support in P, ..., P;;
e let Z; be a 0-dimensional scheme in P2, as defined in (3.17), with support in P;;

eletY =1+ ---+Z;

e denote by “(k+1,k+2)P” a 0-dimensional scheme whose defining ideal is 1 N (2 + 1?)
where @ is the homogeneous ideal in S = K[z, v, z] of a point P € P2, and [ is the ideal of a
generic line through P; we call (k+ 1,k +2)P a “(k + 1,k + 2)-point”;

e let Z; be a (k+ 1, k+2)-point with support in P;. By (3.19), the scheme Z; is a specialization
of the scheme Z;;

o let Y =21+ -+ 2, (so ) is a specialization of the scheme Y). We have

o) = aee(v) = (3

) + 2) = deg(X) + 2s;
e if C C P? is a curve, and Z is a zero-dimensional scheme, the scheme Z’ defined by the ideal
(Iz : I¢) is called the residual of Z with respect to C, and it is denoted by RescZ.

In the following lemma we determine the subscheme of a (k + 1,k + 2)-point with support in
P, residual to a curve C.

Lemma 3.4.5. Let Z be a (k+1, k+2)-point, with support in P with defining ideal o*+*N(pF*2412),
where @ is the ideal of P, and | = (L) is the ideal of a generic line through P. Let C C P? be a curve

having at P a singularity of multiplicity m, and having L as tangent direction with multiplicity t.
Then Resc(Z) is defined by the ideal

max{k+1-m;0} N ( max{k+2—m;0} + lmax{2—t;0}) )

IRESC(Z) = ©

The residual Resc(Z2) is a fat point or a (k+ 1 —m,k + 2 — m)-point, except for m < k+ 1 and
t =1, more precisely:

0P form>k+2 orm=k+1andt>2;
1P form=k+1andt <1;

Resc(Z) =< 2P form =k and t = 0;
(k+1—m)P form <k+1andt > 2;

(k+1—m,k+2—m)P form<kandt=0.
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Proof. Without loss of generality, we assume that o = (z,y), L = x, and, by abuse of notation,
that x,y are affine coordinates.

Let 2 f; + f> = 0 be an equation defining the curve C, where f; is a homogeneous polynomial
of degree m —t, f1 ¢ (z) , and fy € (z,y)™"!. We have to prove that

(2, )" 0 (2, )2+ (@) ¢ (@ fit fo) = () "0 A () tir2mmOd 4 (graxtz=aoh))
(3.20)
This is obvious for m > k + 2, and for m = k + 1,¢ > 2, since in these cases Res¢(Z) is supported
on the emptyset.
Let m = k+ 1, t < 1. In this case the equality (3.20) becomes

(@) N (2, 9) 2 + (@) (@' fi+ fo) = (2,).

“C” : To prove this inclusion, let g = a+h,a € K, h € (z,y). If g- (' fi+ f2) = (a+h) (2" fi+ f2) €
((z,y)**2 + (2%)), since fo € (z,y)™, halfy € (x,9)™ and m + 1 = k + 2, it follows that
az'f € ((z,y)**?+ (2?)). But f; is a homogeneous polynomial of degree m —t, f; ¢ (x),t < 1, so
it easily follows that a = 0, and we get g € (z,y). The reverse inclusion is obvious.

Since Igese(z) = (2,y), we have Res¢(Z) = 1P

Now, let m < k+ 1, t > 2. In this case we have to prove that:

(&, ) O (2, 9)52 + (22) : (2 fo + fo) = (2, )51,

If g- (2" fi + fo) € (z,y)*", it immediately follows that g € (z,y)**1~™ and the reverse inclusion
is obvious. Moreover, since I (z) = (z,y)*™'7™, we have that Resc(Z) = (k+1—m)P.
Let m < k4 1,t < 1. Now we have to prove that

() 0 () + @) 2 @+ ) = (2 9) " 0 () 2+ ().

“C” : As in the previous case, if g - (z'f1 + f2) € (z,y)**?, it follows that g € (x,y)*™1™, so
we can write
9 =xg +ay*™"" + go,

k+2—m

where g1 € (z,y)* ™™ is homogeneous of degree k —m, g, € (x,vy) , a € K. In order to prove

that
g- (@' fi+ f2) = (g + ay" " + go) (' f1 + fo) € ((z, )" + (27)))

since gox' f1, and fy € (z,y)*+2, it suffices that
$t+191f1 + axtykﬂ_mfl c ((x,y)k+2 + (xZ))

Since z'lg, fi + ax'y* 1™ f1 is homogeneous of degree k + 1, and f, ¢ (), we get that z'Tlg; +
azty* =™ € (2?). For t = 1, this implies a = 0, so g € ((x,y)**>™ + (x)). For t = 0 this implies
a=0,and g € (z), s0 g € ((z,y)*" 4 (27)).
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“D” : This inclusion is obvious.
So we have proved that, for m < k and t < 1:

(z, )™ (2, 9)* 27" + (2) = (z,y)*"* " N0 (2, ¥ ™) form <kandt=1,
Trese(zy = § (2,9) N ((2,9)? + (27)) = (2,9)? form =k and t =0,
(z,y)Fm 0 (2, )" 2™ + (22)) form < kandt,=0

hence for m = k and ¢t = 0 we have Resc(Z) = 2P, for m < k and t = 0 we have Resc(Z) =
(k+1—m,k+2—m)P, while for m < k and t = 1, Res¢(Z) is the union of the fat point
(k +1—m)P with the intersection of the line {z = 0} with the fat point (k +2 —m)P. O

We wish to notice that the expected dimension for Secs_1(Oy 4) is

expdim(Secs_1(Of4)) = min{sn +s —1, N},

where n = dim(Ogq) = min { (*7%) + 1, (“}?) — 1} = min {(*}*) + LN} = min{deg—(y) 1, N}_

2 s
Hence it easily follows that

expdim(Secs_1(Of4)) = min{deg(Y),N + 1} — 1 =exp(H(Y,d)) — 1

where exp(H (Y, d)) is the expected value for the Hilbert function H(Y,d) of Y in degree d.
In next Lemmata we show that the postulation of Y is strictly related with the postulation of the
specialized scheme ), and of the scheme of fat points X.

Lemma 3.4.6. If the Hilbert function of the specialized scheme ) in degree d is
H(Y,d) =min{H(X,d) + 2s, N + 1},

then
H(Y,d) = min{H(X,d) + 2s, N + 1}.

Proof. 1t follows from the obvious inequalities: H(Y,d) < H(Y,d) < min {H(X,d)+2s, N+1}. O

Lemma 3.4.7. Let s > 2. Then:
1 fork=1,Y=Y =(2,3)P+---+(2,3)Fs, and H(Y,d) = min{deg(Y), N + 1};
2. fork=2,Y=(3,4)P +- -+ (3,4)P;, and H(Y,d) = min{deg(Y), N + 1}.
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Proof. 1. If d = 2 see [CGG?2], Proposition 3.3; for d = 3 see [CGG2], Proposition 4.5; for
d > 4 see [Ba], Theorem 1.

2. follows from [BF1] Theorems 1 and 2.

Lemma 3.4.8. 1. If H(Y,dy) = H(X,dy) + 2s, then for every d > dy we have

H(Y,d) = H(X,d) + 2s;
2. if (Iy)a, = (0), then for every d < dy we have (Iy)q = (0).

Proof. 1. Since X C Y and H(Y,dy) = H(X, dy)+2s, then it easily follows that dim (Ix/Iy), =
2s. Therefore there are 2s forms fi, ..., fos € (Ix)q, linearly independent module (Iy)4,. Let
{l = 0} be a line not through any of the points P, ..., P,. The forms fjl% % ... fy %% ¢
(Ix)q are linearly independent module (Iy )4, hence dim (Ix/Iy), > 2s, so we have H(Y,d) >
H(X,d)+ 2s. Since obviously H(Y,d) < H(X,d) + 2s, then the conclusion follows.

2. Obvious.
O

Now we will study the postulation of ) for each s = 3,...,9 separately, but first we wish to
mention the case s = 2.

Proposition 3.4.9. For s = 2 we have:

( N+1 ifd <2
fork=1: H(T,d) =9 <exp(H(Y,d)) ifd=3;
H(X,d)+4 =deg(Y) if d > 4;
N +1 if d < 3;
) fork=2: H(T,d) =14 <exp(H(Y,d)) ifd=4;
H(Y,d) = S H(X,d) +4 = deg(Y) if d > 5:
N+1 ifd<k+1;
for k>3- H(T,d) < exp(H(Y,d)) if d =k +2;
- H(X,d)+4 <exp(H(Y,d)) ifk+3<d<2k
k H(X,d) + 4 = deg(Y) ifd> 2k + 1.
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Proof. The case d < k + 1 follows from Lemma 3.4.8, 2., and Proposition 3.3.9, 3.

For d = k + 2 observe that the line L through P, and P, is a component of multiplicity at
least 2(k + 1) — d = k for the curves defined by the forms both of (Iy); and of (Ir)g. Since
ResprY = Resy T = 2P, + 2P, (see Lemma 3.4.5), we get

dim([y)kJrQ = dim([T)k+2 = dim([2p1+2p2)2 =1

(the only curve is the (k+2)-uple line through the two points)). Thus H(),d) = H(T,d). Moreover,
since T is not regular in degree k + 2, we get H(),d) < exp(H(Y,d)) (see Corollary 3.3.10).

For £k = 1,2 and d > k + 3, see Corollary 3.3.13. For k > 3, and d > 2k + 1 see Proposition
3.3.14.

Now let k£ > 3, and k43 < d < 2k. For d = k + 3 the line L through P, and P, is a component
of multiplicity at least v = 2(k + 1) —d = k — 1 for the curves defined by the forms of both (Iy)4,
and (Ix)q4, hence from the case k =1, d = 4, we get

dim([y)kJrg = dim(Iy/)k+3_(k_1) = dim(Iy/)4 =15—-10= 5,
dim(lx>k+3 = dim(IX,)4 = 9,

where )’ = Res,1 Y = (2,3)P, + (2,3)P; (see Lemma 3.4.5), and X' = Res, 1 X = 2P, 4+ 2P,.
It follows that H(Y,k + 3) = H(X,k + 3) + 4. Hence by Lemma 3.4.8 1., for every d > k + 3
we have

H(Y,d) = H(X,d)+ 4.
Since two (k + 1)-fat points impose independent conditions to curves of degree d if and only if

d > 2k + 1 (see the first Remark in the present section), then, for & + 3 < d < 2k, we have
H(X,d) < deg(X), thus

H(Y,d) = H(X,d) +4 < deg(X) + 4 = deg(Y).

Moreover, since for d = k + 3, dim(Iy)x+3 = 5, then for d > k + 3, dim([y), is positive, that is
H(Y,d) < (*1?). It follows that k+3 < d < 2k, then H(Y,d) < min {deg(Y), (“}?) } exp(H (Y, d)).
(For k > 3, and k + 3 < d < 2k, see also Proposition 3.3.15). O

Proposition 3.4.10. For s = 3 we have:

1.
N+1 if <[]
H(Y,d) = H(X,d)+6 < deg(v) if [250]+1<d< 2k

2

H(X,d)+6 = deg(Y) if d > max {[250] +1; 2k +1}.
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[3(16;1)} +2<d<2k ifk+1is even;

H(Y,d) <exp(H(Y,d)) iff

[S(k;-l)—‘ +1<d<2k ifk+1is odd

Proof. 1. In case d < {3(@1)"’ it suffices to prove that (Iy)g = (0) for d = {3(]“;1)-‘.

Let C be the curve formed by the three lines P, Py, P\ P3, P,P3;. For d = F(k;l)—‘, the curve

C is a fixed component, of multiplicity at least

2

EfLif k4 1 is even,
v=20k+1) - —{g if k+ 1 s odd,

for the curves defined by the forms of (Iy)4, so we have (see Lemma 3.4.5)
dlIIl(Iy)d = dim(Iyl)d,;;y

where
P+ P+ P if K+ 1 is even,

’ _
Yy Resycy{ 2P, + 2P, +2P; if k+1 is odd;

d— 3y — 0 if £+ 1 is even,
YT 2 ifk+1is odd.

It immediately follows that (1), = (0).
Now let d > {@-‘ + 1. In order to prove that H(Y,d) = H(X,d) + 6, by Lemma 3.4.8 it
suffices to prove that H(Y,d) = H(X,d) 4 6 for d = [@-‘ + 1.

Let d = {@-‘ + 1. The curve C is a fixed component, with multiplicity at least

% if £+ 1 is even,

y:2(k‘+1)—d:{ 2y . :
% if K+ 1 is odd,

for the curves defined by the forms of both (Iy), and (Ix )4, then we have
dlm(]y)d = dim(]y/)d_?)y,
dlm(IX>d = dim(IX/)d_gy
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where (see Lemma 3.4.5)

6 if £+ 11is odd,

(2,3)P1 4+ (2,3) P+ (2,3)P; if k+ 1 is even,
(3,4)P, + (3,4)P, + (3,4)P; if k + 1 s odd,

Y { 2P, + 2P, +2P; if k+1 is even,

d—3y:{ 4 if k+1is even
y/:ResVCy:{

Since it is well known that dim(/op,op,12p,)4 = 6 and dim(/3p, 13p,+3p; )6 = 10, we have

. ] 6 it k+41iseven,
dim(Ix+)a-s0 = { 10 if k+ 1 is odd,

moreover, by Lemma 3.4.7 we get that

' 0 if k+11is even,
dim(Iyr)4_3, = { 4 if k+ 1 is odd.

It follows that dim(/y)q — dim(Iy)s = 6, hence H(Y,d) — H(X,d) = 6.
Since three (k + 1)-fat points impose independent conditions to curves of degree d if and only
if d > 2k + 1 (see the first Remark of this section), then for { k+1)w + 1 < d < 2k we have

H(X,d) < deg(X), while if d > max{{ (kﬂ)—‘ +1; 2k + 1} then H(X,d) = deg(X). Since
deg(Y) = deg(X) + 6 we get:

H(X,d)+6 < deg(Y) if {@ 1< d< 2k,

HY,d) =
d) H(X,d)+ 6 = deg(Y) ifdzmax{ﬂ“ﬂﬂ 2k;+1}

2. Ford < [@-‘ ,ord > max{ (3(“1)-‘ +1; 2k + 1} from 1. we have H(Y,d) = exp(H (Y, d)).

If k+ 1 is even and d = { ’“*ﬂ +1, then dim(Iy), = 0, hence H (Y, d) = (*£%), the expected

one.

If k+1iseven and d = [ (kﬂ)—‘ +2, from 1., since dim(Zx)4—; = 6 implies dim(/x)y > 6, we
have:

dim(Iy)q = (d “QL 2) HY,d) = (d "5 2) ~H(X,d) — 6 = dim(Ix)q — 6 > 0.
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Hence if k+1 is even, d > { kHW +2, and so also for d > [ k+1)—‘ +2 we have dim(/y)4 > 0,
that is H(Y,d) < (d“) Since, by 1., if [3(“1 W +1 < d <2k, then H(Y,d) < deg(Y), it
follows that [ kH)—‘ +2 < d < 2k we have H(Y,d) < min {deg(Y), (}*)} = exp(H (Y, d))

2

If K+ 11is odd and d > [@-‘ + 1, from the proof of i) we get dim(/y); > 0, hence
H(Y,d) < (“}?).

Moreover, by 1., if {@W +1<d <2k, then H(Y,d) < deg(Y), and the conclusion imme-

diately follows.
[

Proposition 3.4.11. For s = 4 we have:

. N+1 if d <2k + 2,
fork <6: {H(de)+8:deg(Y) if d > 2k + 3,

Jor k=6 {H(X,d)+8:deg(Y) if d > 2k +2.

Proof. 1f d < 2k + 1, by Bezout Theorem, each element of (Iy)4 is divisible by every form defining
an irreducible conic through Py, ..., Py, hence (Iy)s = (0).

Let d = 2k + 2. Recall that the ideal of the scheme Z;is o™ N (T 4+ 12), where I; defines
a generic line L; through P; (1 < ¢ < 4) such that deg()Y N L;) = k + 2. Let C; be the conic
through Py,..., P, tangent in P; to L;. For the genericity of the L;’s, the conics Cy,...,C,4 are
distinct. Bezout’s Theorem implies that each conic C; is a component of each curve defined by
the forms of (Iy)s. By Lemma 3.4.5 we can determine Iges, ...y, and it is an easy computation
that the intersection multiplicities of the curves defined by the forms of (1 Resc, ... +C4y)a;_8 with
a conic C;, is bigger than 2(d — 8). Hence by Bezout’s Theorem we get that each conic C; is a
component with multiplicity at least 2 of each curve defined by the forms of (1y)4. So these curves
have a component of degree 16. It follows that, if (Iy); # (0), then d > 16, that is k& > 7.
Thus, for k& < 6, we have (Iy); = (0), hence H(Y,d) = N + 1. Observe that for £ = 6, we have
N +1=H(X,d)+8 = deg(Y), in fact in this case d = 2k +2 = 14, N +1 = ('}) = 120, and,
since four 7-fat points impose independent conditions to curves of degree 14 (see the first Remark
of this section), then H(X,d) = 112. If k > 7 we have

dim(Iy)ag+2 = dim(Iy)ak+2-16,
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where V' = Resoc,+..420,Y = (k —T)Py + -+ + (k — 7) Py is a scheme of four (k — 7)-fat points
(see Lemma 3.4.5). Since )’ imposes independent conditions to curves of degree 2k — 14 (see the
first Remark of this section), then H (Y, 2k +2) = (2k;4) —dim(Iy)ok42 = (%;4) —dim(Iy )og—14 =
(") = (%) +4(5,°) =4(*) +8 = H(X, 2k +2) + 8 = deg(Y).

Now let d > 2k + 3. It suffices to prove that H(Y, 2k 4+ 3) = H(X,2k + 3) + 8 = deg(Y) (see
Lemma 3.4.8 point 1.), hence let d = 2k + 3. By induction on k. For k = 1 see Lemma 3.4.7. Let
k > 2. Let C be an irreducible conic through P, ..., Py, and let Qy, @2, Q3 be three points on C.
Let YV = Y+Q1 + Q2 + Q3. By Bezout’s Theorem, the conic C is a fixed component for the curves
of degree 2k 4 3 through ), then

. . 2k +3 ~
d1m([§)2k+3 = dlm([)’},)ngrl = ( ) - H(yl, 2k + 1),

2

where ) = Resc) = Res¢) = S0 (k k4 1)P; (see Lemma 3.4.5). By the inductive hypothesis
we have that H()', 2k + 1) = deg()') = 4(k;1) + 8, hence

H(Y, 2k +3) = (%;5) - (Qk;?’) +4(k;1) +8 = deg(V) +3 = deg (D).

Hence ) imposes independent conditions to curves of degree 2k + 3. Since ) C ;)7, also ) imposes
independent conditions to curves of degree 2k + 3, that is H(Y, 2k + 3) = deg(}). O

Proposition 3.4.12. For s =5 we have:

N+1 if d <2k +3,
HY,d)y={ HX.d)+10 <exp(H(Y,d)) if2k+4<d< F(k;l)J 1
H(X,d) + 10 = deg(Y) if d > max {zk Y {5@;% } '

Proof. Let d < 2k + 3. If we prove that (Iy); = (0) for d = 2k + 3 we are done. So let d = 2k + 3.
For k =1 see Lemma 3.4.7.

Let k > 2. Any curve defined by a nonzero element of (Ix), has the conic C through P, ..., Ps
as a component of multiplicity at least 5(k 4+ 1) —2d = k — 1, where X is the fat point subscheme
of 5 points of multiplicity k + 1, hence the same is true for ) in place of X, since X C ), so we
have:

dim(ly)Qk_H), = dim(fy/)2k+3_2(k_1) = dim(]y,)5,
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where, by Lemma 3.4.5, V' = Resg—1)¢c) = (2,3)P, +--- + (2,3)F5. Since, by Lemma 3.4.7 point
1., dim(/y)5 = 0, then the conclusion follows.
Now let d > 2k + 4. We have to prove that

H(Y,d) = H(X,d) + 10.

By Lemma 3.4.8, it is sufficient to prove that H(Y,d) = H(X,d) + 10 for d = 2k + 4, so let
d=2k+4. For k =1,2 see Lemma 3.4.7. If k = 3 (hence d = 10), let ) be a point on the conic C
through Py, ..., P5s. The scheme ) + () imposes independent conditions to the curves of degree 10.
In fact, since the conic C is a fixed locus for (Iy4g)i0, from the case k = 2 we get:

dim(Iy10)10 = dim(Ly)s = (8 ; 2) _5(8)=5= (10; 2) _5(12)—1 = (10; 2) —deg(¥+Q),

where V' = Res¢c(Y+ Q) = (3,4) P + --- + (3,4)Ps (see Lemma 3.4.5). Since Y + () imposes
independent conditions to curves of degree 10, then also ) and X do the same. It follows that

H(Y,10) = deg () = deg(X) + 10 = H(X, 10) + 10.

For k > 4, since C is a fixed component with multiplicity at least (k — 3) for curves defined both
by (Iy)2k+4 and by ([X)2k+4; it follows that

dim([y)2k+4 = dim(]y’)2k+4—2(k:—3) - dim<]y’)107

dim([X)2k+4 - dim(IX/)loa

where (see Lemma 3.4.5)
V' = Res(_3cY = (4,5)P1 +--- + (4,5) P,

X/ = Res(k—3)C4P1 + -+ 4P5

From the case & = 3 it follows that
dim(Iy)ng = 6,

dim(IX)2k+4 = 16,

hence H(Y,d) = H(X,d) + 10.
So we have proved that for d > 2k + 4

HY,d) = H(X,d)+ 10
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Now, since dim(/y)ax14 is positive, then H(Y,d) <

(d—;?) for any d > 2k + 4. Moreover, since

five generic (k + 1)-fat points impose independent conditions to curves of degree d if and only if
d > F kH)J (see the first Remark of this section), then for 2k +4 < d < F kH)J — 1, we have
H(X,d) < deg(X), hence

2

2

}ﬂy¢0:£NX@H40<mm{¢gOQ+JQ(d+2)}:4mn{ngL(d+2)}:emxHQA®)

If d > max {Qk +4; {5(k+1)

J}, then H(X,d) = deg(X), so H(Y,d) = deg(Y).

Proposition 3.4.13. For s = 6 we have:

(

fork=1:

fork=2:

fork >3

H(Y.d) = k=2 (mod5) :

fork >3
k # 2(modb) :

{,

0

\

N+1
H(X,d)+ 12 = deg(Y)
N+1
H(X,d) + 12 = deg(Y)

N +1

H(X,d)+12 < exp(H (Y, d)) #{E%ﬂ}gdglmﬂ)_l

H(X,d)+ 12 = deg(Y)
N+1

H(X,d)+12 <exp(H(D,d) if [0 +1<d<

H(X,d)+ 12 = deg(Y)

ifd <6,
ifd>"7,
ifd <8,
ifd>9,

if d < [ﬂ-‘ -1,

if d > max{[@w

ifd < [12 k+1)-‘

)

if d > max{[lwﬂrl —‘ +1; L

Proof. We start by proving four particular cases, that we need later in the proof.

Lemma 3.4.14. We have:

1. dim _[(89 P+t

3. dim 1(56 P4+

4. dim [(45 P+t

(

2. dim(I (g py 4ot
(
(

+(8,9)Ps )20 =

)
(6,7)P5)15 =
(5,6)Ps)13 =

)

+(4,5)Ps )11 =
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Proof. We prove 1. by specializing the scheme ). The proofs of 2., 3. and 4. are done by using
[CoCoA].

1. Let Q € P? be a generic point, and let F = {F = 0} be a rational integral curve of degree 5
passing through @, and having at each P, 1 < < 6, an ordinary singularity of multiplicity
2, (so F' € (Iap,4.42p5)5), and let {l; = 0} be one of the two distinct lines contained in the
tangent space T’ p, to F at the point P;.

Recall that the defining ideal of Y = (8,9)P, + - -- + (8,9)F; is
Iy = (¢ N (1 + 1) N+ 0 (95 0 (95 + 16)).

Specialize the scheme ) putting I; = Z for i = 1,2,3,4, and let J* be such specialization of
Y. Since the expected dimension of (Iy)s is (*°5?) — deg(V) = 231 — 228 = 3, then if we
prove that dim(Iy+)s9 = 3, we are done.

It is easy to see that the curves defined by the forms of (Iy«1¢)0 have the quintic F as fixed
component with multiplicity 2, hence

dim(]y*+Q)20 = dim(IW>10

where W = Resor(V* + Q) = 4P, + 4P, + 4P; + 4P, + (4,5)Ps + (4,5)Ps. Now let W* be
a specialization of W obtained by putting [; = Z: for © = 5,6. Since the quintic F is as fixed
component with multiplicity 2 for (Iyy«yg)i0, and since Resor(W* + Q) = 0 (see Lemma
3.4.5) we have

dim(]w*+Q)1o = dim(IReSQf(W*+Q))0 =L

Thus for the specialized scheme W* we have dim(lyy-)10 = 2 = ('%?) — degW*. Then
W*, and so also W, imposes independent conditions to curves of degree 10. It follows that
dim(ly )10 = 2. So dim(Iy«1¢)20 = 2, hence dim(y«)q = 3, and we are done.

2. By using [CoCoA] we verified that H(Y,15) = N + 1 = 136.
3. By using [CoCoA] we verified that H(Y,13) = H(X,13) + 12 =90 + 12 = 102.

4. By using [CoCoA]| we verified that H(Y,11) = H(X,11) + 12 =60 + 12 = 72.

Now let k+1="5¢+r, (0 <r <4). Thus k =2 (mod 5) iff r = 3.
For k = 1,2 see Lemma 3.4.7.
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Let £ > 3. Let C; be the conic through P, .. .,131», o, P, (i=1,...,6), and let C = Z?:1 C;.
Observe that if 2d < 5(k + 1), then the curves defined by the forms of (Iy)4, and by the forms of
(Ix)q have the six conics C; as fixed components with multiplicity at least v = 5(k + 1) — 2d.

Then

dlm(fy)d = dim(fy/)d_lgy,
dim(Ix)q = dim(Ix/) 120,

where
V' =Res,cY=(k+1-5v,k+2—-5v)Pi+---+ (k+1—5v,k+2—5v)P,

X' =ResyeX =(k+1—-5v)Pi+---+ (k+1—5v)F.

We split the proof in four cases.

1. k=2 (mod 5), and d < [@] C1=12¢+7.

In this case it suffices to prove that (Iy)g = (0) for d = 12¢ + 7. Since 2d = 2(12¢ + 7) <
5(k+1) = 5(5q+3), then the curves defined by the forms of (Iy)4 should have a fixed locus of
degree 12v = 12¢ + 12, and this is impossible, since d = 12¢ + 7. It follows that (Iy)s = (0).

2. k=2 (mod 5), and d > [@] — 129 + 8.

First we will prove that
H(Y,d) = H(X,d)+ 12.

By Lemma 3.4.8, it suffices to prove that H(),d) = H(X,d) + 12, for d = 12¢ + 8. Since
k>3, and k+1 = 5¢ + 3, then we have ¢ > 1. Let ¢ = 1, so0d = 20, k+1 = 8,
V=B89P +- -+ (89)F, and X = 8P, + --- + 8F;. Since dim(/(s9)p,+--+(8,9)p )20 = 3
(see Lemma 3.4.14 point 1.), and six 8-fat points impose independent conditions to curves
of degree 20 (see the first Remark of this section), we have dim(/x)s = 15. It follows that
H(Y,d) = H(X,d) +12. If ¢ > 1, then vC = 3%, vC; is a fixed locus for (Iy)g and (Ix)a.
Since v = 5(k+1)—2d = 5(5¢+3)—2(12¢ + 8) = q—1, we have d—12v = 12¢+8—12(¢—1) =
20,and k+1—5v=>5¢+3—5(¢q—1)=8. So

dlm([y)d = dlm([y/)QO = 3,

dlm([X)d = dim(IX/)zo = 15,

where V' = Res,c) = (8,9)Py + -+ (8,9)FPs, X' = Res,cX =8P, + --- + 8PF. Hence, we
easily get that H(Y,d) = H(X,d) + 12.
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So we have proved that H(Y,d) = H(X,d) + 12.

Now, since for d = 12q + 8, dim([y ), is positive (and in fact it is equal to dim(/yr)s9 = 3),
then H(Y,d) < (*+?) for any d > 12¢ + 8.

Since six generic (k + 1)-fat points impose independent conditions to curves of degree d if and
only if d > L kH)J (see the first Remark of this section), then for 12¢+8 < d < L kH)J -1
we have H(X,d) < deg(X), hence

2
~ min {deg(Y), (d‘g 2) } — exp(H (Y, d)).

While for d > max {12q 48 L ’C*”J } we have H(X, d) = deg(X), so H(Y,d) = H(X, d) +

12 =deg(X)+12 =deg(Y). If 12g+8 < d < L Hl)J —1, we have H (X, d) < deg(X), hence

H(Y,d) < deg(Y). Moreover, since for d = 12q + 8, dim([y )4 is positive (as shown above, it
is equal to dim(/yr)a), then H(Y,d) < (d;Q) for any d > 12¢ + 8.

That is enough to finish the proof of this case.

H(Y,d) = H(X,d) + 12 < min {deg(X) + 12, (d + 2) } —

k%2 (mod 5), and d < {%]

By Lemma 3.4.8 we have only to prove that H(),d) = N+1 for d = FQ k“)w = 12¢+ [£&].

Since k£ > 3, we have k +1 = 5q 4+ r > 4, hence q > 4% . As above, let v = 5(k 4+ 1) — 2d,
V' = Res,c), and let d = d — 12v. We have:

|

(k1] d | v | Y [ |
5q 12¢q qg>0 P+ 4+ Fy 0
Bg+ 1| 12¢+3 [q—1>0] 6, 7)P + -+ (6,75 | 15
Bg+2| 12¢+5 | ¢>0 |(2.3)P+ - +(23)B |5
5g+4|12¢+10| ¢>0 |(4,5)P + -+ (4,5)P | 10

=N = O 3

Since for v = 0, we have )’ =) and d’ = d, then for every v > 0 we have:

dlm([y)cl = dim(Iy/>d/.
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Now we will prove that dim(Iy )y = 0.

For r = 0 it is obvious. For r = 2 see Lemma 3.4.7. For r = 1 by Lemma 3.4.14 point 2.,
we have dim(I(s7)p++@67p5)15 = 0. For r = 4, let F = {F = 0} be a rational integral
curve of degree 5 having at each P; (1 < ¢ < 6) an ordinary singularity of multiplicity 2,
(F € (Iap,+...+2p;)5)- If there exists a form G # 0, G € (I(45)p,+-+(4,5)P) 10, then FG # 0 and
FG € (I6,7)P,+-+(6,7)Ps )15, but this is impossible by the previous case r = 1.

4k #2 (mod 5), and d > [ 2] 41,
First we will to prove that
H(Y,d) = H(X,d) + 12.
By Lemma 3.4.8, it suffices to prove that H(Y,d) = H(X,d) + 12 for d = {12(“1)-‘ +1=
12¢ + [ 2] + 1.
As usual, let v =5(k+ 1) — 2d, V' = Res,c)Y, X' = Res,¢X, and d = d — 12v. We have:

rlk+1] d | v |k+1-5v] Y X |4
0] 5¢ | 12g+1 [g—2 10 S (10,11)P; | 3% 10P; | 25
1|5¢g+1| 12¢+4 [ ¢—3 16 S (16,17)P | S0 16P; | 40
2 5¢4+2| 12¢4+6 | g—2 12 S (12,13)P | 30 12P; | 30
4] 5g+4]12g+11|qg—2 14 S0 (14,15)P; | 30 | 14P; | 35

Since for v = 0, we have Y’ =Y, X' = X, and d' = d, then for every v > 0 we have:
dlm(]y)d = dim(lyl)d/’

dlm(lx)d = dim(IX/)d/.

It follows that
H(,d)— H(X,d)=H(Y, d)—- HX' d).

Hence in case v > 0 we have only to prove that:

(a) H(X 0 ,(10,11)P;, 25) = H(3.0_ 10P;, 25) + 12;
(b) H(X ,(12,13)F;, 30) = H(Y0_, 12P;, 30) + 12;
(c) H(XS (14,15)P;, 35) = H(X.0_, 14P;, 35) + 12;
(d) H(X ,(16,17)P;, 40) = H(Y0 | 16P;, 40) + 12;
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Now we need the following lemma:

Lemma 3.4.15. Let:
m, m + 1) P,

Y=mm+1)P +--
Y=

S+
m+2,m+3)P +---+
X=(m+2)P + -+
If the integer n = 5(d+5) —12(m +2)+1 >0, and H
1. HY,d+5) =deg(Y), H(X,d+5)=deg(X);

m+2,m+ 3)F,
V,d) = deg(Y), then

—~~ T

—~

2. HY,d+5) = H(X,d+5) + 12.

Proof. 1. Let F be (as above) a rational curve of degree 5 having at each P; (1 < i < 6),
an ordinary singularity of multiplicity 2. Let Qi,...,Q, € F be generic points. Since

5(d+5) < 6(2(m+2))+mn, by Bezout Theorem F is a fixed component for the curves defined
by the forms of <137+Q1+---+Qn>d+5‘ It follows that

dim (15%1 . +Q">d+5 — dim (Iy),

Since (T5%) —deg(V + Q1 + -+ + Q) = 3(d+7)(d+6) — (deg(¥)+6(m+2)+6(m+1)+1) =
(44?) — deg(Y) = (*?) — H(Y,d) = dim(Iy)q, we have

dim (I)~)+Ql+--~+Qn> = <d - 2 * 2) — deg (37 + Q1+ + Qn>

d+5

hence HY + Q1+ -+ Qyd +5) = deg(V + Q1 + - - + Q).

Since obviously X cC ;)7 - j/v—l— Q1+ -+ Q,, it follows that H(y,d +5) = deg(jiv), and
H(X,d+5) = deg(X).

2. Obvious.
O

By Case 2) we know that H (30_,(8,9)P,, 20) = H (37_, 8P, 20) +12 = deg (3°0_,(8,9)P),
so by Lemma 3.4.15 point 2. we have (a): H (30_,(10,11)P;,25) = H (30_, 10P,, 25) + 12.

Moreover, by Lemma 3.4.15 point 1., H (Z?:1(10a 11)P;, 25) = deg (Z?:1(1Oa 11)P;), hence by
Lemma 3.4.15 point 2. we get (b): H (3°0_,(12,13)P;,30) = H (3_5_, 12P,, 30) + 12.

Analogously, by Lemma 3.4.15, we have that (b) = (¢) = (d), so, for v > 0, we have proved
that H(Y,d) = H(X,d) + 12.

Now let v < 0. In this case, since k + 1 = 5q + r > 3, we are left with the folloving cases:
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rqk+1] Y \ X [ d ]
o[1] 5 SO (5,6)P | Y0 5P |13
L[1] 6 | >0.67)P | >0 ,6b |16
L2 11 [0 (11,12)P | 320 11P | 28
21 7 | S, (78)p | S0, 7P |18
Aol 4 | XV 45P | S0 4P |11
A1) 9 | XV ,(9,100P | S0 9P |23

hence we have to prove that:

(e): H(X0 (5,6)P;, 13) = H (Y0 5P, 13) + 12;
(f): H (X2, (6,7)P;, 16) = H (30_, 6P, 16) + 12;
(9): H (325-1(11,12)P;, 28) = H (327, 115, 28) + 12;
(h): H(X0 (7,8)P;, 18) = H (30 7P, 18) + 12;
(i): H (X0 (4,5)P;, 11) = H (3, 4P, 11) +12;
(0): H(X)_,(9,10)P;, 23) = H (3°0_, 9P, 23) + 12.

By Lemma 3.4.14 points 3. and 4., it easily follows that (e) and (i) hold, moreover by Lemma
3.4.15 we have that (e) = (h) = (I) = (g), and (i) = (f), so we have proved that H(Y,d) =

H(X,d)+ 12 also for v < 0.

Now, for d = {@-‘ + 1, as shown above, we have:
for v > 0:

( (25;—2) . 6(1024-1)
(40+2) . 6(16+1>
U 2 2
(3024»2) . 6(12;1)
\ (35;—2) . 6(1424-1)
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for v < 0:
—12=3 forr=0,q=1,

—12=15 forr=1,q=1,

dlm(]y)d =
T —-12=10 forr=2¢=1,

(%57) —6(
(%57) —6(
() —6('y) —12=27 forr=1,¢=2,
(%57) —6(
(757) —6(

HH—12=6 forr=4,¢=0,

\ (23;2) . 6(9;1) —12=18 forr=4, q¢=1,;

hence dim(/y), is positive, and this implies that H(Y,d) < (*}?) for any d > [%—‘ + 1.

Moreover, since six generic (k + 1)-fat points impose independent conditions to curves of degree
d if and only if d > L@J (see the first Remark of this section), then for [M-‘ +1<d<

2
{@J — 1, we have H(X,d) < deg(X), hence

H(Y,d) = H(X,d)+12 < min {deg(X) 12, (d ; 2) } — min {deg(Y), (d ‘g 2) } — exp(H(Y, d)).

While for d > max{{%-‘ +1; L@J}, we have H(X,d) = deg(X), so H(Y,d) =
H(X,d)+ 12 = deg(X) + 12 = deg(Y).

If {@] +1<d< {@J 1, we have H(X,d) = deg(X), so H(Y,d) = H(X,d) +12 =
deg(X) + 12 = deg(Y). O

For the study of cases s = 6,7 we need to introduce here a Lemma that uses Cremona trans-
formations.

Lemma 3.4.16. Let I} ~ Il ~ P? be two copies of P* with coordinate rings Klz,y, z] and
K[X,Y, Z] respectively. Let ¢ : 1I; — — > Ily be the Cremona transformation ¢(x,y,z) =
(yz,xz,zy) = (X,Y,Z). Let I C Klx,y,z| be the ideal of a (m,m + 1)-point with support
P =(0,0,1), p = (r — y,y) be its representative ideal and | = {x —y = 0} the line such that
I ="t 0 ("2 +12). Then < Iy >~< Jog_mm > where

J=(X,Y)'N(X, )" (Y, 2) "0 (Y - X)%, Z).
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Proof. By hypothesis I is the ideal I = (z — y,y

)"y (@ =) YR (=) (2 )y

Let fy(x,y,2z) € Iq then fy(z,y,2) = Oy @i
(Klz,y]); and a; € K foralli=1,...,d.
Obviously ¢(fa(z,y, 2)) =: Fau(X,Y, Z) € (K[X,Y, Z])2q and
Fou(X,)Y,7) = (XY)d—mzm (ZT 02 a; (Y — X)m- ’X’)—i—Zf:mH(XY)d_iZ"Gi where G; € (K[X,Y]);
forallz=m+1,...,d.
Now Fyq is the total transforme of f4 but we are looking for the strict transforme ng n defined by
Fog = Z™Fyy_ m; then Fog_ m(X,Y, Z) = (XY)d—m (Z:”OQ a;(Y — X)m "XZ)+ZZ mH(XY)d Zim@G,.
Now the Fiym(X,Y,Z), as a; € K and G; € (K[X,Y]); vary, give the part of degree 2d — m of
the ideal J C K[X,Y, Z] where J = (X,Y)IN (X, 2)™N (Y, Z)™N((Y — X)?, Z). Tt is easy to
see that ﬁgd,m € Jog—m- _

The other inclusion, i.e. that all h(X,Y, Z) € Jyq_,, can be written as Fyy_,,, can be computa-
tionally verified. O]

™ N 1()(x —y,y)" (= y)?) = (z —y)" (x —

_ y)m 1yz) d—m + Zl it Giz d—1 where gi c

Remark: Let P, P, P; be three generic points of P2. Consider the Cremona transformation that
acts as an isomorphism on P? \ {Py, Py, P3}. Therefore, if I and J are as in the lemma above and
the point P of the lemma is one of the P, for i = 1,..., s, then

H(K|z,y,z|/I,d) = H(K[X,Y,Z]/J,2d —m).

Proposition 3.4.17. For s =7 we have:

for k = N+1 if d <6,
o= H(X,d)+ 14 = deg(Y) ifd>T,
for ke — N+ 1 ifd <09,
o= H(X,d)+14 = deg(Y) ifd>9,
N1 2fd<{21k+1)-‘—1,
fork >3 L T210kt1) <d<
H.) =) k=14(mods): | HXd+ 1< desly) |25 1=l
H(X,d)+ 14 = deg(Y) idemax{[%—‘A?J-FS},
(N +1 ifd< {ww
fork >3 o [21(k+1) <
<
k%14 (mods): | A+ 14 <del) Zf{ M;kif—bﬁl
H(X,d)+ 14 = deg(Y) idema:E{{ (8+)+1W,L% +3}.
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Proof. For k = 1,2 the statement is known by [Ba] and [BF1].
For k > 3 we prove first that (Iy)g = (0) if

{%—‘ and k£ # 1,4 (mod 8) or

{21(1;“)—‘ —1land k=1,4 (mod 8)

so that (Iy)q = (0) for all d less or equal to that value.
Consider the seven cubics Cy, fori = 1,...,7, through Py,..., 2P, ..., P;. If 8(k+1) > 3d, then
the seven cubics C; are fixed components for (1), with multiplicity v = 8(k + 1) — 3d, therefore

dim (), = dim (Jy_zzzl C) (3.21)

d—21v

where Y —3"7_, vC; is the union of seven O-dimensional schemes of the type (k+1—8v, k-+2—8v).
Let

k+1=28q+r.

In the following table we summarize the cases we need to study in order to compute

dim ([y*ELl ”Ci> d—21v

’7" d ‘ v ‘ y—zleu()i ‘d—211/‘ ‘

0] 21q g > B 0

1] 21g+3 [¢—1| 37 ,(9,10)P, 24 | (¥
2| 21g+5 [ q+1 | X7 (-6,-5P | —16

3] 21+8 | ¢ | ST B.4P 8 1M
4] 21g+11 | g—1] 37, (12,13)P, 32 | (%
5[21g+13 | q+1 |37 (-3,-2)P| -8
6[21g+16] ¢ | ST ,(6,7)P 16| (%
7]21g+19[q—1] 37, (1516)P; 40 | (%)

Since some case has to be excluded from this procedure, in the table above there are some cases
excluded:
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r]af d] Yy ]
1[1]24] 3L,(9,100P | (%)
3100 8] L,(3,4)P,

4lo|11] S, (4,5P | (%
411]32 0 ,(12,13)F | (%)
610116 >, ,(67F | (%)
7lol19] ST (7,8)PR | (%
711407, (15,16)P; | (%)

In the cases where d — 21v = 0, —16, —8 we clearly have (1—ny7 ,,c.) = (0). The case of
=170 ) g o1y

seven (3,4)-points is from [Ba]. For all the remaining cases (that are those we have marked with
a “(*)”) we will use Lemma 3.4.16.
Let us start with the scheme (k+ 1,k +2)P,U---U (k+ 1,k + 2)P;. Consider the Cremona
transformation
123 that acts as an isomorphism on P \ {Py, Py, P3}. (3.22)

The image of (](k+1,k+2)P1+...+(k+1’k+2)P7)d via (123 is the degree (2d — 3k — 3) part of the ideal
representing the following scheme:

3

6 3
S (d—=2k—2)P+> R+ (k+1,k+2)Q;
=1

i=1 i=1

where P/ = p123(< P, P, P, >) for i = 1,2,3; Q; = @1,23(Piy3) for i = 1,2,3; and Ry, Ry are
two simple points on the line < P[, Pj >, R3, Ry are two simple points on the line < Pj, P; >, and
Rs, Rg are two simple points on the line < Pj, P§ >.

From now on we will use an abuse of notation and we will keep calling, after the Cremona trans-
formation, a point P; instead of P,.

Consider now the following successive Cremona transformations:
456, that acts as isomorphism on P? < {Py, Ps, Ps},

¢127, that acts as isomorphism on P? \ { P}, P, P},
(¢3.45, that acts as isomorphism on P? \ {Ps, Py, Ps}, (3.23)
36,7, that acts as isomorphism on P2\ {Ps, Ps, P;}.

At the end we have to study the Hilbert function in degree 8d — 21(k + 1) of the scheme:

7 14
Y= (3d—8k-8)P+ > R (3.24)
=1 =1
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where P, are seven generic points of P? and R; € P? are 14 points such that:
Rq, Ry belong to a conic through Py, P;

R3, R4 belong to another different conic through P, Ps;
Rs5, Rg belong to a conic through P, Ps;
R7, Rg belong to a conic through Ps, Ps; (3.25)
Ry, Ry belong to a conic through Py, Ps;
Ry, R15 belong to a conic through Py, Fy;
Rq3, R14 belong to a conic through Ps, Fs.
Let ¢ be the composition of the Cremona transformations defined in (3.22) and in (3.23):

P = 367003450 Y1270 Y4560 P1,23- (3.26)

The action of ¢ on (Iy)g in the cases “(*)” of the last table, gives the degree (8d — 21k — 21) part
of the ideal Iy described in (3.24), in particular they become the following:

1. (I)/’)Sd 21k—21 = (1214 Rz)3 (0) if r=1and q>1;

2. (Iy)ga—21k—21 = 12114131) (0), if r = 3 and ¢ > 0;

w

- (Iy)sd—21k—21 121141&_) if r=4and g > 1;

IN

»\4
5’3
v

= (0), if r =6 and ¢ > 0;

o5

- (Iy)sa-21k-21 1211413_) if r="7and q>0;

6. (Iy)sa—21k—21

(
-
- (Iy)saann = (I
-
- (1

7 P,,+21141R1> (0),if r=4 and ¢ = 0.

z 174
For the cases 3. and 5. the idea to use Cremona transformations is not useful. Those cases, before

transformations, were (IZZ:1(4»5) Pi>11 and (1.2321(7»8) Pi>19 respectively. For the first one we used

the help of [CoCoA] system that immediately gives that (1'27 (4.5) P,) = (0). For the second
=132 J gy

case we study the residual scheme obtained by cutting with some particular conics.
Let ! N (o + (?) be the ideal of the scheme (7,8)F;, let C’;%Si C P? be the conics through
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P,, By, P., Py, P, for a,b,c,d,e € {1,...,7} such that the tangent space to C’”bﬁsi at P, is [, if
a€{i, gk} C{1,...,7} (ie. we are specnahzmg the scheme (7 8)P, 1n such a way that this can

is a fixed component for (IZLl(ZS)Pi) o hence (IZZ:1(7:8)PZ'> o (IReSC 22_7:1(778)3,)5. Then Lemma
3.4.5 assures that

<IZZ:1(7,8)PZ~>19 - (IResc 23:1(7,8)3)5 - (Iz;l zpi)g) = (0).

This conclude the proof for

Pl(kﬂ)w and k # 1,4 (mod 8) or

Pl(kﬂ)w —1land k=1,4 (mod 8)

Now for

[21(?1)—‘ +1and k # 1,4 (mod 8) or
d> (3.27)
[m“ﬂ and k = 1,4 (mod 8)

it is sufficient to prove that H(Y,d) = H(X,d) + 14 for d = {QI(HIW +1if k# 1,4 (mod 8) or
d= [21“1—‘ if k=1,4 (mod 8) by Lemma 3.4.8.

The criterion we use in order to reduce the number of cases to check is the same of the previous
discussion. In the table that follows we summarize the passages:

e we start with (/) and we write k + 1 =8¢ +r,

e we use the relation (3.21), and we compute the scheme Y — 37, vC; and the degree d — 21v,

e we apply to (Iy ST 1/C> the map ¢ defined in (3.26) and we write the “result” in the
d—21v
last column of the table: the notation will be very concise in order to make the material

better readable, we will write L(«, 3) to indicate <IZE=1ﬂPi+Z}ilRi>a'
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7 d ] v [Y-ST vC [d—21v] L(a,B) |
0] 21g+1 [ q—3]>_,(24,25)P | 64 L(8,0)
1] 21g+4 [ ¢—4|X7,(33,34)P | 8 | L(11,0)
2| 21g+6 [ ¢—2 |3 ,(18,19)P | 48 L(6,0)
3] 21¢+9 [ ¢-3 ][> _,(27,28)R | T2 L(9,0)
4121g+12 | q—4 |3 ,(36,37)F | 96 | L(12,0)
5)21g+14|¢g—2] 3 (21,22)P | 56 L(7,0)
6|21g+17|¢—3[>,(30,31)P | 80 | L(10,0)
7]21g4+20] q—4 ]3> (39,40)P | 104 | L(13,0)

Since in the table above v has to be positive, we have some cases that do not appear in that
table, we enumerate them in the following tables (the last column of the tables below describe,
with the same notation of the table above, the schemes we obtain after having applied to (Iy), the
composition of Cremona transformations ¢ defined in (3.26)):

(r=0]q] d] Yy | L(e, B) |
1|22 T(8,9P | L(8,2)
214337 ,(16,17)P; | L(8,1)
3]64| 37 ,(24,25)P; | L(8,0)
(r=1]q] d] Yy | L(a, ) |
1]25] 37 ,(9,10)P | L(11,3)
2145 0, (17,18) P, | L(11,2)
316750 (25,26)P | L(11,1)
4188|327 ,(33,34)P; | L(11,0)
r=2[q]d] y [ LB
0] 6 S7,(2,3)P, |solved in [CGG2]
1]27 Zf (10,11 P, L(6,1)
2] 48|37 ,(18,19)P; L(6,0)
[r=3]q] d] y [ LB |
0|9 1(3 4)P; | solved in [Ba]
1130 2321(11 12)P, L(9,2)
2 | 51 27 ,(19,20)P; L(9,1)
3072 37, (27,28) P, L(9,0)
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r=4lqld] y | L(e,5) |
0] 12 T (4,5)P, | L(12,4)
1]33] 37 ,(12,13)P; | L(12,3)
2 54| 7 ,(20,21)P; | L(12,2)
3075 2 ,(28,29)P; | L(12,1)
4196 | S°7_(36,37)P; | L(12,0)
r=5q[d] y | L(@,5) |
0|14 T .(5,6)P | L(7,2)
1]35 |37 (13, 14)P | L(7,1)
2156 | S0 ,(21,22) P, | L(7,0)
(r=6[q[d] Yy | L(e,0) |
017 SL,(6,7)P, | L(10,3)
1]38] >0 ,(14,15)P; | L(10,2)
2159 7 ,(22,23)P; | L(10,1)
3180 (>0 ,(30,31)P; | L(10,0)
r="lql d | y | L(a. ) |
0|20 [ ST_,(7,8)P | L(13,4)
1] 41 |37 (15,16)P; | L(13,3)
2] 62 | 327_,(23,24)P; | L(13,2)
3] 83 | 327 ,(31,32)P; | L(13,1)
41104 | S27_1(39,40)P; | L(13,0)

The use of Cremona transformations allows us to study the degree o part of the ideals repre-
senting only five schemes: L(a,4), L(a, 3), L(«,2), L(a, 1) and L(a,0); Lemma 3.4.8 allows us to
compute the regularity of the Hilbert functions of those schemes only for the lowest values of a.
Hence we have to study only the following cases:

L. ([Zzzo(lo,n)ﬂ)??a
2. (12310(18,19)3-)487

3'OELM@HL5
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4. <123:0<5,6>Pi> "

5. (IZZ:O(GJ)PZ'> 17.

The cases 3., 4. and 5. were verified by using [CoCoA] since the computational complexity
was not too hight. For the cases 1. and 2. we study the residual schemes obtained by cutting with
some particular curves. We write here only the curve we use in order to compute the residual. We
will specialize the schemes (k+ 1,k +2)Py,...,(k+ 1,k + 2)P; in such a way that the curves we
are going to describe do exist. If the dimension of the degree d part of the ideal representing the
specialized scheme is the expected one, then, by semi-continuity, the Hilbert function of the not
specialized scheme in degree d is the expected one.

1. Let Ry,..., Ry € P? be seven points chosen on the cubics we will enumerate below and let

V=

Y+ Ri=3T (10,11)Pi+ 37| R;. Since exp(H(Y,27)) = H(X,27)+2-7 = 359

and N +1 = (*}?) = 406, if we prove that (Iyr),, = (0) we will have that dim (Iy),; = 7
and H(Y,27) = exp(H(Y,27)).

Let

C’fk be the cubic passing through P, ..., P, having in P; a double point and such that
ij(C’iJ’k) — 1, Tp,(C?*) = I}, (where I; and [}, are the lines appearing in the definition
of the schemes (k + 1,k +2)P; and (k + 1,k + 2)P);

ijk be the cubic passing through P, ..., Pr, R,,, having in P; a double point and such

.2

that TPJ(CZJ’k) = lj, jjp,C (Clj’k) = lk;
C’fm be the cubic passing through P, ..., P-, R,, having in P, a double point and such

that ij (sz) = lj;
C§’76’7 be the cubic passing through Pi,..., P;, Rs, Rg, having in P; a double point and

such that Tp,(C24 ;) = Is;

e (' be the cubic passing through Ps, Py, Py, R; and having in Ps, P;, Ps three double points.

For the first case we use the degree 27 curve

Q=CPUCHi UGy UCy, UCyTUCT UCE, UCE,UC

that is a fixed component for the curves defined by (/yr),,. By using Lemma 3.4.5 we have
that Resq)’ = 0 then dim ((/y),,) = 0 and we are done.
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2. Let Ry,..., Ry € P? be points on the cubics and conic we will enumerate below and let
V=YV+3 2 R =37 (18,19)P,+> 14| R;. Since exp(H(Y,48)) = H(X,48)+2-7 = 1211
and N + 1 = (*}?) = 1225, if we prove that (Iyr),; = (0) we will have that dim (Iy),, = 14
and H(),48) = exp(H (), 48)).

Let

. Cij be the cubic passing through Py, ..., P, having in P; a double point and such that
ij(C’f’k) = [; (where [; is the line appearing in the definition of the scheme (k4 1,k +
2)FPy);

° C]mz be the cubic passing through Py, ..., P, R,,, having in P; a double point and such
that Tp, (C7*) = 1;

e (597 be the cubic passing through P, ..., P7, Rs, Ry and having in Pr a double point;

o (1011127 be the cubic passing through Py, ..., Pr, Ryo, R11, R12 and having in P7 a double
point;

e (' be the conic passing through Py, ..., P5, Ry3, Ri4;

r be the line through Fg, Pr.
For the this case we use the degree 48 curve
Q = CTUCE UC3UC, ,UC3UCy sUCTUCE JUCEUCE ;UCEUCE sUCT 7UCs 9. 7UC0,11,12,,UCUr

that is a fixed component for the curves defined by (/y/),s. By using Lemma 3.4.5 we have
that Resq)’ = 0 then dim (([y),5) = 0 and we are done.

We have finally proved that H(),d) = H(X,d) + 14 if we are in the case (3.27). By the first
remark of this section we have that H(X,d) < exp(H(X,d)) if % <d< w, thus, for the
same values of d, we have that H(Y,d) < deg()) and this ends the proof. O
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Proposition 3.4.18. For s = 8 we have:

b1 N+1 ifd <7,
= H(X,d)+ 16 = deg(Y) ifd> 8,
Ly N+1 ifd <9,
- H(X,d)+ 16 = deg(Y) if d > 10,
( . 48(k+1
H,d) = k=12 H(X,d) + 16 < deg(Y) if {% +1<d< [TEHS
; k=0,5,6,11 (mod 17) | HOXd) 416 =deg(Y) if d > maa [48({{;1@ 7 Ll?kngJ}_F 1,
( . 48(k+1
> 8 N+1 ifd < |20 o,
k# 12 H(X,d) + 16 < deg(Y) if {% <d < | HEES
k #£0,5,6,11 (mod 17) | H(X,d)+16 = deg(Y) if d > mas [48(f;—1)—‘ AT | g

Proof. For k =1,2 see [Ba] and [BF1].

For k > 3 consider Py,..., Py € P? eight generic points. Let S; be the curve of degree 6 that

is double at seven generic points Pi,..., P;, ..., Py and triple at P;. If 17(k + 1) > 6d then the
eight sestics S; are fixed components with multiplicity v = 17(k + 1) — 6d, then dim ((/y),) =

dim ((]y_2§1 ”Si>(d—48u))' The scheme

(3.28)
is the union of (k+ 1 — 17y, k + 2 — 17v)-points.
Fix the notation:
©i ik is the Cremona Transformation that acts as an isomorphism on P? {P;, P;, P}.

Let now ¢ be the composition of the following Cremona transformations:

Q1= 3680 Y3450 Y1280 Y5670 P340 P1,780 Pas60 P1,2,3- (3.29)

Suppose to apply ¢ to (IZ?:l(kH:kH)Pi)d (with an abuse of notation we keep calling P; the

points after the transformation):

2 <<IZ§:1(k+1,k+2)Pi>d> = (szzl(ad—17k—17)Pi+2}§1 Qi>(17d—48k—48) (3.30)

122



The secant varieties to the osculating varieties to the Veronese surface

where:

@1, Q)2 belong to a conic through Py, P,
Q3, Q4 belong to a conic through Py, Ps,
Qs5, Q¢ belong to a conic through P, Ps,
@7, Qs belong to a conic through Py, P,
9, Q10 belong to a conic through Py, Py,
11, Q12 belong to a conic through Py, Ps,
(13, Q14 belong to a conic through Py, P,
15, Q16 belong to a conic through Ps, Ps.

Let us first consider d = {%7“)—‘ itk <7 k=12,k=0,5,6,11 (mod 17), and d = {%7“)} -1
it k>8 k+#12, k#0,5,6,11 (mod 17). If we prove that H(X,d) = N + 1 for such a d, we will
be done for any smaller d.

In the following table we summarize what happens if we apply the map ¢ defined in (3.29) to

the degree (d — 48v) part of the ideal representing the scheme )’ obtained in (3.28). When in the
last column we write

L(d,m) (3.31)

we mean that we have, after having applied the map ¢ to (1) (d—a8v)» & scheme of type (3.30) with
d = 17d — 48k — 48 and m' = 6d — 17k — 17. The values r, g € N are defined by

k+1=17q+r. (3.32)
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r d ‘ v ‘ y-3° uS ‘d—481/‘L(d’,m’)‘
0 | 48¢ q > P 0 /

1| 48¢+3 [q—1] X0 ,(18,19)P, 51 L(3,0)
2 | 48¢+5 | q+4| > (—66,—65)P | —187 /

3| 48¢+8 | q+3 |30 (—48,—47)P | —136 /

4 1 48¢+11 [ qg+2| 37 (-30,—29)P, | -85 /

5 148¢+14 | g+ 1|30 (12, -11)P, | —34 /

6 | 48¢+ 17| ¢ S (6,7)P; 17 L(1,0)
7 148¢+20 | q—1] 3% ,(24,25)P, 68 L(4,0)
8 |48¢+22 | q+4| >0 ,(—60,-59)P | —170 /

9 |48¢+25 | q+3 | >0 (—42,—41)P | —119 /
10| 48¢+28 | q+2 | >0 (—24,-23)P, | —68 /
11[48¢+31 | qg+1| X5 (—=6,-5)P | —17 /
12 [48¢+34 | ¢ S (12,13)P; 34 L(2,0)
13| 48¢+36 | q+5 | >0 (—72,—7T1)P, | —204 /
14 [ 48¢+39 | q+4 | X0 (—54,-53)P, | —153 /
15| 48¢+42 | q+3 | >0 ,(—36,-35)P, | —102 /
16 | 48¢+45 | q+2 | >0 (—18,—-17)P, | —51 /

Since in the table above v has to be positive, we are not considering all the cases where v < 0;
we enumerate them in the following table (now the notation L(«, 3) denote the degree a = (17d —
48k — 48) part of the ideal representing - as in (3.30) - the scheme Zle BP; + Eil Q;, with
= 6d — 17k — 17, obtained by applying the map ¢, defined in (3.29), to (Iy),):

(v el Y Jd] LD |
1]o] >7,(1,2) | 3 [Solved in [CGG2]
1]1]>0,(18,19) | 51 L(3,0)
6 10| 5,67 |17 L(1,0)
7o) % .(7,8 |20 L(4,1)
7132, (24,25) | 68 L(4,0)
120|370 ,(12,13) | 34 L(2,0)
13037 (13,14) | 37 L(5,1)

The use of Cremona transformations allows us to study the degree « part of the ideals represent-
ing only two schemes: L(«,0) and L(«, 1); Lemma 3.4.8 allows us to check only the two following
cases (the ones with higher values of «):
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1. (IZ?:1(13,14)P¢>37 that corresponds to L(5,1) = ([Z?zl PAYIS Qi) ; then dim ((1.22?:1(13,14)3)37)

dim <<]Z§:1 P#Z}ilQi)B) = 0 as expected;

2. (121521(24,25))68 that corresponds to L(4,0) =

dim <<IZ}§1Q1'>4) = 0 as expected.

This ends the proof for the cases d < [48 kHW itk <7 k=12 k=0,5,6,11 (mod 17), and
d< [%] itk >8 k#£12,k#£0,56,11 (mod 17).

Consider now the remaining cases.

With the notation (3.28), (3.29), (3.30), (3.31) and (3.32) we construct the following tables as

we did in the previous case.

(I5ia.)  then dim ((IZ?:M)%)H)%) -

’ r ‘ d ‘ v ‘ y—ZleuSi ‘d—48u‘L(d’,m’)‘
0| 48¢+1 |qg—6]>° ,(102,103)P | 289 | L(17,0)
1| 48¢+4 | ¢—7|30,(120,121)P, | 340 | L(20,0)
2 | 48¢+6 [ g—2 z§:1(36 37)P; 102 L(6,0)
3] 48¢+9 [ q—3] 30 ,(54,55)P 153 L(9,0)
4 [ 48q+12 ] g—4] X0 (72,73)P, 204 | L(12,0)
5 148¢+15]q¢—5] 320,(90,91)P, 255 | L(15,0)
6 |48¢+18 | ¢—6] > ,(108,109)P; | 306 | L(18,0)
7 |48¢+21|q—7 zfz (126,127)P, | 357 | L(21,0)
8 |48¢+83 | ¢—2] d0,(42,43)P, 119 L(7,0)
9 | 48¢+26|q—3] > ,(60,61)P 170 | L(10,0)
10 | 48¢ +29 | ¢ — 4 Z§:1(78 79) P, 221 | L(13,0)
11[48¢+32 | ¢g—5] >0 ,(96,97)P; 272 | L(16,0)
12 | 48¢+35 | ¢—6 | >0 (114,115)F, | 323 | L(19,0)
13 | 48¢+37 [ ¢—1] 30,(30,31)P, 85 L(22,0)
14 [ 48¢ +40 | g—2 | S0 ,(48,49)P; 136 L(5,0)
15 | 48¢+43 [ ¢—3| >0 ,(66,67)P, 187 | L(11,0)
16 | 48¢+46 [ g —4 | 20 ,(84,85)P, 238 | L(14,0)

Since in the table above v has to be positive, we are not considering all the cases where v < 0

that we enumerate in the following tables:
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r=0[q [0 (k+1Lk+ )P [ d [ L(a,B) ]
1] S (17,18)P | 49 | L(17,5)
2| > (43R 97 | L(17,4)
3] Y0.(51,52)F | 145 | L(17,3)
4] 3% (68,69)P | 193 | L(17,2)
51 >5.(85.86)P 241 L(17,1)
6| >° (102,103)P | 289 | L(17,0)
r=1[q[ ¥ (k+LE+ DR [ d [ L(a,) ]
1 ZZ (18,19) P, 52 [ L(20,6)
2] % (35,36)P | 100 | L(20,5)
3] >, .(52,53)P | 148 [ L(20,4)
4] 37 (69,70)P | 196 | L(20,3)
5 S0 (86,87)P; 244 | L(20,2)
6 Z§:1(103 104)P, | 292 | L(20,1)
7] >7.(120,121)P | 340 | L(20,0)
r=2[q[3,(k+tLk+ DA [ d [L(af) ]
1] 3% ,(19,20)P, 54 | L(6,1)
2] 3% .(36,37)P | 102 | L(6,0)
r=3]q > (k+Lk+ )R] d [ L(a,5) |
1] 3% ,(20,21)PR, 57 | L(9,2)
2 S (37,38)P, 105 | L(9,1)
3] SL.(54,55P 153 ] L(9,0)
r=4]g| Y+ 1LEk+ DR [ d | Lof) |
0 Y7455 13 | L(29, 10)
L] >.(21,22)P, 60 | L(12,3)
2 S (38,39)P; 108 | L(12,2)
3] >0 .(55,56)P | 156 | L(12,1)
4] > (72,73)P | 204 | L(12,0)
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r=9]a[ XL (k+Lk+ )R] d [ L(a.B) |
0] >.,0.10P, 26 | L(10,3)
L] >0 (26,2n)P [ 74 | L(10,2)
2| SL,(43,49)P  [122[ L(10,1)
3]  >5.(60,61)P | 170 | L(10,0)
(r=10]q[ >, (k+ L+ DR [ d [ L{,f) |
0] >F,(10,1)P, | 29 [ L(13,4)
1| >0 @r28)p | 77 | L(13,3)
2] >, (4445)p [ 125 | I(13,2)
3] > (61,62)B 173 | L(13,1)
4] 3 (18,79)P, | 221 L(13,0)
r=1[q[ XL k+Lk+ )P [ d | L(a,f) |
0] > ,(11,12)R 32 [ L(16,5)
L >0,(28,20)R [ 80 | L(16,4)
2| > (45,46)P, | 128 | L(16,3)
3] > (62,63)P | 176 | L(16,2)
4] > (19,80)F | 224 [ L(16,1)
5] >0.(96,97)P | 272 [ L(16,0)
r=12]q[ Xt (k+Lk+ )P [ d | L(a, ) |
0] >v,(1213)R |35 [ L(19,6)
L] 527.(29.30)P [ 83 [ L(19,5)
2] >,(46,47)P | 131 | L(19,4)
3] >0 (63,64 | 179 | L(19,3)
4] > (80,81)P | 227 | L(19,2)
51 >, (97,98)P | 275 | L(19, 1)
6 ® (114,115)P; | 323 | L(19,0)
r=B[q[ S5, (k+ Lk+ P [ d [ L(a,) |
0] XF,(13,14)P |38 L(22,7)
1 >or (30,31 P, 85 | L(22,0)
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r=14]q[>5 (k+Lk+ )P [ d [L(a, )]
0] > ,(14,15)P [ 40 | L(8,2)
1] >% (31,32)P | 88 | L(8,1)
2| YV (48,49)P, | 136 | L(8,0)

(r=15]q[ Xt (k+Lk+ )P [ d | L(a,B) |
0 S (15,16) P, 43 | L(11,3)
1] >0 .(32,33)R | 91 [ L(1L,2)
2 S (49,50) P, 139 | L(11,1)
3] 50.(66,67) P, | 187 [ L(11,0)

(r=16[q[ >t ,(k+Lk+ )P [ d | L(a, ) |
0] ¥ (16,17)F, | 46 [ L(14,4)
1 S (33,34)P; 94 | L(14,3)
2| S0 (50,51)P, | 142 | L(14,2)
3 S (67,68)P; 190 | L(14,1)
4] S (34,85)P | 238 L(14,0)

The use of Cremona transformations allows us to study only the degree a part of the ideals
representing 11 schemes: L(a,0), L(a, 1), Lo, 2), L(«, 3), L(a, 4), L(«, 5), L(«, 6), L(a, 7), L(a, 8),
L(,10) and L(a, 11). Lemma 3.4.8 allows us to verify only the following cases (those for lower
values of ), we checked them by direct computations:

L. (IZ§:1(19,20)P¢>54 that corresponds to L(6,1) = (IZL PAY0, Qi) X then dim ((Izis:l(lg’mm) 54) =

dim <<IZ§:1 Pi+2331¢2i>6> = 4 as expected;

2. ([Z?:1(36737)Pi)102 that corresponds to L(6,0) = (1'21121@1,)6 then dim (<[Z§:1(36,37)P¢>102> =
dim <<123§1Qi>6> = 12 as expected;

3. ([E§:1(4,5)P¢> ; that corresponds to L(29, 10) = <IZ?=1 0P+, Qi) ” then dim ((123521(475)3) 13) =

dim <<IZ?:1 10P¢+2321Qi>29> =9 as expected;
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4. <IZ§:1(576)P1‘> y that corresponds to L(32,11) = <[Z§:1 P4, Qi)gg then dim (<12§:1(5’6)Pi> 16)

dim ((IZ§:1 11Pi+Z}ilQi>32> = 17 as expected;

5. (IZ?=1(6,7)Pi> " that corresponds to L(18,6) = ([Zle 6P 4310 Qi) " then dim ((IZ?zl(ﬁﬁ)Pi) 18) =

dim ((IZ?:16P¢+Z}EI Qi)m) = 6 as expected;

6. (IZ?=1(7,8)P1~> o that corresponds to L(21,7)) = ([Z§=1 TP Qi> ” then dim ((1218:1(778)1%) 21) :

dim ((IZ§=1 TP Qi)m) = 13 as expected;

7. (IZf:1(8,9)Pi> " that corresponds to L(24,8) = (IZ§:1 . Qz-) o then dim ((IZle(&E))Pi) 24) =

dim (([E?ZISPﬁZ}il Qi)24) = 21 as expected;

8. <IZ§:1(9710)P¢) ” that corresponds to L(10,3) = (IZle 3P40 Qi) 0 then dim ((IZ§:1(9,10)P1-) 26)

dim ((121821313#21;21 Qi)w) = 2 as expected;

9. (IZ§:1(10711)P1-> ” that corresponds to L(13,4) = <IZ§:1 4P Qi) . then dim ((IZ§:1(10711)P2-) ”

dim ((]Zzis:lélpﬁzgl Qi>13) =9 as expected;

10. <[Z§:1(11712)Pi> 32 that corresponds to L(16,5) = <IZ§:1 5P Qi) y then dim ((1228:1(11,12)1%)

dim <<IZ§:15P1'+Z}§1 Qi>16> = 17 as expected;

32.

11. <IZ§:1(14,15)P1->40 that corresponds to L(8,2) = (IZ?:l 2P0 Qz‘>8 then dim ((1223:1(14,15)&)40)

dim ((IZ?’:QP#Z}L Qi)8> = 5 as expected.

We have finally proved that H(Y,d) = H(X,d) + 16 for d > {%7“)—‘ +land 3<k <7 and

k=12 and k =0,5,6,11 (mod 17), and for d > {%fﬂ and k > 8 and k # 12 and k£ £ 0,5,6, 11
(mod 17). Now the statement of the proposition follows from the first remark of this section that
assure that H(X,d) < exp(H(X,d)) if %7“) <d< %. O
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Proposition 3.4.19. For s =9 we have:

’k L. {N+1 if d <8,
H(X,d)+ 18 =deg(Y) ifd>8,
{N+1 if d < 10,
H(X,d)+ 18 =deg(Y) ifd > 11,
A(Y,d) = N+1 if d < 13,
{ H(X,d)+ 18 =deg(Y) ifd > 14,
N+1 ifd < 3k +3,
{HXd )+ 18 =deg(Y) ifd> 3k + 4.

Proof. For k = 1,2 the statement is known by [Ba] and [BF1].

Let k = 3,80 )Y = (4,5)P, + --- + (4,5)Py. For d = 13, by [CoCoA], or by specializing the
scheme ) it is easy to check that dim(/y)13 = 0, hence for d < 13 the conclusion follows from
Lemma 3.4.8.

Now let C' be the unique (smooth) cubic curve passing through the support of Y, i.e., through
Py, ..., Py. Consider the following exact sequence, where )’ = Resc):

0— Iyl(d — 3) — Iy(d) — Iymac(d) — 0.

We have that Zync,c(d) = Oc(dH — Y NC'), where H is a line section of C, and deg(O¢(dH —Y N
C)) =3d—9(k+1).

Let d = 14. Since k = 3, we have deg(Oc(dH — Y NC)) =14-3 —4-9 = 6. It follows that
hY(Oc(dH —-YNC)) =0. Since V' = (3,4) P+ - -+ (3,4) Py, from the case k = 2 we get h' (Zy(d—
3)) = h'(Zy(11)) = 0. So by the exact sequence above it follows that h'(Z(45 p, 4. +(a,5pr (14)) = 0,
which implies H ()Y, 14) = degY. For d > 14 the conclusion follows from Lemma 3.4.8.

Let k > 4.

Now we proceed by induction on k. For k = 4, we have Y = (5,6) P+ - -+ (5, 6) Py, and 3k+4 = 16.

By [CoCoA], or by specializing the scheme ) it is easy to check that dim(/y);s = 0. So, since

N +1= (") =917 = deg(Y), it follows that H(Y,16) = N + 1 = deg()). Hence, by Lemma

3.4.8 it follows that for d < 16 we have H(Y,d) = N+1, while for d > 16 we have H (), d) = deg(}).
Let k£ > 4. We have:

YV=(k+1LEk+2)P+-+(k+1,k+2)P

YV =(kE+1)P +---+ (kk+1)F.
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Since obviously if d > 3k+4, then d—3 > 3(k—1)+4, and if d < 3k+3, then d—3 < 3(k—1)+3,by
induction hypothesis we have H()',d —3) =N+ 1ford —3<3(k—1)+3, (N = (d73+2))7 and
H(Y',d—3)=deg()) for d —3 > 3(k —1) + 4. That is:

R (Zy/(d—3)) =0 for d—3<3(k—1)+3,

Y (Zy:(d—3)) =0 for d—3>3(k—1)+4.

Moreover, since deg(Oc(dH —YNC)) = 3d—9(k+1) < 0 for d < 3k+3, and deg(O¢(dH—-YNC)) =
3d—9(k+1) >3 for d > 3k + 4, we have:

h(Zyrc,o(d)) =0  for d < 3k+3,

hl (.'Z-ymac(d)) =0 for d > 3k + 4.

So whenever d < 3k+3, we get h°(Zy/(d—3)) = h®(Zync,c(d)) = 0, which by the exact sequence
above implies h°(Zy (d)) = 0.

When d > 3k + 4, we get h*(Zy(d — 3)) = h'(Zync,c(d)) = 0, so by the exact sequence above
we have h!(Zy(d)) = 0, and we are done. O

With all these partial results we have actually proved the main results of this section:

Theorem 3.4.20. For s <9, then
2
dim(Secs_1(Og,q)) = min {H(X, d) + 2s, (d—; ) } -1

except when s =2, d = k + 2 where dim(Secy (O p42)) = H(T,d) — 1 = (d+2) —-2=N-1

2

Proof. For s =1, since H(X,d) = min { (k;2), (d;2 then the result follows from (3.16).

For s = 2 and d = k + 2, since H(Y,d) = H%T, d) (see Proposition 3.4.9), by the obvious
inequalities H(Y,d) < H(Y,d) < H(T,d) we get H(Y,d) = H(),d) = H(T,d) and the conclusion
follows from (3.18).

In the other cases by Lemma 3.4.6 and Propositions from 3.4.9 to 3.4.19 we have

H(Y,d) = H(Y,d) =min{H(X,d) +2s, N + 1},

hence from (3.18) we get the conclusion. ]

Corollary 3.4.21. Let 6 = min{deg(Y) —1, N} —dim(Secs_1(Oka)) be the defect of Secs_1(Ok.qa)-
If s <9, then Secs_1(Oy.q) is defective only in the following cases:
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1.

10.

s=2,d=k+2; with defect 6 = 1.

s=2, k>3, k+3<d<2k; with defect 6 = min { (2<k+21)_d); (d — k)% — 4}.

2 2 2

s=3,k>7 k odd, F‘(’“*ﬂ +2 < d < 2k: with defect § = min {3(2<’f+1>—d); (231 6}.

.s=3,k>6,k even, F’(kﬂ)—‘ +1 < d < 2k; with defect § = min {3(2(]““)%); (degkfl) — 6}.

2 2 2

s=5,k>5 2k+4<d< F(k;l)J — 1, with defect 6 = min{(f’(“;)_w); 5(d_22k_1) — 9}.

5 2

§ — min {6(5(k+;)—2d); (5d—1§k—10) _ 12}.

s =6, k=2 (mod5), k> 17, W’“*ﬂ <d< LMJ — 1, with defect

s=06, k#2 (mod5), k> { 19 if k odd ) {12(k+1)

24 if k even
§ = min {6(5(k+1)—2d). <5d—12k—10) _ 12}.

2 ) 2

|+1<a< |50~ 1, with defect

33 Zf/{ =1 (mod 8) ’721(k+1)
36 if k=4 (mod8) ’ 8

§ — min {7<8(k+;)—3d)7 (&#2;#19) _ 14} .

s=1T k=14 (mods), kz{ ] <d < || 42, with defect

39 ifk=
s=7 k#1,4 (mod8), k>{ 43 ifk=1 (mod3) , {2“’;“)] +1<d< %] +2, with
47 if k=2 (mod3)

defect 6 = min {7(8(“;)73‘1), (8‘172;“19) — 14} .

153 if k=0 (mod17)
141 Zf k=5 (mod 17) 48(k4+1)

—_— < <
159 if k=6 (mod17) B < d <
147 if k=11 (mod 17)

Ll?kzg—lSJ} with defect § = min {8(17(k+21)—6d)’ (17d—428k—46) _ 16} .

s =8,k =0,506,11 (mod17), k >
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(36 ifk=
67 ifk=
50 ifk=2

(mod 6)

(mod 6)

1.5 =8 k#0,5,6,11 (mod17), k> § 5y 1) — 4 Emode,;
(mod 6)

(mod 6)

17
118 if k=4 (mod6
| 101 ifk=5

defect § = min {8(17(1<;+21)—6d)7 (17d—428k—46) _ 16} _

Proof. First we observe that:
o k+ 3 <2k implies k > 3;

o if k is odd and [3(’““ } +2 < 2k, then 3(k + 1) + 4 < 4k, that is k > 7;

e while if k is even and { kH)—‘ + 1 < 2k, then k& > 6;

e from 2k +4 < L@J — 1 we get k > 5;

2

{48(k+1)-‘ <d< L17k+15J with
. Sa= 6

e for £k =2 (mod 5), it is easy to compute that {12(?1)-‘ < {5(“1@ — 1 implies k > 17;

24 if k even

o while for k # 2 (mod 5), if Fz k—i—l)-‘ < {5(k2+1)J 1 thenk > { 19 if k odd ;

o for k=14 (mod 8), if | 24| <a < %] 42 thenkz{

33 if k=1 (mod8)
36 if k=4 (mod 8) ’

39 if k=0 (mod 3)
o while for k # 1,4 (mod 8),if [ 25| 4+1 < d < [$%]+2, then k= { 43 if k=1 (mod 3) ;
47 if k=2 (mod 3)

153
141
159
147

e fork=0,5,6,11 (mod 17), if [ ’“*ﬂﬂ <d < [YEHS then k >
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. . 48(k+1
o while for k #0,5,6,11 (mod 17), if | =40 | < q < 17615,

(36 if k=0 (mod 6)
67 if k=1 (mod 6)
50 if k=2 (mod 6)
then k29 33 §f k=3 (mod 6) -
118 if k = 4 (mod 6)
| 101 if k=5 (mod 6)

From what we have seen above, by (3.16), and Propositions form 3.4.9 to 3.4.19, we get that
Secs_1(Okq) is defective only in the cases from 1. to 11., and, except for s = 2 and d = k + 2, we
know that H(Y,d) = H(X,d) + 2s.

For s =2 and d = k + 2, since dim(Sec; (Oy r+2)) = N — 1, while the expected dimension is IV,
we have § = 1.

In the other cases we have:

d = min{deg(Y) — 1, N} —dim(Secs_1(Oq4)) = min{deg(Y) — 1, N} — H(Y,d) + 1

= min{deg(Y) — H(X,d) —2s, N+1— H(X,d)—2s} = min{deg(X) — H(X,d), dim(Ix)s — 2s}.

For s =2, k >3 and k+ 2 < d < 2k, computing the dimension of (Ix), by removing the line
PPy (2(k+ 1) — d) times, we get:

dim(Zx)q = dim(Ix)ad—k-1) = (2<d B k2— D+ 2) — Q(d ; k) = (d—k)?,

where X' = (d —k —1)P, + (d — k — 1) P, hence

deg(X) — H(X, d) zg(k;Q) _ <d42r2) Cd k= (2(k+21)—d)7

6:min{<2<k+21)_d);(d—k)2—4}.

In cases 3. and 4., computing the dimension of (Ix )4 by cutting off the three lines P, Py, P, P,
PyPs, 2(k + 1) — d times each, we have:

dim(Ix)q = dim(Ix7)a—32k+2-a) = dim(Ix7)224—3k—3) =

_ (2(2d—3l;—3)+2) _3(2d—;k—2) _ (Qd_gk_l):
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where X' =37 (k+1—2(2k+2—d))P, =Y (2d — 3k — 3)P,, and from here we easily get:

deg(X)—H(X,d)::s(k;z) B (d—2k2> ) <2d—2k—1> :3(2(“21)_61)’

5:min{3(2(k+21)—d>; (Qd—?;k—l) _6}_

For s = 5 computing the dimension of (Ix)s by cutting off the three lines Py P,, P, P3, P»Ps,
2(k + 1) — d times each, we have:

dim(/Ix)q = dim(Ix)g—2(5k+5-24) = dim(Ix7)5a-26—2) =

_ (5(d—2k2—2)+2> _5(2d—;1k—3) _5(d—22k—1) ‘L

where X' =37 (k+1— (5k+5—2d))P, = 3.7 ,(2d — 4k — 4)P;, and from here we get:

deg(X)—H(X,d):E)(k;Z) B (d;g) +5<d—22k—1) L (5(k+;)—2d)7

5:min{(5(k+;)—2d); 5<d—22k—1) _9}‘

For s = 6, calculating the dimension of (Ix); by removing every conic C; (see the proof of
Proposition 3.4.13) (5(k 4+ 1) — 2d) times, we get

dim(/x)q = dim(Ix+)g—12(5k45-2a) = AiM(Ix7)250—60k—60 =

B <25d—60k:—60+2) (10d—24k:—24+1) B (5d— 1%—10)
= 2 - 2 - 2 Y

where X' =370 (k41 —5(5k+5—2d))P, = 3.0, (10d — 24k — 24)P;, and from here we get:

deg(X) — HX,d) = (k+2) d+ 2) (5d—13k5—10>:6<5(k+;)—2d)7

5= mm{ (( )—2d) (5d—1§k;—10>_12}'

For s = 7, computing the dimension of (Ix)4 by cutting off the fixed locus (that is the union of
the seven cubics through Py, ..., 2P, ..., P; with multiplicity 8(k 4+ 1) — 3d) we get:

dim(Ix)q = dim(Ix7)a—21(skt8—34) = dim(Ix7)ead—168k—168 =
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(64d — 168k — 168 + 2) B 7(24d — 63k — 63 + 1) B (&z — 21k — 19)
2 2 - 2

where X/ = 327 (k41 —8(8(k + 1) — 3d)) P, = >1_,(24d — 63k — 63). Then

deg(X) — H(X.d) :7(/@;2) - (d;FQ) . (8d—2;k—19> :7(8(k:+;)—3d)

5:mm{7(8(k+;)—3d)7 (861—2;;@—19) _14}‘

Finally, for s = 8, computing the dimension of (Ix); by removing the fixed locus (that is the
union of eight curves of degree 6 that are triple in one point and double in the other seven remaining
points) we get:

and

dim(Ix)q = dim(Ix)g—s8(17(k+1)-64) = M (Ix7)280d—816k—816 =

2 2 2
where X' =37 (k41— 17(17(k +1) — 6d)) P, = 3_;_,(102d — 288k — 288)P;. Then

deg(X) — H(X,d) = 8<k s 2) - (d s 2) T <17d moh 46> _g (17<k +- 6d)

5 i {8(17(k +21) - 6d)’ (17d - 428k - 46) - 16} |

E.Ballico and C.Fontanari in [BF2] give partial results about the regularity of Sec,_;(Oy q) for
2 < s < 8. Our Corollary 3.4.21, for s < 9, improves the results of [BF2] and gives a complete
classification of all the defective cases.

B (289d — 816k — 816 + 2) B 8(102d — 288k — 288 + 1) B (17d — 48k — 46)

and

]

Remark: We wish to notice that there are no defective cases for s =4 or s = 9.

In case s = 2, d = k+ 2 defectivity is forced by the defectivity of T, in fact, since Y C T implies
that H(Y,k+2) < H(T,k +2), and since H(T, k+2) = N <exp(H(Y,k+2)) = N + 1, it follows
that H(Y, k+2) < exp(H(Y,k+2)) . In the other cases defectivity of Secs_1(Oy.q) is forced by the
defectivity of X.
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Remark: At the light of this last Remark and the results of L.Evain in [Ev], we would like to
conjecture that if s is a square, then Sec,_1(Oyq) is regular in any degree d.
Anyway by the results of L.Evain, and 3.3.6, we easily deduce a partial result about the regularity

of Secs_1(Ok.q):

Corollary 3.4.22. If s is a square, and N+1 < deg(X) or N+1 > deg(T), then dim(Secs_1(Ok.q))
1S as expected.

In fact if s is a square, by [Ev] we know that X and T have maximal Hilbert function. Hence
if N+ 1 < deg(X), then dim(/x); = 0, and if N +1 > deg(T"), then H(T,d) = deg(T). Since
X CY CT, it follows that if dim(/x)s = 0, then H(Y,d) = N + 1, and if H(T,d) = deg(T), then
H(Y,d) = deg(Y), and now the conclusion follows from the first Remark of this section.
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Chapter 4

Secant varieties to the Split varieties

In this chapter we study the second question presented in Section 2.6.1:
“which is the least integer s such that the following form is canonical:
1 1 s S)on
Lg)---Lé)+---+L§)---L2)?
where LZQ) € Klxg,...,z,sVi=1,...,dand j =1,...,s.
We have already observed that this problem is equivalent to the following:

“which is the minimum integer s such that the (s — 1)-secant variety to the Split variety
n+d
Split,,(P") fills up P("4) 127

where the Split variety Split,(IP") is the variety that parameterizes forms of degree d that split into
product of d linear forms of S = K|z, ..., x,]. We have defined it as the image of the map (2.15).

The dimension of Split,(P") is nd, hence the expected dimension of its (s — 1)-secant variety is:

expdim(Secs_; (Split,(P"))) = min { (n ZZ_ d) —1,snd+ s — 1} :
4.1 What we can do with Inverse Systems

In the section 2.6.1 we have shown why the Eherenborg conjecture 2.6.4 (see [Eh]) does not work.
The counterexample we produced was:
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What we can do with Inverse Systems

“the typical rank of the Grassmannian G(3,6) is 4, but the typical rank of Split,(IP?) is
3'77

The typical rank of G(3,6) is well known (see for example [CGG4]), but for the typical rank of
Split,(P?) we made computations with [CoCoA]. The method we used for these computations
uses Inverse Systems.
Consider the map
$:S;x---x8 — Sy
———
d
<L17"';Ld) = Ll"'Ld-
If Ay, ..., Ag € Sy, thenlimy o L(¢(Li+tA,. .., LattAg) =30 L1+ Li 1 A;Liy1 -+ - L. There-
fore the affine cone over the tangent space Tp(Split,(P")) at a regular point P = [L;--- L4 €
Split,(P™) is spanned by:

Tp(Sphtd(P")) =< SlLQ SR Ld, Ceey SlLl s Li,1L1+1 s Ld, e ,SlLl ceeLgg > (41)

By using Terracini’s lemma we can write the affine cone W over the tangent space to Sec,_; (Split,(P™))
at a regular point Q: let Pp,..., P, € Split,(P") such that P, = [Lgl) e LS)} e P(Sy), let
Qe< Py,....P, >, then

W =<5 LM s et s

RSV A SRUEY AL NNNECIY A TR AL ASRTRY A ISENINCIY A SRR Ay N (4.2)
What can be done in the case Split, (P?) is:
e choose twelve forms Lgl), o ,Lfll), LgQ), . ,Lff), ng), e Lf’) € K|z, x1, 19, x3)1,

e explicitly write down the particular tangent space to Seco(Split,(P?)) that we obtain with
this (particular) choice of linear forms,

e make computation and find out that the dimension is actually the expected one (by using
[CoCoA]).

It is clear that this easy check works if the particular tangent space we choose, via the choice of the
linear forms, has the expected dimension (that is what happens for Secy(Split,(P?))). This method
works only if we have to verify few particular examples and if we find that Secs_;(Split,(P")) has
the expected dimension.

Remark: If d = 2 the variety Split,(P") parameterizes forms of the type: Ly Ly € Sy and this means
that Split,(P™) is nothing else that the tangential variety to the double Veronese variety T'(v2(P"))
defined in the previous chapter. This case was already studied in [CGG?2] (see Proposition 3.3):
the authors proved the following proposition:
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What we can do with Inverse Systems

Proposition 4.1.1. For all s > 2

n+2)

1. if n < 2s, then Secs_1 (T (1u(P"))) = P("3) 1 gs expected;
2. if n > 2s, then dim(Secy_1(T (12(P")))) = s(2n +1) — 2(s* —s) — 1, i.e.:

o if ("1?) > s(2n+1), then dim(Sec,_1 (T (15(P")))) = 2(s*—s) < expdim(Secs_1 (T (vo(P™))

o if ("1?) < s(2n+1), then dim(Sec,_1(T(1a(P™)))) = (" 3*?) < expdim(Sec,_1 (T (15(P™)))).

We want to point out here that the defective cases found in proposition 4.1.1 are the only known
defective ones for secant varieties to the Split varieties.

Remark: Since K is an algebraically closed field it is obvious that if Ly, Ly € Sy = K{xo, ..., Tu1,
then there always exist I/, L” € S; such that L2+ L2 = L'- L”. In terms of varieties parameterizing
forms this means that Sec;(v2(P")) = Splity(P™). Therefore

Sec, (5(P™)) = Splity(P") = T(us(P")).

This implies that such secant variety is defective, since its dimension is 2n = dim(7'(v2(P"))) instead
that 2n + 1.

In general for any d such that sd < n+ 1, since we can choose coqrdinate so that L; = x; € S, we
can compute the ideal I C R = K]y, . . .,yq] such that (I7')4 = T(Sec,_(Split,(P"))).
We present here the case of d = 3 in order to show the complexity of the computational problem.

4.1.1 The case of Split;(P")

If d = 3 then the affine cone over the tangent space to Split;(P™) at a point P = [LiLaL3] € P(S3)
1s
Tp(Sphtg(Pn)) =<< SlLQLg, SlLng, SlLlLQ > .

Now if 3 < n 4+ 1 then we can suppose, without loss of generality, that L; = x;_¢, for ¢« = 1,2, 3.
With those assumptions it is not difficult to verify that the ideal In;2 C R = Klyo, ..., Yys] such

that (Ig1,)s = Tp(Splity(P")) is
Ioao = (Yo i v3) + (W5, Ui 42) (Was - - -y Yn) + (W0, U1 ¥2) (U - - -, Yn)* + (3o - - -, Yn)” (4.3)

(The choice of the name “Iy;5” is motivated by the assumption “L; = z;_4, for i = 1,2,3".)
The projective scheme associated to I has dimension —1, so its support is the empty set. This fact

can be verified by observing that
V02 = (Y0s -+ Yn)-
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What we can do with Inverse Systems

Consider now the (s — 1)-secant variety to Splits(P"). Let P, = [Lgi)Lg)Léi)] € Splity(P™), for
i =1,...,s, then the affine tangent space W to Sec,_;(Split,(P")) at Q €< Py,...,P; > is (by
(4.2), for d = 3):
W =< S, LY, s LV LY s LV LY s LY LY S LY LY S L LY >

Now, if 3s < n + 1 we can choose Lgl) = xo,...,LéS) = x3,_1; therefore the ideal I C R =
Klyo, - .., yn| such that the degree 3 part of its inverse system is W, can be obtained as the inter-
section of s ideals of the type (4.3):

I'=1Tp12MN - N1I35-335-235—1.

It is not difficult to verify that

I = (yga"'7y§5—1)+ Z (y'?’yz?—i-l?yiQ—I—Q)(yOa"'7yi—17giagi+1agi+27yi+37'"7yn)+

+<y07 s 7y3871)(y387 s 7yn>2+

Z (Yis Yir1s Yir2) (Y Yi1s Yir2) (Yhs Y1, Yrr)+

+ Z (Wi Yir1s Yir2) (Y5 Yits Yjrz) | Yss - Un)+

+(Yssr -1 Yn)” F Z (Yilir1: YiVir2, Yir1Yir2) (YiYi+10 YiYi+2, Yir1Y5+2),

i, =30

where ¢ =3 0 means that there exists m € Z such that ¢« = 3m and we write ¢; when the term y;
does not appear.
The Hilbert function H(R/I,3) of I can be easily computed; it turns out to be:

(";“3> - <3s+3s(n—2)+3s<"_3;+2) +27<‘§> +9(n—3s+1)<§) + (n_zﬁ?’)) =

= 3n+ s — 1 = expdim(Sec,s_1 (Split(P"))).
Since dim(Secs_1(Splits(P™))) = H(R/I,3) — 1, we have proved the following Proposition:
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What we can do with Inverse Systems

Proposition 4.1.2. If 3s < n + 1 then Secs_1(Split;(P")) has the expected dimension.
The general case Secs_1(Split,(P™)) for sd < n+1 can be treated in an analogous way for d > 3:

e the affine cone over the tangent space to Split,(P") at a point P = [L; - - - L] € Split,(P") is
computed in (4.1);

e we can suppose that L; = z;_1, for ¢« > 1, since sd < n + 1;

e the ideal Iy 41 C R = Klyo,...,Yyn| such that (]0_,‘1..,6171)61 = W defines a scheme whose
support is the empty set and it is of the form:

IO,...,d—l = (yda cee 7yn)d+
+(yd7 s 7yn)d_1(y07 s 7yd71)+
+(Wdy Y)W -+ Ya—1)?+

+Was - Yn)*Wos - - - Y1)+

+(Yds - Yn) [(yo* ,~--,yffii)+
+Zz O(y, VYos -3 Gis - Ya1)+
+Zl o(y@ )(yo,-~-,?)i,-~,yd—1)2—l-

+ E@ o WD) Yooy D Y1) 3| +
(Y- Y1)+
WY Wos - G Y1) F
+ Zf:_ol(yg*z)(yov i Yae1)

+Zz o(yz)(?/o,~.-,ﬂi,--.,yd—1)d*3+

+ 3 W) [
+Z;l;7,1j o(yz)d_g(yOa---a@i;---a@jw'wyd—l)‘i‘
+Z]¢” o) Wos - Tis - Tg s Ya1) P

+Z]7éz j= Q(yz) (y07"'7Qi7-"7@j7"'7yd—1)d_4 )

o let W = Ty (Sec,_1(Split,(P"))) defined as in (4.2); the ideal I C R such that (I~1)y = W, is

obtained as the intersection of s ideals of the type I 4-1:

I'=1To. . .a10 N1l 1yd,..sd1);
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What we can do with Inverse Systems

At this point it would be possible to compute H(I,d) but we prefer to perform a different and
more efficient kind of approach to establish the regularity or the defectivity of Sec,_1(Split,(P™))
in many cases. We will present it in the section 4.2; before doing that we want to offer motivation
for the study of Split,;(P") which is of particular interest in fact this variety can be characterized
in the following way.

A characterization of Split;(P")

Let X C P" be an irreducible hypersurface. Let P € X be a simple point of X and let A(P) be
the set of lines such that their intersection with X in P has multiplicity at least 3. We have the
following;:

o If A(P)=Tp(X) then P is a flex point, otherwise
e the set A(P) is an (r — 2)-dimensional quadric cone, with a double point in P and contained

in Tp(X); A(P) is called the Asymptotic Cone to X in P.

Definition 4.1.3. If 1 < k <r—1, then a simple point P of an irreducible hypersurface X C P" is
said to be a k-Parabolic Point for X if the vertex of the asymptotic cone A(P) is a k-dimensional
linear subspace of Tp(X). The point P is an (r — 1)-parabolic point of X if P is a flex point.

If f =0 is an equation of X, one can check that P € X is a k-parabolic point for X if and only

2
rk o <r—k+1.
0%i0%; /i j 0.

if

Proposition 4.1.4. The variety Split,(P") is contained in the projectivization of

{p € Sy : p divides all the 3 x 3 minors of Hess(p)}.

Proof. Let [p] € Split,(P"), i.e. p represents a polynomial of degree d that can be written as
a product of d linear forms: p = L;--- Lg; hence p represents a hypersurface H C P" which is
the union of d hyperplanes of P™, so each point of H is a flex point, i.e. an (n — 1)-parabolic
point (see [I1]). If p is without multiple components then this last condition is equivalent to the
fact that the polynomial p divides all the 3 x 3 minors of Hess(p) (see [Se|). If p has multiple
components we consider the dense open subset of Split,(P™) contained in the projectivization of
the algebraic set of the forms dividing their Hessian. Now since Split,(P™) is an irreducible variety,
we can conclude, by continuity, that Split,(P") is contained in the projectivization of the set
{p €S, : pdivides all the 3 x 3 minors of Hess(p)}. O
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Another approach

Corollary 4.1.5. If d = 3 the variety Splits(P") C P(Ss) is the locus of all cubics of Ss which
divide all the 3 X 3 minors of their Hessian.

Proof. One inclusion is a direct consequence of previous Proposition. For the other inclusion it is
sufficient to observe that if p € S3 is such that p divides all the 3 x 3 minors of its Hessian then:

e if p has not multiple components, then, by [Se|, p divides all the 3 x 3 minors of its Hessian
if and only if the hypersurface H C P(S3) of degree 3 represented by p is made only by flexes
points;

e if p has multiple components then p can only be a product of three linear forms.

Both the conclusions above are equivalent to the fact that H is the union of three hyperplanes,
therefore [p] € Splity(P"). O

4.2 Another approach

In this section we show a different way to approach the study of the dimension of secant varieties
of the Split varieties which will turn out to be more efficient.
In (2.15) we have given the definition of the Split variety as the image of the map

QZS . IP(Sl) X X ]P(Sl)J — ]P(Sd)

M
([L1]7 ) [Ld]) = [Ll e Ld]
where S = K|xy,...,2,]. Let us work in more details. Let Ay,..., Aq be vector spaces of dimension

n + 1; consider the space P(A4;) x --- x P(Ay). On each P(A,), for j = 1,...,d, we consider
the coordinate ring SU) = K[ZL‘(()])7 2], On P(A;) x -+ x P(4,) we consider the ring S :=

K [x(()l), e ,xg) Tl xéd), e ,x%d)] of multi-homogeneous coordinates, then Split,(P™) is the image
of the map
¢ P(SM) x o xP(SY) - P(Sy)
1 1 d d 1 d
([, e ], 2 el - [x(()d)'”(lq;é)’ (i-1) () (+1) . (d)
1— ) i+
dimiTo Ty x Ty Ty
IS) $7(1d)]
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Another approach

i.e. Split,(P") parameterizes the multi-degree (1,...,1) forms of S that are symmetric.
Notation: If a point Q € P(A;) x --- x P(Ay) we will write:

Q=(@QY,....QY)
with QU € P(A;), for j=1,...,d.

This characterization of the Split variety together with Terracini’s Lemma 2.6.1, Corollary 2.6.2
and Proposition 2.6.3 allow us to say that Sec,_;(Split,(P")) has the expected dimension if and
only if s double points of P(A;) x - -+ x P(Ay) impose independent conditions to the multi-degree
(1,...,1) symmetric forms of S.

Lemma 4.2.1. Let R be a generic point of P(Ay) X -+ X P(Ay) with defining multi-homogeneous
tdeal Ir C S. Then a 2-fat point 2R imposes independent conditions to the symmetric multi-degree
(1,...,1)-forms of S.

Proof. A double point R in P(A;) X -+ x P(A4,) imposes dn + 1 conditions to forms of S hence,

in order to prove the lemma, it is sufficient to find dn + 1 symmetric forms in S of multi-degree

(1,...,1) such that nd of them generate I, the other one does not vanish at R and such that all

those dn + 1 forms must be independent module the ideal (Ig)?. Let R € P(A;) x -+ x P(Ay),

R = (RM,...,R@D). Let us view the points RV,... R in a same projective space P" with

coordinate ring S = Kyo, ..., yn]; i.e. consider for j =1,...,d the maps:
¢ P(A;) — P

() ©)

(l‘o ,‘..,I'n) — (y[)’”"yn)’ (44)

we indicate qu(R(j)) with Q). Let P,,..., P, be generic points of P*. Consider the linear forms
fl(l), e ,fé”; f1(2), cee f7€2); ce fl(d), cee fT(Ld) of S that define the following hyperplanes WZ(J) of P for
j=1,...,dandt=1,... n:

fl(l)(yo, oY) =0 — 7T§1) =< Q(l),ﬁl,Pg, oo, B>

f2(1)(y0, e Yn) =0 — Wél) =< Q(l),Pl,ﬁQ, P, >

fél)(yovayn)zo A 7_‘_7(11) =< Q(1)7P17"'7Pn—17ﬁn>
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1(2)@0,---7%) =0 «—— 752) =<< Q(2),ﬁ1,P2,...,Pn >
(4.5)

f7§2)(y0, o Yn) =0 T Q@ P, .. .,Pn,l,ﬁn >

1(3)(y0a"'7yn):0 — 7T§3) =< Q(3)7ﬁ17P27"-7Pn>

~

féd)(yOV"ayn):O A 7T’Sld) =< Q(d)apla"'apn—lapn> .

L.e. the fi(j) € S are linear forms such that fi(j)|7r(j) = 0 where

775]) =< Q(j),Pl,...,E,...,Pn>

is the space spanned by QU), P;, ooy P, Py By foralli =1, nand for all j =1,...,d.
Now consider the linear form g € S which defines the hyperplane m :=< Py, ..., P, >. Let us define
the following nd + 1 symmetric (1,...,1)-forms in S:

FO = (), aD) - (0 f e, (4.6)

withi=1,...,nand j=1,...,d; and

G = g(x((]l), ) -g(m((]Q), ). -g(xéd), o al D)y, (4.7)

n n

By construction the Fi(j ) are nd symmetric multi-degree (1,...,1)-forms in S that generate the
ideal Ig C S, moreover G is a form of the same type that does not vanish on (). In order to check
that those forms are independent module the ideal (Ig)? it is sufficient to verify that the tangent
spaces to the hypersurfaces individuated by the forms above generate the ideal I. Also this last
fact follows from our construction. O

Proposition 4.2.2. Ifd > 2 and d(s — 1) < n, then

dim(Sec,_1(Split,(P"))) = expdim(Sec,_1 (Split,(P"))).
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Proof. As we have already recalled, the statement of the proposition can be equivalently reformu-
lated in the following way:

“if d > 2 and d(s—1) < n then s double points of P(A;) x - - - xP(A,) impose independent
conditions to the multi-degree (1,...,1) symmetric forms of S.”

Let R,T},...,Ts_1 be s generic points of P(A;) x -+ x P(A4y). If we want to prove that they
impose independent conditions to the (1,..., 1) symmetric forms of S, it is sufficient to find dn + 1
symmetric (1,...,1) forms of S such that:

e dn of them vanish with multiplicity at least 2 on 77, ...,Ts_; and with multiplicity 1 on R,
e one of them does not vanish on R,
e all the dn + 1 are independent in S/(Ig)?.

We can apply the same construction used to prove the previous Lemma.

Let P" be the projective space with coordinate ring K[yo, - - ., Yn]-

Since n > d(s — 1) we can choose d(s — 1) Py,..., Pys—1) € P" (since n > d(s — 1), they will be
linearly independent). Let ¢; : P(A4;) — P™ defined for all j =1,...,d as in (4.4). We can choose
T, = (T»(l), . ,Ti(d)), fori=1,...,s—1, in such a way that

]

6;(T7) = Pag—1) (4.8)
for i =1,...,d. In that way T}, ...,Ts_; are s — 1 generic points of P(A4;) x --- x P(Ay).
Choose a generic point R = (RY, ..., R@) and let ¢;(RY) =: Q) € P".
We can construct f-(j), g € Klyo, - ..,yn| such that if

ﬂ.z(j) =< Q(j)apla'"7pi>"'7pd(s—1) >C P
fori=1,...,d(s—1),j=1,...,d, and
T =< P17"-7Pd(s—1) >C]Pm

then fi(j)|ﬂ(j) =0fori=1,...,d(s—1),j=1,...,d, and g|, = 0.

Now we can construct Fi(j) €S = K[xél),...,a;g);...;:C(()d),...,x;(d))], fori=1,....,n and j =

1,...,d, as in (4.6), and G € S as in (4.7). They will turn out to be dn + 1 symmetric (1,...,1)
forms of S such that Fl(l), . F d(f? vanish with multiplicity at least 2 on T},...,T,_; and simply
on R; the form G does not vanish on R and they all are independent module (1g)?. O
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Example: We consider the case of n =7, d = 3 and s = 3. We want to see that Secy(Splits(P7))
has the expected dimension. In terms of number of conditions imposed by fat points to forms
of § = K[x(()l), . ,35(71); :)3[()2), . ,xg); x(()3), . ,9353)], it means that three double points of P(A;) x
P(A2) x P(A3), with dim(P(A4;)) = dim(P(A4,)) = dim(P(As)) = 7, impose independent conditions
to the (1,1,1) symmetric forms of S.

Consider the points R, T1,T> € P(A;) x P(Ay) x P(Aj3) such that:

o if ¢; is defined as in (4.4), then R = (R, R® R®)) € P(A;) x P(Ay) x P(A3) is such that:

— 01(RY) == QW = (1,0,...,0) € P" = ¢, (P(Ay)),
— $(R®) :=Q? = (1,a1,...,a7) € P = ¢p(P(Ay)), with ay,...,a7 € K,

— ¢3(R®)) :=Q® = (1,8,...,5:) € PT = ¢3(P(43)), with 3y,..., 87 € K;

o T\ = (T, T® T¥) € P(A)) x P(Ay) x P(A;3) is such that

— o(TV) = P = (0,1,0,...,0) € PT = ¢,(P(A))),
— $o(T{?) := Py = (0,0,1,0,...,0) € P" = ¢5(P(Ay)),

— 65(TP) 1= Py = (0,0,0,1,0,0,0,0) € P" = ¢5(P(A3));
— (1) (2) (3) :
o I = (1,7, 15,7,157) € P(A)) x P(Ay) x P(As) is such that

— o1(T3") == Py = (0,0,0,0,1,0,0,0) € P” = ¢, (P(A,)),
— $2(T3") == P5 = (0,0,0,0,0,1,0,0) € P" = ¢5(P(Ay)),

— 65(T)) == P; = (0,0,0,0,0,0,1,0) € P = ¢5(P(A3));

If S = Klyo,...,yr is the coordinate ring over P” = ¢;(A;) for j = 1,2,3, the forms of (4.5)
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are the following:

-

~

1

fl(l)(yo,--.,yv) =

fQ( )(y07"'7y7) = Y2

f7 Yo, y7) =y
Doy y7) = 11 — a1y

fé o, - -, y7) = Y2 — o
, :

f7( )(y07"‘7y7) = Y7 — arlo
3

f1( )(y07--'7y7) =11 — Bi%o
\ :

f7( )(yoa--wlﬁ) = y7 — Bryo

g(yo: v ,?J?) = Yo-

Consider now the corresponding multi- degree (1,1,1) symmetric forms in S constructed as in (4.6)

e (4.7) we get the followmg 22 forms F ,GeS= K[a:él), .

j=123andt=1,...,T:

AP @) =@ -

2 1
F@) = (a7 -

3 1
FO(z) = (21

3 1
F(z) = (a3

=~

—_

~
—

z)=2x

(
1

1
F(z) = af

1 1 2
FOw) = el

1)$§2)ZL‘

(
1
1)1‘22).7353)

3)

3)

(1)
l”? 7$0 PRI

(2)

a) @l - arrd) @l — araf)
0‘73761))(9352) - 04793(()2))@(73) - a7:v<()3)
— A @? - Biad) (@ - Buxf
—@%%@@—ﬁd%< — Bl
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Glz) =z vy,

It is evident that the Fi(j), with ¢ =1,...,7 and 7 = 1,2, 3, are the 21 symmetric forms of multi-
degree (1,1,1) of S that generate the ideal I C S and that they are double at 77 and at Ts.
Moreover G is double in T} and 75 (actually, G has multiplicity 3 at T;, it is sufficient that they
are at least double points) but it does not vanish in R.

Remark: The forms ﬂ(j ) of the previous example are double in 77,75 but in general, the Fi(j )’s,
with ¢ = 1,...,n and j = 1,...,d, defined in (4.6), vanish up to order (d — 1) at T3,...,Ts_
chosen as in the previous example. Moreover, the proof works because in the hypothesis we have
that d > 2 and this allows to construct the Fi(J ), vanishing to the order at least two (d — 1 > 2) at
Ty,...., Ts_q,fori=1,...,n,7=1,....d.

Now we have to verify that the 22 forms defined in (4.9) are independent module the ideal (Ig)?.
In order to do that we consider the following construction (as it is done in [CGG3], see Theorem
1.1): let f be the map

f:P(A)) x P(A3) x P(A3) — A%

with dim(IP(A4;)) = 7 for ¢ = 1,2, 3, defined on the open affine set {xél)xo a:o ) 0} such that:

(1) (1) (2 (2) 3) (3) xgl) :13(71) I?) :Eg) (3) ;3)

A (CT T T NI € S T N €/ S g D I I B R TR e R 3 5 |-
@ @ @ @)
0 0o Zo 0o %o 0

If Z C P(A;) x P(Ay) x P(43) is a 0-dimensional scheme contained in the affine chart {:c(()l):c'é2):cé )
0} then Z ~ f(2).

Consider the image of R via f, i.e. f(R) = (1;0,0,0,0,0,0;1,...,a7; B1,...,07) which, with
a slight abuse of notation, we will still indicate with R. With the same kind of notation, the
affinization of the Fi(J)’s, withi=1,...,7and j =1,2,3, and of G are:

1 1
FOw) = e

1 1
FOw) = e



Another approach

Glz) =1
where (z) := (a:gl), . 1(71), x(()Z) ,e x(72), x(()?’) ,e .x(73)). We consider, only for simplicity, the transla-
tion of A%! that Sends R to the origin:
( Xl(l) _ 3351)
1 1
X _ 40

X(Q) = a:;) o
X{S) = 931 — b

X =2 — ;.

\

After this translation the ﬂ(j ) and G become the following E(j ) and @ respectively:

FUX) = XX +a)(x® + 6)

FV(X) = x(XP 4+ an) (X5 + Br)

FOX) = XX + a)(XP + 81— o)

FPX) = X757 + an) (X7 + B — )

152



Another approach

FOX) = xOxO 1 ) (XP + oy — B)

FOX) = XP (XD 4+ 8)(XP + ar — Br)

G(X)=1

where, as above, (X) := (Xl(l), o ,X7(1); o ;Xl(?’), .. ,X§3)). The form G does not vanish at the
origin; the tangent planes to the ﬁi(j ) have equations: X Z-(j ) =0 respectively for all i = 1,...,7 and
j=1,23.

Now it is clear that those forms generate Ip and so they are independent module the ideal (1)

As we have already observed, the forms F}?) and G defined in (4.6) and (4.7) are symmetric forms
of S of multi-degree (1,...,1) that vanish with multiplicity (d — 1) on T3,...,Ts_; chosen as in
(4.8).

We have already observed that if we want to prove that s double fat points R, Ty,...,Ts, 1 €
P(A;) x --- x P(A4) impose independent conditions to the multi-degree (1, ..., 1) symmetric forms
of S, it is sufficient to find dn 4 1 of these forms such that:

e dn of them vanish with multiplicity at least 2 on 77, ...,Ts 1 and with multiplicity 1 on R,
e one of them does not vanish on R,
e all the dn + 1 are independent in S/(Ig)>.

Therefore the 17, ...,Ts_1 can be chosen in a less restrictive way with respect to what we have done
in the last proposition: it is not necessary that the Fi(J ) and G are zero on them up to the degree
d — 1, it is sufficient that they are double in those points. Hence we can improve Proposition 4.2.2.

Proposition 4.2.3. Ifd > 2 and n > 3(s — 1), then

dim(Sec,_1(Split,(P"))) = expdim(Sec,_1 (Split,(P"))).
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Proof. The proof of this proposition is very similar to that of the previous one; it is sufficient to
choose s generic points of P(A;) x --- x P(Ay): R and T; = (Ti(l), . ,Ti(d)) e P(Ay) x - xP(Ay)
with ¢ =1,...,s — 1 such that:

)

= Pyi—1)+1 € P(Ay),
T{? = Pyt € P(Ay),
T = Py_iyes € P(A3)

7

where P;, for j = 1,...,3(s—1), is the j-th coordinate point of P". Now the proof works exactly as

the proof of Proposition 4.2.2 with the only difference that Fl-(j ) defined in (4.6) are only double at
Ti,...,Ts—1 and G defined in (4.7) vanishes with multiplicity 3, and then this is sufficient to prove

that the F"’s and G are independent in S/(Ip)>. O

4.3 Linear subspaces of Split,(P")

Our study of the Split varieties will now aim to understand the structure of the linear subspaces
of Split,(P™).
Let us recall Bertini’s Theorem:

Theorem 4.3.1. (Bertini) If X C P" is a complex projective variety, 3 a linear system on X
D
without fized components and such that all D € 3 are reducible, then the rational map p : X —|—|+

Y C P" factorizes through a curve C':

D]
p: X -— Y

T\ So
C

where T : X --+ C has connected fibers, and o : C' — Y 1s a finite morphism. The composition
p =0 o7 is called the Stein factorization.

Proposition 4.3.2. Let [M), ..., [M,] be linearly independent in Split,(P"). Let Ly --- Ly be their
greatest common divisor and, for i =0,... r write

M= Ly--- LsLi,erl T Li,d-
Then, the r-dimensional span V, C p(att) of M, ..., M, is contained in Split,(P") if and only if
one of the following cases occur:
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1. s < d—2 and there exist L', L" € Sy such that all L;; € K[L',L"]. In this case, V, C

P(K[L, L")4_s) = P4=5.

2. s >d—1. In this case, V, C P(S;) = P".

Proof. Since V, = P" C Split,(P") C P(S,) and the elements of Split,(PP") represent forms of degree
d obtained as product of d linear forms, V, is the span of r + 1 of them

V, =< LO,I"'LO,dw"7L7‘,1"'Lr,d>'

An element D € V, is such that:

D3:Ll"'Ld:aOLO,l“'Lo,d+"'+OérLr,1"'Lr,d

for some ag,...,q, € K.
Therefore we are interested in studying linear systems ¥ = |Lo;---Log,...,Ly1--- Ly4) on P
whose elements are all of the form L --- Lg.

1.

(a)

If s = 0 we can apply Bertini’s Theorem because the hypothesis assure us that X
is without fixed components. Therefore there exist three maps p : P* — I' C P,
7:P*" — C and ¢ : C — I such that C is a curve, p is the rational map given by 3,
7 has connected fibers, o is a finite morphism and p = co7. If P € I', the pre-image
o 1(P) is a set of d points on C. The curve C is a P! because 7 is linear. Therefore
p Y (P) =7"Yo"Y(P)) is a set of d hyperplanes of P". This fact implies also that the d
fibers of 7 meet in the same P"~2. Therefore V, is contained in a P¢ that is obtained as
P(K[L',L"])4) with L', L" € S;.

If0<s<d-—2then D €V, is of the form:
D =agMy+---+a,M =Ly Ly (aLogs1 - Loa+ -+ @ Lygs1 - Lyag):

We can apply Bertini’s Theorem to a system Y’ whose elements are all of the form
D' =oyLosy1- - Log+-+rLysy1-- Lpg. If p, 7,0 are defined as in the previous case
(the map p now is the the rational map given by ¥’ and 7,0 are then well defined) we
observe now that length({oc~'(P)}) = d—1 and then p~!(P) is a set of d— s hyperplanes
of P" meeting in the same P"2 then D = Ly --- L, - F where F € K[L', L"]4_s.

2. The last case is obvious.
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Split,(P") and G(n — 1,n+d — 1)

4.4 Split,(P") and G(n — 1,n+d—1)

The variety Split,(P™) has dimension nd and parameterizes all forms of degree d that are decom-
posable as products of d linear forms. From a geometric point of view Split,(P") parameterizes the
unions of d hyperplanes.

Example: If d = 2 an element of Split,(P") represents a quadric of P" which is the union of two
hyperplanes; therefore, if Mg is the symmetric matrix of M, (K) representing a quadric ) € Ss,
then:

Split, (P") = {[Q] € P(S,) | tk(Mp) < 2}. (4.10)

We need to recall that the Grassmannian G(k,n) is the projective variety which parameterizes
the k-spaces in PY. Grassmannians can be viewed in a projective space by looking at their Pliicker
embedding. For this, we will use the Pliicker coordinates, but in a way that is dual to the standard
one (i.e. describing the k-spaces as intersection of hyperplanes rather than as spanned by points).

Let A C PV be the space H,N---NHy_; C PV where H; is the hyperplane Ui 0To+- U NTN =
0. For each ip < -+ < i we define p;,..;, to be the determinant

ul,io e ul,’ik
Dig-ip = : :
UN—-kjig *°° UN—Fki,

The Pliicker embedding is defined as follows:

p:G(k,n) — p(i) -
—>

4.11
A {{pi0~--ik}|0§io<"~<ik§n} ( )

Example: If d = 2, it easy to find the equations for G(n — 1,n + 1). Let A be an (n — 1)-space
of P! then A is defined by the intersection of two independent hyperplanes H;, Hy C P""1. Let

their equations be w1 oxo + - - - + U1 py1Tn11 = 0 and ug oo + - - - + U2 1Tp41 = 0 respectively. If p
n2+3n

is the map defined in (4.11), the image p(A) in P~z is

(p0,17 Po2, ---5 Pon+l,
P12, ---5 Pln+l,
pn,n+1)
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Uy Ul

where p; ; = fori,j=0,...,n+1.

Ui U2
Let 7, ..., 1 C P! be the n + 2 hyperplanes defined by the following equations respectively:

0xo + po1T1 + po2®a + - + Pont1Tny1 = 0,

—po,1%o + 021 +proxa + -+ + Pruy1Tns1r = 0,

—Po,n+1T0 — *** — Pnnt1Zn + 02pq1 = 0.

If we consider the intersections A;; = m; N7, for all ¢ # j, and the image p(A; ;), we obtain that
the coordinates of p(A; ;) are the 2 x 2 minors of the following skew symmetric matrix:

0 Po1 T Pon+1
M.y = —]?0,1 'O : p1,7‘1+1 (4.12)
—Pon+1 " TPnntl 0
If the rank of this matrix is two, then Ag, ..., Ay 41 are the same codimension 2 subspace of prt,

Then a rank 2 skew symmetric (n 4 2) X (n + 2) matrix describes an element A € G(n —1,n+1).
Vice versa if an (n—1)-subspace of P"*1 is given by the intersection of n+2 hyperplanes 7, . . ., Tp1

as above then rk(M,, 1) = 2.
Now it is not difficult to believe that imposing rk(M,,+1) = 2 is equivalent to finding the equations

n2+3n

of G(n—1,n+1)inP = .
We like to observe that we have already noticed that the elements of Split,(IP") are represented
by the rank at most 2 quadrics of P". We will see that this is not only a coincidence.

Remark: Observe that, when N =n +d —1 and k = n — 1 we obtain that G(n — 1,n+d — 1)

has dimension nd and it is contained in ]P’(n:d>_1, exactly as it happens for Split,(P").

The remark above induced Ehrenborg (in [Eh]) to state a conjecture (see 2.6.4) in terms of Secant
varieties of Split,(P") and of G(n — 1,n + d — 1). In Section 2.6.1 we have already shown a
counterexample to this conjecture but we have also checked that it easily works when d = 2. The
Ehrenborg conjecture and the many cases where it works suggest the interest in the study of the
intersection between Split,(P") and the Grassmannian G(n — 1,n +d — 1).

The first idea to study this intersection comes from a way to embed the Veronese variety vy(P™)
into the Grassmannian G(n — 1,n 4 d — 1) (see for instance [AP]).
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Proposition 4.4.1. Identify S; with K|ty,t1], by assigning to upzo+ - - + upx, € Sy the homoge-
neous form upth 4+ uity tty + - +untt € Kltg, t1]. Then P(Sy) is naturally identified with the set
of schemes of length n on P'. The identifications are the following:

1. The map ¢ : P(Sy) — G(n — 1,n +d — 1) that assigns to any scheme of length n on P! its
span as a scheme in v, q_1(P) is defined in coordinates as ¢((uq, ..., u,)) = intersection of
the hyperplanes:

Uy + -+ -+ upxy, =0
UOZE1+“'+UW’E7L+1 =0

UoTg—1 + *** + UpTpyg—1 =0

2. There is a linear change of coordinates in the Pliicker space P such that the image of
& (which is the set of (n— 1)-spaces of P"T4~L that are n-secant to the rational normal curve)
n+d
d

is the Veronese variety. This yields a canonical identification of P with P(Sq).

By using the idea of this proposition that shows how one can embed the Veronese variety inside
a Grassmannian, we can prove the following theorem which will be of some interest in order to
discover a set that is contained in the intersection between Split,(P™) and G(n — 1,n +d — 1).
An interesting fact will be that this set, in the case of d = 2, will be exactly the intersection
Splity,(P")NG(n — 1,n+d—1).

Consider the embedding

¢ P P Gn—1,n+d—1) (4.13)
which sends a point (ug, ..., u,) € P" into the (n — 1)-space obtained as the intersection of hyper-

planes:

Uy + -+ + upxy, =0
ULy + -+ UpTpgr = 0
UoTg—1 + *+* + UpTpyg—1 =0

If we think at v; as the dual embedding we can think at an element of v4(P") as the d-th power
of a linear form L € K|z, ...,x,], but Proposition 4.4.1 lets us to interpret an element of vy (P™)
as an (n — 1)-space of P"™4~! that is n-secant to the rational normal curve v, 4 1(P'), or better,

158



Split,(P") and G(n — 1,n+d — 1)

consider the following composition of maps:

]P)l
! Vntd-1
Vn+d—1 (Pl )
l Nn4-d—1

o: P u,PY S Gn—1,n+d—1)
then Proposition 4.4.1 says that

pa(aP"NNGn—1,n+d—1)={A € Gn—1,n+d—1) | length{ANNyia1(Vnra_1(P))} > n}.
(4.14)
Now let Py, ..., P,_1, P be points of v, 141 (P'). By Proposition 4.4.1 thespanof < Py,..., P, |, P >
is represented by a point in p4(v4(P"))NG(n—1,n+d—1): i.e. Ap :=n,191(< P1,...,Py1, P >) €
pa(va(P*))NG(n—1,n+d—1), hence there exists a linear form wozo+- - - +u,z, € K|xg,..., 2,1 =
(P™)* such that
pa((uoxo + - - + upzy)?) = Ap.

Consider now the following embedding;:
Vp i Pl s P ~< 1, (P) >,

whose dual is
(P)" = P(K[to, t1}1) <5< P(K[to, t:]n) >= (P")". (4.15)

By this identification we can view a linear form wyzg+ - - - +u,z, € (P")* as a polynomial of degree
n in the variable tg, t;:

]P)(K[ZL'O, - ,C(]n]l) = (]P)n)* ~ Vn<]P>1) =<< ]P)(K[to, tl]n) >

[uozo + - -+ UnTp] > [uoth +urth T e unth] (4.16)
Therefore
Gn—1,n+d—1)Nps(va(P")) < P(Klto, t1]n)
Mnia1(< Py, Po1, P>) > [ugth 4+ gty My + -+ upth] (4.17)
By the same reason
Gn—2,n+d—2)Npg(vgP 1)) « P(Klto, t1])n_1 (4.18)

Mnad—2(< Ppy.o.., Pooy >) < [Uotg_l + v1t8‘2t1 4t Un_ltvlz—l] .
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Theorem 4.4.2. Let apty ' + ayty %ty + -+ + ap 1t7 " € Klto, t1]p_1, let Pr,..., Py ben —1
points on vy,yq_1(P') corresponding to the solutions of apth ' + ayty 2ty + - -+ + a1ty = 0 and
set Ly = Z?;()l a;x; € Sy and Ly = Z?;ol a;xir1 € Si. Then the locus {A € G(n — 1,n+d —
D) | mga—1(P1), -y Mnra—1(Pa_1) € A} parameterizes the forms of K[Ly, Ls)q.

Proof. If P € v, q-1(P') =< K|tg, t1]nsa_1 >, then there exists (egto + e1t1) € Kto, t1] such that:
P« [(eoto + 61t1)n+d_1} € P(K[to, tl]n—i—d—l)

for some eg,e; € K. For (4.17) there exist uy,...,u, € K such that n,.9-1(< Py, ..., Py_1, P >)
corresponds to [ugt§ + uity 't; + --- + u,t}]. Now, the considerations (4.16), (4.17) and (4.18)
above imply that if P;,..., P,_1 are roots of aotg_l + altg_ztl 4+ -4 an,lt’f_l € Klto, t1]n—1 then
Ut + urth Mty 4 - -+ u,t? has to factorizes as (egty + eity)(aoty T+ arth ity Ao Fa, 7Y =
60(&0758 + (thgiltl + -+ (ln_ltot?il) + e (aotgiltl + altgfzt% + -+ Cln_lt?f) = 60((101’0 +a;x; +
st Ay 1Tp1) + er(apry + - + apwn) = egly + e1Ly. So we have shown that there is a 1 : 1
correspondence between the P4 = {A € G(n — 1L,n+d —1) | npra1(P1),- -, Mura_1(Pn) € A} and
P(K|[Ly, Ls]q4) obtained by the following construction:

Pl={AcGn—1,n+d—1)| Dura_1(P),...,Mmia-1(Pn) €A} —  P(K[z1,...,2,]q) — P(K[Ly, Ls2]a)
Ap=<Pi,....,P,_1,P> — (uzo+ 4 upzn)? — (eoL1+e1Ls)?

where P, ..., P,_1, P and Ly, Ly are defined as above. O

Corollary 4.4.3. The locus of (n—1)-linear spaces which are (n—1)—secant to N,yq-1(Vpya_1(Ph))
is contained in Split,(P*") NG(n —1,n+d —1).

Proof. Tt is a consequence of the previous theorem and of the fact that if L; and Ly are two linear
forms of Sy then P(K[Lq, Ls]y) C Split,(P™). O

Definition 4.4.4. Let f,g € K[x1,...,x,] of positive degree in x:
f=apxl +- - +a, ag#0,
g="box{" + - +bp, bo#0,
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where a;,b; € Klxy,...,x,]. We define the Resultant of f and g with respect to xy to be the
determinant
Qo bo
a1 Qg bl bo
aq b1
Qo bo
Res(f,g,x1) = det “ b
) ) al bm
a; bm
a; bm
m columns 1 columns

where the empty spaces are filled by zeros.

Lemma 4.4.5. Let f,g € K|xy,...,x,]| have positive degree in x1. Then Res(f,g,x1) = 0 if and
only if f and g have a common factor in K[z, ..., x,] which has positive degree in x.

Proof. For a proof see for example [CLO)]. O
Consider now a generalization of the Resultant.

Lemma 4.4.6. Let f = agzi+---+aq, g = boxd+--+by € K|x1,...,3,] of degree d in the variable
x1, where a;, b; € K[xo, ..., x,] and ag,byg # 0. The two polynomials f and g have a common factor
of degree d — r in x1 if and only if the rank of the following (r +d + 1) X (2r 4+ 2) matriz is strictly
less then 2r 4 2:

Qo bo
a, - ap br e bO
Qr41 : bry1
. o (4.19)
aq bd
Qgq bd
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Proof. The two polynomials a and b have a common factor e € K{[zy,...,x,] of degree d —r in the
variable x; if and only if there exist ¢,d € K|xy,...,x,] of degree r in z; such that a = e - d and
b = e-c. This is equivalent to

a-ct+b-d=0. (4.20)

Now, by taking as variables the coefficients of ¢ and d, the equation (4.20) becomes a homogeneous
linear system, and saying that it admits solution is equivalent to ask that the matrix (4.19) has
rank at most 2r + 1. O

Proposition 4.4.7. The intersection between the Grassmannian G(n —1,n+ 1) and Splity(P™) in

n2+3n

P =" is the locus {A € G(n — 1,n+ 1) | length{A N 0ys1(Vpi1 (P)} > n — 1}.

Proof. The inclusion {A € G(n — 1,n + 1) | length{A N 111 (Vs (PY)} > n — 1} C Splity(P™) N
G(n —1,n+ 1) is a consequence of Theorem 4.4.2. Let us look at the other inclusion.

As we have recalled above G(n — 1,n + 1) ~ G(1,n + 1). Moreover, if M, is defined as in
(4.12), we have shown, in that example, that the equations of G(1,n+ 1) are obtained by imposing
that rk(M,41) = 2.

el ) >

P! spanned by the points (ug, .. ., un, 0), (0, ug, . .., u,) € P*"! then

U; Uj

Dij =
Uj—1 Uj—1

with the assumption that w;_; =0if ¢ =0and u; =0if j =n+ 1.

Let us consider the Veronese variety v»(P"), embedded into PV with N = ("}?) — 1 as follows:

VQ(]Pm) — ]P)N
(Uo, -y un) = (Po1,---)Prntl)-
The points (ag, - .., @) of PV are in (1 : 1)-correspondence with quadrics > i im0 Qigrizy of

Sy and the relation between o ; and p; ; is via the u;:

. 2 . < ..
;= ug, if 1 = 7;
Q5 = 211,in, if ¢ 7& ]

The quadric of P" can be represented by the symmetric matrix A,, = (a;;)o<ij<n Where a;; =
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{ Pigtr+ Qicrgen, i< with o;_1 41 = 0if ¢ = 0 or j = n. Therefore:

g, if ¢ > ]
Po,1 DPo,2 Do,3 o Pontl
Po2 P12+ Do3 P13+ Poa o Pintl
A, = Po3 P13+ Poa P23t PiatPos -0 Pratr | (4.21)
pO,n—i—l pl,n+1 Tt e pn,n-i—l

With this description it turns out that imposing the vanishing of all 3 x 3 minors of A, is
equivalent to describe Split,(IP") set theoretically.

This condition is equivalent to asking that there exist aq, ..., a,,bo,...,b, € K such that
ap bo
A, = : : do v On .
oo bo - by
an, by
We can rewrite the matrix M, defined in (4.12) as M,+1 = (mi;)o<ij<n by using these

a;,b; € K. The matrix M, ; is skew symmetric and

Mij = Qij1 — Qi1j = G102 + bi—1bj 2 — (ai2a; 1 — bisbj_1) =

aj—1
:(_ai—Q ai—1 —bi_o bi—l) Z]:_f
i
b]’,Q
Now one can observe that M, 1 can be obtained as follows:
(o5 0 bo 0
aq agp b1 bo 01 (1) g 8 CB{] ap (079 0
o . - Qg Qp—1 Gp T
Mt = 0 0 0 1 bo by o b, 0 | CCC
Un Gn-1 b bns 0 0 -1 0 0 b bo1 by

0O a, 0 b,

This means that if rk(A,,) = 2 then rk(M,,,1) < 4.
Now we want to prove the inclusion G(n—1, n+1)NSplit,(P") C {A € G(n—1,n+1) | length{AN

M1 (Va1 (P1))} > n — 1},
We have to consider the condition “rk(M,.1) = 27, which, since M, ; is skew symmetric, is
equivalent at “rk(M,,1) < 3”7. Now rk(M, 1) < 3 iff rk(C) < 3 that is equivalent, by Lemma
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4.4.6, to say that the two polynomials a = aotl + aity 't; + - + a,t? € Kltg,t1], and b :=
boty + bltg_ltl + -+ bt € Klto, t1], have a common factor of degree n — 1. This implies exactly
that the elements of G(n — 1,n + 1) N Splity(P") are (n — 1)-spaces that intersect v, (P!) at least
n — 1 times. O]

Remark: We have already observed that Secy(v2(P™)) = Splity(P"). In (4.10) we have character-
ized Split,(P™) via the symmetric n x n matrices of rank at most 2. This is not by chance because
the elements of v5(P") represent the symmetric n x n matrices of rank 1, hence Sec;(v2(P™)) has
to parameterizes the quadrics of P” whose representative n x n matrices are symmetric and have
at most rank 2. In fact a generic element of Sec,_1(2(IP")) is obtained as a linear combination of
r elements of 15(IP") and the linear combination of r symmetric matrices of rank 1 is a symmetric
matrix of rank less or equal than 7.

Lemma 4.4.8. If A, and M, are defined as in (4.21) and (4.12) respectively, and if
tott!
Tpoy = tg,tl : (4.22)
e
then tk(A,) < r if and only if the system M, 1 - T,+1 = 0 admits at least n —r + 1 solutions in P!,
counted with multiplicity.

Proof. For the easiest implication (“<") we will show that solving the system
Mn+1 : Tn+1 = 0 (423)
is equivalent to solve
A, T, =0 (4.24)

then, since M,, 1 - T,,;1 = 0 admits n + 1 — r solutions if and only if the polynomials appearing in
M, 11T, 1 have a degree n+ 1 —r common factor, then also the entries of A,, - T,, have a common
factor of the same degree, and this implies that rk(A4,) = 7.

Let M, 1) and A, be the i-th rows of M, and A, respectively. The first row of the system
(4.23) can be written as [0, Anq)] - Thp1 = 0 where [0, A,,1)] is a row whose first element is zero and
0

tht
the others are the same of A,,1). Now [0, Ay1)] - Thpr = 0 is equivalent to [0, A, y] - 0_ - 0

n+1
tl
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that is clearly equivalent to t; A,y - 15, = 0. This meas that, if t; # 0, then M, i) - Ty = 0 iff
For 7 > 1 we will show that

([Ani-1), 0] + Mosay) - T = [0, Any)] - T

from which M, 1) - T,41 = 0 if and only if A, - T}, = 0 that will give the first implication.
Let a;j, a; ; and m; ; be the j-th elements of A, [An@), 0] and M, ;) respectively. Now we need
only to make an easy calculation to prove that

, {0, if j=1;

1 (2 .
b J Qi -1, lf] > 1,

where (a;;)1<ij<nt1 = An:

ifj=1: ai_qq+ M1 = ai—11+Mi1 = poi1— Poi-1=0;

ifl<j<u: Wyt Mig=ai1j+Mij=pj1i1+aq;j1—Pji1i-1= Qij1;
ifj=1i: WqjtMig=ai1;+Mi;=a;1;+0=a;;1=a;;1;
fi<j<n+2: @ ;+mij=a1;+mMij=a_1;+pi-1;-1= aj1;

lfj =n-+ 2 . agij + mi,j = 0 + mi,j = pi—l,n—‘rl = ai,nﬂ.

The other implication (“rk(A,) = r = M,41 - T,41 = 0 admits n — r + 1 solutions”) is more
computational.

First we observe that if ¢ < 7, then:

min{i—1,n—j+1}

;5 = g My—k,j+k+1-
k=0

Moreover, since rk(M, 1) = 2 and M, is a skew symmetric matrix, there exist ay, ..., @, and
Bos - - Bny1 € K such that

(6%
P (0 0) (o)
i ' ' -1 0 Bo = Batr )
Unt1 o1

nfin (i1 nfin (i1
Therefore ;5 = Oéiflﬂj_ajﬂifl Tai—1 541 = zn;ri{m G-1} Oézekﬁjﬂcq— Ziri{m =03 Oéj+(k—1)5zek
if 1 <.
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Let us define the following matrices:

ao .. a'f‘ &r+1 ) Oén«i»l O ) 0
0
: 0
O e 0 ao al PR .. PR . an+1
E, = € Moyrorinsa(K),
ﬂO ﬁr ﬁr—O—l 611—0—1 0 0 2+2’++2( )
0o - : : L :
oot e : 0
0 0 BO 51 ﬁn—&-l
0 01
0 10
: 0 1 0
Hr = . € M2T+2(K>.
0 -1 0 :
0O -1 0

One can observe (we omit the computations because they are too tedious) that the product ET H, E,
(which we write by blocks) is the sum of the following (n + r 4+ 2) X (n + r + 2) matrices:

Now, since the rank of A, is at most r by hypothesis, the rank of EX H,E, has to be at most 2r;
this fact is equivalent to “rk(E! H.E,) < 2r + 17 because ET H,F, is skew symmetric, then also
rk(E,) < 2r + 1. This last condition is equivalent, by Lemma 4.4.6, to say that a := agtf™ +
antpty + -+t € Klto, th]ngr and b= Botg ™ + Bithts 4 -+ + Busat! ! € Klto, ti]nsr have
a common factor of degree n — r + 1. m

By last Remark in Section 4.1 we know that Split,(P™) = Sec;(v2(P")), then Proposition 4.4.7
cas be rephrased as

n2 n
“The intersection between the Grassmannian G(n—1,n+1) and Sec; (vo(P")) in P E

is the locus {A € G(n — 1,n+ 1) | length{A N npy1 (Vi1 (PY))} > n— 1} 7

We can now generalize Proposition 4.4.7 to Sec,_1(v2(P")).
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Proposition 4.4.9. The intersection between the Grassmannian G(n — 1,n + 1) and the variety
Sec,_1(v2(P™)) (which corresponds to the locus Q, := {A € My,41(K) s.t. A is symmetric and rk(A) <
r}) corresponds to the set of all (n — 1)-spaces of P that are (n — r + 1)-secant to the rational
normal curve vy, 1 (P') embedded into G(n — 1,n + 1) via the map n,+1 defined in (4.14).

Proof. Let us identify only for this proof, with an abuse of notation, an element of G(n — 1,n + 1)
with a skew symmetric (n+1) x (n+ 1) matrix M, defined in (4.12). By the previous lemma, the
locus {A € M, 1(K) | tk(A) <7 and A = AT} corresponds to the subset of G(n — 1,n + 1) of the
skew symmetric (n+ 1) X (n+ 1) matrices M, 1 such that the system M, ;- T,;1 = 0, where T}, 1,
is defined in (4.22), admits at most n — r 4 1 solutions. Such an M,,;; describes an (n — 1)-space
of P! that is (n — r + 1)- secant to the embedding of v,,,1(P') into G(n — 1,n+ 1) via n,41. O

Corollary 4.4.10. The intersection between Secs_1(Splity(P")) and G(n—1,n+1) is set-theoretically
the locus {A € G(n — 1,n+1) | A is (n — 25 + 1) — secant to N, 1(Vni1 (PY))}.

Proof. This is a consequence of the previous proposition and of the observation that, since Split,(P") =
{A € M,1(K) s.t. Aissymmetric and rk(A) = 2} and the elements of Split,(P™) are of the form
[Ly - Lo] with Ly, Ly € Sy, then Secs_1(Splity(P™)) = {[L1Ls + -+ + Los_1Los] € P(Ss) | L; €
Sy fori=1,...,2s} is the set of all symmetric matrices of M, 1(K) of rank at most 2s. O

4.4.1 A conjecture

Conjecture 4.4.11. The intersection between Split,(P") and G(n — 1,n + d — 1) is the locus
{AeGn—1,n+d—1) |length{A N\ ura—1(Vnra1(PH))} >n—1}.

As we have seen, the conjecture is proved for d = 2.
In the case of d = 3 we have computed with [Macaulay]| the example of n = 2 and it turns out
that in fact:
G(1,4) N Splity(P?) = {I € G(1,4) | length{l N ny(v4(P'))} > 1}.

We will only give a hint that suggests at least one inclusion (see Proposition 4.4.14).

The embedding 4 defined in (4.13) can be generalized to the domain K|z, ...,z,]s. With
this generalization there can exist degree d forms, different from d-th power of linear forms, whose
image via pg are elements of G(n — 1,n +d — 1).

Proposition 4.4.12. Let Ly, Ly be two linear forms of S; = K|xg,...,z,)1. If there exists M €
K[Ly, Ly]3 such that us(M) € G(n — 1,n — 2) then us(K[Ly, Lo]3) is completely contained in
G(n—1,n+2).
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Proof. Consider the cubic C = (al; + L2)* € K|Li, LaJs. Since it is the third power of a
linear form al; + 3Ly € Klxo,...,x,]1, C can be interpreted as an element of v5(P"), then
us(C) € G(n—1,n+2) for all a, 8 € K. Therefore the image of the whole twisted cubic s (v3(P)) =
ps((aLy + BLo)3) € uz(K|[Ly, Lo|3) for o, 8 € K is contained in G(n — 1,n + 2). Hence we have
that both p3(M) and the image of the twisted cubic us(v3(P')) are in G(n — 1,n + 2), then it is
possible to find a line completely contained in G(n —1,n+ 2) passing through p3(M) and bi-secant
to pz(v3(P')). But the Grassmannian is generated by quadrics, then the span of us(v3(P')) is
completely contained in G(n — 1,n + 2); i.e. us(K[L1, Lo]3) C G(n —1,n+ 2). O

Lemma 4.4.13. Let A, B € py(vq(P™)). If there exists a point C' € pg(Secy(vg(P")))NG(n—1,n+
d—1) such that C €< A, B > ~puq(vq(P")), then < A,B>C G(n—1,n+d—1).

Proof. The set of the three points { A, B, C'} is contained in the intersection < A, B > NG(n—1,n+
d—1). Since the Grassmannian is an intersection of quadrics, it cannot exist a point D €< A, B >
but D¢ G(n—1,n+d—1) then < A,B>C G(n—1,n+d—1). O

Proposition 4.4.14. The intersection between piq(Secy(v4(P™))) and G(n—1,n+d—1) is contained
in{A € Gn—1,n+d—1)|length{A N npra—1(Wnra_1(P))} >n—1}.

Proof. Let us take a point A € pq(Seci(vg(P") NG(n — 1,n+d — 1)) \ v4(P™), then there exist
m, T2 € vg(P") such that A € pg(< m,me >). Since pg(vg(P™)) is the locus of the (n — 1)-spaces
of P"*4=1 that are n-secant to 7, q1(Vnsa_1(P)), there exist Pi,..., Py, Q1,...,Qn € Vpyg1(PY)
such that pg(m) = Npra1(< Pi,..., Py >) and pg(m) = Nuaa1(< @Q1,...,Qn >). Therefore
pa(< mp,m >) C pa(Seci(vg(P™))) C Split,(P"). By the Lemma 4.4.13 pug(< m,m >) C G(n —
I,n+d —1). The image of the span uq(< m,m >) parameterizes a pencil of (n — 1)-spaces
contained in P* C P"*4~! and containing a P"~2. Then Py,...,P,,Q1,...,Q, lic on a P" instead
of being generic in < vy, q_1(P') >=P"*¥"! hence H{P,..., B, Q1,...,Qn} =n+ 1. [
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Chapter 5

Secant varieties of Segre Varieties

In this chapter we finally present the study of the last problem mentioned in the section 2.6.1. This
section is of an expository nature; here we will describe two different methods of approaching the
study of secant varieties to Segre varieties. The first one is finalized to the study of their dimensions,
the second one presents an algorithm to compute their ideals, in particular it will allow to prove
the Garcia, Stillman, Strumfeld conjecture (see [GSS]) on the generation of the ideal of the first
secant variety to the Segre variety with three factors: Seci(Seg(P(A4;) ® P(A2) ® P(A;3))), where
Ay, Ay, Az are three vector spaces.

5.1 Inverse System for Segre Varieties

In this first section we want to present how the Apolarity method was used in [CGG1] and [CGG3]
in order to study the dimension of the secant varieties to Segre varieties.

We study the embedding of Pt x .-+ x P into PV, with N = II¥_, (1 + n;) — 1, given by the
following embedding;:

Prox .o x P — PN

(961,0, 2 R R IR 4 "N e P Iknk) — (xl,o Tk 0y s Ty Thyigs - o3 Llng l’knk)

where i; € {0,...,n,}, j=1,...,k, and {x;0,...,2;,,} are homogeneous coordinates in P".
Another way of viewing the Segre variety is as the variety which parameterizes completely
decomposable tensors.

Definition 5.1.1. Let Ay, ..., A, be vector spaces; a tensor T € A1 ® --- ® Ay is said to be
decomposable if there exist vectors v; € A; fori=1,... k such that T = v, ® - -+ ® .
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If Ay,..., Ag are of dimension n; + 1, ..., ng + 1 respectively, and we set {z;,...,Zi,, } as basis
of A;, then any T'€ A; ® --- ® A; can be written as

T= § QT ® @ Tk,

0<7i<n; 1<4<t

Definition 5.1.2. The Tensor Rank of T € A1 ® --- ® Ay is the minimal s such that T is a sum
of s decomposable tensors.

Observe that the tensor rank of every vector in A; ® - - - ® Ay is at most I1"=} (n; + 1). Moreover
forany T € A; ® --- ® Ay and any scalar A # 0, both 7" and AT have the same tensor rank. Thus
it makes sense to speak of the tensor rank of an element in P(A; ® - -+ ® Ay).

fTeA ®- - ® Ag, then T corresponds to a multi-linear form

Al x - x A — K.

Then a tensor 7' is completely described by its values on k-uples of basis vector {7, ..., 7}, }:
T(:L'){,]j? te ’l‘z,jk) = ajl ----- Jk*
Let S7 := Klzjo,... yTjn,) for j = 1,...k, and S = Klz1o, ..., T1p5- - Tk0s - s Thong |-

Consider the usual identifications A¥ = S} and A} ® ---® Af = S; where 1 = (1,...,1). With this
point of view, we can describe the Segre variety as the image of the embedding

()" x «ox (Pr)* = P(S]) x - x P(SF) — P(S))

The image of this map is the classical Segre Variety Seg(P™ X --- x P™) and it is clear that it
parameterizes decomposable tensors in A; ® - -+ ® Ayg.

So the problem of finding the tensor rank s for a generic tensor 7' € A; ® - - - ® A;, is equivalent
to find the minimum integer s such that the (s —1)-secant variety to the Segre variety Seg(P(A;) x
- x P(Ay)) fills up PV,

The idea of the method used in [CGG1] and [CGG3| is to use Terracini’s Lemma (see Lemma
2.6.1) in order to translate the problem of determining the dimension of secant varieties into the
one of determining the value of the Hilbert function of generic sets of 2-fat points in P™ x - - - x P".

Terracini’s Lemma translates the problem from the study of Sec,_1(Seg(P(A;) x---xP(Ag))) to
the study of the vector space T s :=< Tp, (Seg(P(A;1) x --- x P(Ag))), ..., Tp,(Seg(P(A;) x - - - X
P(Ag))) > where Tp (Seg(P(A;) x --- x P(Ay))) is the tangent space to Seg(P(A;) x --- x P(A))
at a generic point P; € Seg(P(A;) X -+ x P(A)) fori=1,...,s.
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The Corollary 2.6.2 allows to translate again the problem into the study of a projective scheme of
s generic 2 fat points in Seg(P(A;) x --- x P(Ag)). If we apply that corollary to the Segre Variety
we find that

dim(Sec,_;(Seg(P(A;) X -+ x P(Ay)))) = N — dim(H(P™ X - -+ x P Opnis..xprc (1,...,1))).

If Z is a sub-scheme of s generic 2 fat points in X = P™ x --. x P" then the Hilbert function
H(Z,j), with j € N* is
H(Z,j) = dim(S;) — dim(H"(X, Z4(j))).

In particular the typical rank of the Segre variety Seg(P(A;) x --- x P(Ay)) is the smallest s for
which there are no (1,...,1)-forms in the ideal of s generic 2-fat points in P™ x - - x P,

It is classically known that the tangent space Tp(Seg(P(A;) x -+ x P(Ag))) at a point P =~
Li®--® Ly € Seg(P(A;) x -+ x P(Ag)) is isomorphic to:

k
{ZLl"'Lj—leLj+l"'Lk|Mj€R{7 J':L--wk} C 51
j=1

Let W be the affine cone over the tangent space Tp(Seg(P(Ay) x---xP(Ax))) C Si. It is not re-

strictive to suppose that L; = x; o fori = 1, ..., k. Hence, considerin R := K[y10, -, Y1n1} - Yk.0s - - -

the ideal:
02 = (Y11, Y125 > Yings - Uk Ly Uk2s - - Ykimy ) - (5.1)

Its inverse system is such that (p*);' = Wi.
Notice that @? is the ideal of a 2-fat point in P™ x - .. x P,

-----

I=(pin---Ng;),

where each p? C R, is defined as an ideal of the form (5.1) with support on a point P;, and
Py, ..., Ps are generic points.
Thus, if Z is the projective scheme defined by the ideal I, then

dim(Th,. ) = H(Z,(1,...,1)). (5.2)

-----

The methods used in [CGG1] and in [CGGS3| are slightly different.
In order to present the main result in [CGG1] we need some notation.

Notation:

171

7yk,nk]



Inverse System for Segre Varieties

e A coordinate point of P x --- x P™ is a point P, = (P,,..., P, ) where P, is the r;-th
coordinate point of P™.

e Givenry = (ri1,...,myx) and ry = (ro1,...,rox) in J :={r=(ry,...,7) | 0 <1 <m;}, we
say that the Hamming distance between 1, and ry is L if (r11 —721,...,71 % —T2x) has exactly
{ non-zero entries.

A result in [CGG1] gives a translation of this problem in terms of code theory:

Theorem 5.1.3. Let P, ,..., P, be a set of coordinate points in P x --- x P" . Let p; be the
ideal of P, and let Z be the scheme defined by o7 N --- N 2. Then

H(Z,1) = {r € J | r has Hamming distance <1 from at least one of ry,...,r }|.

This theorem allows the authors to get some result: especially in the monomial case.

In [CGG3] the authors present another technique to compute (5.2). That paper examines
a more general problem: it studies the secant varieties of the so called Segre-Veronese varieties
that are the embedding of P™ x --. x P™ into PV given by £ = Opni x...xpm (ay,...,a;) where
a; € N. It is clear that the Segre variety is the particular case of the Segre-Veronese where
(a,...,a5) = (1,...,1).

Let n =ny 4+ - -+ + ng and consider the birational map:

g:P"mx ..o x P -5 A"

( ( o (meme o i
L’Elyo,...,xljnl),...,$k71,...,$k7nk T10 ) Tio ' T Tk’ ko

which is defined in the open subset of P™ x --. x P" given by {z10,..., 20 # 0}.
Consider K[20, 2115+ Z1nys 2215« - - s 22m9s « - - s 215 - - - s Zkini) S the coordinate ring of P and
the embedding ¢ : A" — P whose image is the chart Aj = {2y = 1}. By composing ¢ o g we get:

f:Pmx...x P --5 P"

T1,1 Tinq , . Tkl Thkng \ __

(@101 s Trmy)se oy (Tt oy Thomy)) (1, Ha Ty sk Tem)
= ($1,0 0 Tk0yX1,1220 L0y - - -5 L10" " Ik—l,oxk,nk)-
Let Z € P x ... x P™ Dbe a zero dimensional scheme which is contained in the affine chart

{21,020 # 0} and let Z' = f(Z). We can construct now a scheme W C P™ such that H(W,a) =
H(Z, (ay,...a;)) where a = aj + - - - + ag.

Let Qo,Q11,---,Q1nys---s Qr1y- .., Qrn, be the coordinate points of P, then consider the
hyperplanes TI; ~ P~ with IT; =< Q;1,...,Q;n, >; let W; be the scheme given by (a — a;)IL;,
i.e. the scheme defined by the ideal (Ir;,)* %. Notice that W; N W; = 0 for i # j.
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Theorem of [CGG3| that allows to translate the problem of the study of the Hilbert function of
a projective scheme in P™ x --- x P™ into the study of the Hilbert function of a projective scheme
in P" is the following:

Theorem 5.1.4. Let Z and Z' be as above, let W = Z' UW U ---UW, C P, then
dlm(Iw)a = dim(]z)(ah,,.ﬂk)

where a = a1 + -+ + ay,.

Corollary 5.1.5. Let Z C P™ x --- X P™ be a generic set of s 2-fat points, let W C P™ be as in
Theorem 5.1.4, then

dim(Secs_1(Seg(P™ x --- x P™))) = H(Z,(a1,...,a;)) — 1 = N — dim(Iw),.

Then the authors use the “Lemme d’Horace différentiel” (see [AH]) to do computations in many
cases.

What we have seen here are methods to compute the dimension of the (s — 1)-secant variety to
the Segre variety; in the next section we will see a method to determine the generators of the ideal
of the secant variety to the Segre variety.

5.2 Representations of Finite Groups

In this section we present an introduction about the Representation Theory of Finite Groups in
order to present the method used in [LM1] to compute the ideals of the secant varieties of Segre
varieties. Moreover they have proved that the ideal of Secy (Seg(P(A1)®P(As)®P(A3))) is generated
in degree 3 (this is, for the case of three factors, the Garcia, Stillman, Strumfeld conjecture: see
[GSS)).

This introductive section follows the exposition of [FHar|.

5.2.1 Preliminary Definitions

Definition 5.2.1. A Representation of a finite group G on a finite-dimensional complex vector
space V' is an homomorphism

p:G— GL(V)

on the group of automorphisms of V.
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This map gives V' a structure of a G-module on V. In the language of Representation Theory
the G-module V', equipped with the homomorphism p, is called a representation of G.

Definition 5.2.2. A map ¢ between two representations V- and W of G is a vector space map
w : V. — W such that the following diagram commutes for every g € G:

Vv 2w
gl lg.
Vv 2w

Such a map is called a G-linear map between V' and W'.

Definition 5.2.3. A Subrepresentation of a representation V' is a vector subspace W C V' which
1s invariant under G.

Definition 5.2.4. A representation is called Irreducible if there is no proper nonzero invariant

subspace W of V.

Proposition 5.2.5. If V' and W are representations of G, then also V& W, V@ W, V&
Sym™(V), A"(V), V* = Hom(V,C) and Hom(V, W) are representations of G.

Proof. The representation V ® W is induced by g(v ® w) = gv ® gw.
The only one that is not obtained in an obvious way is V*. If p : G — GL(V) is a representation
then p* : G — GL(V*) must satisfy the following relation for all g € G, v € V and w* € V*:

< p"(g)(w), p(g)(v) >=<w*, v >

where <, > is the natural pairing between V* and V. This forces us to define the dual represen-
tation by

prlg)="Tplg )V =V
for all g € G; the meaning of p(g~?) is given by the following:

< p*(g)(w*), v >=<w, p(g7")(v) >

Now, since Hom(V, W) ~ V* @ W, we have
(9)(v) = glp(g™'v)]
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for all ¢ € Hom(V, W) and v € V. In other words the following diagram has to commute:

vV 2w
gl lg.
vV % w

]

Definition 5.2.6. If X is any finite set and G acts on the left on X, i.e. G — Aut(X) is an

homomorphism to the permutation group of X, there is an associated Permutation Representation:
let V' be a vector space with basis {e, : x € X}, then G acts on 'V by

g- E ApCp = E g Cgs-

The Regular Representation Rg corresponds to the left action of G on itself, i.e. it is the space of
complez-valued functions on G, where an element g € G acts on a function a by (ga)(h) = a(g™'h).

5.2.2 Schur’s Lemma

Definition 5.2.7. A representation is said to be Indecomposable if it cannot be expressed as a direct
sum of other representations.

Proposition 5.2.8. If W is a subrepresentation of a representation V' of a finite group G, then
there is a complementary invariant subspace W' of V', so that V. =W & W'.

Proof. Let U be a complementary subspace of W in V and my : V' — W be the projection given by
the direct sum decomposition V' = W@U. Let 7 : V' — W be defined by 7(v) = 3 . 9(mo(g~'v)).
This is a G-linear map from V onto W and it is the multiplication by |G| on W; its kernel will be
a subspace of V' invariant under G and complementary to W. O]

Corollary 5.2.9. Any representation of a finite group is a direct sum of irreducible representations.

This property is called “Complete Reducibility” or “Semisimplicity”, but we will see it better
in Definition 5.5.6.
We are now ready to state Schur’s Lemma:

Lemma 5.2.10. (Schur) If V and W are irreducible representations of a finite group G and
w:V — W is a G-module homomorphism, then
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1. either ¢ is an isomorphism, or ¢ = 0;

2. 4f V=W, then o = X- I for some A € C, where I is the identity map.

Proof. The first claim is a consequence of the fact that Ker(¢) and Im(y) are invariant subspaces.
For the second ome it is sufficient to observe that there exists a A € C such that ¢ — Al has a
nonzero kernel and apply the first claim from which ¢ as to be equal to AI. O

One of the most important consequences of this theorem is the following proposition (when we
will quote Schur’s Lemma we will usually be referring to this proposition).

Proposition 5.2.11. For any representation V' of a finite group G, there is a decomposition
V = ‘/‘1@@1 @ e @Vk@ak’

where the V; are distinct irreducible representations. This decomposition of V' is unique, as are the
Vi that occur and their multiplicities a;.

Proof. If W is another representation of G with decomposition W = @Vl/;j ,and ¢ 1V — Wis

a map of representations, then ¢ must map the summand V;@“" into a summand V[/]@bj for which
W, ~ V;; when applied to the identity map of V' to V, the stated uniqueness follows. O

A consequence of character theory (that we have not used yet but that we will introduce in
Section 5.6) is the following:

Proposition 5.2.12. Any irreducible representation V- of G appears in the Regular Representation
dim (V') times.

5.3 The Group Algebra

The group algebra CG associated to a finite group G that we are going to define can completely
replace the group G itself when we consider representations of G, since any proposition we can
formulate about representations of G has an exactly equivalent statement in terms of its group
algebra.

The underlying vector space of the group algebra of G is a vector space with basis {e, | g € G},
i.e. the underlying vector space of the Regular Representation.

The algebra structure on that space is defined as follows:

€g* €h = Egh.
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A representation of the algebra CG on a vector space V' is just an algebra homomorphism:
CG — End(V)

so that a representation V of CG is a left CG-module.
Observe that a representation p : G — Aut(V') will extend by linearity to a map

p: CG — End(V) (5.3)

so that representations of CG correspond to representations of GG the left CG-module given by CG
itself corresponds to the regular representation.
By applying this linear extension to any W; appearing in the irreducible decomposition of the

regular representation of G-
R = @(Wi)®dim(wi),
we get a canonical map
¢:CG — @End(Wi)

that is injective since the representation is faithful. Now dim(CG) = >~ (dimW;)? = dim(€D End(WW;))
then
CG ~ B End(W).

5.4 Symmetric group and its Representations

5.4.1 Definitions

Definition 5.4.1. A Permutation Group is a finite group G whose elements are permutations of
a given set and whose group operation is composition of permutations in G.

Definition 5.4.2. The Symmetric Group &,, of degree m is the group of all permutations on m
symbols.

The group &,, is therefore a permutation group of order m! and it contains as subgroups every
group of order m. The number of conjugacy classes of &,, is given by the partition function p(m)
which gives the number of ways of writing the integer m as a sum of positive integers, where the
order of addends is not considered significant and it is obtained from the following formula:

ip(m)tm:ﬁ<1_itn> =1 +t++ A+ + + - )A+E+ ). (5.4)
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5.4.2 Young tableaux

The conjugacy classes of &,, correspond to the partitions of m. If A = (A;... ) is a partition of
m (i.e. m =X +---+ A and Ay > --- > X;) then the corresponding conjugacy class is made by
disjoint cycles of length \q, ... Ax.

Example: m =3

partitions of 3 conjugacy classes of S3
111 — (1)
21 — (12)
3 — (123)
m =4
partitions of 4 conjugacy classes of G,
1111 — (1)
211 — (12)
31 — (123)
4 - (1234)
22 — (12)(34)

The number of irreducible representations of &,, is the number p(m), defined in (5.4), of conjugacy
classes which is the number of partitions of m. Therefore we can give a one to one correspondence
between partitions of m and representations of &,,.

In order to do that, we introduce Young diagrams and Young tableau. To a partition A = (Ay... \)
is associated a Young diagram such that the number of boxes in its j-th row is exactly A;; for
example: if m = 9, the Young diagram associated to the partition (3321) is the following:

Now a Young tableau is obtained by numbering the boxes of the corresponding Young diagram
from 1 to m starting from left top to the right bottom; for example the previous Young diagram
becomes the following Young tableau Y{3321):

1123
415]6
78
9
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Therefore for every partition A = (A;...\z) of m there is a well defined Young tableau Y). Then
for every A\ we can define two subgroups of the symmetric group:

P, :={g € 6,, | g preservs each row of Y, },
Qx :={g € 6,, | g preservs each column of Y)}.

In correspondence of those subgroups we define the following two elements of the group algebra
C6,.:

ay = ZgEPA €g;

b =2 ,c0, se0(9)ey,

then we can define the so called “Young symmetrizer”:

cy = ay - by G(C@m

Theorem 5.4.3. For all partitions A\ of m € N there exists some scalar multiple of the Young
symmetrizer ¢y which is idempotent, i.e., 3 = nycy, and the image of cx (by right multiplication
on CG&,,) is an irreducible representation Vy of &,,. Fvery irreducible representation of &, can be
obtained in this way for a unique partition.

For the proof see [FHar].

This theorem allows us to write the one to one correspondence between partitions A = (Ay... \)
and irreducible representations of G,, as follows:

A e—Vy :=C6,, cy (5.5)

where V) is the &,,-module corresponding to the partition .

Example: Consider the case m = 3. Then

a(111) = €Id, b1y = 29663 sgn(g)ey,
a@l = eaz) +era, ben = —€aus) + €,
a3 = ) gee, €9 by = erq;

Ca1) = b(111);
cia1y) = (eaz) +era) - (era — eqs)) = 1+ eqa) — eas) — eaeasy = 1+ eqa) — eas) — €13,
C3 = as.

The previous theorem allows us to write all the possible irreducible representations of Gs:
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L Vi =C68;- ) s, 88n(9)e, = C- 3 s, sgn(g)e, that is the Alternating representation;
2. V3 =CG6; - deeg e, =C- deeg eg that is the Trivial representation;
3. ‘/(21) = 663 (1—|—€(12) —€(13) —6(132)) =< C(21), (13) “C(21) > that is the Standard representation.

In general, for any vector space V', we can define an action of &,, on V™ (by permuting factors)
such that the image of a, through the map p: C&,, — End(V®™), where p is defined as in (5.3),
is the subspace

play) = SymMV @ --- @ Sym™V

which we can view as a subspace of V®™ by grouping factors according to the rows of the Young
tableau Y). In the same way we can see that

p(by) = ANV @ - @ AV C VO™

where p is the conjugate partition to .

From those simple observations we get that what we have seen in case 1. and 2. of the previous
example is a general fact. If A = (m), then c(m) = am) = >_ cs,, €5 and the image of ¢(yy in VE™
is Sym™V. When A = (1...1), then cq..1y = ba..1) = deem sgn(g)ey , and the image of ¢(;..1y in
Ve is A™ V. Therefore Young diagrams of the trivial and alternating representations of &,, are
always of the following forms respectively:

(TTTT) amd []

each one with m boxes.
One can also prove that the standard representation corresponds to the partition m = (m —1) 41,
therefore its Young diagram is of the following form:

HEEEN

We are interested now in the image p(c,) when A is a generic partition.
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5.5 Decomposition of Sym™(A4; ® --- ® A;) into irreducible
modules

5.5.1 Schur power

Definition 5.5.1. Let A be a partition of the integer m and V' a vector space. The A-th Schur power,
denoted by S\V', of V' is the image of cy in V™ via the composition of the maps p : CS,, — End(V)
defined in (5.3), and End(V) — V®™ obtained by grouping factors:

Three consequences of this definition are:
1. S)\V = Homgm(V)\, V®m)

Y

2. if A = (m) then the m-th Schur power of V' is
SV = Sym™(V)
because S,,V = V&™ . ¢y = VO - a,, = Im(ay,) = Sym™(V);
3. if A= (1...1) then the (1...1)-th Schur power of V is S;;.1y = A" V.
The goal of this section is to prove the following result (see [LM1] Proposition 4.1):

Theorem 5.5.2. Let Ay, ..., Ay be vector spaces. Then

Sym™(A @ @A) = P (V@ @Ve)%S, A @ @S, Ay (5.6)
|71 |==[mg |=m
where 1, ..., 7 are partitions of m and (Vy, @ -+ & Vm)Gm denotes the space of &,,-invariants in

the tensor product.

5.5.2 Schur duality

Consider the action p,, of GL(V'), the General Linear Group, on V¥ via the m-th tensor power
of its defining representation:

Pm(9) (V1 ® -+ ® V) = gU1 @ -+ @ gUpy, (5.7)
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for vi,...,v, € V.
The symmetric group &,, also acts on the tensor space V®™ (by permuting factors):

Om(8) (V1 ® -+ ® V) = Vem1(1) @ +++ B V1),

the notation v,(;) denotes just a permutation of factors: the vector v; is sent to position s(7).
These two actions clearly commute, in fact:

O (8)pm(9) = pm(9)om(s)
for all s € &, and g € GL(V).

Definition 5.5.3. Let V' be a finite dimensional vector space. For any subset S of End(V'), the
Commutator of S is:

Comm(S) :={x € End(V) : zs =sx Vs e S}.

Remark: The commutator is an associative algebra.

Each one of the two actions of GL(V') and of &,, on V™ generates the centralizer of the other, in
fact any linear transformation on V®™ that commutes with ,,(S,,) is a linear combination of the
transformation p,,(¢) with ¢ € GL(V'). This is the so called Schur duality:

Theorem 5.5.4. If A = p,,(C[GL(V)]) and B = 0,,(C[S,,]). Then Comm(B) = A and Comm(A) =
B.

Now we need two definitions before we can state a more general result (see [Gol]).
Definition 5.5.5. An associative algebra A is called Simple if it contains no nontrivial ideals.

Definition 5.5.6. A finite dimensional associative algebra A with unit is said to be Semisimple if
it 1s the direct sum of simple algebras.

Proposition 5.5.7. If A C End(V) is a semisimple algebra with Iy € A and irreducible decompo-
sition A ~ @;_, End(U};), then

=1

where W; = Hom4 (U;, V).
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Proof. The linear map wich turns out to be an A-module isomorphism is the following:

Ziwi@ui - Zzwz(uz)

m
Now we have all the ingredients to prove the following theorem:
Theorem 5.5.8. If V is an n-dimensional vector space which is a representation of S,,, then
Ve = @) -, Sa(V) ®c Va (5.8)

where S\(V') is the A-th Schur power of V' defined in Definition 5.5.1.

Proof. First we have to observe that, if A has more parts than m, then S)(V') = 0.

By Schur’s Lemma (5.2.10), if V) is defined as in (5.5), then V' ~ ", Vj.

From the definition of S)(V') one immediately gets that Sy(V) ~ Homg,, (V3, V™).

The actions of GL(V') and of &,, commute on V&,

Now it is sufficient to apply Proposition 5.5.7 to V®™ in order to obtain what we wanted to
prove. O

5.5.3 Decomposition of Sym™(4; ® --- ® Ay)
We are finally ready to prove Theorem 5.5.2.

Proof. Let Ay,..., Ay be vector spaces as in the statement. By definition of tensor power (A; ®
c @ Ap)PM ~ AP @ - @ AP™. Let us apply (5.8) that says that each AP™ is isomorphic to
@\M:m V) ® Sa(A;). Therefore

(4@ @A)~ B (Vu@ - 0Ve)®En(A)® @S, (4)  (59)
B

where 7, ..., T, are partitions of m.
Recall now that, if V' is any finite dimensional vector space, the space Sym™ (V') is, by definition,
the quotient of V®™ by the subspace

<{i® @V, — Vo)) @+ - ®Vg(m) | V1, ..., Um € V, 0 permutes two successive factors} >, (5.10)
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and also that, even if the usual immersion i : Sym™ (V) < V®™ is not canonical, i(Sym™(V)) C
V®m is the space of invariants for the right action of &,, on V®™,

Therefore we have that Sym™(A; ® - - - ® Ay ) is just the quotient of (4; ® - - - ® Ag)®™ by the space
(5.10) when V = A; ® - -- @ Aj; and also that Sym™(A4; @ --- ® Ay) is the space of invariants for
the right action of &,, on (A; ® -+ - ® Ay).

Now by using last observation and formula (5.9) we get that

Symm(Al®"'®Ak’) = @ ((Vﬂ'l ®"'®Vﬂ'k)®(STH(Al)®"'®Sﬂ'k(‘4k)))6m'

1= =|mk|=m

The last step is to recall that Sy(V) = Homsg,, (Vy, V®™) = Hom®™ (Vy, V™), then

Sym™(A @0 A) > P (Ve ® @ V)% © (Se(A) @ © S (A1)

==l [ =

that is exactly what we wanted to prove! m

5.6 Secant varieties of homogeneous varieties and their ide-
als

5.6.1 Some previous considerations

Let S™V* be the set of homogeneous polynomials of degree m on V*.

Definition 5.6.1. If A C S™V*, the p-th prolongation of A is
AP = (A® SPV*) N Py,

The meaning of the intersection above is not clear because a priori SPT™™V* is not contained in
SPV* ® S™V*, so we need to explain what we actually mean.
If g € SPT™V* we can write:

gutv)=Y (p *dm) Z Rai (W) Qpm—ai(v) (5.11)

d=0

where Ry; € SPV* and Qpim—a; € S™V* for all u,v € V*. Hence we will consider SP™™V* C
SPV* @ S™V* via the following immersion:

SP+mv* N Spv* ® va*
q¢ = X (ptzm) (Rai ® Qpim—d;i)
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Example: Let V' be a 2-dimensional vector space and m = p = 1. If u = (uy,uz),v = (v1,v2) € V
and ¢ = zy then g¢(u + v) = (ug + v1)(uz + v2) = ugus + U1V + Uy + V109 then for ¢ = xy we can
have the following three images:

ry®1e SV SovH

/!

ry — s@ey+yer)eSVeSVe.

N

l®@ay € SOV* @ S2V*
In the same way, if ¢ = 22, the evaluation q(u + v) = u? + uyv; + v, therefore
?®1e SV S0V

/!

> — rzzcSVresv:

N
1®a? e SOV* @ S2V*

The same can be done for ¢ = y2. Now, since {22, zy, y*} is a base for S?V* and we are interested
in its image into S1V* ® S'V*, we can write:

SV — Sl Sty
2 TR x
wy — 3rQy+yex)’
o= Yy

Now it should be more clear what (A @ SPV*) N SPTV* means.
Let now A C S?V* and consider A?~Y = (4 ® SP~1V*) N SPHV*,

Example: If A = (2?) C (C[z,y])2 then AP~Y is given by:
SPHY* — SV @ SPTve

L (ST @ SV N (A SV
:va+1 — ZL‘2 ® xpfl — .’L’2 ® ._'L'pil
Py — H(?@aP Py +ay @abh) — st @ a2y
— s2? @ aP 3y

xp—l 2, %($2 ® :L.p—3y2 + Ty ® :L‘p_Qy + y2 ® xp—2)
In the same way the elements of A® are all of the form z? ® Py~ ! with 0 < i < p.
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Remark: We can observe that AP~V = {% g e AP}
Moreover, if we define:

Base(A) :={[v] e P(V) | q(v) =0Vq € A}

we can also observe that A®—1) = I(Base(A(p))Smg).

We can now state the following proposition (see [LM1], Lemma 3.1).

Proposition 5.6.2. Let A C S*V* be a system of quadrics with base locus Base(A) C P(V). Then
Base(A*™') D Secy,_1(Base(A)).

Moreover if Base(A) is linearly non-degenerate, then for k > 2, I;(Seck_1(Base(A))) = 0 and if
A = I,(Base(A)), then I (Secy_1(Base(A))) = AF1,

The prove can be found in [LMZ2] (see Lemma 2.2). We give here a slightly different version.

Proof. First we give the proof for k = 2.

We denote with B the affine cone over Base(A). Let z,y € B, s,t € C and v = sx + ty €
Secy (Base(A)).

For the inclusion A% C I3(Sec;(Base(A))) we need to prove that all ¢ € AL are zero on every
element v € Secy(Base(A)).
If g € AW then deg(q) = 3.
The image of q(v) = q(sz + ty) € S*V* into (S*V* @ SIV*)N(A® S'V*) is

3
Z ( ) ZRdz s2)Q3—a,(ty) = Zt?’Qsz (y)+3st* Ry (7)) Q2. (y)+35*t Ry s (2) Q1.4 (y)+5° R34 (x) = 0
-0

because Q;:(y) and R;,(z) are zero if j > 2 since ¢ € AV = (A® S'V*) N S3V™.
Now we want to prove that AM) > I5(Sec; (Base(A))).
Consider ¢ € I3(Seci(Base(A))), then

3

0 = g(sz + ty) = Z()ZRN“C Qs-4(ty)

J=

for all s,t € C and for all 2,y € B. In particular ¢(z) = 0 and ¢(y) = 0 therefore Rs;(z) = 0
and @Qs;(y) = 0, hence ¢(sz + ty) = 2321 (i’) > Rii(sx)Qs—;(ty) is equal to zero if and only if
R;i(sz)Qs—;:(ty) = 0 for j = 1,2 and for all s, € C and z,y € B, in particular Ry ;(x)Q1,(ty) =0
for all z,y € B hence for all y € V.
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Thus, for all y € V, Ry;(-)Q1.i(y) is a quadric vanishing on Base(A), hence it belongs to A =
I,(Base(A)), that is equivalent to say that ¢ € A1),

If £ > 2 the proof is not very different.

Consider ¢ € A%~V = (A ® S*1V*) N Sk+1V*. We want to show that q(syz, + -+ + spap) = 0
for si,...,s, € C and for all xq,...,2x € B. The polynomial ¢(syz1 + -+ + sgxr) = 0 can be
decomposed as

k+1
k+1
Z ( j ) Z Rji(s121 4 -+ + sp—12k-1) Qrr1—ji (SkTr) (5.12)
=0 i

that is equal to

k+1 (k 1

j ) D sy TR (s 4 spoamee) Qe ().

=0
Since ¢ € A*~Y | the polynomial Q. 1_j(z) =0 if k+1—j > 2, i.e. for all j <k — 1. Therefore
q(slxl +-- ""Skxk) = Zi«k‘i‘l)islm(Slxl +-- '+Sk_1l’k_1)Q1(ZEk> +Rk+17i(81l‘1 +-- '+3k—1xk—1))-

Let us consider:
Rkﬂ'(Sl.Tl + -+ Skfll‘k,l).

The study of Rgi1,(s121 + -+ + Sg—12x—1) is similar to the study of ¢ since they are polynomials
of the same degree.
The decomposition of Ry ;(s1x1 + -+ + Sg_12k—1) 1S

k

k
Z (]) Z R;i(s1x1+ -+ 4 Sp—o®p—2)Qi—ji(Sk—1Tk-1)

§=0
that is equal to

k
k .
Z ( ) Z SZ_]le,i(tSlQ:l o Sp—aTr—2) Qr—ji(Th—1).

im0 \J i

Now Qk—ji(xg—1) = 0 for all j <k — 2, then
Ry i(s1m14+ - +Sp—1T—1) = Z(ksk—le—1,i(81$1+' cFSp_oT—2)Q1i(Th—1)FRii(S1014+ - FSp_2Tp_2)).
We can continue in decomposing Ry_1;(s121+- - -+ Sx_2Tk—2) and after it we will have to decompose
Ri—oi(s121 + -+ - + wx_325_3), and so on; we will arrive to

Rs,i(31$1 + 82252) = Z(Rz,z‘(Sﬁl)Ql,i(Sﬂz) + R3,i(51$1))

7
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that is equal to > (s2sy Ry i(71)Q1.4(72)+53 Rs (z1) which is zero because ¢ € A*~V hence R;;(z) =
0 for all j > 2.
Therefore

A=Y < I, (Secy_1(Base(A))).

For the other inclusion we consider g € I 11(Secy—1(Base(A))), then q(syzq + -+ + sgrg) =0

for s1,...,s; € C and for all z1,...,2, € B and it can be decomposed as in (5.12). Working as
before, via k — 1 decompositions we get at Ro;(x1)Q1(s2x2) = 0 for all 25 € B and s, € C, hence
for all 25 € V, therefore Ry ;(-)Q1,(x) is a quadric vanishing on Base(A). O

Corollary 5.6.3. Let X C P(V) be a variety with 1(X) generated in degree d. Then for all k > 0,
Id+k,2(Seck,1(X)) =0.

5.6.2 Homogeneous varieties and highest weight vectors

At this point we need to do a digression on what an homogeneous variety is and how it is related
to the concept of highest weight vector.

Homogeneous spaces

The following description of Homogeneous spaces is from [GW] and we will refer to that book for
the proofs that we omit here.

Definition 5.6.4. A Quasiprojective Algebraic Set is a subset M C P™ defined by a finite set of
equalities and inequalities of the form:

gj(x)#oajzla"'ala

where f; and g; are homogeneous polynomials in Clzg, ..., x,] and v = (zo, ..., xy).
In topological terms, M is the intersection of the closed set
Y =A{[z]eP"| fi(x)=0,i=1,...,k}
and the open set

Z=A{[z] eP"|gj(x)#0, j=1,...,1}
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Definition 5.6.5. An Algebraic Action of a linear algebraic group G on a quasiprojective algebraic
set M is a reqular map o« : G x M — M, written as (g,m) — g -m, such that

g-(h-m)=(gh)-m, 1-m=m

for all g,h € G and m € M.
Theorem 5.6.6. Let G be a group acting on a quasi projective algebraic set M C P™. For every
x € M, the stabilizer G, of x is an algebraic subgroup of G and the orbit G - x is a smooth
quasiprojective subset of M.
Corollary 5.6.7. There exists a point © € M so that G - x is closed in M.

Let H be an algebraic subgroup of an algebraic group G. By the previous theorem there is a
regular representation 7 : G — GL(V') of G and a point zy € P(V) so that H is the stabilizer of
xo. The map g — g - ¢ is a bijection from the coset space G/H to the orbit G - xo. So when we

view G/H as a smooth quasiprojective algebraic set by identifying it with the orbit G - xy.

Theorem 5.6.8. Let H C G be an algebraic subgroup of an algebraic group G. Letm: G — GL(V)
be a regular representation of G and xy € G be stable under the action of H. Then:

1. The quasiprojective algebraic set structure on G/H is independent on the choice of the repre-
sentation .

2. The quotient map from G to G/H is reqular.
3. If M is any quasiprojective algebraic set on which G acts algebraically, and x € M is such
that H C G, then the map gH — g - x from G/H to the orbit G - x is regular.
Definition 5.6.9. A quotient space G/H with the previous properties is called a Homogeneous

Space.

The vector xg will be called highest weight vector when H C G is a parabolic subgroup.
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Highest weight for GL(n,C)

We need now to introduce the Theorem of the Highest Weight. We will do it for the irreducible
regular representations of GL(n,C) as it is done in [Go2]; analogous results hold for any complex
reductive algebraic group (see [GW], Chap. 5).

Let H, N, N C G L(n, C) be the subgroup of diagonal matrices, the subgroup of upper triangular
unipotent matrices (all diagonal entries equal 1) and the subgroup of lower triangular unipotent
matrices respectively. Then NHN is a Zariski dense open subset of GL(n, C), and a generic element
g € GL(n,C) has a unique factorization g = nhn for some n € N,h e Handn € N. Thus a
regular representation of GL(n,C) is completely determined by its restriction to the subgroups
N ,H and N.

Notation: Assume G is a reductive finite group, and let G be the equivalence classes of irreducible
finite-dimensional regular representations of G.

Definition 5.6.10. An Algebraic Torus is an algebraic group T isomorphic to C* x --- x C*. The
—_——

!
integer | is called the rank of the torus.

Definition 5.6.11. If G is a linear algebraic group, then a torus H C G is Mazimal if it is not
contained in any larger torus in G and it is diagonalizable.

The subgroup H of diagonal matrices is a maximal algebraic torus in GL(n, C). The irreducible
representations of H are one dimensional and given by h = diag[z,...,x,] — h* = 2" - a2l

where p = [mq,...,m,] € Z". Thus we may identify H with Z". If p: G — GL(V) is a regular
representation of GG, then the restriction of p to H decomposes into weight spaces:

where V(11) # 0 and p(h)v = h*v for v € V(). We call ®(V) C H the set of weights of V.

Let Normg(H) be the normalizer of H in G (i.e. the set of all g € G such that HgH = gH)
and W = Normg(H)/H be the Weyl group of G. The elements of W permute the weight spaces
and the weights of V. In this case, W ~ &, may be identified with the group of permutation
matrices in G, and the action of W on H and H is by the usual permutation of coordinates. Every
W orbit in H contains a unique dominant weight

f= )
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with m; > --- > m,. We denote by Z" , the set of all such p € Z", and the corresponding vector
is called highest weight vector.

Example: Let V = C" be the defining representation of G. Then ®(V) = {e,...,e,} where
e(h) = x; for h = diag[zy, ..., x,). Here ®(V) = W - ¢; is a single W orbit with dominant weight
£1.

Example: Let V = Q" C". A basis {e;} diagonalizes p(H) where py is defined as in (5.7). For
an index I = [iy, ..., i), with 1 <4; < n, define

pr = [p, - s fhn]
where p, = #{j | i; = p}. Then py(h)e; = h#*’e; for h € H. Hence for \ € H,
V(A) = Span{er | pur = A}

In particular V/(A\) # 0 if and only if \; > 0 for i = 1,...,n and |A\| = k, where |A] = A\ + -+ + \,.
Thus ®(®" C") = W - Par(k,n) where Par(k,n) is the set of all partitions of k with at most n
parts. Each such partition defines a dominant weight u of H such that h — h* is a polynomial
function on H (no negative powers of the coordinates ;).

Definition 5.6.12. Let G be a C*° manifold such that the underlying set has a group structure.
We write m(z,y) = xy (the group multiplication) and n(z) = =1 (the group inverse). We say that
G is a Lie group if m : G X G — G andn: G — G are C* maps.

Example: The group GL(n,R) = {M € M, (R) | det(M) # 0} is a Lie group.

Definition 5.6.13. A vector space L over a field F', with an operation L x L — L, denoted
(x,y) — [zy], called Bracket or Commutator of x and vy, is said to be a Lie algebra over F if the
following properties are satisfied:

1. The bracket operation s bilinear.
2. [xx] =0 for all x € L.
3. [zlyz]] + [y[zx]] + [z[zy]] = O for all z,y, 2 € L.

The third axiom is called Jacobi identity. Notice that 1. and 2. applied to [x + y, z + y| imply
anticommutativity: [zy|] = —[yz].

There is a way to associate a Lie algebra to a Lie group. Let G be a Lie group. Let L, : G — G
be defined by L,x = gz. Then L, is of class C*° and (L,)~' = L1 by the associative rule.
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Definition 5.6.14. Let M be a C*° manifold. Then to give a Vector Field on M we ask to give,
for allp € M, an assignment p — X, € T,(M), in such a way that for all f € C*(M) the function
p — X,f is an element of C*°(M). We write (X f)(xz) = X,(f). Thus a vector field defines an
endomorphism of C*®°(M) as a vector space over R.

Example: Let M = R" and v € R". If we define for any f € C*(R"):

d
Uy - f = af(:v%—tv)h:o,

then z — v, is a vector field.

We can view a vector field on G as a derivation of C*°(G). That is, if X is a vector field and
f € C®(G) then X f € C*(G), defined by X f(x) = X, f can be considered as the derivative of f
in X, direction. We have:

X(fg)=(Xfg+ f(Xg).
Let G be a Lie group; set L} f = f o Ly, then a vector field on G is said to be Left Invariant if, for
eachge G: Lyo X = Xo L},

Definition 5.6.15. We set Lie(G) to be the space of all left invariant vector fields on G.

Proposition 5.6.16. The map X — X defines a linear bijection between Lie(G) and T1(G). If
X,Y € Lie(G) then [X,Y] € Lie(G). Thus Lie(G) is an n-dimensional Lie algebra over R, where
n = dim(G).

Following the above proposition we call Lie(G) the Lie algebra of G.

Example: Let g = Lie(GL(n,C)) = M,(C) be the Lie algebra of G = GL(n,C), and let Ad(g)x =
gzg~" be the adjoint representation. The weights are 0 and {¢; —&; | 1 <i # j <n}. We call the
non-zero weights the roots of h on g (the algebra b is the Lie algebra of H C G the subgroup of
diagonal matrices). The corresponding root spaces are

go = b = Lie(H)
and
gEi—Ej - (CEZ

where E;; is the elementary matrix with 1 in position (4, j) and zero elsewhere. If o = ¢; — ¢, then
we say o > 0if i < 7, and a < 0 if 7 > j. We denote the set of positive roots by ®* and the set of
negative roots by ®~. Thus

n = Lie(N) = @ G,

acdt
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= Lie(N) = EB o
acd—
The Lie algebra additive version of the Gauss decomposition is the so called triangular decom-
position:
g=ndhodn
If p: G — GL(V) is any regular representation of G, then there is an associated Lie algebra
representation dp of g defined by:

Ap(X)0 = plerp(tX))uls,
One can prove that
dpm)V(p) < P V.
AEp+dF
We call € ®(V') an N-extreme weight if p+ a ¢ ®(V) for all ad™.
Theorem 5.6.17. Let p : G — GL(V) be an irreducible representation of G = GL(n,C). There is

an unique N-extreme weight pg € ®(V). This weight is dominant, the weight space V (jg) = V¥
(the N-fized vectors in'V ), and dim(VY) = 1.

We call o the highest weight of the representation p : G — GL(V). It determines the repre-
sentation uniquely up to isomorphism.

Extreme vectors and highest weight

The above construction that we have done in the particular case of GL(n,C) is more general. We
are going to present what happens in general without go into details. We will follow the presentation
of [Gol].
Let G be a classical group whose Lie algebra is semisimple. We fix a set ®* of positive roots. It is
a general fact (see Theorem 8.9 in [Gol]) that there always exists a sort of triangular decomposition
associated to g:
g=n+bh+n

We set b = h 4+ n and call b a Borel subalgebra of g. We have
[b7 b] :n7 I:[J’n] =n

Let P(g) be the weight lattice and Py, (g) the dominant weights relative to the choice of ®*. If
(m, V) is a finite-dimensional representation of g, then V' has a weight-space decomposition

V=P Viw.
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where V(p) ={v eV |n(Y)v=pu(Y)v for all Y € h}. We denote by

x(V)={nePg)|V(n) #0}

the set of weights of the g-module V.
Let {a1,...,a;} be the simple roots in ®* and let @, (g) = Nay + -+ + Ny be the semigroup
generated by the positive roots. We define a partial order on P(g) by

A< pif A= p—f for some 3 € Q,(g) ~{0}.

Let (m, V) be a representation of g (not necessarily finite-dimensional). A non-zero vector vy € V'
is called b-extreme if 7(b)vg C Cug. A vector vy € V' is g-cyclic if V' is spanned by vy together with
the vectors 7(zy) - - - m(xp)v, where x; € gand p=1,2,....

Proposition 5.6.18. Let (7, V) be a finite-dimensional representation of g.

1. A wvector vy is b-extreme if and only if T1(n)vg = 0 and there exists u € Py, (g) such that
m(H)vg =< p, H > vy for all H € b.

2. The b-extreme vectors in V' span the subspace

Vi={veV|rn)v =0}

3. Suppose p is a mazximal element of x(V') relative to the partial order <. Then p is dominant
and V() C V™. In particular V" # 0.

4. Suppose vg € V is b-extreme of weight p and is cyclic under g. Then 7 is irreducible,

V() = Cuvo, and x(V) C p— Q+(g)-

Theorem 5.6.19. (Highest Weight) Suppose (w,V') is an irreducible finite-dimensional repre-
sentation of g. Then V' has a unique highest weight p such that X < p for all other weights A of V.
One has u € Py, (g) and dim(V (u)) = 1. A non-zero vector vy € V() is called a highest weight
vector of V. . If U is another irreducible finite-dimensional g-module with highest weight p, then
U~V.

The definition of highest weight depends on the choice of the set of positive roots. However,
the elements of P, (g) are in one to one correspondence with the Weyl group orbits in P(g). Thus
every irreducible finite-dimensional representation of g corresponds to a unique Wg-orbit in P8,
namely the orbit of the highest weight.
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We want to give some geometric interpretations of these and similar facts. Instead of looking at
the action of a Lie algebra on a representation, we look at the action of a group on the associated
projective vector space. In this context, it is natural to look at various geometric objects associated
to the action: for example, we look at closures of orbits of the action, which all turns out to be
algebraic variety, i.e. definable by polynomial equations.

The important fact we want to point out in this section is that an homogeneous variety defined
as the orbit of a point z( stable under the action of the subgroup H C G in nothing else than the
closure of the highest weight vector’s orbit.

Theorem 5.6.20. Let G be a connected classical group. There is a projective algebraic set Xqg
on which G acts algebraically and transitively and there is a point xy € X¢g so that the stabilizer
B = G, has Lie algebra b.

As example we want to study what happens if we look at the action of the group SLy(C) or
PGL5(C) on the associated projective spaces P(W).

Example: How can we embed an homogeneous variety into P(V)? Let us do the example of

a b : a b
G:SL(2,(C):{(C d) ]ad—bc:l}. TheBorelsubgroupBCGlsB:{(O 1/a)}'

Consider the (n + 1)-dimensional standard representation o SL(2,C):
p:SL(2) — GL(V)=GL(n)

it is S*(C?) =< 2™, 2" Yy, 2" 2y, Lyt >,

We need to find the highest weight vector: it is a P € S™(V*) such that bP = AP for all
b € B. The dimension of V is two, let {e, f} be a base of V and V* =< x,y >. An element
P e S"V*is P = zFy"*. By definition (b- P)(ae + Bf) = P(b~'(ae + Bf)) that is equal to

p (( 1(/)a _ab ) ( g )) since e = ( é ) and f = ( (1) ) Then we have that (bP)(ae + Bf) =
P((& —bB)e+aBf) = (2 —bB)*(aB)"* that is (Efzo(—l)i(l?) ak_iai_kﬁibi) a"*3"=F that we can

write as Y1 (—1)7(¥)am+2kbiak—i k41, Therefore
a b b k
_ b, n—k _ Y ni—2kpi, k—i, n—k+i
bP—<O 1/a)xy —EO( 1) (i)a bty :

Then the only P € S™V* for which bP = AP can be obtained for k£ = 0, this means that the highest
weight vector is y™.
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Now we need to find the orbit of y™. If ¢ € G then gP = (CCL Z)y" By definition
a b\ , a) o, a b\ [ a o da=b3 "\ n :
(L)) (5) = ((20) " (5)) = (i) = emar s

Sio(=Di(")a" g '’ then ( . d ) y" = > o (=1)1(T)a"ic'a'y" ", Therefore the immer-

sion we are looking for is:

(“ Oa) e SL(2)/B — P(V)

c 1/
! | l~
Pl s Pn
(a:c)— (a:c) — (a":—na"te: (5)a" 2 —(5)a 33 - (1))

Example: For any vector space V' and any positive integer n, we have a natural map, called the
Veronese embedding:;

P(V)" — P(Sym™ (V"))

that maps the line spanned by v € V* to the line spanned by v™ € Sym™(V*). If dim(P(V*)) =1
the image of the previous map is called the rational normal curve C' = C,, of degree n. Choosing a
base {a, 3} for V* and {..., [n!/k!(n—k)!Ja*3"7* ...} for Sym™(V*) and expanding out (za+y3)"
we see that in coordinates this map may be given as

n—1

w,y] = [ 2"y,

From the definition, the action of PG Ly(C) on P" preserves C,,; conversely, since any automorphism
of P" fixing C), pointwise is the identity and since the group of automorphisms of P" is PGL,,1(C),
the group G of automorphisms of P* that preserve C,, is PG Ly(C). Conversely if W is any (n + 1)-
dimensional representation of SLy(C) and P(W) ~ P™ contains a rational normal curve of degree
n preserved by the action of PGLy(C), then we must have W ~ Sym" (V).

5.6.3 Ideals of secant varieties of homogeneous varieties

Consider now the case X = G/H is an homogeneous variety, embedded as the orbit of the highest
weight vector v, € P™: if V; =< v, > then G/H C P(V)).
We will need to use the following unpublished Theorem of Konstant and a generalization of it.
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Theorem 5.6.21. (Konstant) If X = G/H C PV, is a homogeneous variety which is the orbit of
the highest weight vector v; € P™ then

L(X) = (V)= c S?v*

where Vo C S?V* is generated by v; o .

Theorem 5.6.22. (Generalization) If X = G/H C P(V]) is a homogeneous variety which is the
orbit of the highest weight vector v; € P™ then

[k(X) = (Vkl)l C SkV*

where Vi is generated by vy o ---o vy, k times.

Proof. Let p € S*V* and consider p as a multi-linear form on K. Then p(v;o- - -ov;) = 0 means that p
annihilates the vectors of weight kl in S*V. An irreducible module W C S¥V* having this property
for all p € W satisfies W C V1. (This proof is from notes by J. M. Landsberg on Secant varieties,
Lie algebra and Rational Homogeneous varieties, see http://www.math.tamu.edu/~jml/.) O

We are now interested in studying the degree d part of the ideal I(Seci_;(X)) where X is an
embedded homogeneous variety.
Suppose that p € S4V*, then, for every m = 0, ..., d, there exist R; € S"V* and Q4_; € Sq_mV*
such that:
de* — SMV*® Sd—mv*
p = Y Ri®Qa
For example, if dim(V) =2, d = 3, m = 2 and p = 2%y, then
SV — SVt Sty
2’y — HPQytay®x)’
More generally (see also Section 5.6.1), one can construct the following map:
de* N @Zz:(] STV* ® Sd—mv* '
d )
plutv) = 3y () X Rig(w) @ Quoig(v)
For example, with the same conditions of the last example, if we write u = (uy, us) and v = (v, v9)
then p(u + v) = p((uy + vi,us + v2)) = (ug + v1)*(ug + vo) = [Udus + Uvy + 2ugusvy + 2u v1v9 +

vius +ojve] = (1@ 2%y) + 2z @2y +y®a®) + (2? @y + 21y ®@2) + (2*y ®1)] € (SV* @ V) @

(5.13)
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Now, for every m =0, ...,d, we can decompose again:
k
SV — (R SV (5.14)
i=1

for all m; € Z such that 3> m; = m.
For every decomposition S4V* — S™V* @ ... ® S™V* we can consider the evaluation map at
the last argument:
S™MV*R. - SV = SV @ STELVE,
We can also consider successive evaluations maps:

STMY* R @SV STV @ STV s STV R STV SV € (5.15)

at the end of those we will have the evaluation of a polynomial p € SIV*. R )
Now p € I4(Secy_1(X)) if and only if p € S?V* and for all vy,...,v; € X (where X C A"*! is
the affine cone over X C P") and for all Ay,..., A\, € C

p()\lvl + -+ )\k'Uk) =0. (516)

By (5.13) and (5.14), S?V* can be “naturally” embedded in the sum of all possible decomposition
of type (5.14), while (my, ..., my) varies in the set of partitions of d. Therefore the condition (5.16)
is equivalent to ask that the image of p(Avy+- -+ A\pvg) € S4V* in each one of the decompositions
of type (5.14) composed with the successive evaluation maps of type (5.15) has to be zero: for all
my,...,mg € Z such that Zle m; =d

p(Zle Aiv;) p(Zf:i Aiv;) — eval in A\,vy —
— S — C
— eval in Zf:z AiU; — 0

ie. p € I4(Seck_1(X)) if and only if p € Ker(S™V* @ --- @ S"™V* — C) for all (mq,...,mg)
partitions of d.
For the generalized Theorem of Konstant we know that if X C P(V}) is an homogeneous variety
then
I(X) = (Vg)* c s4v. (5.17)

This fact has some important implications.
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Example: Suppose we want to study I(Sec; (X)), we do not have to control that all the contrac-
tions, for all m, S™V* ® STmV* — S™V* — C are the zero map, because p € I4(Sec; (X)) if and
only if SV* 3 p(u+v) = Z?zl (‘j) > Rij(u)Qa—ij(v) — 0iff both R; j(u) — 0 and Qq-i;(v) — 0,
ie. Ri; € L;(X) and Qq—i; € I4—i(X), that is the same to ask that for all ¢ = 1,...,d the
R, ; annihilate on (Vy)*™ and Qq—;; annihilate on (V(4_s)", i.e. all contractions, for i = 1,....d,
(Vi)* ® (Via—iy)*= — C are the zero map; but now this is equivalent to ask that all contractions

SU(Vi) © 5% (Vo) @ - -- @ 5% (Vo) — C

such that a; +--- 4+ a, = 2, a1 + 2a9 + - - - + pa, = d, are the zero map.

What we pointed out in this example holds in general (the following proposition is the same of
Prop 3.3 on [LM1))

Proposition 5.6.23. If X C P(V}) is a rational homogeneous variety then a module W C SV*
is contained in I4(Seck—1(X)) if and only if for all (ay,...,a,) partitions of k € 7Z such that
ay + 2ap + - - - + pa, = d, the contraction

WS V) ®S?(Vy)®--- @8 (V) — C (5.18)
1s the zero map.

Example: Suppose that £k = 3 and d = 5, the only two partitions (as,...,a,) of 3 such that
P Lia; =5 are (a1, a2, a3) = (2,0,1),(1,2,0). Therefore if X C P(V}) is an homogeneous variety
then a module W C S?(V) is contained in I5(Seco(X)) if and only if the following two contractions
are the zero map (and only those).

S2(V) @ SO(Vy) @ S* (V) — C,
Sl(%) ® SQ(‘/Q1> — C.

Corollary 5.6.24. Let X = G/P C P(V) be a rational homogeneous variety. Then for all d > 0
1. ]d(SeCd_l(X)) = 0,’

2. if f € I;11(Secq_1(X)) then, for all v € V2, the element v @ f belongs to the kernel of the
map V? ® S4H1V* — gd-1y>.

3. let W be an irreducible component of S*V* and suppose that for all (ay ...a,) partitions of
k such that >0 ia; = d, W* is not an irreducible component of S“(V) ® S2(V?) ® -+ ®
S (VP). Then W C I4(Seck—_1(X)).
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Proof. 1. Tt is a consequence of Corollary 5.6.3.
2. It follows from Proposition 5.6.2 and Proposition 5.6.23.

3. Tt follows from (5.18) and Schur’s Lemma because if an irreducible submodule W C S4V*
does not belong to I;(Secy—1(X)), one of the contraction maps (5.18) must be non-zero.

]

The following two “inheritance” will allow us to apply an algorithm for computing the ideal of
the secant varieties to Segre varieties.

Proposition 5.6.25. (First inheritance) Let Ay, ..., Ay be vector spaces and my, ..., 7 be par-
titions of d. Suppose that an S4-invariant I of Vi & --- @ V. defines a non-zero embedding
of I into S;, A} @ -+ ® Sy, A C SUA; @ -+~ ® A)*. Then for any vector spaces A}, ..., A}
such that dim(A) > dim(A;) for all i, the image of the embedding of (Sz, A})* @ -+ @ (S, A%)*
in SU A, @ -+ ® A,)* defined by I, is in Iz(Secs_1(Seg(P(A}) x --- x P(A})))) if and only if
the image of the embedding of Sy A} @ -+ @ Sy, A% in SUA; @ -+ @ Ap)* defined by I is in
I;(Secs_1(Seg(P(Ay) x -+ - x P(Ag))))-

Proof. The proof is a consequence of the fact that the action of &; commutes both with the
action of GL(A;) and the action of GL(A}), hence the invariant that defines the embedding of
Sm A} ® -+ @S, Af into SY(A; ® --- @ Aj,)* is the same invariant that defines the embedding of
(SpAD)* @ -+ @ (Sy, A})* into S (A} ® -+ ® A})*. Therefore we can choose vector spaces A; of
dimensions as small as possible. O

Proposition 5.6.26. (Second inheritance) Let X be the Segre variety Seg(P(A;) x - - - x P(Ay))
and X be the Segre variety Seg(P(Ag) x - - X P(A)). Then Is(Secq2(X))N(S?A; @ SY (A0 ®
A3)) = S9AT @ I4(Secq_o(X)).

Proof. One of the inclusions is quite obvious:
I4(Secq_o(X)) N (S9AT @ S A @ --- @ A)) C SUAT ® Id(Secd_2(X')).

If A:= A and B := Ay ®---® Ay, the inclusion above follows immediately from the standard way
to embed S?A* ® SYB* into SY(A ® B)*. Since SaV* = S4V* for any vector space V, Theorem
5.5.2 shows that S¢A*® S¢B* — S4(A® B)*. The embedding SYA* ® S¢B* — S¥(A® B)* is given
by Theorem 5.5.7 applied to the particular case of the decomposition into irreducible modules of
S%(A ® B)* obtained by the formula (5.6).
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The less obvious inclusion is
STAY @ Iy(Secq_2(X)) C Iy(Seca_o(X)) N (S?AT @ SHUAL @ --- @ AL)).

Let Sec) ,(Seg(P(A;)®---®@P(A))) be the dense open subset of Secy_s(Seg(P(A1)®- - -@P(Ax)))
such that if P € Sec) ,(Seg(P(A;)®---®P(A))) then P = A\; P+ - -+ g1 P;_; for distinct points
Pi,...,P; 1 € Seg(P(A)) ® --- @ P(Ag)). We can write \;P; = ¢; ® f; with each e; € A; and f; €
Seg(P(Ay)®- - -QP(Ag)),i.e. P=e1®f1+-+eq_1®fq—1 . So any polynomial on A; multiplied by a
polynomial in 7;(Secq_o(Seg(P(A;)®- - -®@P(A)))) will vanish on Secy_o(Seg(P(A;)®---@P(Ax))).
In fact if F € S%A}) and G € I;(Secq o(Seg(PAy ® -+ ®@ PAy))) we can write (FG)(P) =
F(e1)G(f1) + -+ F(eq—1)G(fa-1). Since G(f) =0 for all z € Secy—2(Seg(P(A2) @ --- @ P(Ay))),
we get FG(x) = 0 for all 2 € Sec)_,(Seg(P(A;) ® --- @ P(Ay))), and now clearly F'G is zero also
on the closure of Sec) ,(Seg(P(A;) ® --- @ P(Ay))) that is Secy_»(Seg(P(A4;) ® -+ @ P(Ag))).

[

ALGORITHM

e Fix 7my,...,m partitions of d.
e Compute the dimension m of (V,, ® -+ ® V,, ).
e Explicitly realize the representations V., of &,.

e Take independent elements e; € V. and average e; ® - - - ® ej, over &4. The result is either a
nontrivial invariant I or zero.

e Continue finding such elements I until one has m independent such.

e Choose embeddings S, (4;) — A?d, the images of the invariants I, 1 < r < m give the
modules.

Example: Let k =4 and d = 3. We want to study the secant of lines Seco_1(Seg(P(A1) x - X
P(A4))).

The partitions of d = 3 are (3), (111) and (21). They correspond to the trivial representation,
the alternating representation and the standard representation of G5 respectively:

The trivial representation U = V4 is {v € C3 | gv = v, g € S3}; its Young diagram is:

NN
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The alternating representation U' = Vji11y is {v € C* | gv = sgn(g)v, g € S3}; its Young
diagram is:

The standard representation V' = V{19) is {(21, 22, 23) € C? | 21+ 22+ 23 = 0}; its Young diagram

There are many ways to compute the dimension of a representation V. of G,;. The most intuitive
is a one using the notion of “hook length”.

18:

Definition 5.6.27. The hook length of a box in a Young diagram is the number of squares directly
below and directly to the right of the box, including the box itself.

The hook length formula is

d!

dim(Vz) = [(hook length)

If d = 3 we have:
dim(U) = 5= =1,

321
dim(U’) = 535 =1,
dim(V') = 535 = 2.

11

Definition 5.6.28. If V is a representation of a group G, its character xy is the complex-valued
function on the group defined by:

xv(g) =Tr(glv),
the trace of g on V.

In particular we have xy (hgh™) = xv(g), so that yy is constant on the conjugacy classes of a
group G. Note that xv (1) = dim(V).

Let us compute xy, xu, Xv:
xu(g) =1 for all g € &g,
xv (1) = 1, xor((12)) = =1, xor((123)) = 1 since gv = sgn(v) and (1)v = v, (12)v = —v and
(123)v = v.
The standard representation can be obtained as:

Ci=UaV
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where C3 is the permutation representation V, ie. V = {(z1,22,23) € C* | g (21,20,23) =
(2g-1(1), 2g-1(2), 29-1(3)), 9 € ©3}. The characters xv(g) of the permutation representation are al-
ways the number of independent elements of X that are fixed by g. In our case X = C3 =<
(1,0,0),(0,1,0),(0,0,1) >, then Id(v) = v for all v € C? hence xy (1) = 3; then x1/((12)) = 1
since (12)(1,0,0) = (0,1,0) # (1,0,0), (12)(0,1,0) = (1,0,0) # (0,1,0) and (12)(0,0,1) = (0,0, 1);
eventually xv((123)) = 0.

Now we apply the property that if V' and W are two representations of a finite group G then

X(vew) = Xv + Xw,

therefore yy = xv + xv then, xy» = (3,1,0) — (1,1,1) = (2,0, —1).
We can draw the table of characters for &3 (in the first line we write the number of elements in
each conjugacy class, and in the second line the conjugacy classes):

1| 3 2
1| (12) | (123)
U[L] 1
U1 -1 [ 1
V2] 0 [ 1

Which is the dimension of (V' @ V' @ V' @ V')%s?
It is a general fact that the dimension of the space of invariants by the action of a group G is:

dim( VG Z xv (g

gEG

The order of &3 is 6.
If V and W are two representations of a finite group G then

X(vew) = XV " XW-

Hence x(vgvievev) = (xv)* = (24,01, 1) = (16,0, 1).
Therefore

1
nu:&mw@ﬂ:6a01+03+ﬂ-m:3

Hence we have to find three independent invariants.

The space V' can be realized as {(21, 22, 23) € C? | 21 + 29 + 23 = 0}, we consider the following
two independent generators: e = (1, —1,0) and f = (0,1, —1), then a base for V'® is {e® e®e®e,
eReReRf, ..., [fRfRfR [}

The invariants of V'®* can be obtained by applying the averaging operator to the elements of the

203



Secant varieties of homogeneous varieties and their ideals

base of V'®*; we will find only three of them that are independent.
The averaging operator is defined as:
29

1
==
Gl 2=

In the case of &3 one has ¢ = ¢(Id + (12) 4 (13) + (23) + (123) + (132)). In the following table we
list how an element of &3 acts on e, f € V"

| e | [ |
Id e f
(12) —e e+ f
13) | —f —c
(23) || e+ f —f
(123) || —e— f e
132) ] f |—e-f

By applying the averaging operator at e®e®Xe®e, e®e® f® f and e®e® e ® f respectively,
we obtain three independent generators for the space of the invariants (V' @ V' @ V' @ V')®s:

plewevene)=i(c@eemet (et )@+ fl@e+ @+ +fofefef) =1,

p(e®e®fRf) = :(2eQeRe®@e+eReRe® f+eRe® fRe+eR fRe®e+ fRe®eRe+3e®@e®e®
fRFf+3fRfReRe+eRfRQfQf+fReRfRf+fRfReRQf+fRfRQfRe+2fRfQRfRf) = Iy,

ple®@eRe® f)=—352e®eRe®eRet+eRe®ReR f+eQRe® fRe+e®@fQe®et+e®e®
fRf+eRfRef+2fReRkex f+exfR®fRe+2fRfReRe+2fRe® fRe+e® f®
fOf+2f@eRfRf+2fRfRe@f+2fReRe@et fRIRfRe+2fRfRfD ) =I5

Now we have all the informations we need on (V'®4)%:. Let us study, for any vector space V, the
Schur power SV = Homg, (V{a1), V@3). An element u € S(21)V is an homomorphism u : V{a1) —
V@ invariant by the action of 3. We define u(e) = £ € V¥ s, := (12) and sy := (23), then
sie = —e, hence s1 E = u(s1e) = —E. Moreover f = sse—e, hence u(f) = soE—E and s1f = e+ f.
Finally s;soF + E = sju(f) = soE. Therefore

SenV* ~{F € V| 51E = —E, 515F + FE — 5,F = 0}.
The proof of Proposition 5.5.7, applied to our case, gives the following isomorphism:

@(Vﬂ-l (%9 Vvﬂ-2 X Vvﬂ-3 X Vﬂ4)63 X (Sﬂ-lAl X SWQAQ X SﬂgAg (%9 SW4A4) — 53(A1 & A2 ® Ag ® A4)
IR (U Q@uo@uz @uy) — >, J(ug @ ug @ ug ® uy)

204



Secant varieties of homogeneous varieties and their ideals

where J € (Vi @V, @ Vg @ Vi) and u; € Sy, A;. Anytime we fix an invariant J there is an
assoclate immersion:

P’ S Al @S, Ay @S, Az @S, A — S3(A1Q A, @ A3 ® Ay)
(U1 @us @uz @ ug) +— > J(u @us ®uz @ ug)

Fix now the u; € S;, A; and consider the corresponding polynomial P(‘L 3,0 104)
We are studying the case when m; = (21) for i = 1,...,4, and J €< I, I3, I3 >; we will write
J=eRee®e+- -+ af®f® f® f for some coefficients aq, . .., ag.

An element v = Awv; + Ay belongs to Secy_1(Seg(P(A;) x -+ x P(Ay))) if and only if
Pq;]l,ug,ug,u4(>‘1vl + )\21)2) = 0 for all )\1,)\2 € K and V1,Vg € Seg(IP’(Al) X e X P(A4)) By the
decomposition (5.11), there exist polynomials @,;, R;; of degree j for j = 0,...,3 such that
Py s M01FA02) = S, (3) 32 Rai(Mv1)Qs—ai(Aavo). Hence Py iss € Is(Seci(Seg(IP(Ay)x
-+ x P(Ay)))) if and only if

RS,i(Ul) =0,
R2,1(U1)Q1,1(U2> =0,
Rl,i(UI)QQ,i(UZ) =0,
Q3i(v2) =0

for all vy, vy € Seg(P(A;) x --- x P(A4)). Therefore it is sufficient to ask that R ;(v1)Q1,(v2) =0
for all vy, ve € Seg(P(Ay) x -+ x P(Ay)).
Now, if J is any invariant of (V;, @ Vi, ® Vi, ® V,,)®* then

P’ (A0 + Xaots) = (1e®e®@e@e+- -+ a1/ QR f Q [ R f)(u1 @us @usz @uy)(Av1 + Aava) =

ul,u2,us3,uq
= (meu @ eus ® eug @ eug + - -+ + arpfur @ fuo @ fus @ fug)(Mvr + Aov) =

= ai(u1(e)@ua(e)@uz(e)@us(e))(AMvr+Ave) +- - +aue(ui (f) @ua(f) @us(f) @ua(f)) (Arv1+Aav2).
So P’/ (A1v1 + Agvg) = 0 if and only if

u1,u2,u3,uq

(u1(e) @ uz(e) @ us(e) ® ug(e))(Avr + Aava) =0

(i (f) @ un(f) @ us(f) @ ua(f) Arvs + Aovs) = 0

Now we apply the decomposition (5.11) to all those sixteen polynomials. Let the decomposition of
the j-th of those polynomials be Y75_ G) >, Ré{;()\lvl)@gj_)d7i()\2v2). By the consideration above

it is sufficient to look at the vanishing of joz) (vl)Q&) (vg).
Remind that wu;(e) is skew symmetric in the first two arguments, hence the contributions of
a;j(u;(e) @ us(e) ® ug(e) ® ug(e))(Avr + Agva) are zero for all j =1,...,15.
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Therefore P; . .. € Is(Seci(Seg(P(Ay) x --- x P(Ay)))) if and only if aye(ui(f) ® ua(f) ®
us(f) @ ug(f))(Avg + Aavg) = 0 for all A, Ay € K and vy, v9 € Seg(P(A;) X -+ x P(Ay)). This is
equivalent to asking that a6 = 0.

This condition allows us to write down explicitly the invariant J €< I, I, I3 >:
J=al + L+ (a+ )13

for a, 0 € K.
Note that we have never used the fact that k = 4, hence we can state the following proposition:

Proposition 5.6.29. The space of modules in I3(Seci(Seg(P(Ay) x -+ x P(Ay)))) induced from
the representation (V(gl))‘g’k is a codimension one subspace of the space of modules in S?V* induced
from (Via1))®*.

Now we have all the ingredients to determine which of the irreducible modules that appear
in the decomposition of S*(A; ® -+ ® Ay)* are in the decomposition into irreducible modules of
I3(S€C1(S€Q(P(A1) X oo X P<A4))))

e Every component of S?(A; ® --- ® Ay)* involving a wedge power is in the space of cubics
vanishing on Secy(Seg(P(Ay) x - - x P(A;))) because the assumption that P . ... =0 on

Secy(Seg(P(Ay)x---xP(Ag))) is equivalent to R ;(v1)Q1,i(v2) = 0 for all vy, vy € Seg(P(A1) %

-+ x P(Ag)): a cubic in A®V is always zero on an element of the form (vq, vy, v).

e Every component involving a symmetric power is determined inductively by Proposition
5.6.26.

e The only remaining term is Siz)A4; ® - -+ ® S1y)Ax that appears in the decomposition of
S3(A; ® -+ ® Ag)* with a certain multiplicity [, hence, by Proposition 5.6.29, the subspace
that vanishes on Sec;(Seg(P(A;) x -+ x P(Ag))) has multiplicity [ — 1.

Let us study the decomposition of S*(A; ® - -+ ® Ay,) in detail.

We have already observed that the irreducible representation of G5 are V(3 = S3V, V(1) and
Vi = A3(V). Let us compute the characters of (V(3))®%, (Vi21))®? and (V(111))®”? for some
a,B,v€eN:

X((V(3))®«) = (1a7 19, 1a) = (17 L 1)a

X((Viares) = (27,0, (=1)7),

X((Viai)®) = (17 (_1)77 1)-

Then if 3 > 1 the character of (V(3))®*®(V(21))®?®@(V111)® for a4+ = k is X(Vis))®e®(Via1)) 290 (Vi) &)
(17 L, 1)'<2ﬁ7 0, <_1)ﬁ>'<17 (_1)77 1) = (257 0, (_1)ﬂ)' Then dim(((‘/(?)))@a@(v(?l))@ﬁ@(‘/111)®7>63> =
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12014034 (—1)7.2) = 2207
Moreover if 3 = 0 we have that X (v,)eemi)en = (1,1,1) - (1,(=1)7,1) = (1,(=1)7,1); then
dim(((Vig)®* @ (Vin)®7)%) = (114 (=1)7-3+1-2) = U that is zero if v is odd, and it is
1 if 7 is even.

We can therefore write down the decomposition of S*(A; ® - -+ ® A) into irreducible modules.
Let A, 0 and I" be multi-indices such that AUO UL = {1,...,k} and a € A, § € © and v € T

with the notation S;Ax we indicate ®4caSyAq.

2071 4 (—1)P
S A1®- - - @A) ~ EB %S(S)AA@)S(QUA@@S(HDAF @ S(3)Aa®S111)Ar
A+ (8] + | = & A+ 7] = &
[ALIT] >0; |©] > 1 || even

Now we have the decomposition of S?(A; ® - - - ® Ay,) into irreducible modules, then, by consid-
erations above, we can write down the decomposition of

I3(Seci(Seg(P(Ay) x -+ x P(A))))

in the following way:

281 4 (—1)P
@ %S@AA & 8(21)14@ ® S(lll)AF S

A+ O]+ || = &
©/ =21, T =1

20-1 4 (—-1)8
L SV |
® EB ( 3 ) S@)yAa ® Sende | @
Al +[©] =k
©] >1

D EB S3)Aa ® Sy Ar

|Al+ |0 =k
T even

This algorithm is efficient in a low degree and for small k. In order to show how the computa-
tional problem increases by increasing k we treat the examples £k = 3 and k = 4.
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I3(Seci(Seg(P(A) x P(B) x P(C)))) =

B(SPAQRN B ANC) @ (NA® S*Be AC)* @ (AMPA® A°B® S30).

I3(Seci(Seg(P(A;) x -+ x P(Ay)))) =
= (S(a1)41 @ Si21) A2 ® S(any Az @ A2Ay)* @ (Sa1) A1 ® Siany Az @ A*A3 ® S(a1yAs)*®
B(S1)dr @ A’ Ay @ S(a1yAs ® SanyAs)* & (A°4; @S @21)A2 ® S(21)A3 ® S(21)A4)*®
B(S1 A1 ® Spnds ® A3As @ A2A))* @ (Send ® AA;®S 1Az ® NA)*®
D(San) A @ N2A; @ A3 A3z ® S A @ (AP AL ® S A2®821)A3®A A)'®
B(A’A; ® Sa1)As ® A*A3 @ Sy Ag)* @ (A*A; @ A*Ay @ Sa1y A3 ® S(a1)As)*®
B(S*A;®S @1 A2 ® S(21)A3 ® AA) @ (A*A ®S @) A2 @ S(21)Az @ SPA) e
B(S21) A1 ® Spnds ® SPA; @ NP Ay) @ (SenA1 ® Spnds ® ANA3 ® SSA4)*@
B(SenAr ® S®A; @ S ds ® A2Ay)* & ( )@
B(SenAr ® S*A; @ A’ A3 ® Sa1)A4)* & ( )@
B(SPA; ® S(a1)A2 @ A’ A3 ® Sa1yAs)* @ (A*A; ® Sy Az ® S? A3 @ Sia1)As)*®
B(S*A; @ A’Ay @ S21)As ® S21)As)" B (A*A; ® SP Ay ® Sa1) A3 ® Sa1)As)*®
D2(S(21)A1 ® Sa1) A2 ® S(a1)A3 ®@ Sy As)* & (A°A; @ A®Ay @ APA3 @ A*Ay)*
D(SPA; @ S3A, @ A3A3 @ A3AL)* @ (S3A, @ A3A; ® S3A5 @ APAL)*D
D(SPA; @ A2A; @ APA3 @ SPA)" @ (A3A; ® S3A4; ® S3A; @ A3AL)*®
D(NA; ®SPA @ N A3 @ SPA) @ (A3A; @ A3A, @ S3A5 @ SPA,)*.

Now, if one wants to compute the dimensions of I3(Sec;(Seg(P(A) x P(B) x P(C)))) and of
I3(Secq(Seg(P(Ay) x - -+ x P(Ay)))), one need the fact that if V' is a k-dimensional representation
of &4, then

Sendi ® A*A; @ S As ® S A,
Seen A ® A’ Ay ® S%A3 @ San)As)*

(k—i+7j)

dim(S,V) =11 ,
thJ
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where the products are over the d pairs (i, 7) that number the row and the column of boxes in T,
and h; ; is the hook number of the corresponding box.
If V is vector space of dimension n, then

dim(S%V) = (" ; 2),

dim(A%V) = (g)

n—1)(n+1)
3 .
If A, B, C' are vector spaces of dimensions a, b, ¢ respectively, then:

dim(I3(Sec; (Seg(P(A) x P(B) x P(C)))) =

1
= iacb(ZCLQC +2a*c* + 16 — 8a — 6ab — 6ac + 27ach — 5a°bc* — 3a*be + 2a*b — 8c + 2bc* — Gbe+

—8b + 5a*b*c® + 2a*b* + 2b*c* — 5ac’h® + 2ab* + 2ac® + 2b°c — 5a*b*c — 3ac’b — 3ach?)

If Ay,... Ay are vector spaces of dimension a, b, ¢, d respectively, then:

dim(/3(Secy (Seg(P(A;) x -+ x P(Ay))))) =

abed(368 + 10a*c*d® + 10a*b*d® + 10b°c*d* + 10a*b*c* + 18bc*d* + 18acd®+

~ 1296
+18a’%ed?® + 18a2bd? + 18b%cd® + 18a°c*d + 18a%b*d + 18ab*c? + 18a%bc? + 18ab*c+

+18bed® + 18acd® + 18abd® + 18bc*d + 18ac*d + 18b%cd + 18a*ed + 18a*bd+
+18ab*d + 18abc* — 54bed + 18ab*c — S4acd — 54abd — 54abe — 72a+
—T2¢ — 72d — 72b + 18ab*d* + 18b*c2d + 8a?c? + 8a’d® + 8b*c*+
+8b%d? — 72¢d + 8a%b? 4 567abed + 143a*b**d* — 63a*b*c2d + 18abe — T2ab+
—72bd — 72bc — 72ad — 72ac — 8a® — 8b* — 8¢ — 8d*+
—27ab%cd — 27a%bed — 27abed? — 45ab%cd? — 45a%bed? — 63ab*Pd? — 63a%b*d? — 63a*b*cd®+
+8cd? — 45ab*c*d — 45abc*d* — 45a*bc*d — 45a*b*ed — 27abc*d).

Now, the authors of [LM1], by using the decomposition (5.19), can give the decomposition of
the degree 3 part of the ideal of Sec;(Seg(P(A) x P(B) x P(C))).
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Definition 5.6.30. Given V = A; ® --- ® Ay, a Flattening of V is a decomposition
V= (All ®®Azq)®(A]1 ®..'®Ajk7q) :AI®AJ

where I +J ={1,...,k} is a partition of {1,...,k} into two subsets.

Corollary 5.6.31. Let X = Seg(P(A) x P(B) x P(C)). Then (5.19) holds and I35(Secy (X)) is the
space of 3 x 3 minors of the three possible flattenings of AR B ® C'.

This Corollary gives the decomposition of I3(Sec;(Seg(P(A) x P(B) x P(C)))), but the main
result of the paper [LM1] is to solve the G.S.S. conjecture (see [GSS]) in the case of the Segre
variety of three factors.

Conjecture 5.6.32. (L.D. Garcia, M. Stillman, B. Strumfeld) The ideal of Seci(Seg(P(A;) x
- X P(Ag))) is generated by the 3 x 3 minors of flattenings, i.e. Seci(Seg(P(A;) x -+ x P(A)))
is intersection as a scheme of the varieties Secy (P(Ar) x P(Ay)).

For the proof of the case k = 3 of this conjecture, the authors of [LM1] introduced another
algorithm that is longer than the one we have shown in this section, but it is more efficient in higher
degrees. In fact the algorithm we presented here is very useful to compute the decomposition of
the degree d part of the ideal of the secant variety to the Segre variety when d is not “too big” but
it does not give any information on what happens for big values of d.

The main result of [LIM1] is given by the following two theorems (for their proofs we refer to
the paper mentioned above).

Theorem 5.6.33. Let X = Seg(P(A;) x -+ x P(A4;)) C P(A; ® --- ® Ag) be a Segre product of
projective spaces. Then the first secant variety Seci(X) is defined set theoretically by the 3 x 3
minors of flattenings. Moreover I3(Seci (X)) is spanned by the 3 x 3 minors of flattenings.

Theorem 5.6.34. Let X = Seg(P(A;) x P(A2) x P(A3)) C P(A; ® Ay ® A3) be a triple Segre
product. Then the ideal of the secant variety Seci(X) is generated by cubics.
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