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Introduction

The problems studied in this thesis originate from classical problems in algebraic geometry (and
commutative algebra). Actually, the story begins with a number theory question: in 1770 E. Waring
in [War] stated (without proofs) that:

“Every natural number is sum of at most 9 positive cubes.”
“Every natural number is sum of at most 19 biquadratics.”

Moreover, he believed that:

“for all integers d ≥ 2 there exists a positive integer g(d) such that each n ∈ Z+ can be
written as n = ad

1 + · · ·+ ad
g(d) with ai ≥ 0, i = 1, . . . , g(d).”

Waring belief was showed to be true by Hilbert in 1909.
An analogous problem can be formulated for homogeneous polynomials of given degree d in

S := K[x0, . . . , xn] where K is an algebraically closed field of characteristic zero:

“Which is the least g(d) ∈ Z+ such that each degree d homogeneous polynomial f in S
is the sum of at most g(d) d-th power of linear forms?”

This problem is classically known as the “Little Waring problem”.
We always indicate with Sd the degree d part of S.
Our work starts form the problem that is known as the “Big Waring problem”:

“Which is the least G(d) ∈ Z+ such that the generic form f ∈ Sd is sum of at most
G(d) d-th powers of linear forms?”

This problem is completely solved by J. Alexander, A. Hirschowitz in [AH]. In order to see how
the result in [AH] enter the problem, consider S = K[x1, . . . , xn] and R = K[y1, . . . , yn], two

polynomial rings, and the action of R on S given by interpreting the yj’s as
(

∂
∂xj

)
, the partial

derivatives of the xi’s; this action is called “Apolarity”.

ix



CHAPTER 0. INTRODUCTION

If I is an homogeneous ideal of R, the “Inverse System” I−1 of I is the R-submodule of S
containing all the elements of S annihilated by I (by the apolarity action).

When X = Proj(S/I(X)) is a projective scheme then the Hilbert function H(X, d) of X in
degree d is dim(((I(X))−1)d). So we can switch from the study of the Hilbert function of a scheme
to the study of the inverse system of its ideal and vice-versa.

Via inverse systems, one can check (see [Ge]) that the least G(d) ∈ Z+ solving the Big Waring
problem is also the minimum G(d) such that the Hilbert function in degree d of the union of the
first infinitesimal neighborhoods of G(d) generic points in Pn is maximal, i.e. G(d)

(
n+d

d

)
. In [AH]

the Hilbert function of these kind of schemes has been computed.

A connection with another classical problem in algebraic geometry is given by a secant varieties
question.
Let X ⊂ PN be a projective variety of dimension n; the “(s− 1)-Secant variety of X” is

Secs−1(X) :=
⋃

P1,...,Ps∈X

< P1, . . . , Ps >.

We recall that the “Veronese variety” of degree d and dimension n can be viewed as the image
of the embedding

νd : P(S1) = (Pn)∗ ↪→ P(Sd) =
(
P(n+d

d )−1
)∗

[L]
νd7→ [Ld]

,

hence it parameterizes the set of d-th powers of linear forms.

It is not difficult to prove that the (s− 1)-secant variety to νd(Pn) parameterizes the closure of
the set of forms which can be written as sums of s d-th powers of linear forms. Therefore solving the
Big Waring problem is equivalent to finding the least integer G(d) such that SecG(d)−1(νd(Pn)) =

P(n+d
d )−1.

The study of the dimension of the secant variety of a projective variety X is actually a classical
problem. In fact if X ⊂ PN is a reduced irreducible variety of dimension n, there exists an expected
dimension for Secs−1(X), i.e. min {ns + s− 1, N}. When dim(Secs−1(X)) < expdim(Secs−1(X))
one says that Secs−1(X) is “defective” with defect δs(X) = expdim(Secs−1(X))− dim(Secs−1(X)).

In the thesis we will consider also a more general problem with respect to the Big Waring one:

“Which is the least integer G(d) such that the generic element of Sd can be written as

N1 + · · · + NG(d) where each Ni = M
(i)
1,j(1) · · ·M

(i)
k,j(k) and M

(i)
1,j(1), . . . ,M

(i)
k,j(k) belong to

Sj(1), . . . , Sj(k) respectively?”

The geometric translation of this algebraic problem is the following:

x



CHAPTER 0. INTRODUCTION

“Let φ be the map defined as follows:

φ : P(Sj(1))× · · · × P(Sj(k)) → P(Sd)
([M1,j(1)], . . . , [Mk,j(k)]) 7→ [M1,j(1) · · ·Mk,j(k)]

where
∑k

l=1 j(l) = d. We define now a variety X as the closure of the image of
this map. The integer G(d) we are looking for is the least integer G(d) such that
dim(SecG(d)−1(X)) =

(
n+d

d

)
− 1.”

When the generic element of Sd can be written as F = N1 + · · ·+Ns, where N1, . . . , Ns are some
specific kind of forms (e.g. powers of linear forms in the Waring problem), it is used to say that F
is a “Canonical Form”. In this thesis we are interested in developing three types of canonical forms
and, more generally, in determining the dimension of the secant varieties associated to them. The
third case is a generalization of this kind of problems to tensors (forms can be viewed as symmetric
tensors).

1. Let L1, . . . , Ls be linear forms of S and F1, . . . , Fs ∈ Sk,

F = Ld−k
1 F1 + · · ·+ Ld−k

s Fs. (1)

2. Let L
(j)
i be linear forms of S for i = 1, . . . , d and j = 1, . . . , s,

F = L
(1)
1 · · ·L

(1)
d + · · ·+ L

(s)
1 · · ·L

(s)
d . (2)

3. Let V1, . . . , Vt vector spaces on K, a tensor T ∈ V ∗
1 ⊗ · · · ⊗ V ∗

t is said to be “decomposable”
if there exist vectors v∗i ∈ V ∗

i such that T = v∗1 ⊗ · · · ⊗ v∗t . “Which is the minimum integer s
such that the generic tensor T of V ∗

1 ⊗ · · · ⊗ V ∗
t is sum of s decomposable tensors?”

First problem. Let X ⊂ Pr be a projective variety of dimension n. Let Ok,X,P be the k-th
osculating space to X at P ∈ X. Let X0 ⊂ X be the dense set of smooth points where Ok,X,P

has maximal dimension. The “k-th osculating variety to X” is defined as

Ok,X :=
⋃

P∈X0

Ok,X,P .

We prove that the geometric problem associated to the canonicity of the form (1) is equivalent
to the fact that Secs−1(Ok,νd(Pn)) fills Pr.

The first important result we use is Terracini’s Lemma (see Lemma 2.6.1).

The method we use for the study of dim(Secs−1(Ok,νd(Pn))) is the following:

xi
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1. let Wi := TPi
(Ok,νd(Pn)) and W =< W1, . . . ,Ws >; try to compute directly dim(W ); if

this is not possible, then

2. compute the degree d part Id of the inverse system I of W ⊂ Sd and the degree d part I
(i)
d

of the inverse system I(i) of Wi. Now if Z = Proj(R/I) and Z(i) = Proj(R/I(i)), so that
Z = Z(1)∪ · · ·∪Z(s), we can prove that the schemes Z(i) depend only on n, k and not on
d and that the Z(i) are 0-dimensional projective schemes of length

(
k+n

n

)
+ n, such that

if ℘i are the ideals of points Pi which are the support of Z(i), then ℘k+1
i ⊃ I(i) ⊃ ℘k+2

i ;

3. compute, if it is possible, the Hilbert function of Z, then dim(Secs−1(Ok,νd(Pn))) =
H(Z, d)− 1.

4. When it is not possible to compute directly H(Z, d), one could use the following con-
struction: consider

Xi = Proj(S/℘k+1
i ), Yi = Proj(S/℘k+2

i ), X = X1 ∪ · · · ∪Xs, Y = Y1 ∪ · · · ∪ Ys, (3)

then X ⊂ Z ⊂ Y .

We prove a crucial lemma (see Lemma 3.3.6) that allows us to move in many cases
the problem from the study of dim(Secs−1(Ok,νd(Pn))) to the study of X and Y . This
is very interesting not only because it makes the defectiveness or the regularity of
Secs−1(Ok,νd(Pn)) be dependent on the regularity of the Hilbert functions of X and Y ,
but also because we didn’t find any example where Secs−1(Ok,νd(Pn)) is defective but X
and Y are regular. We conjecture that this fact never happens.

In the case of P2, we are able to prove our conjecture for small values of s. Let X, Z be projec-
tive schemes defined as in (3), n = 2 and 3 ≤ s ≤ 9; then: H(Z, d) = min

{
H(X, d) + 2s,

(
d+2
2

)}
.

The proof mainly uses “La méthode d’Horace” (e.g. see [Hi]) on a scheme Z ′ which is a spe-
cialization of Z. It consists in considering a curve C through P1, . . . , Pt with t ≤ s, and in
studying the residual scheme ResC(Z

′) whose representative ideal is (I(Z ′) : I(C)); then, if C
is a fixed component of multiplicity ν, H(Z ′, d) = H(ResC(Z

′), d− tν).

Studying this problem we find many varieties which are “very defective” (i.e. δs >> 0), e.g.
the secant varieties of O4,ν5(P6) ⊂ P461. When s = 2 we have that expdim(Sec1(O4,ν5(P6))) =
431 but we get that the defect is δ2 = 86. When s = 3, 4 the defects are δ3 = 44 and δ4 = 9.
Eventually, Sec4(O4,ν5(P6)) = P461. So, even if we expect that Sec2(O4,ν5(P6)) should fill up
P461, even the 3-secant variety doesn’t. In terms of forms we get that neither we can write a
generic f ∈ (K[x0, . . . , x6])5 as f = L1F1 + L2F2 + L3F3 with Li ∈ R1 and Fi ∈ R4 (as we
expect), nor as f = L1F1 + · · ·+ L4F4, but we need five addenda.

xii
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Second problem. We define the Split variety Splitd(Pn) as the closure of the following map:

φ : P(S1)× · · · × P(S1)︸ ︷︷ ︸
d

→ P(Sd)

([L1], . . . , [Ld]) 7→ [L1 · · ·Ld]
.

The problem of studying (2) is equivalent to studying the dimension of Secs−1(Splitd(Pn)).
Our first interest in this problem came from a conjecture stated in [Eh], for which we find a
counterexample. Let G(k, n) be the Grassmannian of k-spaces in Pn. Ehrenborg conjectures

that the least positive integer s such that Secs−1(G(n− 1, n + d− 1)) fills up P(n+d
d )−1 is the

same s such that Secs−1(Splitd(Pn)) = P(n+d
d )−1. If this conjecture were true, we would be able

to compute the dimension of Secs−1(Splitd(Pn)) in many cases. It is a known result (see for
example [CGG3]) that Sec3−1(G(3, 6)) is defective: one would expect that Sec2(G(3, 6)) =
P34, but dim(Sec2(G(3, 6))) = 33; only Sec3(G(3, 6)) = P34. Unfortunately this fact does not
imply the same for Secs−1(Split4(P3)): in fact Sec2(Split4(P3)) = P34. The only case where
we are able to prove Ehremborg conjecture is when d = 2 for which Split2(Pn) = O1,ν2(Pn) =
Sec1(ν2(Pn)) and many things are known (see [CGG2]).

For the study of Secs−1(Splitd(Pn)) we follow two directions:

• First we prove, by using consequences of Terracini’s Lemma (see Corollary 2.6.2 and
Proposition 2.6.3), that if d > 2 and n ≥ 3(s− 1), then

dim(Secs−1(Splitd(Pn))) = expdim(Secs−1(Splitd(Pn))).

• Second we study the intersection between G(n− 1, n + d− 1) and Splitd(Pn).
We can prove that G(n − 1, n + 1) ∩ Split2(Pn) is set-theoretically represented by the
locus of the (n− 1)-spaces of Pn+1 that are (n− 1) secant to the rational normal curve
νn+1(P1). We can partially generalize this result and prove that the locus {(n − 1) −
spaces that are (n− 1)− secant to νn+d−1(P1)} is contained in Splitd(Pn)∩G(n− 1, n +
d− 1). In the case of d = 3 we compute that also the reverse inclusion is true.

Third problem. The geometric problem associated at this last algebraic problem is the study of
the dimension of the secant varieties to the Segre varieties. Let Pni = P(Vi) for i = 1, . . . , k,
be the Segre variety which is defined as the image of the following map:

Pn1 × · · · × Pnk → P(n1+1)···(nk+1)−1

((x
(1)
0 , . . . , x

(1)
n1 ), . . . , (x

(k)
0 , . . . , x

(k)
nk )) 7→ (. . . , x

(1)
i1
· · ·x(k)

ik
, . . .)

.

xiii
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The interest in the knowledge of the dimension of Secs−1(Seg(Pn1 × · · · × Pnk)) is mostly
motivated by its connections with questions in representation theory, coding theory, algebraic
complexity theory and statistics (see [BCS]).

For this problem we do an exposition of results in [CGG1] and in [LM1].

In [CGG1] the authors solve some cases of this problem using Inverse Systems and “La
méthode d’Horace”.

Our exposition of [LM1] needs an introduction on Representation Theory; then we will
present the firs part of that paper where the authors develop an algorithm to compute the
decomposition of the degree d part of the ideal of Secs−1(Seg(Pn1 × · · · ×Pnk)). We conclude
this section by enunciating the statements of the main result of [LM1] that is the proof of
the Garcia, Stillman, Strumfeld conjecture (see [GSS]) on the generation of the ideal of the
first secant variety to the first secant variety to the Segre variety in the case of three factors:
Sec1(Seg(Pn1 ⊗ Pn2 ⊗ Pn

3 )).
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Chapter 1

Big Waring Problem

Let K be an algebraically closed field of characteristic zero. We will work on the projective space
Pn = Pn(K). The polynomial ring S := K[x0, . . . , xn] is a graduated ring and so we can write it
as K[x0, . . . , xn] =

⊕
d≥0 Sd where Sd =< xd

0, x
d−1
0 x1, . . . , x

d
n > is the vector space of homogeneous

forms of degree d. It is a well known fact that dimK(Sd) =

(
d + n

n

)
. In a geometric language

those vector spaces Sd are called Complete Linear Systems of hypersurfaces of degree d in Pn.
Sometimes we will write P(Sd) in order to mean the projectivization of Sd, therefore P(Sd) will be

a P(n+d
d )−1 whose elements will be classes of forms of degree d: [F ] ∈ P(Sd) with F ∈ Sd.

1.1 The Big Waring Problem

We want to introduce a number theory question presented by E. Waring in 1770 in [War]. He
stated without any proof that “every positive integer is sum of at most 9 positive cubes”, “every
positive integer is sum of at most 19 fourth powers”... Waring believed that for every d ∈ Z+ there
exists an integer g(d) such that every n ∈ N may be written as

n = ad
1 + · · ·+ ad

g(d).

In 1909 Hilbert proved that such a g(d) exists for every d ≥ 2 and he computed it.

An analogous problem can be formulated for homogeneous polynomials of Sd. It is the so called
Little Waring Problem:

“find the minimum s ∈ Z such that all forms F ∈ Sd are sum of at most s d-th powers
of linear forms.”

1



The Big Waring Problem

The problem we are interested in is a slightly different form of the little Waring problem, it is called
the Big Waring Problem and it is formulated as follows:

“Which is the minimum s ∈ Z such that the generic form F ∈ Sd is a sum of at most
s d-th powers of linear forms?”

F = Ld
1 + · · ·+ Ld

s

In order to know which elements of Sd can be written as sum of s d-th powers of linear forms,
we study the image of the map

φ : S1 × · · · × S1︸ ︷︷ ︸
s

−→ Sd, φ(L1, . . . , Ls) = Ld
1 + · · ·+ Ld

s. (1.1)

The Big Waring problem asks to find the smallest s such that Im(φd) = Sd (we just observe that
if we require dim(φd) = Sd we would solve the little Waring problem).

The map φ can be viewed as a polynomial map between affine spaces:

φ : As(n+1) −→ AN=(n+d
n ).

In order to know the dimension of the image of such a map we look at its differential

dφ|P : TP (As(n+1)) −→ AN .

Let P = (L1, . . . , Ls) ∈ As(n+1) and v = (M1, . . . ,Ms) ∈ TP (As(n+1)) ' As(n+1) where Li, Mi ∈ S1

for i = 1, . . . , s. Let us consider the following parameterizations t 7−→ (L1+M1t, L2+M2t, . . . , Ls +
Mst) of a line C passing through P whose tangent vector at P is M . The image of C via φ is
φ(L1 + M1t, L2 + M2t, . . . , Ls + Mst) =

∑s
i=1(Li + Mit)

d. The tangent vector to φ(C) in φ(P )
is limt→0

d
dt

(∑s
i=1(Li + Mit)

d
)

= limt→0

∑s
i=1 d(Li + Mit)

d−1Mi =
∑s

i=1 dLd−1
i Mi. Now, as v =

(M1, . . . ,Ms) varies in As(n+1), the tangent vectors we get span < Ld−1
1 S1, . . . , L

d−1
s S1 >.

Hence we can say:

Proposition 1.1.1. Let L1, . . . , Ls be linear forms in S = K[x0, . . . , xn], where Li = ai0x0 + · · ·+
ainxn and

φ : S1 × · · · × S1︸ ︷︷ ︸
s

−→ Sd, φ(L1, . . . , Ls) = Ld
1 + · · ·+ Ld

s;

then
rk(dφ)|(L1,...,Ls) = dimK < Ld−1

1 S1, . . . , L
d−1
s S1 > .

It is very interesting to have a look at how the problem of determining this dimension has been
solved, because the solution involves many algebraic and geometric tools.
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1.2 Inverse Systems

1.2.1 Definition and observations

This section is an exposition of inverse systems techniques, and it follows [Ge].

Definition 1.2.1. Let S = K[x1, . . . , xn] and R = K[y1, . . . , yn] be polynomial rings and consider
the action of R on S (called Apolarity of R on S) defined as follows:

yi ◦ xj =

(
∂

∂xi

)
(xj) =

{
0, if i 6= j
1, if i = j

;

i.e. we view the polynomials of R as “partial derivative operator” on S.

Now we can extend this action to the whole rings R, S by linearity and using properties of
differentiation:

Ri × Sj −→ Sj−i

ri × sj := ri ◦ sj

in particular

yα ◦ xβ =

{
0, if α � β;∏n

i=1
(bi)!

(bi−ai)!
xβ−α, if α ≤ β.

where xβ := xb1
0 · · ·xbn

n when β = (b1, . . . , bn) and bi ≥ 0, and also α = (a1, . . . , an) ≤ β iff ai ≤ bi

for all i = 1, . . . , n, that is equivalent to xα divides xβ in S.

Remarks:

• The action of R on S makes S a (non finitely generated) R-module (but the converse is not
true);

• the action of R on S lowers the degree;

• the apolarity action induces a non-singular K-bilinear pairing:

Rj × Sj −→ K ∀ j = 0, 1, . . .

that induces two bilinear maps; 1

1Let V ×W −→ K be a K-bilinear parity given by v × w −→ v ◦ w. It induces two K-bilinear maps:
φ : V −→ HomK(W,K) such that φ(v) := φv and φv(w) = v ◦w and χ : W −→ HomK(V,K) such that χ(w) := χw

and χw(v) = v ◦ w.
V ×W −→ K is not singular iff for all the bases {w1, . . . , wn} of W the matrix (bij = vi ◦ wj) is invertible.
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• Notice that if {yA} and {xB} are bases of Rj and Sj respectively, they are not exactly
dual bases. The dual bases of Rj and Sj are: {yA1 , . . . , yAt} and { 1

c1
xA1 , . . . , 1

ct
xAt} for an

appropriate choice of coefficients ci. So {y1, . . . , yn} in R1 is a dual base of {x1, . . . , xn}, base
of S1, with respect to the apolarity action, but for j > 1 this is no longer true.

Definition 1.2.2. Let I be a homogeneous ideal of R. The Inverse System I−1 of I is the R-
submodule of S containing all the elements of S annihilated by I.

Remarks:

• If I = (F1, . . . , Ft) ⊂ R and G ∈ R then G ∈ I−1 ⇔ F1 ◦ G = · · · = Ft ◦ G = 0. Finding
all such G’s means finding all the polynomial solutions for the differential equations defined
by the Fi’s, so one can notice that determining I−1 is equivalent to solve (with polynomial
solutions) a finite set of differential equations;

• I−1 is a graduated submodule of S but it is not necessarily multiplicatively closed and in
general I−1 is not an ideal of S.

We need now a digression on the Hilbert function.

1.2.2 Hilbert Function and Inverse Systems

For this paragraph we refer to [EH].
Let X ⊂ Pn(K) be a closed subscheme whose representative homogeneous ideal is I := I(X) ⊂

S. Let A = S/I be the homogeneous coordinate ring of X; Ad will be its degree d component.

Definition 1.2.3. The Hilbert Function of the scheme X is:

H(X, ·) : N→ N;

H(X, d) = dimK(Ad).

We can easy observe that

H(X, d) = dimK(Ad) = dimK(Sd)− dimK(Id).

Let us introduce the following theorem known as “Hilbert Theorem”:

Theorem 1.2.4. There exists an unique polynomial P (X, d) in the variable d (the Hilbert polyno-
mial) such that H(X, d) = P (X, d) for all sufficiently large d.
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Remark: The degree of the Hilbert polynomial is the dimension of X:

deg(P (X, d)) = dimK(X)

and so if dimK(X) = 0 then P (X, d) = constant = deg(X).
This observation will be useful in order to prove that the Hilbert function of a 0-dimensional

scheme X is such that H(X, d) = H(X, d0) for certain d0 and for any d ≥ d0.

Definition 1.2.5. Let X ⊂ Pr be an n-dimensional projective scheme, and let lc(P (X, d)) be the
leading coefficient of P (X, d), then the degree of X is

deg(X) = n! · lc(P (X, d)). (1.2)

Remark: If X is a 0-dimensional scheme of degree δ then P (X, d) = δ (in general one has
H(X, d) ≤ δ).

In our work the importance of inverse systems will be given by the following theorem, for a
particular choice of the ideal I:

Theorem 1.2.6. The dimension of the part of degree d of the inverse system of an ideal I ⊂ R is
the Hilbert function of R/I in degree d:

dimK(I−1)d = codim(Id) = H(R/I, d) . (1.3)

Remark:

• (I−1)d
∼= I⊥d . 2

• if I is a monomial ideal then I⊥d =< monomials of Rd that are not in Id >

• (I ∩ J)−1 = I−1 + J−1.

In order to discover which kind of ideals we need to consider to solve the big Waring problem
via inverse system we need to introduce the study of zero-dimensional schemes.

2If V ×W −→ K is a non degenerate bilinear form and V1 is a subspace of W , then V ⊥1 is a subspace of W and
precisely: V ⊥1 = {w ∈W/v ◦w = 0 ∀ v ∈ V1} = {w ∈W/χw(V1) = 0}. Let V ×W −→ K be non singular simmetry
with dimK(V ) = dimK(V1) = t, then dimK(V ⊥1 ) = n− t.
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1.3 Reduced 0-dimensional schemes

Let X = {P1, . . . , Ps} ⊂ Pn a set of s distinct points and ℘i ⊂ S = K[x0, . . . , xn] be the prime ideals
corresponding to the point Pi with i = 1, . . . , s. With X we indicate the projective 0-dimensional
scheme whose support is X and with representative ideal I = ℘1∩ · · ·∩℘s. Moreover if we indicate
with Id and Ad the degree d part of an ideal I and a ring A respectively, then I =

⊕
d≥0 Id and the

coordinate ring of X is A(X) := S/I =
⊕

A(X)d.
So the Hilbert function of X is

H(X, d) = dimK(A(X)d) = dimK(Sd)− dimK(Id).

1.3.1 Hilbert function of reduced 0-dimensional schemes

We will consider an example of Hilbert function of simple points in the plane (sometime we say
“simple points” instead of “reduced 0-dimensional schemes”).

Example: Let X = {P1, P2, P3, P4} ⊂ P2. We already know that P (X, d) = 4.
If we want to study the Hilbert function of X in any degree d we have to distinguish three cases:

1. X contained in a line L having equation l = 0

• The only line containing X is L, so H(X, 1) = dimK(S1)− dimK(I1) = 3− 1 = 2.

• If q = 0 is the equation of a plane conic containing X then, by Bezout Theorem, q
must be identically zero on L, i.e. q = 0 gives the union of L with another line, and
the equations of the conics containing X give the tridimensional space of the forms lm,
m ∈ S1. Then H(X, 2) = dimK(S2)− dimK(I2) = 6− 3 = 3.

• Suppose that d ≥ 3.
Let X ′ ⊂ X be a subscheme of X with support on three points; consider the curves
made by d lines, three of them passing through a different point of X ′ each. Such a
curve is of degree d, it contains X ′ but it does not contain X. Moreover we can find
such a curve for any X ′ ⊂ X whose support is made by three points. This implies that
the vanishing in 4 points imposes 4 independent conditions to the forms of degree d, so
H(X, d) = 4 for all d ≥ 3.

2. Only three points on a line.

• There is not any linear form in I(X)⇒ H(X, 1) = 3.
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• With the same argument of the previous case, all plane quadrics containing three points
on L must contain L; this means that all quadrics containing X are union of L and
another line through the fourth point. Since the linear space corresponding to the lines
through the fourth point is 2-dimensional, the space of the quadrics containing X is
2-dimensional, then H(X, 2) = 6− 2 = 4.

• With the same argument of the previous case one can see that H(X, d) = 4 for all d ≥ 3
(better: since H(X, 2) = 4 we can conclude that H(X, d) = 4 for all d ≥ 2).

3. No three points on a line.

• the scheme X does not lie on a line so H(X, 1) = 3.

• For any three points of X one can find a quadric through them not containing the fourth
point, so X imposes four independent conditions to quadrics and H(X, d) = 4 for all
d ≥ 2.

We treat now the general case of s simple points on Pn.

Definition 1.3.1. With Sd(P1, . . . , Ps) we indicate the vector subspace of Sd whose elements are
forms of degree d which are zero at the points P1, . . . , Ps ∈ Pn.

The goal is to write the dimension of Sd(P1, . . . , Ps) ⊂ K[x0, . . . , xn]d in terms of Hilbert func-
tion.

Let M1, . . . ,MN , with N =
(

d+n
n

)
, be a monomial base of Sd: if F ∈ Sd then F = c1M1 + · · ·+

cNMN with ci ∈ K for all i = 1, . . . , N .
Let P1, . . . , Ps ∈ Pn; the degree d forms vanishing on those points are the solutions of the following
linear system 

M1(P1)c1 + · · ·+ MN(P1)cN = 0
...
M1(Ps)c1 + · · ·+ MN(Ps)cN = 0

. (1.4)

LetMd be the matrix defined as follows:

Md =

 M1(P1) · · · MN(P1)
...

...
M1(Ps) · · · M(Ps)

 .

Therefore (1.4) can be written: Md ·

 c1
...

cN

 = 0.

Now the linear solutions of those equations gives exactly the vector space Id, and dimK(Id) =
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N − rk(Md) =
(

d+n
n

)
− rk(Md); hence

H(S/I, d) =

(
d + n

n

)
− dimK(Id) = rk(Md).

For any s we can choose P1, . . . , Ps such that the matrix Md has maximal rank for all d ∈ Z+,
since the s-uples P1, . . . , Ps for which the rank ofMd is not maximum form a closed set (where all
the maximal minors are zero):

rk(Md) = min

{
s,

(
d + n

n

)}
.

In conclusion we have:

Proposition 1.3.2. If X = {P1, . . . , Ps} ⊂ Pn is the support of a projective 0-dimensional reduced
scheme X where the Pi’s are generic, then:

H(X, d) = min

{
s,

(
d + n

n

)}
.

Now we try to study the non-reduced case, which turns out to be not so simple.

1.4 Non reduced 0-dimensional schemes

Let us introduce the problem of computing the Hilbert function of a non-reduced 0-dimensional
scheme with some examples.

1.4.1 Examples

The elements of Sd(P1, . . . , Ps), defined as in 1.3.1, correspond to hypersurfaces of degree d which
pass through P1, . . . , Ps.

It is clear that if the points P1, . . . , Ps are in general position the dimension of Sd(P1, . . . , Ps) is

dimK(Sd(P1, . . . , Ps)) =

[(
n + d

d

)
− s

]+

where [x]+ := max{x, 0}.
If the points are not in general position then:

dimK(Sd(P1, . . . , Ps)) ≥
[(

n + d

d

)
− s

]+
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Definition 1.4.1. We call the number
[(

n+d
d

)
− s
]+

the Virtual Dimension of Sd(P1, . . . , Ps).

Notice that this is actually the value of the Hilbert Polynomial of the reduced scheme X given
by the Pi’s in general position.

Now we want to compute the dimension of the subspace of Sd of hypersurfaces which not only
pass through some fixed points Pi but also have some singularities in those Pi: this fact is equivalent
to find the polynomials of degree d which vanish in Pi with all their partial derivatives up to a
certain order.

Notation: With Sd(P
α1
1 , Pα2

2 , . . . , P αs
s ) we indicate the subspace of Sd of hypersurfaces of degree

d which pass through Pi, i = 1, . . . , s, and which have in those points singularities of multiplicity
grater or equal to αi.

What we expect is that each Pαi
i imposes

(
n+αi−1

n

)
conditions. So we can ask whether choosing

generic P1, . . . , Ps, we have:

dimK(Sd(P
α1
1 , . . . , P αs

s )) =

[(
d + n

n

)
−

s∑
i=1

(
n + αi − 1

n

)]+

? (1.5)

In this case we do not have an immediate answer as in case of simple points where if P1, . . . , Ps are
in general position, then the dimension is always the expected one. We can only say that

dimK(Sd(P
α1
1 , . . . , P αs

s )) ≥

[(
d + n

n

)
−

s∑
i=1

(
n + ni − 1

n

)]+

.

There are some simple counterexamples:

1. Let us consider S2(P
2
1 , P 2

2 ) ⊂ K[x0, x1, x2]2.
If (1.5) were true it would happen that

dimK(S2(P
2
1 , P 2

2 )) =

[(
2 + 2

2

)
− 2

(
3

2

)]+

= 6− 6 = 0

but this is clearly false: there is always a line through 2 points of P2 and so the double line
through P1 e P2 belongs to S2(P

2
1 , P 2

2 ) and this implies that dimK(S2(P
2
1 , P 2

2 )) = 1 6= 0 (it is
easy to see that there cannot be another conic in the system).

2. Let us consider S4(P
2
1 , . . . , P 2

5 ) ⊂ K[x0, x1, x2]4.
If (1.5) were true it would happen that

dimK(S4(P
2
1 , . . . , P 2

5 )) =

(
4 + 2

5

)
− 5 ·

(
3

2

)
= 15− 15 = 0
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but there is always a plane conic passing through 5 points so the double conic through
P1, . . . , P5 is a plane quartic through P 2

1 , . . . , P 2
5 and this implies that dimK(S4(P

2
1 , . . . , P 2

5 )) ≥
1 6= 0.

1.4.2 Fat points

Definition 1.4.2. Let P1, . . . , Ps ∈ Pn; ℘1, . . . , ℘s ⊂ S = K[x0, . . . , xn] be the associated prime
ideals and α1, . . . , αs ∈ N. The projective scheme defined by the ideal

I = ℘α1
1 ∩ · · · ∩ ℘αs

s

is called a scheme of Fat Points in Pn and we denote it as:

X = (P1, . . . , Ps; α1, . . . , αs).

Remark: Not all zero-dimensional schemes are made of fat points; a 0-dimensional scheme whose
coordinate ring is K[x0, x1]/(x

3
0, x

2
1) is neither a reduced scheme nor a fat point because it is not

possible to write its representative ideal I = (x3
0, x

2
1) as the intersection of some powers of ideals of

points.

Our goal is the study of H(S/I, d) when S/I is the coordinate ring of a fat point, but we think
that it can be useful to have a look on what happens also with those non-reduced 0-dimensional
schemes which are not fat points.

We will look first at what happens in the affine case, but we want to recall first a few remarks
on the degree of a scheme: the degree we have defined in (1.2) is given for a projective scheme but
we are going to work with affine schemes. Now we will give a general definition and we will see
later that it is equivalent to (1.2), thus implying that the degree of a scheme is independent on the
immersion.

1.4.3 Degree of a scheme

Recall that in paragraph 1.3.1 we have defined the degree of a projective n-dimensional scheme X
on Pr as deg(X) = n!lc(P (X, d)) and if X is 0-dimensional then deg(X) = P (X, d) = δ. Consider
a scheme X embedded in Pn; let S = K[x0, . . . , xn] be the polynomial ring. We now denote with
Xred the reduced scheme whose support is the point P = [1, 0, . . . , 0] ∈ Pn. Its representative ideal
is the prime ideal m = (x1, . . . , xn) and its Hilbert function is:

H(Xred, d) = dim(Sd)− dim(md) =

(
d + n

n

)
−
((

d + n

n

)
− 1

)
= 1.
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Suppose now to have a 0-dimensional scheme X whose support is P but X is not necessarily
reduced. We want to know its degree. We have to study S/I, where I is the representative ideal
of X. Let us introduce the following Proposition (See Propos. I.7.4. on [Hart]):

Proposition 1.4.3. Let M be a finitely generated graded module over a noetherian graded ring S.
Then there exists a filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ M r = M by graded submodules, such that
for each i, M i/M i−1 ' (S/℘i)(li) where ℘i is a homogeneous prime ideal of S, and li ∈ Z. The
filtration is not unique, but for any such filtration we have:

1. if ℘ is a homogeneous prime ideal of S, then ℘ ⊇ Ann(M) ⇔ ℘ ⊇ ℘i for some i. In
particular, the minimal elements of the set {℘1 . . . , ℘r} are just the minimal primes of M ,
i.e., the minimal elements in the set of all primes containing Ann(M);

2. for each minimal prime of M , the number of times which ℘ occurs in the set {℘1, . . . , ℘r} is
equal to the length of M℘ over the local ring S℘ (and hence is independent on the filtration).

Definition 1.4.4. If ℘ is a maximal prime of a graded S-module M , the “multiplicity” of M at ℘
is the length of M℘ over S℘.

Considering a 0-dimensional non reduced scheme whose support is only one point and let I be
its associated ideal. Then the module S/I has only one associated prime ℘i. Then it must exist a
filtration

S/I = M = M r ⊇ · · · ⊇M1 = {0} (1.6)

such that M i/M i−1 ' S/m = K. So

dimK(S/I) = r = l(S/I). (1.7)

Consider now the following exact sequence

0→M r−1 →M → S/m→ 0.

One has that for a sufficiently large d the Hilbert function H(M, d) = H(M r−1, d) + H(S/m, d);
since H(S/m, d) = 1 we have H(M, d) = H(M r−1, d) + 1.
Also
H(M1, d) = H(M0, d) + 1 = H({0}, d) + 1 = 0 + 1 = 1 and
H(M2, d) = H(M1, d) + 1 = 1 + 1 = 2
then, with d >> 0:

H(M, d) = r; (1.8)
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but when d >> 0, if X is a 0-dimensional scheme, it also happens that

H(M, d) = P (M, d) = deg(X). (1.9)

By (1.6), (1.7), (1.8) and (1.9) we can conclude that if X is a zero-dimensional scheme whose
support is only one point then

deg(X) = H(S/I, d) = r = dimK(S/I) = l(S/I)

where l(S/I) is the length of the filtration (1.6).

Now we are ready to study the affine case (see [EH]).

1.4.4 A few remarks on 0-dimensional schemes

After this digression on the degree of a scheme we want to give some examples of what a non
reduced 0-dimensional scheme of low degree can be. We will work in the affine case, since for
0-dimensional schemes this does not make much difference.

Notation: Let X be an affine 0-dimensional scheme. In this paragraph, but only here, we will say
that X is a “d-uple” point if deg(X) = d.

A double point in A1:

We consider the scheme X = Spec(K[x]/(x2)) viewed as a subscheme of A1 via the map induced
by the quotient map K[x] → K[x]/(x2). The support of X is only one point but X is different
from Spec(K) = Spec(K[x]/(x)), both as a subscheme of A1 and as an abstract scheme.

• As an abstract scheme:

there exist on X regular functions (for example x) which are not the zero function, but which
assume the value 0 at the only point of X.

• As a subscheme of A1:

a form f ∈ K[x] on A1 vanishes on X if and only if both f and it is first derivative f ′ vanish
at 0. To give a function on X is equivalent to give the values at 0 of both a function on A1

and of its first derivative. That’s why X is called “first order neighbourhood of 0 in A1”.

In general the ideal (xn) ⊂ K[x] defines a subscheme X ⊂ A1 with coordinate ring K[x]/(xn);
a function f(x) on A1 becomes zero on X if and only if f vanishes in 0 with all its first n − 1
derivatives.
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A double point in A2

Let X be the scheme we saw in the previous example: X = Spec(K[x]/(x2)). Let Y be a subscheme
of A2 = Spec(K[x, y]) supported at the origin and isomorphic to X. Let R be its coordinate ring
and ϕ : K[x, y] → R the surjection which defines the inclusion Y ⊂ A2. Let m be the unique
maximal ideal of R; its inverse image via ϕ is the ideal (x, y). By definition of R the square m2 is
0, hence the map ϕ vanishes on (x, y)2 and so it factorizes through a map ϕ : K[x, y]/((x, y)2) →
R. Equivalently, Y must be contained in the subscheme Spec(K[x, y]/(x2, xy, y2)) but the ring
K[x, y]/(x2, xy, y2) is a three-dimensional vector space on K, while R is only two-dimensional.
Therefore ker(ϕ) contains a non-zero homogeneous linear form αx + βy for some α, β ∈ K. Let us
define

Xα,β := Spec(K[x, y]/(x2, xy, y2, αx + βy)) ↪→ A2.

It can be characterized as:

• the subscheme of A2 associated to the ideal of the functions f ∈ K[x, y] vanishing in the
origin and having partial derivatives such that β ∂f

∂x
− α∂f

∂y
= 0;

• the image of X ⊂ A1 by the inclusion A1 ↪→ A2, x 7→ (βx,−αx).

The scheme Xα,β is classically viewed as the point (0, 0) and another point “infinitely near to (0, 0)”
in the direction specified by the line defined by αx + βy = 0.

This fact leads us to observe that a zero-dimensional scheme of degree 2 in A2 must be isomorphic
to K[x]/(x2), in fact, as we have just seen, in our case R = K[x,y]

(x2,xy,y2,αx+βy)
with (α, β) 6= (0, 0); and

if we suppose β 6= 0 then R = K[x,y]
(x2,xy,y2,α′x−y)

' K[x]
(x2,x(α′x),(α′x)2,0)

' K[x]
(x2)

.
How can we find schemes as Xα,β? The answer is: as curve intersections or as the limit of

reduced subschemes.

• As curves intersections:

Example: Consider a line L and a conic C tangent to each other:

– if we consider their intersection just set theoretically, we will miss the point that this is
a “double intersection”;

– if we try to view C∩L as a “point of multiplicity 2”, this is not satisfactory too, because
in this way we miss on which line the scheme is;

– the satisfactory definition is that C ∩L is the subscheme of A2 defined by IC + IL where
IC and IL are the defining ideals of C and L respectively. (For example: the ideal
(y) + (y − x2) corresponds to the scheme X0,1 = Spec(K[x, y]/(x2, y)).)
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• As limit of reduced subschemes:

Consider the scheme X whose support is a set of two points (0, 0), (a, b) in the plane A2 and
X = Spec(K[x, y]/((x, y) ∩ (x− a, x− b))).
Suppose that (a, b) moves along a curve (a(t), b(t)), where a(t) e b(t) are polynomials in the
variable t, such that (a(0), b(0)) = (0, 0); i.e. we are working with Xt = {(0, 0), (a(t), b(t))}.
We want to define X such that

X = lim
t→0

Xt.

Let us define X by imposing that its representative ideal is the limit of It = (x, y) ∩ (x −
a(t), y − b(t)) for t→ 0. We take this limit as a codimension 2 subspace in K[x, y] viewed as
vector space on K.
We can observe that It = (x2 − a(t)x, xy − b(t)x, xy − a(t)y, y2 − b(t)y) where limt→0(x

2 −
a(t)x) = x2, limt→0(xy − b(t)x) = xy, limt→0(xy − a(t)y) = xy and limt→0(y

2 − b(t)y) = y2;
so those polynomials belong to I = limt→0 It.
We can also observe that It contains all linear forms (a(t)y − b(t)x) = ((xy − b(t)x)− (xy −
a(t)y)), therefore, for t 6= 0, also a(t)y−b(t)x

t
= a1y− b1x+ t(· · · ). The ideal I contains the limit

limt→0
a(t)y−b(t)x

t
= a1y + b1x then I ⊃ (x2, xy, y2, a1y − b1x) where (x2, xy, y2, a1y − b1x) has

codimension 2 as vector space in K[x, y] then I = (x2, xy, y2, a1y−b1x) so limt→0(Xt) = Xα,β,
with α = b1 e β = −a1.

The subscheme X ⊆ A2 “does not forget” the direction that approximates (a(t), b(t)); we can
look at it as the origin with a tangent direction along the line with equation a1y − b1x = 0.
This line is the limit of the set of lines that connect (0, 0) and (a(t), b(t)) i.e. the tangent line
to the curve parameterized by (a(t), b(t)) in the origin.

One double points on K are always isomorphic to another since S ' K[x]/(x2); but this is no
longer true if we have higher multiplicity.

Triple Point

Let Z = Spec(K[x1, . . . , xn]/I) be a zero-dimensional scheme of degree 3 with support at the origin;
then either

Z ' Spec(K[x]/(x3)) =: X

or
Z ' Spec(K[x, y]/(x2, xy, y2)) =: Y

and
X � Y

14
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However, any triple point is isomorphic to either of these. In particular all rings K[x1, . . . , xn]/I of
a tridimensional vector space on K can be generated over K by two linear forms in the xi. From
a geometric point of view this means that any triple point in An lies on a A2 ⊆ An. In A2 we can
realize two kind of triple points: those isomorphic to X which come from 3 points approaching each
other along a non-singular curve, and those isomorphic to Y which are realized by the approaching
of two points to a third one along two different directions.

Quadruple Point

We have just observed that a triple point can always be contained in a plane: this is no longer
true for a quadruple point: for example consider: K[x, y, z]/(x, y, z)2; its maximal ideal cannot be
generated by two elements.

Now we come back to the main goal of this section: studying fat points and their postulation (i.e.
their Hilbert function).

1.4.5 Fat Points

The main reference of this section is [Ge].

Notation: In this section and in the following ones, when we will say “d-uple point” we will mean
a fat point (P, d). Sometime we will call (P, d) also a “d-fat point”.

We begin with the study of a single point.

One single point

Let us suppose we have a projective scheme whose support is P = [1, 0, . . . , 0] ∈ Pn and let
℘ = (x1, . . . , xn) ⊂ S = K[x0, . . . , xn] be its representative (prime) ideal.
Let F ∈ ℘ be a homogeneous polynomial of degree d; we dehomogenize it with respect to x0 and
we obtain f ∈ S, with f = f0 + f1 + · · ·+ fn e deg(fi) = i. Since F ∈ ℘ then

f0 = 0 and P = 0 ∈ An,

f1 = a1x1 + · · ·+ anxn =

(
∂f

∂x1

)∣∣∣∣
0

x1 + · · ·+
(

∂f

∂xn

)∣∣∣∣
0

xn.

We recall that if the ∂f
∂xi

∣∣∣
0
’s are not all zero, then P is said to be a “Simple Point” of V (f) and

f1 is the equation of TP (V (f)).
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Definition 1.4.5. If ℘ = (x1, . . . , xn) ⊂ S, a polynomial f belongs to ℘2 if and only if
(

∂f
∂xi

)∣∣∣
0

= 0

for all i = 1, . . . , n and this is exactly the definition of a singular point of V (f) (in this case it is
at least a double point).

Therefore if I = ℘2 then Id contains all forms of degree d having a singularity at P . This vector
space gives us a classical example of a linear system of hypersurfaces in Pn.

Consider now the Taylor Polynomial of f at 0.
Let aαβyαyβ be a term of f2, then

aαβ =


(

∂f
∂xα∂xβ

)∣∣∣
0

if α 6= β

1
2!

(
∂f
∂x2

α

)∣∣∣
0

if α = β
.

The polynomial f belongs to ℘3 if and only if all its second partial derivatives vanish in P ; that is
equivalent to say that P is a singular point of V (f) of multiplicity greater or equal then 3.

More generally:

Definition 1.4.6. Let P ∈ Pn, ℘ ⊂ S be its representative prime ideal and f ∈ S. Then the order
of all partial derivatives of f vanishing in P is almost t if and only if f ∈ ℘t+1 i.e. iff P is a
singular point of V (f) of multiplicity grater or equal than t + 1.

Therefore:

H(S/℘t, d) =


(

d + n
n

)
, if d < t(

t− 1 + n
n

)
, if d ≥ t

. (1.10)

It is easy to conclude that

Proposition 1.4.7. One t-fat point of Pn has the same Hilbert function of
(

t−1+n
n

)
generic distinct

points of Pn.

Remark: By (1.10) we can notice that the degree of a t-fat point in Pn is not the same of the
degree of a t-fat point of Pn+1, in fact if ℘1 ⊂ K[x0, . . . , xn] and ℘2 ⊂ K[x0, . . . , xn+1] are two prime
ideals representing two points P1 ∈ Pn and P2 ∈ Pn+1, respectively, then H(K[x0, . . . , xn]/℘t

1, d) 6=
H(K[x0, . . . , xn+1]/℘

t
2, d) for all d > 0.

On the contrary let X be a t-fat point of Pn with coordinate ring K[x0, . . . , xn]/I, then the degree
of X is dim((K[x0, . . . , xn]/I)d) for d >> 0. Suppose now to embed X into Pn+1; what happens
is that the degree of X does not change, in fact deg(X ↪→ Pn) = dim((K[x0, . . . , xn]/I)d) =
dim((K[x0, . . . , xn+1]/(I + K[x0, . . . , xn]xn+1))d) = deg(X ↪→ Pn+1); but now X ↪→ Pn+1 is no
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longer a fat point of Pn+1.
Similarly the degree of a scheme X does not change if we consider X embedded before in the affine
space An and after in the projective space Pn: we can indifferently study the degree of the scheme
we are interested in either in An or in Pn.
Form this observation we can notice that, for example, the degree of X = Spec(K[x, y]/(x, y)2) ⊂ A2

is the same as the degree Y = Spec(K[x]/(x3)) ⊂ A1 but X is 2-fat point of A2 and Y is a 3-fat
point of A1 (we are using an abuse of notation: in the definition 1.4.2 a fat point is a projective
scheme; when we say a that X is a t-fat point of An we are meaning that the coordinate ring of X
is isomorphic to K[x1, . . . , xn]/℘t, where ℘ is the maximal ideal of K[x1, . . . , xn]).

Example: Let P1 = (0, t), P2 = (t, 0), P3 = (t, t) ∈ A2(K) be the support of a scheme with
representative ideals (x1, x2−t), (x1−t, x2), (x1−t, x2−t) respectively. The scheme X = P1∪P2∪P3

has as representative ideal I = (x1, x2− t)∩ (x1− t, x2)∩ (x1− t, x2− t) which can be written also

I = (x1(x1 − t), x2(x2 − t), (x1 − t)(x2 − t)).

Now the limit of I for t→ 0 is:

limt→0I = (x2
1, x

2
2, x1x2) = (x1, x2)

2

which is the ideal of a double fat point.

Example: Let Y be the scheme of P2 with support P = [0, 0, 1] and representative ideal I = ℘3

and so with coordinate ring A = K[x0, x1, x2]/(x
3
0, x

2
0x1, x0x

2
1, x

3
1).

Then dimK(A) = dim < 1, x0, x1, x2
0, x0x1, x2

1 >= 6.
In classical algebraic geometry those schemes are called “infinitesimal neighbourhoods” rather

then “fat points”: a fat point with representative ideal ℘t was called “(t − 1)-th infinitesimal
neighbourhood”.
Let ℘ be a prime ideal of S = K[x0, . . . , xn] and the representative ideal of a point P ∈ Pn. An

element f of ℘2 is such that f(P ) = 0 and also
(

∂f
∂xi

)∣∣∣
P

= 0 for i = 0, . . . , n. Those n+1 conditions

can be interpreted as n independent points infinitesimally near to P .
A triple point is characterized by the vanishing of f(P ) and of all its first and second partial
derivatives. Besides the n conditions on first derivatives, one has also those ones from the vanishing
of all the second derivatives that can be viewed as another set of points infinitesimally near to P
but not “so near” as those one individuated by the vanishing of first partial derivatives.

Consider Proj(S/℘k), the required order of vanishing for partial derivatives increases; so we can
think at those schemes as a series of neighbourhoods around P whose “radius” become grater while
the order of vanishing partial derivatives increases.
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More than one Fat Point

Let X = (P1, . . . , Ps; α1, . . . , αs) be a scheme made of fat points. We want to study the Hilbert
function of such a scheme.
When s = 1 then the Hilbert function of S/℘t is the same of that of

(
t−1+n

n

)
distinct points of Pn

in general position.
If we have more than one point what happens is not the same: the Hilbert function of s αi-fat

points in general IS NOT equal to the Hilbert function of
∑s

i=1

(
αi−1+n

n

)
distinct points of Pn in

general position.

Examples:

1. Let P1, P2 be two points of P2, ℘i ⊂ S = K[x0, x1, x2] their associated prime ideals and let
α1 = α2 = 2 so that I = ℘2

1 ∩℘2
2. Is the Hilbert function of I equal to the Hilbert function of

6 points of P2 in general position? No, because the Hilbert function of 6 general points of P2

is 1 3 6 6 . . . and this means that I should not contain conics, but this is clearly false because
the double line through P1 and P2 is contained in I (we refer to the first example of Section
1.4.1).

2. Let P1, . . . , P5 be five points of P2 in general position and ℘1, . . . , ℘5 ⊂ S = K[x0, x1, x2] the
corresponding prime ideals. If I = ℘2

1 ∩ · · · ∩ ℘2
5 then its Hilbert function is not equal to the

Hilbert function of 5 · 3 = 15 points of P2 in general position, which is 1 3 6 10 15 15 . . . In
fact I contains the double conic (a quartic) through P1, . . . P5 (we refer to the second example
of Section 1.4.1).

3. Another example (see [Mi]) is given by plane curves of degree 93 with multiplicity 57
at one point and 28 at other seven. The virtual dimension of S93(P

57
0 , P 28

1 , . . . , P 28
7 ) is[

0, 93(96)
2
− 57(58)

2
− 7(28)(29)

2

]+
= [0,−31]+ = 0.

Then we expect that dim(S93(P
57
0 , P 28

1 , . . . , P 28
7 )) = 0. But there is always a plane cubic

through seven points which is double in one of them, moreover there is always a sestic through
8 points which is triple at one of them. Let Cj, j = 1, . . . , 7, be seven cubics with a double point
at P0 and not passing through Pj. Let also S be a sestic with a triple point in P0 and a double
one in the other seven Pi. Then 5S + 3

∑7
j=1 Cj gives an element of S93(P

57
0 , P 28

1 , . . . , P 28
7 ),

hence S93(P
57
0 , P 28

1 , . . . , P 28
7 ) 6= {0}.

We gave those examples only in order to show that there are many problems in computing the
dimension of Sd(P

α1
1 , . . . , P αs

s ). The general problem is not yet solved: there is only a conjecture
due first to Beniamino Segre (rephrased also by B. Harbourne, A. Gimigliano, A. Hirschowitz and
others) which describes how the element of Sd(P

α1
1 , . . . , P αs

s ) should be done when it has not the
expected dimension.
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Definition 1.4.8. Let P1, . . . , Ps be s points of Pn in general position. If Sd(P
α1
1 , . . . , P αs

s ) is a
linear system whose dimension is not the expected one, it is said to be a Special Linear System.

Conjecture 1.4.9. If Sd(P
α1
1 , . . . , P αs

s ) ⊂ K[x0, x1, x2] is a special linear system, then there is a
fixed double component for all curves through (P1, . . . , Ps; α1, . . . , αs).

The considerations on Inverse Systems led us to the equality (1.3). By applying it to an ideal
of fat points we can translate the problem of determining the dimension of Sd(P

α1
1 , . . . , P αs

s ) to a
problem of inverse systems. If I = ℘α1+1

1 ∩· · ·∩℘αs+1
s ⊂ S = K[x0, . . . , xn] with ℘i prime ideals of the

points P1, . . . , Ps ∈ Pn and Pi = [pi0 , pi1 , . . . , pin], LPi
= pi0y0+pi1y1+· · ·+pinyn ∈ R = K[y0, . . . , yn]

then

(I−1)d =

{
Rd, for d ≤ max{αi}
Ld−α1

P1
Rα1 + · · ·+ Ld−αs

Ps
Rαs , for d ≥ max{αi + 1}

and also

H(S/I, d) = dimK(I−1)d =

{
dimK(Rd), for d ≤ max{αi}
dimK(< Ld−α1

P1
Rα1 , . . . , L

d−αs
Ps

Rαs >), for d ≥ max{αi + 1} .

(1.11)
This last result gives a link between the Hilbert function of a set of fat points and ideals

generated by sums of powers of linear forms. This implies that:

Proposition 1.4.10. If I = ℘α1+1
1 ∩ · · · ∩ ℘αs+1

s ⊂ S = K[x0, . . . , xn] then (I−1)d ⊂ Rd =
K[y0, . . . , yn]d is the d-th graded part of the ideal (Ld−α1

P1
, . . . , Ld−αs

Ps
) ⊂ R for d ≥ max{αi + 1, i =

1, . . . , s}.

Finally the link between the big Waring problem and inverse systems is clear. If in (1.11) all
the αi are equal to 1, the dimension of the vector space < Ld−1

P1
R1, . . . , L

d−1
Ps

R1 > is at the same
time the Hilbert function of the inverse system of a scheme of s double fat points, and the rank of
the differential of the application φ defined in (1.1).

Thus we can say:

Theorem 1.4.11. Let L1, . . . , Ls be linear forms of R = K[y0, . . . , yn] such that:

Li = ai0y0 + · · ·+ ainyn
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and let P1, . . . , Ps ∈ Pn such that:
Pi = [ai0 , . . . , ain ].

Let also ℘i ⊂ S = K[x0, . . . , xn] be the prime ideal associated to Pi for i = 1, . . . , s and

φ : R1 × · · · ×R1︸ ︷︷ ︸
s

−→ Rd

with
φ(L1, . . . , Ls) = Ld

1 + · · ·+ Ld
s;

then
rk(dφ)|(L1,...,Ls) = dimK < Ld−1

1 R1, . . . , L
d−1
s R1 > .

And by (1.3), we have:

dim(< Ld−1
1 R1, . . . , L

d−1
s R1 >) = H

(
S

℘2
1 ∩ · · · ∩ ℘2

s

, d

)
.

In conclusion solving the big Waring problem is equivalent to finding the minimum s ∈ Z such

that H
(

S
℘2

1∩···∩℘2
s
, d
)

=
(

n+d
d

)
. This problem was completely solved by J.Alexander e A.Hirschowitz

(see [AH]):

Theorem 1.4.12. (J. Alexander, A. Hirschowitz) Let X = {P1, . . . , Ps} be a set of s generic
points in Pn. Let ℘i ⊆ S = K[x0, . . . , xn] the prime ideal associated to Pi for i = 1, . . . , s and let
also d ≥ 3. Then:

H

(
S

℘2
1 ∩ · · · ∩ ℘2

s

, d

)
= min{(n + 1)s, dimK(Sd)}

except for:

• n = 2, d = 4, s = 5;

• n = 3, d = 4, s = 9;

• n = 4, d = 4, s = 14;

• n = 4, d = 3, s = 7.

Another very interesting fact is that the big Waring problem has also a geometric interpretation
and the solution via Inverse System allows to solve this other problem too. We are going to present
it in the next section.
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1.5 The geometric point of view

1.5.1 Veronese variety

The geometric object that is related with the previous problem is the “Veronese variety”. We recall
that the Veronese variety is the image of the following embedding:

νd : Pn ↪→ P(n+d
d )−1

(u0 : . . . : un) 7→ (ud
0 : ud−1

0 u1 : ud−1
0 u2 : . . . : ud

n).

This embedding can also be dually characterized as:

νd : P(S1) = (Pn)∗ ↪→ P(Sd) =
(
P(n+d

d )−1
)∗

[L] 7→ [Ld].

Therefore we can think to the Veronese variety as the variety that parameterizes d-th powers of
linear forms. If we want to study the variety that parameterizes sums of s d-powers of linear forms
of K[x0, . . . , xn] we have to consider the (s− 1)-secant variety of νd(Pn).

In the next section we will study the Secant Variety of a projective variety and the problem of
finding its dimension.

1.5.2 Secant Variety

Definition 1.5.1. Let X ⊂ PN be a projective variety of dimension n; we define Secs−1(X) the
(s− 1)-secant variety of X as follows:

Secs−1(X) :=
⋃

P1,...,Ps∈X

< P1, . . . , Ps >

where < P1, . . . , Ps > is the (s− 1)-projective space containing P1, . . . , Ps ∈ X.

In other words Secs−1(X) parameterizes sums of s elements of X and moreover the (s−1)-secant
variety of X is a projective variety.

By definition Sec0(X) = X. It is clear that if X is not degenerate than X  Sec1(X). The first
secant variety of X is obtained by adding to X all the points which are linearly spanned by a pair
of points of X and then taking closure of this set. If Sec1(X) is not linear we can continue in this
process of partial linearization of X and we construct Sec2(X), and so on, until we find an s ∈ N
such that Secs−1(X) = PN . Finally we have the following obvious chain of inclusions (if X is not
degenerate):

X = Sec0(X) ⊂ Sec1(X) ⊂ Sec2(X) ⊂ · · · ⊂ Secs−1(X) = PN .
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As consequence:

n = dim(X) < dim(Sec1(X)) < dim(Sec2(X)) < · · · < dim(Secs−1(X)) = N.

Definition 1.5.2. The smallest s ∈ Z such that Secs−1(X) = PN is the Typical Rank of X.

The typical rank of X is an invariant of the embedded variety X.

Example: If we consider the d-uple Veronese embedding of Pn it can be viewed as the subset of
K[x0, . . . , xn]d made by all forms which can be written as d-powers of linear forms. From this point
of view the typical rank s of the Veronese variety is the minimum integer such that the generic
form of degree d in n + 1 variables is a linear combination of s powers of linear forms in the same
number of variables.

Example: Let us consider the Segre product as the image of the following map:

νn,m : Pn × Pm ↪→ Pnm+n+m

νn,m((x0, . . . , xn), (y0, . . . , ym)) = (x0y0, x0y1, . . . , xnym).
(1.12)

The Segre product is then the subset of ((n + 1) × (m + 1))-matrices having rank equal to 1.
Therefore the typical rank s of νn,m(Pn × Pm) is the minimum integer s such that the generic
matrix of order (n + 1) × (m + 1) is a linear combination of s matrices of rank 1, i.e. it has rank
equal to s. Hence the value of s for all n and m is completely solved: s = min{n + 1, m + 1}.
Something more complicated occurs if we consider Segre product with more factors: Pa1×· · ·×Pam ,
which can be viewed as the set of m-dimensional ((a1 + 1) × · · · × (am + 1))-tensors of “rank 1”
(admitting we know what “rank 1” means for a generic tensor). For more details (but not complete
answers) on the problem of finding this typical rank we refer to [CGG1]. We will come back later
to this example.

The following analysis is from [Ch].
Let X ⊂ PN be a non-linear, reduced, non-degenerate projective variety, let P ∈ PN rX be a fixed
point of PN and A, B ∈ X. Let also p : X → PN−1 be the projection of X from P to a generic
hyperplane of PN . Now if P ∈< A, B >, it is clear that p(A) = p(B), i.e. if P ∈ Sec1(X) r X
than the projection p is not injective. The viceversa is obviously true. This proves the following
proposition.

Proposition 1.5.3. Let X be a projective variety of PN and p : X → PN−1 the projection of X
from a generic point P /∈ X to a generic hyperplane, then p(X) ' X if and only if P /∈ Sec1(X).
This result is equivalent to the following statement: p(X) ' X iff the typical rank s is bigger then
2.
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If we iterate this idea we obtain that if P /∈ Sec2(X) and if A, B, C ∈ X are three independent
points of X, they remain independent after the projection.

Proposition 1.5.4. If the typical rank of a projective variety X ⊂ Pr is bigger than 3, then the
projection p : X → PN−1 from a generic point P /∈ X preserves the linear independence of any
three points of X, i.e. p(X) has no new trisecant lines.

One can generalize.

Theorem 1.5.5. The typical rank s of a projective variety X ⊂ PN is the maximum integer such
that the projection p : X → PN−1 from a generic fixed point P ∈ PN rX to a generic hyperplane
preserves the independence of elements of a set of s points of X.

We want to study the problem of determining the dimension of (s − 1)-secant varieties of an
n-dimensional projective variety X ⊂ PN .

Let Xs := X × · · · ×X︸ ︷︷ ︸
s

, X0 ⊂ X be the open subset of regular points of X and Us−1(X) be the

subset of Xs defined as

Us−1(X) = {(P1, . . . , Ps) ∈ Xs | Pi ∈ X0 ∀ i and the Pi’s are independent}.

Therefore for all (P1, . . . , Ps) ∈ Us−1(X) the span < P1, . . . , Ps > is a Ps−1.

Definition 1.5.6. The (s− 1)-abstract secant variety of X is the incidence variety:

AbSs−1(X) = {(Q, π) ∈ PN × Us−1(X) | Q ∈ π}

The dimension of the variety AbSs−1(X) is

dim(AbSs−1(X)) = n(s− 1) + n + s− 1.

With this definition we can consider the usual projection

p1 : AbSs−1(X)→ PN ;

the (s− 1)-secant variety of X is just the image of the map p1:

Secs−1(X) = Im(p1 : AbSs−1(X)→ PN).

Now, if dim(X) = n, it is clear that, while dim(AbSs−1(X)) = ns + s − 1, the dimension of
Secs−1(X) can be smaller: it suffices that the generic fiber of p1 has positive dimension to impose
dim(Secs−1(X)) < n(s − 1) + n + s − 1. So it is a general fact that if X ⊂ PN and dim(X) = n
then:

dim(Secs−1(X)) ≤ min{N, sn + s− 1}.
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Definition 1.5.7. A projective variety X ⊂ PN of dimension n is said to be (s − 1)-defective if
dim(Secs−1(X)) < min{N, sn + s − 1} and δs−1(X) := min{N, sn + s − 1} − dim(Secs−1(X)) is
called the (s− 1)-defect of X.

Example: A classical example of defective projective variety is the quadric Veronese surface:
dim(AbS1(ν2(P2))) = min{5, 2 · 2 + 1} = 5 but dim(Sec1(ν2(P2))) = 4.

1.5.3 Secant varieties of Veronese varieties and fat points

With this new point of view, it is not difficult to understand that if the variety X is precisely a
Veronese variety νd(Pn), then Secs−1(νd(Pn)) parameterizes sums of s d-powers of linear forms of
K[x0, . . . , xn].

As an easy consequence of this fact we have the following proposition that is another way to
attack the big Waring problem:

Proposition 1.5.8. The generic element of Sd = K[x0, . . . , xn]d can be written as a sum of s d-th
powers of linear forms if and only if Secs−1(νd(Pn)) = PN−1, with N =

(
n+d

d

)
.

What about the dimension of Secs−1(νd(Pn))? The link between the big Waring problem and
the secant variety of Veronese variety shows that the differential of the map φ defined in (1.1) gives
the parameterization of the tangent space to Secs−1(νd(Pn)) at a point on < P1, . . . , Ps > where
each Pi has as representative prime ideal ℘i = (Li) ⊂ S with Li ∈ S1 for i = 1, . . . , s. So the
problem can be rephrased in terms of Hilbert functions of 2-fat points as follows:

Theorem 1.5.9. If νd is the d-uple Veronese embedding of Pn into P(n+d
d )−1 and ℘i ⊂ S =

K[x0, . . . , xn], i = 1, . . . , s, are prime ideals of points P1, . . . , Ps, then

dim(Secs−1(νd(Pn))) = H
(

S
℘2

1∩···∩℘2
s
, d
)
− 1 .

Corollary 1.5.10. The (s− 1)-secant variety of the d-th Veronese variety of P(n+d
d )−1 fills up the

whole P(n+d
d )−1 if and only if ℘2

1 ∩ · · · ∩ ℘2
s = {0}.

Thanks to Alexander Hirschowitz’s Theorem (see 1.4.12), Theorem 1.5.9 allows us to know the
dimension of Secs−1(νd(Pn)). If we try to compute dim(Secs−1(νd(Pn))) in an heuristic way, we have
to
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The geometric point of view

• consider an s-uple (P1, . . . , Ps) ∈
s︷ ︸︸ ︷

νd(Pn)× · · · × νd(Pn) = (νd(Pn))s (then dim(νd(Pn))s = ns);

• consider s generic points of Pn (they span a Ps−1 ⊂ P(n+d
d )−1);

so we expect that dim(Secs−1(νd(Pn))) = ns + s− 1 unless ns + s− 1 ≥
(

n+d
d

)
− 1 where we expect

that Secs−1(νd(Pn)) = P(n+d
d )−1. In other words

expdim(Secs−1(νd(Pn)) = min

{(
n + d

d

)
− 1, (n + 1)s− 1

}
= dim(AbSs−1(νd(Pn))).

Now the Alexander Hirschowitz Theorem tells that the dimension of the s-secant variety to the
Veronese variety is not always the expected one ad we will be able to list all of them:

Theorem 1.5.11. (via Alexander-Hirschowitz) If X = Secs−1(νd(Pn)), for d ≥ 2. Then:

dim(X) = min

{(
n + d

d

)
− 1, s(n + 1)− 1

}
except for:

• d = 2, n ≥ 2, s ≤ n;

• d = 3, n = 4, s = 7, (δ = 1);

• d = 4, n = 2, s = 5, (δ = 1);

• d = 4, n = 3, s = 9, (δ = 2);

• d = 4, n = 4, s = 14, (δ = 1).

Proof. Cases with d ≥ 3 come directly from 1.4.12. The case d = 2 is classically known, and a
proof can run as follows.
For all s ≤ n we should have

(
n+2

2

)
−s
(

n+1
n

)
quadrics through s 2-fat points. Consider the Ps−1 con-

taining the s simple points; there are (n−s+1) linear forms through it, let them be L1, . . . , Ln−s+1.
Then L2

1, L1L2, . . . , L
2
n−s+1 are quadrics in ℘2

1 ∩ · · · ∩ ℘2
s and they are

(
n−s+2

2

)
in number, which is

always bigger than
(

n+2
2

)
− s
(

n+1
n

)
.
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Chapter 2

Algebraic generalization

2.1 Definition of canonical forms

We have seen how determining the Postulation of s double fat points in Pn can solve the big Waring
problem and compute the dimension of the (s−1)-secant variety to the Veronese variety. If we study
the postulation of other zero-dimensional schemes, we will be able to solve more general problems.
In this section we want to study some known results in terms of the algebraic generalization of
the big Waring problem and to describe some varieties related with this algebraic problem. Let us
consider the following question:

“Which is the least integer G(d) such that the generic element of K[x0, . . . , xn]d can be
written as

F = N1 + · · ·+ NG(d) (2.1)

where each Ni = M
(i)
1,j(1) · · ·M

(i)
k,j(k) and M

(i)
1,j(1), . . . ,M

(i)
k,j(k) belong to K[x0, . . . , xn]j(1),

. . ., K[x0, . . . , xn]j(k), respectively?”

Definition 2.1.1. We will say that (2.1) is a “Canonical Form” in K[x0, . . . , xn]d if the generic
element of K[x0, . . . , xn]d can be written as F = N1 + · · ·+ Ns as above.

Example: For the proves of the following three examples see [ER].

1. If Q1, Q2, Q3 ∈ K[x0, x1, x2]2, then F = Q1Q2 + Q2
3 ∈ K[x0, x1, x2]4 is a canonical form;

2. if L1, L2, L3 ∈ K[x0, x1, x2]1, then there exists c ∈ K such that F = L3
1 +L3

2 +L3
3 + cL1L2L3 ∈

K[x0, x1, x2]3 is a canonical form;
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3. if L1, . . . , L2s ∈ K[x0, . . . , x2s−1]1 then F = L1L2 + L3L4 + · · ·+ L2s−1L2s ∈ K[x0, . . . , x2s−1]2
is a canonical form.

With this definition the big Waring problem can be rephrased:

“If L1, . . . , Ls are linear forms of K[x0, . . . , xn], which is the least integer s such that
the form F = Ld

1 + · · ·+ Ld
s ∈ Sd is canonical?”

We have seen that the geometric equivalence of the big Waring problem is:

“Which is the least integer s such that the (s− 1)-secant variety to the d-uple Veronese

embedding of Pn fills up the whole P(n+d
d )−1?”

We have already defined (see Definition 1.5.2) the typical rank of a projective variety X ⊂ PN ,
as the least integer s such that Secs−1(X) = PN .

Consider F, Ni, M
(i)
l,j(l) ∈ Sd = K[x0, . . . , xn]d defined as in (2.1), for i = 1, . . . , G(d) and l =

1, . . . , k. Let φ be the map defined as follows:

φ : P(Sj(1))× · · · × P(Sj(k)) → P(Sd)
([M1,j(1)], . . . , [Mk,j(k)]) 7→ [M1,j(1) · · ·Mk,j(k)]

where
∑k

l=1 j(l) = d. We define now a variety X as the closure of the image of this map:

X := Im(φ). (2.2)

We will also say that such a X is the projective variety that parameterizes forms like the Ni’s, i.e.:

X =

{
[f ] ∈

(
P(n+d

d )−1
)∗
|f = M1,j(1) · · ·Mk,j(k), Ml,j(l) ∈ K[x0, . . . , xn]j(l), l = 1, . . . , k,

k∑
l=1

j(l) = d

}
.

Therefore the form F = N1 + · · ·+NG(d) defined in (2.1) is canonical if and only if the (s−1)-secant

variety of X fills up the whole
(
P(n+d

d )−1
)∗

.

We will come back later on this problem. Now we do a little digression on the history on the
study of canonical forms.
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2.2 Some known results on canonical forms

The problem to check if a form is canonical or not is an old problem. Many mathematicians in the
past have tried to find ways to establish some criteria.

Looking at the references about the study of canonical forms, we found some interesting results
in following papers: [Du], [ER], [Gu], [KR] and [Wak]. In the following tables we summarize
some of those. The tables are made in the following way:

• in the first column there is the polynomial ring we are working in,

• in the second column there is the degree of the form we are considering,

• in the third column there is a not canonical (in Table 1) or canonical (in Table 2) form,

• in the fourth column there is one reference.

• In our notation Li and Qi are always forms of degree 1 and 2 respectively.

• When we write dm(n) = h, in the third column, we mean that the generic form in K[x0, . . . , xm]n
can be written as a sum of h + 1 n-th powers of linear forms.

• The binary forms of degree 3 and 5 that are in Table 2 are all the possible canonical ones.

• An “(S)” in the last column means that the corresponding result is due to Sylvester.

Table 1.

Polynomial ring degree NOT canonical forms references

K[x1, x2] 2 L2
1 [Wak]

K[x1, x2, x3] 2 L2
1 + L2

2 [Wak]
K[x1, x2, x3] 4 L4

1 + · · ·+ L4
5 [ER],[Wak]

K[x1, . . . , x5] 3 L3
1 + · · ·+ L3

7 [ER], [Wak]
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Table 2.

Polynomial ring degree canonical form references
K[x1, x2] 2j = p ≥ 4 Lp

1 + · · ·+ Lp
j + cL2

1 · · ·L2
j [ER]

K[x1, x2] d = 2r + 1
∑m

i=1 hi(x)Li(x)2r−ki [ER]
con hi ∈ Rki−1,

∑m
i=1 ki = r

K[x1, x2] 2j − 1 L2j−1
1 + · · ·+ L2j−1

j (S) [ER],[Wak]
K[x1, x2] 2n con n 6= 1 L2n

1 + · · ·+ L2n
n + 2n!

n! mL2
1 · · ·L2

n [Wak]
K[x1, x2] n Ln

1 + · · ·+ Ln

[n
2 ]+1

[Du]

K[x1, x2, x3] 1 L, (d3(1) = 0) [Du]
K[x1, x2, x3] 2 L2

1 + L2
2 + L2

3, (d3(2) = 2) [Du]
K[x1, x2, x3] 3 L3

1 + . . . + L3
4, (d3(3) = 3) [Du]

K[x1, x2, x3] 3 L3
1 + L3

2 + L3
3 + cL1L2L3 [ER],[Gu]

K[x1, x2, x3] 3 L1L2L3 + L4L5L6 [Wak]
K[x1, x2, x3] 4 L4

1 + · · ·+ L4
6, (d3(4) = 5) [Du]

K[x1, x2, x3] 4 Q1Q2 + Q2
3 [ER],[Du]

K[x1, x2, x3] 4 Q2
1 + Q2

2 + Q2
3 [Du]

K[x1, x2, x3] 5 L5
1 + · · ·+ L5

7 [ER],[Wak],[Du]
K[x1, x2, x3] 2h L2h

1 + · · ·+ L2h
1
2 h(h+3)

+ · · · [Du]
(d3(2h) ≥ 1

2h(h + 3))
K[x1, x2, x3] n Ln

1 + · · ·+ Ln
1
6 (n+4)(n−1)+1

+ · · · [Du]
(d3(n) ≥ 1

6 (n + 4)(n− 1) + 1)
K[x1, x2, x3, x4] 1 L, (d4(1) = 0) [Du]
K[x1, x2, x3, x4] 2 L2

1 + · · ·+ L2
4, (d4(2) = 3) [Du]

K[x1, x2, x3, x4] 3 L1L2L3 + L4L5L6 [ER]
K[x1, x2, x3, x4] 3 L3

1 + · · ·+ L3
5 (S) [ER],[Wak],[Du]

K[x1, x2, x3, x4] 3
∑4

i=1 L3
i + 6

∑4
p=1 λpLqLrLs [Gu]

{p, q, r, s} = {1, 2, 3, 4}
∀p ∈ {1, 2, 3, 4}

K[x1, . . . , xq] with even q 2 L1L2 + L3L4 + · · ·+ Lq−1Lq [ER]
K[x1, . . . , xq] 1 L, (dq(1) = 0) [Du]
K[x1, . . . , xq] 2 L2

1 + · · ·+ L2
q, (dq(2) = q − 1) [ER], [Du]

2.3 Join variety

The problem of canonical forms can be generalized with respect to (2.1). Suppose that N and M
are two forms of Sd such that the projective varieties X and Y parameterizing forms like N and M
respectively are two different varieties. A form F = N +M is canonical if and only if the projective

variety parameterizing forms like N + M fills up P(n+d
d )−1. Such a variety is called “Join variety”

of X and Y (if X = Y the join variety is the first secant variety of X).
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Let X, Y ⊂ Pn be two disjoint proiective varieties and let G(k, n) the projective Grassmannian
of subspaces of Pn of dimension k. Let us define j as:

j : X × Y → G(1, n)
(P, Q) 7→ < P,Q >

(2.3)

Remark: If X ∩ Y 6= ∅ then j is a rational map: j : X × Y 99K G(1, n). The image of this map is
the closure of the locus of lines PQ with P ∈ X, Q ∈ Y and P 6= Q.

Definition 2.3.1. The image of the map j defined as in (2.3) is the “Variety of lines joining X
and Y ” and it is denoted by J (X, Y ).

Definition 2.3.2. The “Join of X and Y ”, denoted by J(X,Y ) ⊂ Pn, is closure of the union of
all the lines L ∈ J (X, Y ).

We can observe that J (X, Y ) is a subvariety of the Grassmanian, and J(X, Y ) is a subvariety
of Pn (for details see [Harr]).

This is just a digression because we are interested in the case of forms whose geometric associated
problem is in terms of secant varieties.

2.4 Inverse Systems

In the previous chapter we have introduced the concept of “Inverse Systems” that gave a way of
solving the big Waring problem and, more generally, of finding the dimension of all secant varieties
to the Veronese variety. This procedure can give some results also in a general case. Suppose that
X is a projective variety of dimension n that parameterizes forms like F ∈ K[x0, . . . , xn]d i.e. X is
the set of all classes of forms [f ] in n + 1 variables and of degree d for which there exists a change
of coordinate φf : Kn+1 → Kn+1 such that φf (f) = F . Then Secs−1(X) parameterizes all forms
that are linear combinations of s elements of X, i.e. if there exist [F1], . . . , [Fs] ∈ X such that
f = F1 + · · · + Fs then [f ] ∈ Secs−1(X) . Now if we are interested in the dimension of Secs−1(X)
the most natural thing is to study the affine dimension of its tangent space. If we know explicitly
the form F we can apply the same procedure we used in the paragraph 1.1 in order to compute the
elements of T[f ](Secs−1(X)). Now if it is possible to find a projective scheme Z with representative
ideal I(Z) ⊂ K[y0, . . . , yn] whose inverse system is, in some degree d, the space T[f ](Secs−1(X)), it
is sufficient to compute the postulation of such a scheme Z in order to compute the dimension of
Secs−1(X):

H(Z, d) = dim(Sd)− dim(I(Z)d) = dim((I(Z)−1)d) = dim(T[f ](Secs−1(X))).

This procedure seems to be very complicated but in many cases it is easier to compute the projective
scheme Z such that (I(Z))−1

d = T[f ](Secs−1(X)) rather than to compute directly the dimension of
T[f ](Secs−1(X)).
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2.4.1 An example of how to use apolarity

We have seen that the problem (2.1) is equivalent to find the least integer G(d) such that the
(G(d)− 1)-secant variety to the variety X defined in (2.2) fills PN , with N =

(
n+d

d

)
− 1.

Suppose now we fix s points [f1], . . . , [fs] of X; the question:

“is F = f1 + · · ·+ fs a canonical form of K[x0, . . . , xn]d?”

is a “stronger” question than:

“is Secs−1(X) equal to PN?”.

Since [f1], . . . , [fs] ∈ X are fixed, then F is canonical if the linear space V =< [f1], . . . , [fs] > is
equal to PN . Clearly if V = PN then also Secs−1(X) = PN because V ( Secs−1(X), but the least
s ∈ N such that the fixed F ∈ K[x0, . . . , xn]d is canonical could be bigger than the least G(d) such
that SecG(d)−1(X) = PN .

Example: Let Li and Qi, for i = 1, . . . , s, be linear and quadratic forms of K[x0, x1, x2], respec-
tively; for which s the form F = Ld−2

1 Q1 + · · ·+ Ld−2
s Qs is canonical?

It is not very difficult to find out that there exist P1, . . . , Ps ∈ P2 such that the degree d part
of the representing ideal I(X) of the 0-dimensional scheme X = (P1, . . . , Ps; 3, . . . , 3) has inverse
system: < Ld−2

1 Q1, . . . , L
d−2
s Qs >.

Proposition 2.4.1. If s(d) =
⌈

(d+2)(d+1)
12

⌉
, Li ∈ K[x0, x1, x2]1 and Qi ∈ K[x0, x1, x2]2 for i =

1, . . . , s, then ∀s ≥ s(d) the form
∑s

i=1 Ld−2
i Qi is canonical except for

1. d = 1, 2, when s(d) = 1;

2. d = 3, when s(d) = 3;

3. d = 6, when s(d) = 6.

Proof. This proposition is proved in [Hi]. We show why these three cases are not expected.

1. If d = 1, 2, if ℘ ⊂ S = K[x0, x1, x2] is the prime ideal associated to P ∈ P2, then H(S/℘3, 1) =
H(S/℘3, 2) = 0.

2. If d = 3 and s = 2 we expect that H((P1, P2; 3, 3), 3) is equal to he Hilbert function in degree
3 of 6 generic points of P2, that is zero. This is false because if l = 0 is the equation of
the line < P1, P2 >⊂ P2 and ℘1, ℘2 ⊂ K[x0, x1, x2] are the prime ideals associated to P1, P2

respectively, then l3 ∈ (℘3
1 ∩ ℘3

2)3.
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3. If d = 6 and s = 5 we expect that H((P1, . . . , P5; 3, . . . , 3), 6) = H((P1, . . . , P30; 1, . . . , 1), 6) =
0, but if C = 0 is the equation of the conic passing through P1, . . . , P5 and ℘1, . . . , ℘5 ⊂
K[x0, x1, x2] are the prime ideals associated to P1, . . . , P5 ∈ P2, then C3 ∈ (℘3

1 ∩ · · · ∩ ℘3
5)6.

Example: The study of the Hilbert function of a projective scheme X = (P1, . . . , Ps; n, . . . , n) ⊂ P2

of s n-fat points on P2 leads to the study of the canonicity of the form F = Ld−n
1 N1 + · · ·Ld−n

s Ns ∈
K[x0, x1, x2]d where Li and Ni are ternary forms of degree one and n respectively. The problem
is not completely solved because it is only possible to know the expected dimension of X but the
exceptions are not all known yet (there is a conjecture about that, but we will consider this later).

Remark: If s(d) =
⌈

(d+2)(d+1)
n(n+1)

⌉
, Li ∈ K[x0, x1, x2]1 and Ni ∈ K[x0, x1, x2]n for i = 1, . . . , s, then

∀s ≥ s(d) the form
∑s

i=1 Ld−n
i Ni is canonical, if and only if the Hilbert function of Proj(K[x0, x1, x2]/(℘

n
1∩

· · · ∩ ℘n
s )) has the expected dimension in degree d.

2.5 Inverse Systems and Canonical Forms

In this section we want to work out some examples which show the use of Inverse Systems to
compute Canonical Forms. We will look at some particular cases in degrees 2, 3 and 4.

2.5.1 Degree two

Let Li, Mj be generic linear forms of K[x0, . . . , xn] for i = 0, . . . , 2s− 1 and j = 0, . . . , 2k − 1; the
possible kinds of forms we can find in K[x0, . . . , xn]2 are of the following three types:

1. L2
0 + · · ·+ L2

s,

2. L0L1 + · · ·+ L2s−2L2s−1,

3. M0M1 + · · ·+ M2k−2M2k−1 + L2
0 + · · ·+ L2

s.

The first case has been throughly analyzed in the previous chapter via the study of the (s)-
secant varieties to the Veronese varieties ν2(Pn) (see Theorem 1.5.11).

The second case corresponds to Sec(s−1)(Split2(Pn)). We will show in Section 4.1 that it is also the
(s − 1)-secant variety to the tangential variety to the Veronese variety ν2(Pn); Their dimensions
can be found in [CGG2], Proposition 3.3.
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For the third case we need the notion of Join variety introduced in Section 2.3: the variety that
parameterizes forms like

F := L2
0 + · · ·+ L2

s + Ls+1Ls+2 + · · ·+ Lk−1Lk

is

J
(
Secs(ν2(Pn)), Sec k−s

2
−1(Split2(Pn))

)
.

Proposition 2.5.1. If s < n and n− s is even, then

F = L2
0 + · · ·+ L2

s + Ls+1Ls+2 + · · ·+ Ln−1Ln (2.4)

is a canonical form.

Proof. We denote with X the variety J
(
Secs(ν2(Pn)), Secn−s

2
−1(Split2(Pn))

)
and with W the affine

cone over the tangent space TP (X) at a smooth point P = [L2
0+· · ·+L2

s+Ls+1Ls+2+· · ·+Ln−1Ln] ∈
X. It turns out that W =< L0S1, . . . , LnS1 >= S2, then X = P(n+2

2 )−1, so the form (2.4) is
canonical.

We want to see what happens if we eliminate some terms from (2.4).

Without one square

Along all this section we will always assume that (n− s) is a positive even integer. Let us take out
from (2.4) the first term L2

0; we obtain the form:

F0,s,n = L2
1 + · · ·+ L2

s + Ls+1Ls+2 + · · ·+ Ln−1Ln (2.5)

which is parameterized by

J0,s,n = J
(
Secs−1(ν2(Pn)), Secn−s

2
−1(Split2(Pn)

)
.

Then the affine cone W on the tangent space TP (J0,s,n) at a smooth point P = [L2
1 + · · · + L2

s +
Ls+1Ls+2 + · · ·+ Ln−1Ln] ∈ J0,s,n is

W =< L1S1, . . . , LnS1 > .
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Since the number of forms that appear in F is less then n + 1 we can choose Li ∈ S1 to be xi for
all i = 1, . . . , n. So the ideal I ⊂ R = K[y0, . . . , yn] such that (I−1)2 = W turns out to be:

I = (y2
0),

hence

dim(J0,s,n) = dim(W )− 1 =

(
n + 2

2

)
− 2

but

expdim(J0,s,n) = min

{
N − 1, sn + s− 1 + 2n

n− s

2
+

n− s

2
− 1 + 1

}
=

= min

{
N − 1, n2 +

n + s

2
− 1

}
with N =

(
n+2

2

)
.

Observe that min
{
N − 1, n2 + n+s

2
− 1
}

= N − 1 for all s ≥ −n2 + 2n + 2, but (−n2 + 2n + 4) ≤ 0
for all n ≥ 3, so, since s > 0, min

{
N − 1, n2 + n+s

2
− 1
}

= N −1 for all n ≥ 3. Therefore for n ≥ 3
the variety expdim(J0,s,n) = N − 1 = dim(J0,s,n) + 1.

Hence we have proved the following:

Proposition 2.5.2. If 0 < s ≤ n− 2 and (n− s) ∈ Z+ is even, then

dim
(
J
(
Secs−1(ν2(Pn)), Secn−s

2
−1(Split2(Pn))

))
=

(
n + 2

2

)
− 2

and

δ
(
J
(
Secs−1(ν2(Pn)), Secn−s

2
−1(Split2(Pn))

))
= 1.

General case

Assume for all this section that 0 ≤ i < s ≤ j − 2 < n − 2 and that both (n − j) and (j − s) are
even positive integers. Consider a form obtained from (2.4) by taking out the terms L2

0, . . . , L
2
i and

Ls+1Ls+2, . . . , Lj−1Lj:

Fi,s,j,n = L̂2
0 + · · ·+ L̂2

i + L2
i+1 + · · ·+ L2

s + ̂Ls+1Ls+2 + · · ·+ L̂j−1Lj + Lj+1Lj+2 + · · ·+ Ln−1Ln
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Such a form is parameterized by

Ji,s,j,n := J
(
Secs−i−1(ν2(Pn)), Secn−j

2
−1(Split2(Pn))

)
. (2.6)

The affine cone W over the tangent space at a smooth point P = [L̂2
0 + · · ·+ L̂2

i +L2
i+1 + · · ·+L2

s +
̂Ls+1Ls+2 + · · ·+ L̂j−1Lj + Lj+1Lj+2 + · · ·+ Ln−1Ln] of this variety is

W =< Li+1S1, . . . , LsS1, Lj+1S1, . . . , LnS1 > .

Again, since the number of independent forms that appear in Fi,s,j,n is less than the number of
variables, we can choose each Li ∈ K[x0, . . . , xn]1 to be xi, hence the ideal I ⊂ R such that
(I−1)2 = W is

I = (y0, . . . , yi, ys+1, . . . , yj)
2,

then

dim(Ji,s,j,n) = dim(W )− 1 = N −
(

i + 1 + j − s + 2

2

)
− 1 = N −

(
i + j − s + 3

2

)
− 1

while

expdim(Ji,s,j,n) = min

{
N − 1, (s− i)n + (s− i)− 1 + n(n− j) +

n− j

2
− 1 + 1

}
.

Observe that min
{
N − 1, N − 1, (s− i)n + (s− i)− 1 + n(n− j) + n−j

2

}
= N − 1 if and only if

n ≥ 1 + i + j − s +
√

(s− 1− i− j)2 − 2s + 2i + j + 2 := n(i, s, j). (2.7)

The defect δ of Ji,s,j,n is

δ(Ji,s,j,n) = min

{
N − 1, (s− i)n + (s− i)− 1 + n(n− j) +

n− j

2

}
−
(

N −
(

i + 1 + j − s + 2

2

)
− 1

)
=

=

{ (i+j−s+3
2

)
if n ≥ n(i, s, j);

ns− ni− nj − n + 2j + ij − is− js + 3i−3s+n2+i2+j2+s2

2
+ 2 if n ≤ n(i, s, j).

We can state the following:

Proposition 2.5.3. If 0 ≤ i < s ≤ j−2 < n−2 and, (n− j) and (j− s) are even positive integers
and n(s, i, j) is defined as in (2.7), then

dim
(
J
(
Secs−i−1(ν2(Pn)), Secn−j

2
−1(Split2(Pn))

))
=

(
n + 2

2

)
−
(

i + j − s + 3

2

)
− 1
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and the defect is

δ(Ji,s,j,n) =

{ (i+j−s+3
2

)
if n ≥ n(i, s, j);

ns− ni− nj − n + 2j + ij − is− js + 3i−3s+n2+i2+j2+s2

2
+ 2 if n ≤ n(i, s, j).

Example: Suppose that i = 0, then

F0,s,j,n = L2
1 + · · ·+ L2

s + ̂Ls+1Ls+2 + · · ·+ L̂j−1Lj + Lj+1Lj+2 · · ·+ Ln−1Ln,

the value n(i, s, j) defined in (2.7) is:

n(0, s, j) = 1− s + j +
√

3− 4s− 2js + 3j + s2 + j2

and

δ(J0,s,j,n) =

{
3− js + j2+5j+s2−5s

2
, if n ≥ n(0, s, j);

ns− nj − n + 2j − js + n2−3s+j2+s2

2
+ 2, if n ≤ n(0, s, j).

• If i = 0, s = 1 and j = 2h + 1 ≥ 3, for h ∈ N, then

F0,1,j,n = L2
1 + L̂2L3 + · · ·+ L̂j−1Lj + Lj+1Lj+2 + · · ·+ Ln−1Ln,

n(0, 1, j) = j +
√

j2 + j

and

δ(J0,1,j,n) =

{
1 + j2+3j

2
, if n ≥ n(0, 1, j);

1− nj + j + n2+j2

2
, if n ≤ n(0, 1, j).

– If i = 0, s = 1, j = 3 and n = 2k + 1 ≥ 5, for k ∈ N, then 6 < n(0, 1, 3) < 7, the form
we are considering is

F0,1,3,n = L2
1 + L4L5 + · · ·+ Ln−1Ln

and the defect δ(J0,1,3,n) is

δ(J0,1,3,n) =

{
10, if n ≥ 7;
6 if n = 5.
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– If i = 0, s = 1, j = 5 and n = 2k + 1 ≥ 7, for k ∈ N, then 10 < n(0, 1, 5) < 11; the form
we are considering is

F0,1,5,n = L2
1 + L6L7 + · · ·+ Ln−1Ln

and the defect of J0,1,5,n is

δ(J0,1,5,n) =

{
21, if n ≥ 11;
n2+37

2
− 5n, if n ≤ 10.

Therefore:

∗ if n = 7, then F0,1,5,7 = L2
1 + L6L7 ∈ K[x0, . . . , x7]2 have δ(J0,1,5,7) = 8.

∗ If n = 9, then F0,1,5,9 = L2
1 + L6L7 + L8L9 ∈ K[x0, . . . , x9]2 have δ(J0,1,5,9) = 14.

∗ If n ≥ 11, then δ(J0,1,5,n) = 21.

– If i = 0, s = 1, j = 7 and n = 2k + 1 ≥ 9, for k ∈ N, then 14 < n(0, 1, 7) < 15, the form
we are considering is

F0,1,7,n = L2
1 + L8L9 + · · ·+ Ln−1Ln

and the defect δ(J0,1,7,n) is

δ(J0,1,7,n) =

{
36, if n ≥ 15;
n2+65

2
− 7n, if n ≤ 14.

Therefore:

∗ if n = 9, then F0,1,7,9 = L2
1 + L8L9 ∈ K[x0, . . . , x9]2 have δ(J0,1,7,9) = 10.

∗ If n = 11, then F0,1,7,11 = L2
1 +L8L9 +L10L11 ∈ K[x0, . . . , x11]2 have δ(J0,1,7,11) = 16.

∗ If n = 13, then F0,1,7,13 = L2
1 + L8L9 + L10L11L12L13 ∈ K[x0, . . . , x13]2 have

δ(J0,1,7,13) = 26.

∗ If n ≥ 15, then δ(J0,1,7,n) = 36.

Example: Suppose that i = 1, then

F1,s,j,n = L2
2 + · · ·+ L2

s + ̂Ls+1Ls+2 + · · ·+ L̂j−1Lj + Lj+1Lj+2 + · · ·+ Ln−1Ln,

the value n(i, s, j) defined in (2.7) is

n(1, s, j) = 2− s + j +
√

8− 6s + 5j + s2 − 2js + j2

and

δ(J1,s,j,n) =

{
6− js + 7j−7s+j2+s2

2
, if n ≥ n(1, s, j);

ns− 2n + 4− nj + 3j − js + n2−5s+j2+s2

2
, if n ≤ n(1, s, j).
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Example: Suppose that i = 2, then

F2,s,j,n = L2
3 + · · ·+ L2

s + ̂Ls+1Ls+2 + · · ·+ L̂j−1Lj + Lj+1Lj+2 + · · ·+ Ln−1Ln,

the value n(i, s, j) defined in (2.7) is

n(2, s, j) = 3− s + j +
√

15− 8s + 7j + s2 − 2js + j2

and

δ(J2,s,j,n) =

{
10− js + 9j−9s+j2+s2

2
, if n ≥ n(2, s, j);

ns− 3n + 7− nj + 4j − js + n2−7s+j2+s2

2
, if n ≤ n(2, s, j).

Example: Suppose we want to compute the defectivity of J(Sec40(ν2(P80)), Sec12(Split2(P80))). We
have that n = 80, j = 54 and s = 41+i, hence Fi,41+i,54,80 = L2

i+1+· · ·+L2
41+i+L55L56+· · ·+L79L80.

Now, 27 < n(i, 41 + i, 54) < 28⇒ n = 80 > 28⇒ δ(Ji,s+i,54,80) = 120.

2.5.2 Degree three

For the degree 3 case we study in this section two different kinds of forms:

1. in the first case F ∈ S3 = K[x0, . . . , xn]3 is a form involving exactly n+1 linear forms without
any repeated one, i.e. if 1 < a + 1 < b < n− 2 and (b− a) even, then

F = L3
0 + · · ·+ L3

a−1 + L2
aLa+1 + · · ·+ L2

b−2Lb−1 + LbLb+1Lb+2 + · · ·+ Ln−2Ln−1Ln (2.8)

where Li are all independent linear forms for i = 0, . . . , n.

2. In the second case F ∈ S3 is such that

F = L0(L1L2 + · · ·+ L2s−1Ls)

where s ≤ n, s even and Li ∈ S1 are all independent.

Cubic forms involving exactly n+1 independent linear forms and without any repeated
term

In the list below we enumerate all the cases we have studied for the first kind of forms. Consider
the map

φ : S1 × · · · × S1︸ ︷︷ ︸
n+1

→ S3

(L0, . . . , Ln) 7→ F,
(2.9)
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where F is as in (2.8) for some a, b ∈ N such that a < b < n− 2.
Let X be the projective variety obtained as the closure of the image of the map φ defined in

(2.9).
For all this section the space W will be the affine cone over the tangent space to X at a smooth

point P = [L3
0 + · · ·+ L3

a−1 + L2
aLa+1 + · · ·+ L2

b−2Lb−1 + LbLb+1Lb+2 + · · ·+ Ln−2Ln−1Ln] ∈ X.
Since the number of linear forms involved in (2.8) is exactly n + 1 we can suppose, without loss

of generality, that each Li = xi ∈ K[x0, . . . , xn]1 for i = 0, . . . , n.
For all the cases we are going to list below, the ideal I ⊂ R[y0, . . . , yn] will be the ideal such

that (I−1)3 = W .

• F = L3
0 + · · ·+ L3

n

– W =< L2
0S1, . . . , L

2
nS1 >

– I = (yiyjyk),

with i 6= j, i 6= k, j 6= k and i, j, k = 0, . . . , n

• F = L3
0 + · · ·+ L3

n−2 + L2
n−1Ln

– This case makes sense if and only if n ≥ 2

– W =< L2
0S1, . . . , L

2
n−2S1, L

2
n−1S1, Ln−1LnS1 >

– I = (y3
n, y

2
nyi, yjykyh),

with: i = 0, . . . , n− 2;
{j, h}, {j, k}, {h, k} 6= {n− 1, n} and j 6= k, j 6= h, k 6= h

F = L3
0 + · · ·+ L3

n−4 + L2
n−3Ln−2 + L2

n−1Ln

– W =< L2
0S1, . . . , L

2
n−4S1, Ln−3Ln−2S1, L

2
n−3S1, Ln−1LnS1, L

2
n−1S1 >

– I = (y3
n−2, y

3
n, y

2
n−2yi, y

2
nyj, yhykyl),

with: i 6= n− 3, n− 2 and j 6= n, n− 1,
{h, k}, {h, l}, {k, l} 6= {n− 3, n− 2}, {n− 1, n} and h 6= k, h 6= l, k 6= l

· · ·

F = L2
0L1 + · · ·+ L2

n−1Ln

– This case makes sense if and only if n ∈ N+ is odd
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– W =< L0L1S1, L
2
0S1, . . . , Ln−1LnS1, L

2
n−1S1 >

– I = (y3
2k+1, y

2
2k+1yi, yaybyc),

with: i 6= 2k + 1 for k = 0, . . . , n−1
2

,
{a, b}, {a, c}, {b, c} 6= {2h, 2h + 1} for h = 0, . . . , n−1

2
, and a 6= b, a 6= c, b 6= c

– We will see in the next chapter that the variety X which parameterizes forms F =
L2

0L1 + · · · + L2
n−1Ln is the (n+1

2
− 1)-secant variety to the tangential variety to the

Veronese ν3(Pn).

• F = L3
0 + · · ·+ L3

n−3 + Ln−2Ln−1Ln

– This case makes sense if and only if n ≥ 3

– W =< L2
0S1, . . . , L

2
n−3S1, Ln−1LnS1, Ln−2LnS1, Ln−2Ln−1S1 >

– I = (y3
n−2, y

3
n−1, y

3
n, y

2
n−2yi, y

2
n−1yj, y

2
nyk, yaybyc),

with: i, j, k 6= n, n− 1, n− 2,
{a, b}, {a, c}, {b, c} 6= {n− 2, n− 1}, {n− 2, n}, {n− 1, n} and a 6= b, a 6= c, b 6= c

F = L3
0 + · · ·+ L3

n−6 + Ln−5Ln−4Ln−3 + Ln−2Ln−1Ln

– This case makes sense if and only if n ≥ 6

– W =< L2
0S1, . . . , L

2
n−6S1,

Ln−4Ln−3S1, Ln−5Ln−3S1, Ln−5Ln−4S1, Ln−1LnS1, Ln−2LnS1, Ln−2Ln−1S1 >

– I = (y3
i , y

2
n−5ya, y

2
n−4yb, y

2
n−3yc, y

2
n−2yd, y

2
n−1ye, y

2
nyf , yjyhyk),

with: i = n− 5, . . . , n,
a, b, c 6= n− 5, n− 4, n− 3,
d, e, f 6= n− 2, n− 1, n,
{j, h}, {j, k}, {h, k} 6= {n− 5, n− 4}, {n− 5, n− 3}, {n− 4, n− 3}, {n− 2, n− 1}, {n−
2, n}, {n− 1, n} and j 6= h, j 6= k, h 6= k

· · ·

F = L0L1L2 + · · ·+ Ln−2Ln−1Ln

– This case makes sense if and only if n + 1 = 3k.

– W =< L1L2S1, L0L2S1, L0L1S1, . . . , Ln−2Ln−1S1, Ln−2LnS1, Ln−1LnS1 >
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– I = (y3
h, y

2
i yj, yaybyc),

with: 0 ≤ h, i ≤ n,
if i ≡ 0 mod 3⇒ j 6= i + 1, i + 2,,
if i ≡ 1 mod 3⇒ j 6= i− 1, i + 1,
if i ≡ 2 mod 3⇒ j 6= i− 1, i− 2,
{a, b}, {a, c}, {b, c} 6= {3α, 3α + 1}, {3α, 3α + 2}, {3α + 1, 3α + 2} for 3α = 0, . . . , n − 2
and a 6= b, a 6= c, b 6= c

– We will show in Chapter 4 that the projective variety X that parameterizes forms F =
L0L1L2 + · · · + Ln−2Ln−1Ln is the

(
n+1

3
− 1
)
-secant variety to the variety that we will

call the Split variety Split3(Pn).

• F = L3
0 + · · ·+ L3

n−5 + L2
n−4Ln−3 + Ln−2Ln−1Ln

– This case makes sense if and only if n ≥ 5

– W =< L2
0S1, . . . , L

2
n−5S1, Ln−4Ln−3S1, L

2
n−4S1, Ln−2Ln−1S1, Ln−2LnS1, Ln−1LnS1 >

– I = (y3
i , y

2
n−3ya, y

2
n−2yb, y

2
n−1yc, y

2
nyd, yhyjyk),

with: i = n− 3, . . . , n
a 6= n− 4, n− 3, and b, c, d 6= n− 2, n− 1, n
{h, j}, {h, k}, {j, k} 6= {n − 4, n − 3}, {n − 2, n − 1}, {n − 2, n}, {n − 1, n} and j 6= h,
j 6= k, h 6= k

F = L3
0 + · · ·+ L3

n−7 + L2
n−6Ln−5 + L2

n−4Ln−3 + Ln−2Ln−1Ln

– This case makes sense if and only if n ≥ 7.

– W =< L2
0S1, . . . , L

2
n−7S1, Ln−6Ln−5S1, L

2
n−6S1, Ln−4Ln−3S1, L

2
n−4S1,

Ln−2Ln−1S1, Ln−2LnS1, Ln−1LnS1 >

– I = (y3
i , y

2
n−5ya, y

2
n−3yb, y

2
n−2yc, y

2
n−1yd, y

2
nye, yhyjyk),

with: i = n− 5, n− 3, n− 2, n− 1, n,
a 6= n− 5, n− 6, b 6= n− 4, n− 3, c, d, e 6= n− 2, n− 1, n,
{h, j}, {h, k}, {j, k} 6= {n− 6, n− 5}, {n− 4, n− 3}, {n− 2, n− 1}, {n− 2, n}, {n− 1, n}
and h 6= j, h 6= k, j 6= k

· · ·

F = L2
0L1 + · · ·+ L2

n−4Ln−3 + Ln−2Ln−1Ln

42



Inverse Systems and Canonical Forms

– This case makes sense if and only if n ≥ 4 and n ∈ N even.

– W =< L0L1S1, L
2
0S1, . . . , Ln−4Ln−3S1, L

2
n−4S1, Ln−2Ln−1S1, Ln−2LnS1, Ln−1LnS1 >

– I = (y3
i , y

2
j yh, yaybyc),

with: i = n− 2, n, 2k + 1 for k = 0, . . . , n
2
− 1;

if j ≤ n− 3⇒ j = 2k + 1, h 6= j − 1,
if j = n− 2⇒ h 6= n− 1, n,
if j = n− 1⇒ h 6= n− 2, n,
if j = n⇒ h 6= n− 2, n− 1;
{a, b}, {a, c}, {b, c} 6= {2k, 2k+1}, {n−2, n−1}, {n−2, n}, {n−1, n} for k = 0, . . . , n

2
−2

and a 6= b, a 6= c, b 6= c

– The projective variety that parameterizes forms F = L2
0L1+· · ·+L2

n−4Ln−3+Ln−2Ln−1Ln

is J
(
Sec(n−2

2
−1)(T (ν3(Pn))), Split3(Pn)

)
where T (ν3(Pn)) is the tangential variety to

ν3(Pn).

• F = L3
0 + · · ·+ L3

n−8 + L2
n−7Ln−6 + Ln−5Ln−4Ln−3 + Ln−2Ln−1Ln

– This case makes sense if and only if n ≥ 8.

– W =< L2
0S1, . . . , L

2
n−8S1, Ln−7Ln−6S1, L

2
n−7S1, Ln−5Ln−4S1, Ln−5Ln−3S1, Ln−4Ln−3S1,

Ln−2Ln−1S1, Ln−2LnS1, Ln−1LnS1 >

– I = (y3
i , y

2
n−6ya, y

2
n−5yb, y

2
n−4yc, y

2
n−3yd, y

2
n−2ye, y

2
n−1yf , y

2
nyg, yjyhyk),

with: i ≥ n− 6;
a 6= n− 7, n− 6, b, c, d 6= n− 5, n− 4, n− 3, e, f, g 6= n− 2, n− 1, n;
{j, h}, {j, k}, {h, k} 6= {n− 6, n− 7}, {n− 5, n− 4}, {n− 5, n− 3}, {n− 4, n− 3}, {n−
2, n− 1}, {n− 2, n}, {n− 1, n} and j 6= h, j 6= k, h 6= k

F = L3
0 + · · ·+ L3

n−10 + L2
n−9Ln−8 + L2

n−7Ln−6 + Ln−5Ln−4Ln−3 + Ln−2Ln−1Ln

– This case makes sense if and only if n ≥ 10.

– W =< L2
0S1, . . . , L

2
n−10S1, Ln−9Ln−8S1, L

2
n−9S1, Ln−7Ln−6S1, L

2
n−7S1,

Ln−5Ln−4S1, Ln−5Ln−3S1, Ln−4Ln−3S1, Ln−2Ln−1S1, Ln−2LnS1, Ln−1LnS1 >

– I = (y3
i , y

2
n−8ya, y

2
n−6yb, y

2
n−5yc, y

2
n−4yd, y

2
n−3ye, y

2
n−2yf , y

2
n−1yg, y

2
nyh, yjykyl),

with: i = n− 8, n− 6, n− 5, n− 4, n− 3, n− 2, n− 1, n,
a 6= n− 9, n− 8; b 6= n− 7, n− 6;
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c, d, e 6= n− 5, n− 4, n− 3,
{j, k}, {j, l}, {k, l} 6= {n − 9, n − 8}, {n − 7, n − 6}, {n − 5, n − 4}, {n − 5, n − 3}, {n −
4, n− 3}, {n− 2, n− 1}, {n− 2, n}, {n− 1, n} and j 6= k, j 6= l, k 6= l

· · ·

F = L2
0L1 + · · ·+ L2

n−7Ln−6 + Ln−5Ln−4Ln−3 + Ln−2Ln−1Ln

– This case makes sense if and only if n ≥ 7 and n ∈ N is odd.

– W =< L0L1S1, L
2
0S1, . . . , Ln−7Ln−6S1, L

2
n−7S1, Ln−5Ln−4S1, Ln−5Ln−3S1, Ln−4Ln−3,

Ln−2Ln−1S1, Ln−2LnS1, Ln−1LnS1 >

– I = (y3
i , y

2
l yj, y

2
n−5ya, y

2
n−4yb, y

2
n−3yc, y

2
n−2yd, y

2
n−1ye, y

2
nyf , ymyryq),

with: i = 2k + 1, n− 5, n− 3, n− 1; for k = 0, . . . , n−1
2

,
l = 2h + 1, j 6= l − 1 and h = 0, . . . , n−6

2
;

a, b, c 6= n− 5, n− 4, n− 3; d, e, f 6= n− 2, n− 1, n
{m, r}, {m, q}, {r, q} 6= {n− 2, n− 1}, {n− 2, n}, {n− 1, n}, {n− 5, n− 4}, {n− 5, n−
3}, {n− 4, n− 3}{2k, 2k + 1} for k = 0, . . . , n−7

2
and m 6= r, m 6= q, r 6= q

– The projective variety X that parameterizes forms F = L2
0L1 + · · · + L2

n−7Ln−6 +

Ln−5Ln−4Ln−3 + Ln−2Ln−1Ln is J
(
Sec(n−s

2
−1)(T (ν3(Pn))), Sec1(Split3(Pn))

)
.

· · ·

· · ·

• F = L3
0 + · · ·+ L3

n−α−3 + L2
n−α−2Ln−α−1 + Ln−αLn−α+1Ln−α+2 + · · ·+ Ln−2Ln−1Ln

– This case makes sense if and only if α ≥ 2 and α + 1 = 3k.

– W =< L2
0S1, . . . , L

2
n−α−3S1, Ln−α−2Ln−α−1S1, L

2
n−α−2S1, Ln−αLn−α+1S1,

Ln−αLn−α+2S1, Ln−α+1Ln−α+2S1, . . . , Ln−2Ln−1S1, Ln−2LnS1, Ln−1LnS1 >

– I = (y3
i , y

2
n−α−1yj, y

2
hyk, yaybyc),

with: i = n− α− 1, . . . , n and j 6= n− α− 2, nα− 1;
h 6= k, {h, k} 6= {n−α− 2, n−α− 1}, {n−α + 3l, n−α + 3l + 1}, {n−α + 3l, n−α +
3l + 2}, {n− α + 3l + 1, n− α + 3l + 2} for l = 0, . . . , α−2

3
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a 6= b, a 6= c, b 6= c
or a, b, c ≤ n− α− 3,
or {a, b}, {b, c}, {a, c} 6= {n− α + 3l, n− α + 3l + 1}, {n− α + 3l, n− α + 3l + 2}, {n−
α + 3l + 1, n− α + 3l + 2}, {n− α− 2, n− α− 1} for l = 0, . . . , α−2

3

F = L3
0 + · · ·+ L3

n−α−5 + L2
n−α−4Ln−α−3 + L2

n−α−2Ln−α−1+
+Ln−αLn−α+1Ln−α+2 + · · ·+ Ln−2Ln−1Ln

– This case makes sense if and only if n ≥ α + 5, α + 1 = 3k and α ≥ 2.

– W =< L2
0S1, . . . , L

2
n−α−5S1, Ln−α−4Ln−α−3S1, L

2
n−α−4S1, Ln−α−2Ln−α−1S1, L

2
n−α−2S1,

Ln−αLn−α+1S1, Ln−αLn−α+2S1, Ln−α+1Ln−α+2S1, . . . , Ln−2Ln−1S1, Ln−2LnS1, Ln−1LnS1 >

– I = (y3
i , y

2
kyj, yaybyc),

with: i = n− α− 3, n− α− 1, n− α, n− α + 1, . . . , n;
k ≥ n− α− 3, k 6= j, if k = n− α− 3⇒ j 6= n− α− 4, n− α− 3, if k = n− α− 1⇒
j 6= n− α− 2, n− α− 1,
{k, j} 6= {n−α+3l, n−α+3l+1}, {n−α+3l, n−α+3l+2}, {n−α+3l+1, n−α+3l+2}
for l = 0, . . . , α−2

3

a 6= b, a 6= c, b 6= c,
or a, b, c ≤ n− α− 5
or {a, b}, {b, c}, {a, c} 6= {n− α + 3l, n− α + 3l + 1}, {n− α + 3l, n− α + 3l + 2}, {n−
α+3l +1, n−α+3l +2}, {n−α−2, n−α−1}, {n−α−4, n−α−3} for l = 0, . . . , α−2

3

· · ·

F = L2
0L1 + · · ·+ L2

n−α−2Ln−α−1 + Ln−αLn−α+1Ln−α+2 + · · ·+ Ln−2Ln−1Ln

– This case makes sense if and only if n ≥ α+2, α ≥ 2, (n−α) is even and n−α+1 = 3k.

– W =< L0L1S1, L
2
0S1, . . . , Ln−α−2Ln−α−1S1, L

2
n−α−2S1,

Ln−αLn−α+1S1, Ln−αLn−α+2S1, Ln−α+1Ln−α+2S1, . . . , Ln−2Ln−1S1, Ln−2LnS1, Ln−1LnS1 >

– I = (y3
i , y

2
hyj, yaybyc),

with: i > n− α or i = 2k + 1 for k = 0, . . . , n−α
2
− 1;

if h ≤ n− α− 1⇒ h = 2k + 1 and j 6= h− 1, h,
but if h ≥ n − α ⇒ {h, j} 6= {n − α + 3k, n − α + 3k + 1}, {n − α + 3k, n − α + 3k +
2}, {n− α + 3k + 1, n− α + 3k + 2} for k = 0, . . . , α−2

3
and h 6= j

{a, b}, {b, c}, {a, c} 6= {n− α + 3k, n− α + 3k + 1}, {n− α + 3k, n− α + 3k + 2}, {n−
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α + 3k + 1, n − α + 3k + 2}, {2l, 2l + 1} for k = 0, . . . , α−2
3

and l = 0, . . . , n−α
2
− 1 and

a 6= b, a 6= c, b 6= c.

– The projective variety X that parameterizes forms F = L2
0L1 + · · · + L2

n−α−2Ln−α−1 +

Ln−αLn−α+1Ln−α+2+· · ·+Ln−2Ln−1Ln is J
(
Sec(n−α−1

2
−1)(T (ν3(Pn))), Sec(α+2

3
−1)(Split3(Pn))

)
.

· · ·

• F = L2
0L1 + L2L3L4 + · · ·+ Ln−2Ln−1Ln

– This case makes sense if and only if n− 1 = 3k and n ≥ 4.

– W =< L2
0S1, L0L1S1, L2L3S1, L2L4S1, L3L4S1, . . . , Ln−2Ln−1S1, Ln−2LnS1, Ln−1LnS1 >

– I = (y3
i , y

2
1yj, y

2
ayb, y0ycyd, yeyfyg),

with: i = 1, . . . , n, j 6= 0, 1,
if a ≡ 0 mod 3⇒ b 6= a− 1, a + 1,
if a ≡ 1 mod 3⇒ b 6= a− 1, a− 2;
if a ≡ 2 mod 3⇒ b 6= a + 1, a + 2,
c 6= d ≥ 2⇒ {c, d} 6= (2 + 3k, 2 + 3k + 1) for k = 0, . . . , n−4

3

{ef}, {f, g}, {e, g} 6= {2+3k, 2+3k+1}, {2+3k, 2+3k+2}, {2+3k+1, 2+3k+2}, {0, 1}
for k = 0, . . . , n−4

3

– The projective variety X that parameterizes forms F = L2
0L1+L2L3L4+· · ·+Ln−2Ln−1Ln

is J
(
T (ν3(Pn)), Sec(n−1

3
−1)(Split3(Pn))

)
.

Since no one of the previous ideal I ⊂ R is (0) we can conclude that no one of the forms F
written above is canonical.

We can summarize the long list of the previous pages as follows.
A degree 3 form F involving exactly n + 1 linear forms and without any repeated term can be

written as (2.8), i.e.:

F = L3
0 + · · ·+ L3

a−1 + L2
aLa+1 + · · ·+ L2

b−2Lb−1 + LbLb+1Lb+2 + · · ·+ Ln−2Ln−1Ln.

Then the affine cone over the tangent space to the projective variety X defined as the closure
of the image of the map φ defined in (2.9) at a smooth point P = [L3

0 + · · ·+L3
a−1 +L2

aLa+1 + · · ·+
L2

b−2Lb−1 + LbLb+1Lb+2 + · · ·+ Ln−2Ln−1Ln] ∈ X is
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W =< L2
0S1, . . . , L

2
a−1S1, L

2
aS1, LaLa+1S1, . . . , L

2
b−2S1, Lb−2Lb−1S1,

LbLb+1S1, LbLb+2S1, Lb+1Lb+2S1, . . . Ln−2Ln−1S1, Ln−2LnS1, Ln−1LnS1 > (2.10)

and the ideal I ⊂ R such that (I−1)3 = W is

I = (y3
i , y

2
j yh, ylymyr)

with:

• i = b, . . . , n;
or

i = a + 2k + 1
k ∈ Z
0 ≤ k ≤ b−a−2

2

•


j = a + 2k + 1
k ∈ Z
0 ≤ k ≤ b−a−2

2

h 6= j − 1

or

j = b, . . . , n; j 6= h; {j, h} 6= {b + 3k, b + 3k + 1}, {b + 3k, b + 3k + 2}, {b + 3k + 1, b + 3k + 2};
k ∈ Z; k = 0, . . . , n−b−2

3

• l,m, r ≤ a− 1;

or

{l,m}, {l, r}, {m, r} 6= {a + 2k, a + 2k + 1}, {b + 3l, b + 3l + 1}, {b + 3l, b + 3l + 2}, {b + 3l +
1, b + 3l + 2}, for l = 0, . . . , n−b−2

2
and k = 0, . . . , b−a−2

2
;

and l 6= m, l 6= r, m 6= r.

Cubic form obtained as the product of a linear form and a quadric without repeated
terms

47



Inverse Systems and Canonical Forms

Now we want to study the forms of type:

F = L0(L1L2 + · · ·+ L2s−1L2s) (2.11)

where Li are generic linear forms for i = 0, . . . , 2s and 2s ≤ n.
How can we view the variety that parameterizes forms F? Consider the following two maps:

α : P(S1)× · · · × P(S1)︸ ︷︷ ︸
2s+1

→ P(S1)× P(S2)

([L0]; [L1], . . . , [L2s]) 7→ ([L0]; [L1L2 + · · ·+ L2s−1L2s])

and
β : P(S1)× P(S2) → P(S3),

([L], [Q]) 7→ [LQ].

Their composition turns out to be:

P(S1)× · · · × P(S1)︸ ︷︷ ︸
2s+1

α→ P(S1)× P(S2)
β→ P(S3),

([L0]; [L1], . . . , [L2s]) 7→ ([L0]; [L1L2 + · · ·+ L2s−1L2s]) 7→ [L0(L1L2 + · · ·+ L2s−1L2s)].

The closure of the image of β ◦ α is the variety parameterizing forms of type (2.11). We view
it as Pn× Secs−1(Split2(Pn)). Which is its expected dimension? The dimension of Split2(Pn) is 2n,
then the expected dimension of Secs−1(Split2(Pn)) is min

{(
n+2

2

)
− 1, 2ns + s− 1

}
; hence

expdim(Pn × Secs−1(Split2(Pn))) = min

{(
n + 2

2

)
− 1, 2ns + s− 1 + n

}
.

Let W be the affine cone over the tangent space to Pn × Secs−1(Split2(Pn)) at a smooth point
P = [L0(L1L2 + · · ·+ L2s−1L2s)], and let I ⊂ R = K[y0, . . . , yn] the ideal such that (I−1)3 = W .

The form (2.11) can be written as

F = L0L1L2 + L0L3L4 + · · ·+ L0L2s−1L2s.

Consider the variety Split3(Pn). If n ≥ 3 we can choose the forms L0, Li, Lj ∈ K[x0, . . . , xn]1 to be
x0, xi, xj respectively. We will see in Section 4.1.1 that if n ≥ 3 then the ideal I0,i,j ⊂ R such that
(I−1

0,i,j)3 is the affine cone over the tangent space to Split3(Pn) at the point P = [L0LiLj] is

I0,i,j = (y3
0, y

3
i , y

3
j ) + (y2

0, y
2
i , y

2
j )(y1, . . . , yi−1, yi+1, . . . , yj−1, yj+1 . . . , yn)+

+(y0, yi, yj)(y1, . . . , yi−1, yi+1, . . . , yj−1, yj+1 . . . , yn)2+
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+(y1, . . . , yi−1, yi+1, . . . , yj−1, yj+1 . . . , yn)3.

Hence, since n ≥ 2s, we can choose the forms Li to be xi for i = 0, . . . , 2s; moreover we can
write the ideal I as:

I = I0,1,2 ∩ I0,3,4 ∩ · · · ∩ I0,2s−1,2s.

If we compute it we obtain:

I = (y3
0, . . . , y

3
2s) + (y0)

2(y2s+1, . . . , yn) +
2s−1∑

[i]2 = [1]2
i = 1

(y2
i , y

2
i+1)(y1, . . . , yi−1, ŷi, ŷi+1, yi+2, . . . , yn)+

+(y0, . . . , y2s)(y2s+1, . . . , yn)2 +
∑

[i]2 = [j]2 = [k]2 = [1]2
i 6= j, i 6= k, j 6= k

i, j, k = 1, . . . , 2s − 1

(yi, yi+1)(yj, yj+1)(yk, yk+1)+

+

 ∑
[i]2 = [j]2 = [1]2

i 6= j
i, j = 1, . . . , 2s − 1

(yi, yi+1)(yj, yj+1)

 (y2s+1, . . . , yn) + (y2s+1, . . . , yn)3+

+

 ∑
[i]2 = [j]2 = [1]2

i 6= j
i, j = 1, . . . , 2s − 1

(yiyi+1yjyj+1)

+ (y0)
2 +

 ∑
[i]2 = [j]2 = [1]2

i 6= j
i, j = 1, . . . , 2s − 1

(yi, yi+1)(yj, yj+1)

 .

Now the dimension of Pn × Secs−1(Split2(Pn)) is dim(W ) − 1 = H(R/I, 3) − 1 that is
(

n+3
3

)
−

1− [2s + 1 + n− 2s + 2s(n− 2) + (2s + 1)
(

n−2s−1+2
2

)
+ 8
(

s
3

)
+ 4(n− s)

(
s
2

)
+
(

n−2s−1+3
3

)
], hence

dim(Pn × Secs−1(Split2(Pn))) = 3s− 2s3 + 3ns− 1.

Therefore we can compute the defect δ:

δ(Pn × Secs−1(Split2(Pn))) =

{
2s3 − ns− 2s + n, if n ≥ 4s−1+

√
16s2−7

2
,

n2+3n
2

+ 2s3 − 3s− 3ns + 1, otherwise.

2.5.3 Degree four

For the degree 4 forms we study the general case of a quartic involving exactly n + 1 linear forms
but without any repeated term and the case of a quartic obtained as a product of a linear form
and a cubic which involves exactly n terms and without any repeated one. We will study also
the particular case of the forms that can be written as L2

0L
2
1 + · · · + L2

2s−1L
2
2s where Li ∈ S1 for

i = 0, . . . , 2s and 2s ≤ n.
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Quartics involving n + 1 terms and without repeated terms

We can work in the same way as we did for the case of degree 3 forms.
Let us consider the map:

φ : P(S1)× · · · × P(S1)︸ ︷︷ ︸
n+1

→ P(S4)

([L0], . . . , [Ln]) 7→ [F ]
(2.12)

where F is

F = L4
0 + · · ·+ L4

a−1 + L3
aLa+1 + · · ·+ L3

b−2Lb−1 + L2
bL

2
b+1 + · · ·+ L2

c−2L
2
c−1+ (2.13)

+L2
cLc+1Lc+2 + · · ·+ L2

d−3Ld−2Ld−1 + LdLd+1Ld+2Ld+3 + · · ·+ Ln−3Ln−2Ln−1Ln

for 0 < a < b < c < d < n; (c− b), (b− a) even; (d− c) = 3α and (n + 1− d) = 4β.
Let X be the projective variety obtained as the closure of the image of the map φ defined in (2.12).
Let W be the affine cone over the tangent space TP (X) at a smooth point P = [F ] where F is that
one of (2.13). Let also I ⊂ R be the ideal such that (I−1)4 = W .
We observe that:

W =< L3
0S1, . . . , L

3
a−1S1, L

2
aLa+1S1, L

3
aS1, . . . , L

2
b−2Lb−1S1, L

3
b−2S1,

LbL
2
b+1S1, L

2
bLb+1S1, . . . Lc−2L

2
c−1S1, L

2
c−2Lc−1S1,

LcLc+1Lc+2S1, L
2
cLc+1S1, L

2
cLc+2S1, . . . , Ld−3Ld−2Ld−1S1, L

2
d−3Ld−1S1, L

2
d−3Ld−2S1,

Ld+1Ld+2Ld+3S1, LdLd+2Ld+3S1, LdLd+1Ld+3S1, LdLd+1Ld+2S1, . . . ,

Ln−2Ln−1LnS1, Ln−3Ln−1LnS1, Ln−3Ln−2LnS1, Ln−3Ln−2Ln−1S1 > .

Since the number of liner forms that appear in (2.13) is exactly n+1 we can choose each Li ∈ S1 =
K[x0, . . . , xn]1 with the monomials xi for i = 0, . . . , n, then the ideal I is:

I = (y4
i , y

3
j yh, y

2
ky

2
l , y

2
mypyq, yrysytyu)

with

• – a ≤ i ≤ b− 1 and (i− a) ≡ 1 (mod 2)

– i ≥ b

• j 6= h and

– a ≤ j ≤ b− 1 and (j − a) ≡ 1 (mod 2)
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–


b ≤ j ≤ c− 1
{j, h} 6= {b + 2α, b + 2α + 1}
α = 0, . . . , c−b

2
− 1

– if c ≤ j ≤ d− 1⇒
[

if (j − c) ≡ 0 (mod 3)⇒ h 6= j, j + 1, j + 2
if (j − c) ≡ 1, 2 (mod 3)⇒ any h

– j ≥ d

• k 6= l and

– k ≤ a− 1

– l ≤ a− 1

–

{
{k, l} 6= {a + 2α, a + 2α + 1}
α = 0, . . . , c−a

2
− 1

–

{
(k, l) 6= (c + 2α, c + 2α + 1), (c + 2α, c + 2α + 2)
α = 0, . . . , d−c−3

2

– k ≥ d

– l ≥ d

• p 6= q, p 6= m, q 6= m

– m ≤ a− 1

– if a ≤ m ≤ b− 1⇒
[

if (m− a) ≡ 0 (mod 2) ⇒ p, q 6= m + 1
if (m− a) ≡ 1 (mod 2) ⇒ for all p, q

– if b ≤ m ≤ c− 1⇒
[

if (m− b) ≡ 0 (mod 2) ⇒ p, q 6= m + 1
if (m− b) ≡ 1 (mod 2) ⇒ p, q 6= m− 1

– if c ≤ m ≤ d− 1⇒

 if (m− c) ≡ 0 (mod 3) ⇒ p, q 6= m + 1, m + 2
if (m− c) ≡ 1 (mod 3) ⇒ p, q 6= m− 1, m + 1
if (m− c) ≡ 2 (mod 3) ⇒ p, q 6= m− 1, m− 2

– if m ≥ d⇒


if (m− d) ≡ 0 (mod 4) ⇒ p, q 6= m + 1, m + 2, m + 3
if (m− d) ≡ 1 (mod 4) ⇒ p, q 6= m− 1, m + 1, m + 2
if (m− d) ≡ 2 (mod 4) ⇒ p, q 6= m− 1, m− 2, m + 1
if (m− d) ≡ 3 (mod 4) ⇒ p, q 6= m− 1, m− 2, m− 3

• r, s, t, u different each other,
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– {r, s, t}, {r, s, u}, {s, t, u}, {r, t, u} 6= {c + 2α, c + 2α + 1, c + 2α + 2}, {d + 4β, d + 4β +
1, d+4β +2}, {d+4β, d+4β +1, d+4β +3}, {d+4β, d+4β +2, d+4β +3}, {d+4β +
1, d + 4β + 2, d + 4β + 3} for α = 0, . . . , d−c−3

2
and β = 0, . . . , n−d−3

4

The particular case of L2
0L

2
1 + · · ·+ L2

2s−1L
2
2s

The variety that parameterizes a quartic that can be written as L2
0L

2
1 can be viewed by looking at

the composition of the following two maps:

α : P(S1)× P(S1) → P(S2)
([L0], [L1]) 7→ [L0L1]

and
ν2 : P(S2) → P(S4)

[Q] 7→ [Q2];

i.e.
P(S1)× P(S1)

α→ P(S2)
ν2→ P(S4)

([L0], [L1]) 7→ [L0L1] 7→ [L2
0L

2
1].

The closure of the image of ν2 ◦ α is ν2(Split2(Pn)); its dimension is 2n. The variety that pa-
rameterizes forms L2

0L
2
1 + · · · + L2

2s−1L
2
2s is Secs−1(ν2(Split2(Pn))) whose expected dimension is

min
{(

n+4
4

)
− 1, 2sn + s− 1

}
.

Proposition 2.5.4. If 2s− 1 ≤ n then

dim(Secs−1(ν2(Split2(Pn)))) = expdim(Secs−1(ν2(Split2(Pn)))) = 2sn + s− 1.

Proof. By hypothesis 2s− 1 ≤ n, then

expdim(Secs−1(ν2(Split2(Pn)))) = min

{(
n + 4

4

)
− 1, 2sn + s− 1

}
= 2sn + s− 1.

Let us consider the following parameterization:

φ : S1 × · · · × S1 → S4

φ(L0, . . . , L2s−1) = L2
0L

2
2 + · · ·+ L2

2s−2L
2
2s−1

where, as usually, S = K[x0, . . . , xn] and Lj are linear forms.
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Let A0, . . . , A2s−1 ∈ S1, we define 2F ′ as limλ→0

[
d
dλ

((L0 + λA0)
2(L0 + λA1)

2 + · · ·+
+(L2s−2 + λA2s−2)

2)(L2s−1 + λA2s−1)
2] =

= limλ→0 [2(L0 + λA0)A0(L0 + λA1)
2 + 2(L0 + λA0)

2A1(L0 + λA1) + · · ·+
+2(L2s−2 + λA2s−2)A2s−2(L2s−1 + λA2s−1)

2 + 2(L2s−2 + λA2s−2)
2A2s−1(L2s−1 + λA2s−1)] =

= 2(L0L
2
0A0 + L2

0L0A1 + L2L
2
3A2 + L2

2L3A3 + · · ·+ L2s−2L
2
2s−1A2s−2 + L2

2s−2L2s−1A2s−1).
Let W be the space spanned by the forms that appear in F ′.

Since n ≥ 2s− 1, then we can assume that Li = xi for all i = 0, . . . , 2s− 1, hence

W =< x2
0x1S1, x0x

2
1S1, x

2
2x3S1, x2x

2
3S1, . . . , x

2
2s−2x2s−1S1, x2s−2x

2
2s−1S1 > .

By construction
dim(Secs−1(ν2(Split2(Pn)))) = dim(W )− 1.

In order to study the dimension of W we consider the ideal I ⊂ R = K[y0, . . . , yn] such that
(I−1)4 = W . By inverse system theory it is clear that dim(W ) = dim(S4) − H(R/I, 4) where
H(R/I, 4) is the Hilbert function of I in degree 4. The ideal I turns out to be the following:

I = (y4
i , y

3
j yh, y

2
ky

2
l , y

2
mypyq, yryvytyu)

where i, j, h, k, l,m, p, q, r, v, t, u are chosen in the following way:

1. yi with i = 0, . . . , n;

2. y3
j yh with:

• h 6= j,

• if j ≤ 2s− 1 then

{
h 6= j + 1, if j is even;
h 6= j − 1, if j is odd;

• j = 2s, . . . , n and any h;

3. y2
ky

2
l with:

• k 6= l,

• if k ≤ 2s− 1 then

{
l 6= k + 1, if k is even;
l 6= k − 1, se k is odd;

• k = 2s, . . . , n and any l;

4. y2
mypyq with:

• m, p, q different each other,
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• and if m ≤ 2s− 1 then

{
p, q 6= m + 1, if m is even;
p, q 6= m− 1, if m is odd;

• m = 2s, . . . , n and for all p 6= q;

5. yryvytyu with r, v, t, u different each other.

Let now A1, . . . , A5 be the sets of the element of R4 previously described at the “points” from 1.
up to 5.. We can now verify that:

1. ]A1 = n + 1,

2. ]A2 = 2s(n− 1) + (n− 2s + 1)n,

3. ]A3 =
(

n+1
2

)
− s,

4. ]A4 =
(

n
2

)
(n + 1)− 2s(n− 1),

5. ]A5 =
(

n+1
4

)
.

Therefore H(R/I, 4) = 1
24

(n4 + 10n3 + 35n2 + 50n)− 2ns− s + 1 that is equivalent to:

H(R/I, 4) =

(
n + 4

4

)
− 1− (2ns + s− 1)

so dim(W ) = 2ns + s which proves

dim(Secs−1(ν2(Split2(Pn)))) = expdim(Secs−1(ν2(Split2(Pn)))) = 2sn + s− 1.

Quartics obtained as a product of a linear form and a cubic form involving n terms
and without repeated terms

We want to follow a procedure similar to the one we used for cubics.
Let 2 ≤ a ≤ b− 2 ≤ n− 4, (b− a) ∈ N even and (n− b) = 3α + 2 for α ∈ N. Consider first the

composition of the two following maps:

α : P(S1)× · · · × P(S1)︸ ︷︷ ︸
n+1

→ P(S1)× P(S3)

([L0]; [L1], . . . , [Ln]) 7→ ([L0], [F3])
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where

F3 = L3
1 + · · ·+ L3

a−1 + L2
aLa+1 + · · ·+ L2

b−2Lb−1 + LbLb+1Lb+2 + · · ·+ Ln−2Ln−1Ln ∈ S3 (2.14)

and
β : P(S1)× P(S3) → P(S4)

([L], [C]) 7→ [LC].

Let φ := β ◦ α:

φ : P(S1)× · · · × P(S1)︸ ︷︷ ︸
n+1

α→ P(S1)× P(S3)
β→ P(S4),

(L0; L1, . . . , Ln) 7→ (L0; F3) 7→ L0F3.

Let X be the projective variety obtained as the closure of Im(φ).
Let W be the affine cone over the tangent space TP (X) at a smooth point P = [F3] where F3 is as
in (2.14).
Let also I ⊂ R be the ideal such that: (I−1)4 = W .
Therefore:

F = L0F3 = L0(L
3
1 + · · ·+ L3

a−1 + L2
aLa+1 + · · ·+ L2

b−2Lb−1 + LbLb+1Lb+2 + · · ·+ Ln−2Ln−1Ln),

W =< S1F, L0W >

where F3 is the form (2.14) and

W =< L2
1S1, . . . , L

2
a−1S1, L

2
aS1, LaLa+1S1, . . . , L

2
b−2S1, Lb−2Lb−1S1,

LbLb+1S1, LbLb+2S1, Lb+1Lb+2S1, . . . Ln−2Ln−1S1, Ln−2LnS1, Ln−1LnS1 >;

so:

W =< L3
1S1, . . . , L

3
a−1S1, L

2
aLa+1S1, . . . , L

2
b−2Lb−1S1, LbLb+1Lb+2S1, . . . , Ln−2Ln−1LnS1,

L0L
2
1S1, . . . , L0L

2
a−1S1, L0L

2
aS1, L0LaLa+1S1, . . . , L0L

2
b−2S1, L0Lb−2Lb−1S1,

L0LbLb+1S1, L0LbLb+2S1, L0Lb+1Lb+2S1, . . . , L0Ln−2Ln−1S1, L0Ln−2LnS1, L0Ln−1LnS1 > .

We can assume that Li = xi ∈ S1, for i = 0, . . . , n, then

I = (y4
i , y

3
j yh, y

2
ky

2
l , y

2
mypyq, yrysytyu)

with j 6= h; k 6= l; m 6= p, m 6= q, p 6= q; r, s, t, u different each other:

• i = 0 and i ≥ a
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• – j = 0

– if a ≤ j ≤ b− 1⇒
[

if (j − a) ≡ 0 (mod 2) ⇒ h 6= 0, j + 1
if (j − a) ≡ 1 (mod 2) ⇒ any h

– j ≥ b

• – if k = 0⇒
[

a ≤ l ≤ b− 1 and (l − a) ≡ 1 (mod 2)
l ≥ b

– if l = 0⇒
[

a ≤ k ≤ b− 1 and (k − a) ≡ 1 (mod 2)
k ≥ b

– if 0 < k ≤ a− 1⇒ l 6= 0,

– if 0 < l ≤ a− 1⇒ k 6= 0,

– if a ≤ k ≤ b− 1⇒
[

if (k − a) ≡ 0 (mod 2)⇒ l 6= 0, k + 1
if (k − a) ≡ 1 (mod 2)⇒ l 6= k − 1

– if a ≤ l ≤ b− 1⇒
[

if (l − a) ≡ 0 (mod 2)⇒ k 6= 0, l + 1
if (l − a) ≡ 1 (mod 2)⇒ k 6= l − 1

– if k ≥ b⇒ any l,

– if l ≥ b⇒ any k;

• – if m = 0⇒
∗ if p ≤ a− 1⇒ any q,

∗ if q ≤ a− 1⇒ any p,

∗ if a ≤ p ≤ b− 1⇒
· if (p− a) ≡ 0 (mod 2)⇒ q 6= p + 1

· if (p− a) ≡ 1 (mod 2)⇒ q 6= p− 1

∗ if a ≤ q ≤ b− 1⇒
· if (q − a) ≡ 0 (mod 2)⇒ p 6= q + 1

· if (q − a) ≡ 1 (mod 2)⇒ p 6= q − 1

∗ if p ≥ b⇒
· if (p− b) ≡ 0 (mod 3)⇒ q 6= p + 1, p + 2

· if (p− b) ≡ 1 (mod 3)⇒ q 6= p− 1, p + 1

· if (p− b) ≡ 2 (mod 3)⇒ q 6= p− 1, p− 2

∗ if q ≥ b⇒
· if (q − b) ≡ 0 (mod 3)⇒ p 6= q + 1, q + 2
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· if (q − b) ≡ 1 (mod 3)⇒ p 6= q − 1, q + 1

· if (q − b) ≡ 2 (mod 3)⇒ p 6= q − 1, q − 2

– if 0 < m ≤ a− 1⇒ p, q 6= 0;

– if a ≤ m ≤ b− 1⇒
∗ if (m− a) ≡ 0 (mod 2)⇒ p, q 6= 0, m + 1

∗ if (m− a) ≡ 1 (mod 2)⇒ {p, q} 6= {0, m− 1}
– if m ≥ b⇒
∗ if (m− b) ≡ 0 (mod 3)⇒ {p, q} 6= {0, m + 1}, {0, m + 2}, {m + 1, m + 2}
∗ if (m− b) ≡ 1 (mod 3)⇒ {p, q} 6= {0, m− 1}, {0, m + 1}, {m− 1, m + 1}
∗ if (m− b) ≡ 2 (mod 3)⇒ {p, q} 6= {0, m− 1}, {0, m− 2}, {m− 1, m− 2}

• {r, s, t}, {r, s, u}, {r, t, u}, {s, t, u} 6= {0, a+2α, a+1+2α}, {b+3β, b+1+3β, b+2+3β}, {0, b+
3β, b + 1 + 3β}, {0, b + 3β, b + 2 + 3β}, {0, b + 1 + 3β, b + 2 + 3β} for α = 0, . . . , b−a

2
− 1 and

for β = 0, . . . , n−b−2
3

.

2.6 Three classes of canonical forms

In this section we want to present the three problems that we will study along all this thesis.
We will consider three classes of forms (in the last case they will actually be tensors, whose case
corresponds to studying multi-degree (1, . . . , 1) forms in a multi-graded ring). We will be interested
in discovering when they are canonical. We will study this problem also from a geometric point of
view and the most important result we will need is the so called “Terracini’s Lemma”.

We have previously described how to move the problem for the computation of the dimension
of the secant varieties to a variety X to the problem of the evaluation of the Hilbert function of a
projective scheme (and vice versa). This passage can be made easier by using Terracini’s lemma
(see [Te], or [Ad]), which we give here in the following form:

Lemma 2.6.1. (Terracini’s Lemma) Let X be an irreducible variety in PN , and let P1, . . . , Ps

be s generic points on X. Then, the projectivised tangent space to Secs−1(X) at a generic point
Q ∈< P1, . . . , Ps > is the linear span in PN of the tangent spaces TPi

(X) to X at Pi, i = 1, . . . , s,
i.e.

TQ(Secs−1(X)) =< TP1(X), . . . , TPs(X) > .

This “Lemma” can be proved in many ways, we present here a proof “made by hands”.
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Proof. We have already used the notation Xs for X × · · · × X taken s times. Suppose that
dim(X) = n. Let us consider the following incidences variety:

I = {(P ; P1, . . . , Ps) ∈ Pn ×Xs | P ∈< P1, . . . , Ps >, with P1, . . . , Ps generic in X} ⊂ Pn ×Xs,

and the two following projections:
π1 : I → Secs−1(X)

and
π2 : I → Xs.

The dimension of Xs is clearly sn. If (P1, . . . , Ps) ∈ Xs the fiber π−1
2 ((P1, . . . , Ps)) is generically a

Ps−1, s < N . Then dim(I) = sn + s − 1. If π1 has finite fibers the (s − 1)-secant variety to X is
regular, otherwise it is defective with defect equal to the dimension of the generic fiber.

Suppose that each Pi ∈ X ⊂ PN has coordinates Pi = [ai,0, . . . , ai,N ] for i = 1, . . . , s; around
each Pi the variety X can be locally parameterized with some functions fi,j : Kn+1 → Kn+1 for
i = 1, . . . , s and j = 0, . . . , N that are zero at the origin:

X :


x0 = ai,0 + fi,0(ui,0, . . . , ui,n)
...
xN = ai,N + fi,N(ui,0, . . . , ui,n)

.

Now we need a parameterization ϕ for Secs−1(X). Consider a point in the subspace spanned by s
points of X (for simplicity of notation we omit the dependence of the fi,j from the variables ui,j):
< (a1,0+f1,0, . . . , a1,N +f1,N), . . . , (as,0+fs,0, . . . , as,N +fs,N) >; an element of this subspace is of the
form: λ1(a1,0+f1,0, . . . , a1,N +f1,N)+λ2(a2,0+f2,0, . . . , a2,N +f2,N)+· · ·+λs(as,0+fs,0, . . . , as,N +fs,N)
for some λ1, . . . , λs ∈ K (we can assume that λ1 = 1). Therefore a parameterization of the (s− 1)-
secant variety to X can be obtained by (a1,0 + f1,0, . . . , a1,N + f1,N) + (λ2 + t2)(a2,1 − a1,0 + f2,1 −
f1,0, . . . , a2,N−a1,N +f2,N−f1,N)+· · ·+(λs+ts)(as,1−a1,0+fs,1−f1,0, . . . , as,N−a1,N +fs,N−f1,N) for
some parameters t2, . . . , ts, i.e. in coordinates the parameterization ϕ that we are looking for is that
one that sends an element (u1,0, . . . u1,n, u2,0, . . . , u2,n, . . . . . . , us,0, . . . , us,n, t2, . . . , ts) ∈ Ks(n+1)+s−1

into

(. . . , a1,j +f1,j +(λ2 + t2)(a2,j−a1,j +f2,j−f1,j)+ · · ·+(λs− ts)(as,j−a1,j +fs,j−f1,j), . . .) ∈ KN+1.

For simplicity we have written only the j-th element of the image. Therefore we are able to write
the Jacbian of ϕ. We are writing it in three blocks: the first one is (N + 1)× (n + 1), the second
one is (N + 1)× (s− 1)(n + 1) and the third one is (N + 1)× (s− 1):

J0(ϕ) =
(

(1− λ2 − · · · − λs)
∂f1,j

∂u1,k
| λi

∂fi,j

∂ui,k
| ai,j − a1,j

)
,
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with i = 2, . . . , s; j = 0, . . . , N and k = 0, . . . , n. Now the first block is a base of the tangent space
to X at P1, and in the second block we can find the bases for the tangent spaces to X at P2, . . . , Ps;
the rows of 

∂fi,0

∂ui,0
· · · ∂fi,0

∂ui,N

...
...

∂fi,N

∂ui,0
· · · ∂fi,N

∂ui,N


give a base for TPi

(X).

Corollary 2.6.2. Let (X,L) be an integral, polarized scheme. If L embeds X as a closed scheme
in PN , then

dim(Secs−1(X)) = N − dim(h0(IZ,X ⊗ L))

where Z is the union of s generic 2-fat points in X.

Proof. By Terracini’s Lemma, dim(Secs−1(X)) = dim(< TP1(X), . . . , TPs(X) >), with P1, . . . , Ps

generic points on X. Since X is embedded in PN = P(H0(X,L)∗), we can view the elements
of H0(X,L) as hyperplanes in PN ; the hyperplanes which contain a space TPi

(X) correspond to
elements in H0(I2Pi,X ⊗L), since they intersect X in a subscheme containing the first infinitesimal
neighborhood of Pi. Hence the hyperplanes of PN containing the subspace < TP1(X), . . . , TPs(X) >
are the sections of H0(IZ,X⊗L), where Z is the scheme union of the first infinitesimal neighborhoods
in X of the points Pi’s.

Remark: A hyperplane H contains the tangent space to a projective variety X at a smooth point
P if and only if the intersection X ∩H has a singular point at P .

In fact the tangent space TP (X) to X at P has the same dimension of X and TP (X ∩H) = H ∩
TP (X). Moreover P is singular in H∩X if and only if dim(TP (X∩H)) ≥ dim(X∩H) = dim(X)−1
and this happens if and only if H ⊃ TP (X).

Example: Consider the Veronese surface of P5. Let P be a general point of Sec1(ν2(P2)) and
suppose that P ∈< R, Q > where R,Q ∈ ν2(P2). By Terracini’s Lemma TP (Sec1(ν2(P2))) =<
TR(ν2(P2)), TQ(ν2(P2)) >. The expected dimension for Sec1(ν2(P2)) is 5, so dim(TP (Sec1(ν2(P2)))) <
5 if and only if there exists a hyperplane H containing TP (Sec1(ν2(P2))). The Remark above tells
us that this happens if and only if there exists a hyperplane H such that H ∩ ν2(P2) is singular at
R,Q.
Now ν2(P2) is the image of P2 via the map defined by complete linear system of quadrics hence
ν2(P2) ∩ H is the image of plane conics. Let R′, Q′ be the pre-images via ν2 of R,Q respectively.
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Then 2 < R′, Q′ > is a plane conic singular at R′ and Q′; it corresponds to the hyperplane section
of ν2(P2) which is singular at R,Q. Since 2 < R′, Q′ > is the only one plane conic singular at R′, Q′

we can say that dim(TP (Sec1(ν2(P2)))) = 4 < 5.
Since the 2-Veronese surface is defined by the complete linear system of quadrics, the Corollary
2.6.2 allows to rephrase the defectivity of Sec1(ν2(P2)) in terms of number of conditions imposed by
2-fat points to forms of degree 2; i.e. “two 2-fat points of P2 do not impose independent conditions
to the degree 2 forms of K[x0, x1, x2]”.

Corollary 2.6.2 can be generalized to non complete linear systems on X.

Notation: Let D be any divisor of an irreducible projective variety X. With |D| we indicate the
complete linear system defined by D. Let V ⊂ |D| be a linear system. We use the notation

V (m1P1, . . . ,msPs)

for the subsystem of divisors of V passing through the fixed points P1, . . . , Ps with multiplicities at
least m1, . . . ,ms respectively.

When the multiplicities mi are equal to 2 for i = 1, . . . , s, the problem of the knowledge of
dim(V (2P1, . . . , 2Ps)) is equivalent to that of the dimension of the (s − 1)-secant variety to a
variety obtained as the closure of the image of the map we are going to define.
Suppose that V is associated to a morphism ϕV : X0 → Pr (if dim(V ) = r) which is an embedding
on a dense open set X0 ⊂ X. We will consider the variety ϕV (X0).

In general we expect that if dim(X) = n then

expdim(V (2P1, . . . , 2Ps)) = dim(V )− s(n + 1).

Proposition 2.6.3. Let Xbe an integral scheme and V be a linear system on X such that the
rational function ϕV : X 99K Pr associated to V , is an embedding on a dense open subset X0 of X.

Then Secs−1

(
ϕV (X0)

)
is defective if and only if for general points P1, . . . , Ps ∈ X

dim(V (2P1, . . . , 2Ps)) > min{−1, r − s(n + 1)}.

2.6.1 Three questions

In this work we want to focalize our attention on three particular questions.
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Osculating varieties to Veronese varieties

Let L1, . . . , Ls be generic linear forms of S = K[x0, . . . , xn] and F1, . . . , Fs be generic forms belonging
to Sk; the first case we are interested in is:

“which are the conditions on s, k, d ∈ Z such that the following form is canonical:

Ld−k
1 F1 + · · ·+ Ld−k

s Fs?”

The results which we are going to present about this problem are for the most part in the joint works
[BCGI] and [BC] (we will prove in the next chapter that a form F = Ld−k

1 F1 + · · ·+ Ld−k
s Fs ∈ Sd

is canonical if and only if the (s− 1)-secant variety to the k-th Osculating variety to a Veronesean
fills up the ambient space). Let us first look at some peculiar examples.

Example: If d = 3, k = 2 and n = 4 one would expect that a generic f ∈ K[x0, . . . , x4]3 could
be written as f = L1F1 + L2F2 with Li ∈ S1 and Fi ∈ S2, but actually we need three addenda:
f = L1F1 + L2F2 + L3F3.

Example: If d = 3, k = 2 and n = 5 we cannot write a generic f ∈ K[x0, . . . , x5]3 as f =
L1F1 + L2F2 + L3F3, but only as f = L1F1 + · · ·+ L4F4 for Li ∈ S1 and Fi ∈ S2.

Example: If d = 4, k = 3 and n = 6 one would expect that a generic f ∈ K[x0, . . . , x6]4 could
be written as f = L1F1 + L2F2 + L3F3, with Li ∈ S1 and Fi ∈ S3, but not only it is not possible
to write a generic f as a sum of three addenda, but it is not even possible to write it as a sum of
four. In fact f can only be written as f = L1F1 + · · ·+ L5F5.

Split varieties

Let L
(j)
i be generic linear forms of S = K[x0, . . . , xn] for i = 1, . . . , d and j = 1, . . . , s;

“which is the least integer s such that the following form is canonical:

L
(1)
1 · · ·L

(1)
d + · · ·+ L

(s)
1 · · ·L

(s)
d ?”

The motivation of this study comes from a conjecture in [Eh]. Let G(k, n) be the Grassmannian of
k-spaces of Pn; with Splitd(Pn) we indicate the variety that is obtained as the closure of the image
of the following map:

φ : P(S1)× · · · × P(S1)︸ ︷︷ ︸
d

→ P(Sd),

([L1], . . . , [Ld]) 7→ [L1 · · ·Ld];
(2.15)
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hence the Split variety can be viewed as the locus:

Splitd(Pn) := {[f ] ∈ K[x0, . . . , xn]d | f = L1 · · ·Ld with Li ∈ K[x0, . . . , xn]1}.

In the paper we cited above Ehrenborg observed that for a positive integer d, the varieties Splitd(Pn)

and G(n− 1, n+d− 1) are embedded in the same P(n+d
d )−1, and moreover he found many examples

where the typical rank of the two variety is the same. Therefore he stated the following conjecture.

Conjecture 2.6.4. (Eherenborg) The typical ranks of G(n− 1, n + d− 1) and of Splitd(Pn) are
the same.

If this conjecture were true, we would be able to compute the dimension of Secs−1(Splitd(Pn))
in many cases. Unfortunately things are not so simple and the following example shows that the
conjecture is false.

Example: It is a known result (see for example [CGG4]) that Sec3−1(G(3, 6)) is defective with
defect δ3 = 1, i.e one expects that Sec2(G(3, 6)) = P34 but dim(Sec2(G(3, 6))) = 33; we need
Sec3(G(3, 6)) in order to fill up P34. This means that the typical rank of G(3, 6) is not 3, as expected,
but 4. Unfortunately this fact does not imply that the least integer s such that Secs−1(Split4(P3))
fills up the ambient space is 4 too; in fact Sec2(Split4(P3)) = P34 (we made computations with
[CoCoA]).

Anyway, we have that Ehremborg’s conjecture is true for d = 2.

Proposition 2.6.5. The (s − 1)-secant varieties of G(1, n + 1) and of Split2(Pn) have the same
dimension for all s.

Proof. The embedding of G(1, n + 1) into P(n+2
2 )−1 ' P(K[x0, . . . , xn]2) allows us to view the

Grassmannian as the set of quadrics whose representative (n + 2) × (n + 2) matrices are skew
symmetric and of rank at most 2 (we will present this construction in details in Section 4.4, in
particular see (4.11) and (4.12)). Therefore

Secs−1(G(1, n + 1)) ' {M ∈Mn+2(K) |M is skew symmetric and rk(M) ≤ 2s},

then

codim(Secs−1(G(1, n + 1))) =

(
n + 2− 2s

2

)
.

In the same way Split2(Pn) ' {M ∈Mn+1(K) |M is symmetric and rk(M) ≤ 2}; therefore

Secs−1(Split2(Pn)) ' {M ∈Mn+1(K) |M is symmetric and rk(M) ≤ 2s},
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then

codim(Secs−1(Splitd(Pn)) =

(
n + 2− 2s

2

)
.

Notice also that when d = 2 the variety Split2(Pn) is the variety that parameterizes forms of
the type Ld−kF with L ∈ S1 and F ∈ Sk, 1 ≤ k < d = 2.

Segre Varieties

Let us give the following definition:

Definition 2.6.6. Let V1, . . . , Vt vector spaces on K, a tensor T ∈ V ∗
1 ⊗ · · · ⊗ V ∗

t is said to be
“decomposable” if there exist vectors v∗i ∈ V ∗

i such that T = v∗1 ⊗ · · · ⊗ v∗t .

A well known problem is:

“which is the minimum integer s such that the generic tensor T of V ∗
1 ⊗ · · · ⊗ V ∗

t is the
sum of s decomposable tensors? This minimum integer s is called the “typical rank” of
T .”

The geometric problem associated at this last algebraic problem is the study of the dimension
of the secant varieties to the Segre varieties. Let Pni = P(Vi) for i = 1, . . . , k, be the Segre variety
which is defined as the image of the following map:

Pn1 × · · · × Pnk → P(n1+1)···(nk+1)−1

((x
(1)
0 , . . . , x

(1)
n1 ), . . . , (x

(k)
0 , . . . , x

(k)
nk )) 7→ (. . . , x

(1)
i1
· · ·x(k)

ik
, . . .)

.

In the last chapter, two different ways to approach the study of secant varieties of Segre varieties:
the first one uses Inverse System theory and it is due to M.V. Catalisano, A.V. Geramita and A.
Gimigliano (see [CGG1]); the second one is strictly connected to Representation Theory and it
is due to J.M. Landsberg and L. Manivel (see [LM1]). In this last paper the authors give two
different algorithms to compute the equations of the secant varieties to Segre varieties. The most
important result contained in [LM1] that we will present is the solution of the Garcia, Stillman,
Sturmfels conjecture (see Conjecture 5.6.32) on the generation of the ideal of the chordal variety
to Segre variety in the case of three factors.
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Chapter 3

Secant varieties to the Osculating
varieties of Veronese varieties

In this chapter we want to give a partial solution to the first problem presented in Section 2.6.1:

“which is the least integer G(d) such that the generic form of Sd = K[x0, . . . , xn]d can
be written as sums of G(d) forms of the type Ld−kF where L ∈ S1 and F ∈ Sk?”.

Accordingly with the technique presented in Section 2.4, we look for a variety parameterizing those
kind of forms and, after that, the knowledge of the dimensions of its secant varieties, when we
are able to compute them, will solve the problem. We will see that this variety will be given by
osculating spaces to the Veronese νd(Pn); in the case k = 1 the tangential variety is the one involved.

Definition 3.0.7. Let X ⊂ PN be a projective, reduced and irreducible variety. The tangent star
to X at P is defined as follows:

T ∗
P (X) =

⋃
y(t), z(t) ∈ X,

y(0) = z(0) = P

limt→0 < y(t), z(t) >.

Definition 3.0.8. Let X ⊂ PN be a projective, reduced and irreducible variety. Define the tangen-
tial variety of X, τ(X) ⊂ PN by

τ(X) :=
⋃

P∈X

T ∗
P X.
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VARIETIES

We can observe that if the variety X is smooth the definition of Tangential variety that we have
just introduced coincide with the following:

Definition 3.0.9. Let X ⊂ PN be a projective, reduced and irreducible variety. Let X0 ⊂ X be the
dense subset of regular points of X. We define the tangential variety to X as

T (X) :=
⋃

P∈X0

TP (X)

where TP (X) is the tangent space to X at P .

A reason for using Definition 3.0.8 rather than Definition 3.0.9 is given by Fulton Hansen
Theorem (see [FHan]) that can be applied for τ(X) of Definition 3.0.8 and not for T (X) of
Definition 3.0.9.

Theorem 3.0.10. (Fulton Hansen) Let X ⊂ PN be a projective variety. Then either:

• dim(τ(X)) = 2n and dim(Sec1(X)) = 2n + 1, or

• τ(X) = Sec1(X).

We have already observed that when X is smooth, T ∗
P (X) is just TP (X), so T (X) = τ(X).

When X is singular, for τ(X) Theorem 3.0.10 holds, while for T (X) it does not.

Example: Consider the Del Pezzo surface X := ν3(P2) ⊂ P9 which parameterizes cubics of P2

made of a single triple line. Then T (X) is a 4-fold in P9 and we will see that it parameterizes forms
of type [LM2], where L, M are linear forms in S := K[x0, x1, x2]; such variety is singular along X.
Let us consider the variety T (T (X)). At every point [LM2], we have that T[LM2](T (X)) corresponds
to < M2S1, MLS1 >, hence T (T (X)) parameterizes all cubic forms which are limit of something
of the form [MF ], where L is a line and F a conic.
Notice that this shows that T (T (X)) = O2(X), the second osculating variety to X, which has
dimension 7, hence T (T (X)) is defective (it should have dimension 8), and this defectivity is not
surprising, since along any tangent space TP (X) we have that all TQ(T (X)), Q ∈ TP (X), have
TP (X) in common.
If we consider τ(T (X)), instead, Hansen-Fulton theorem 3.0.10 gives us that τ(T (X)) = Sec1(T (X)),
since it is known that Sec1(T (X)) is defective (see [CGG2]) and has dimension 8 (it actually pa-
rameterizes all singular cubics).

Definition 3.0.11. A (2, 3)-point in Pn is a 0-dimensional scheme in Pn with support at one point
P , whose ideal is of the type ℘3 + I2

l where l ⊂ Pn is a line through P with defining ideal Il and ℘
is the ideal of P .
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If X = νd(Pn), the tangential variety to X can be dually viewed as the locus {[Ld−1M ] ∈
P(Sd) | L, M ∈ S1} ⊂

(
P(n+d

d )−1
)∗

. In [CGG2] it is shown, via inverse systems’ theory, that

dim(Secs−1(T (νd(Pn)))) = H(Z1, 1) − 1, where Z1 is the union of s generic “(2, 3)−points” (i.e.
the intersection of a 3-fat point with a double line). In that paper the defectivity of T (νd(Pn))
was studied and a conjecture regarding all defective cases was stated (see also [Ba]). The authors
proved that if P1, . . . , Ps ∈ νd(Pn), ℘i ⊂ R = K[y0, . . . , yn] are the prime ideals associated to Pi,
and Q ∈< P1, . . . , Ps > then it is possible to find s prime ideals li ⊂ R representing lines through
Pi such that the dimension of TQ(Secs−1(T (νd(Pn)))) is equal to H(R/(℘3

1 ∩ l21)∩ · · · ∩ (℘3
s ∩ l2s), d).

The forms parameterized by T (νd(Pn)) suggest that, if we want to find the variety parameterizing
forms Ld−kF with L ∈ S1 and F ∈ Sk, we have to look at the k-osculating variety to νd(Pn).

3.1 The k-th osculating space

3.1.1 Definition and remark

Let X ⊂ Pr be a projective variety of dimension n.
Let U0 ⊂ Cn be an open neighborhood of 0 := (0, . . . , 0) ∈ Cn in the Euclidian topology; and let
{u1, . . . , un} be a set of coordinates in Cn.
Now let F : U0 → X such that F (0) = P is a local parametrization.

Definition 3.1.1. Let X ⊂ Pr be a projective n-dimensional variety, and let F be a local parame-
terization as above. The k-th osculating space to X at a regular point P ∈ X is the linear projective
space obtained as the projectivization of the following affine subspace of Cr+1:

Ok,X,P := < Fu1(0), . . . , Fun(0);
Fu1u1(0), Fu1u2(0), . . . , Funun(0);
...
F u1···u1︸ ︷︷ ︸

k

(0), . . . , F u1···u1un︸ ︷︷ ︸
k

(0); . . . . . . , F un...un︸ ︷︷ ︸
k

(0) >

where Fui
(0) = ∂F

∂ui
(0), and Fuj1

···ujh
(0) = ∂hF

∂uj1
···∂ujh

(0).

An equivalent definition of k-th osculating space can be given as follows:

Definition 3.1.2. Let X ⊂ Pr be a projective n-dimensional variety, consider all the curves t 7→
x(t) such that x(t) ∈ X for all t ∈ K and x(0) = P , then the k-th osculating space to X at P can
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be defined as ⋃
x(t) ⊂ X
x(0) = P

< x(0), x′(0), x′′(0), . . . , x(k)(0) > .

Example: Let U0 ⊂ C1 and X the 1-dimensional projective variety locally defined by the following
parameterization:

F : U0 → X, F (u) = (u, u2, u3)

then
O0,X,0 = {0} = P ,
O1,X,0 =< (1, 2u, 3u2)|0 >=< (1, 0, 0) >,
O2,X,0 =< (1, 0, 0), (0, 2, 6u)|0 >=< (1, 0, 0), (0, 2, 0) >,
O3,X,0 =< (1, 0, 0), (0, 2, 0), (0, 0, 6) >.

3.1.2 Intersection between a projective variety X and its k-th osculat-
ing space at one point

The goal of this section is the following proposition:

Proposition 3.1.3. The intersection between a projective variety X ⊂ Pr and its k-th osculating
space Ok,X,P at a regular point P is at least a (k + 1)-fat point, i.e. there exists r′ ∈ Z, r′ ≤ r such

that Spec
(

K[x1,...,xr]
I(X∩Ok,X,P )

)
⊇ Spec

(
K[x1,...,xr′ ]
(I(P ))k+1

)
.

Let P = 0, F : U0 → X be a local parametrization such that F (0) = 0 and

F (u1, . . . , un) = (f1(u1, . . . , un), . . . , fr(u1, . . . , un)).

We want to start by studying the case of the tangent space T0(X).

Tangent space

According with the previous definition, the affine tangent space to X at the point P = 0 is the first
osculating space O1,X,0:

T0(X) =<
∂F

∂u1

(0), . . . ,
∂F

∂un

(0) >=

=<

(
∂f1

∂u1

(0), . . . ,
∂fr

∂u1

(0)

)
, . . . ,

(
∂f1

∂un

(0), . . . ,
∂fr

∂un

(0)

)
> .
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Let us consider the following system:
x1 = f1(u1, . . . , un)
...
xr = fr(u1, . . . , un)

. (3.1)

By elimination of the ui’s we can find polynomials F1, . . . , Fs ∈ K[x1, . . . , xr] such that the variety
X is defined (locally, at 0), by: 

F1(x1, . . . , xr) = 0
...
Fs(x1, . . . , xr) = 0

(3.2)

and so its defining ideal I(X) ⊂ K[x1, . . . , xr] is, locally, I(X) = (F1, . . . , Fs). If we substitute the
equations (3.1) into (3.2) we find out

F1(f1(u1, . . . , un), . . . , fr(u1, . . . , un)) = 0
...
Fs(f1(u1, . . . , un), . . . , fr(u1, . . . , un)) = 0

(3.3)

that implies 0 =
∂Fj

∂ui
=
∑r

h=1
∂Fj

∂xh

∂xh

∂ui
=
∑r

h=1
∂Fj

∂xh

∂fh

∂ui
for all j = 1, . . . , s and therefore the equations

of T0(X) are determined by the following system:
∑r

h=1
∂F1

∂xh
(0)xh = 0

...∑r
h=1

∂Fs

∂xh
(0)xh = 0

(3.4)

and so

I(T0(X)) =

(
∂F1

∂x1

(0)x1 + · · ·+ ∂F1

∂xr

(0)xr, . . . ,
∂Fs

∂x1

(0)x1 + · · ·+ ∂Fs

∂xr

(0)xr

)
⊂ K[x1, . . . , xr]

Let us write Fj = Fj0 + Fj1 + · · ·+ Fjdj
where Fjl is the homogeneous part of degree l of Fj for all

j = 1, . . . , s. Since Fj(0) = 0, we have Fj0 = 0 for all j = 1, . . . , s then Fj = Fj1 + · · · + Fjdj
. Let

Fj1 = aj1x1 + · · ·+ ajrxr then

Fj = aj1x1 + · · ·+ ajrxr + Fj2 + · · ·+ Fjdj
.
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It is clear that
∂Fj

∂xh
(0) = ajh and so

I(T0(X)) = (a11x1 + · · ·+ a1rxr, . . . , as1x1 + · · ·+ asrxr).

Let us consider now the following intersection:

Spec

(
K[x1, . . . , xr]

I(X)

)
∩ Spec

(
K[x1, . . . , xr]

I(T0(X))

)
this is equal to

Spec

(
K[x1, . . . , xr]

(I(X) + I(T0(X)))

)
= Spec

(
K[x1, . . . , xr]

(F1, . . . , Fr,
∑r

h=1
∂F1

∂xh
(0)xh, . . . ,

∑r
h=1

∂Fs

∂xh
(0)xh)

)
=

= Spec

(
K[x1, . . . , xr]

((
∑r

i=1 a1ixi) + (
∑d1

i=2 F1i), . . . , (
∑r

i=1 asixi) + (
∑ds

i=2 Fsi),
∑r

i=1 a1ixi, . . . ,
∑r

i=1 asixi)

)
'

' Spec

(
K[x1, . . . , xr]

(
∑d1

i=2 F1i, . . . ,
∑ds

i=2 Fsi,
∑r

i=1 a1ixi, . . . ,
∑r

i=1 asixi)

)
that is isomorphic, for some F ′

j ∈ K[x1, . . . , xr−1] and a′ij ∈ K (if (as1, . . . , asr) 6= (0, . . . , 0)), to

Spec

(
K[x1, . . . , xr−1]

(
∑d1

i=2 F ′
1i, . . . ,

∑ds

i=2 F ′
si,
∑r−1

i=1 a′1ixi, . . . ,
∑r−1

i=1 a′s−1ixi)

)
'

' · · · ' Spec

(
K[x1, . . . , xl]

(
∑d1

i=2 F̃1i, . . . ,
∑ds

i=2 F̃si)

)
= Spec

(
K[x1, . . . , xl]

(F̃12 + · · ·+ F̃1d1 , . . . , F̃s2 + · · ·+ F̃sds)

)
for some F̃i ∈ K[x1, . . . , xl] and r − s ≤ l ≤ r and any i = 1, . . . , s.
Now, since the ideal (F̃12 + · · · + F̃1d1 , . . . , F̃s2 + · · · + F̃sds) ⊂ K[x1, . . . , xl] is generated in degree
at least 2, it means that

Spec

(
K[x1, . . . , xl]

(F̃12 + · · ·+ F̃1d1 , . . . , F̃s2 + · · ·+ F̃sds)

)
⊇ Spec

(
K[x1, . . . , xl]

(x1, . . . , xl)2

)
.

This means that the intersection between a variety X and its tangent space at the point P = 0 is
at least a double fat point.

70



The k-th osculating space

Second osculating space

Now we want to study the intersection between a projective variety X and its second osculating
space at P = 0.

By definition

O2,X,0 =< Fu1(0), . . . , Fun(0), Fu1u1(0), Fu1u2(0), . . . , Funun(0) >=

=<

(
∂f1

∂u1

(0), . . . ,
∂fr

∂u1

(0)

)
, . . . ,

(
∂f1

∂un

(0), . . . ,
∂fr

∂un

(0)

)
;

(
∂2f1

∂u2
1

(0), . . . ,
∂2fr

∂u2
1

(0)

)
,

(
∂2f1

∂u1∂u2

(0), . . . ,
∂2fr

∂u1∂u2

(0)

)
, . . . ,

(
∂2f1

∂u1∂un

(0), . . . ,
∂2fr

∂u1∂un

(0)

)
,

(
∂2f1

∂u2∂u1

(0), . . . ,
∂2fr

∂u2∂u1

(0)

)
,

(
∂2f1

∂u2
2

(0), . . . ,
∂2fr

∂u2
2

(0)

)
, . . . ,

(
∂2f1

∂u2∂un

(0), . . . ,
∂2fr

∂u2∂un

(0)

)
,

. . .(
∂2f1

∂un∂u1

(0), . . . ,
∂2fr

∂un∂u1

(0)

)
, . . . ,

(
∂2f1

∂un∂un−1

(0), . . . ,
∂2fr

∂un∂un−1

(0)

)
,

(
∂2f1

∂u2
n

(0), . . . ,
∂2fr

∂u2
n

(0)

)
>=

=<
(

∂f1

∂u1
(0), . . . , ∂fr

∂u1
(0)
)

, . . .
(

∂f1

∂un
(0), . . . , ∂fr

∂un
(0)
)

;(
∂2f1

∂u2
1
(0), . . . , ∂2fr

∂u2
1
(0)
)

,(
∂2f1

∂u2∂u1
(0), . . . , ∂2fr

∂u2∂u1
(0)
)

,
(

∂2f1

∂u2
2
(0), . . . ∂2fr

∂u2
2
(0)
)

,

. . .(
∂2f1

∂un∂u1
(0), . . . , ∂2fr

∂un∂u1
(0)
)

, . . . ,
(

∂2f1

∂un−1∂un
(0), . . . , ∂2fr

∂un−1∂un
(0)
)

,
(

∂2f1

∂u2
n
(0), . . . , ∂2fr

∂u2
n
(0)
)

> .

Therefore the affine dimension of O2,X,0 is at most
(

n+1
2

)
+ n. Since O2,X,0 is an affine linear vector

space through the origin and the ideal I(X) is contained in K[x1, . . . , xr], there exist m polynomials
in K[x1, . . . , xr]1, with m ≥ r −

(
n+1

2

)
− n, that define I(O2,X,0) ⊂ K[x1, . . . , xr]; let them be:
a11x1 + · · ·+ a1rxr = 0
...
am1x1 + · · ·+ amrxr = 0

(3.5)
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where the aij are determined by the relations: (ai1, . . . , air) ·
(

∂f1

∂uj
(0), . . . , ∂fr

∂uj
(0)
)

= 0, ∀i = 1, . . . ,m; ∀j = 1, . . . , n;

(ai1, . . . , air) ·
(

∂2f1

∂ui1
∂ui2

(0), . . . , ∂2fr

∂ui1
∂ui2

(0)
)

= 0, ∀i = 1, . . . ,m; ∀i1, i2 ∈ {1, . . . , n}.
(3.6)

Now, using Taylor’s formula, the system (3.1) can be rewritten:

x1 = f1(u1, . . . , un) =

=
∑n

i=1
∂f1

∂ui
(0)ui + 1

2

∑n
i1,i2=1

∂2f1

∂ui1
∂ui2

(0)ui1ui2 + 1
3!

∑n
i1,i2,i3=1

∂3f1

∂ui1
∂ui2

∂ui3
(0)ui1ui2ui3 + · · ·

...
xr = fr(u1, . . . , un) =

=
∑n

i=1
∂fr

∂ui
(0)ui + 1

2

∑n
i1,i2=1

∂2fr

∂ui1
∂ui2

(0)ui1ui2 + 1
3!

∑n
i1,i2,i3=1

∂3fr

∂ui1
∂ui2

∂ui3
(0)ui1ui2ui3 + · · · .

(3.7)
Then, by using (3.7), we have that the relations of (3.5), for all i = 1, . . . ,m, are determined as
follows:

0 = ai1x1 + · · ·+ airxr = (ai1, . . . , air) · (x1, . . . , xr) =

= (ai1, . . . , air)·

(
n∑

i=1

∂f1

∂ui

(0)ui +
1

2

n∑
i1,i2=1

∂2f1

∂ui1∂ui2

(0)ui1ui2 +
1

3!

n∑
i1,i2,i3=1

∂3f1

∂ui1∂ui2∂ui3

(0)ui1ui2ui3 + · · · ,

. . . ,
n∑

i=1

∂fr

∂ui

(0)ui +
1

2

n∑
i1,i2=1

∂2fr

∂ui1∂ui2

(0)ui1ui2 +
1

3!

n∑
i1,i2,i3=1

∂3fr

∂ui1∂ui2∂ui3

(0)ui1ui2ui3 + · · ·

)
=

= (ai1 , . . . , air) ·

(
n∑

i=1

∂f1

∂ui

(0)ui, . . . ,
n∑

i=1

∂fr

∂ui

(0)ui

)
+

+(ai1 , . . . , air) ·

(
1

2

n∑
i1,i2=1

∂2f1

∂ui1∂ui2

(0)ui1ui2 , . . . ,
1

2

n∑
i1,i2=1

∂2fr

∂ui1∂ui2

(0)ui1ui2

)
+

+(ai1 , . . . , air)·

(
1

3!

n∑
i1,i2,i3=1

∂3f1

∂ui1∂ui2∂ui3

(0)ui1ui2ui3 + · · · , . . . , 1

3!

n∑
i1,i2,i3=1

∂3fr

∂ui1∂ui2∂ui3

(0)ui1ui2ui3 + · · ·

)

Now, by (3.6), we know that (ai1 , . . . , air) ·
(∑n

i=1
∂f1

∂ui
(0)ui, . . . ,

∑n
i=1

∂fr

∂ui
(0)ui

)
= (ai1 , . . . , air) ·(∑n

i1,i2=1
∂2f1

∂ui1
∂ui2

(0)ui1ui2 , . . . ,
∑n

i1,i2=1
∂2fr

∂ui1
∂ui2

(0)ui1ui2

)
= 0 then ai1x1 + · · ·+ airxr =

=
1

3!
(ai1 , . . . , air)·

(
n∑

i1,i2,i3=1

∂3f1

∂ui1∂ui2∂ui3

(0)ui1ui2ui3 + · · · , . . . ,
n∑

i1,i2,i3=1

∂3fr

∂ui1∂ui2∂ui3

(0)ui1ui2ui3 + · · ·

)
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The k-th osculating space

for all i = 1, . . . ,m.

Now, since K[x1, . . . , xr] ⊃ I(X) = (F1, . . . , Fs) as in (3.2), we want to consider, for all j = 1, . . . , r

and for any ui1 , ui2 ∈ {1, . . . , n}, the following equality and compute it: 0 =
∂2Fj

∂ui1
∂ui2

= ∂
∂ui1

(
∂Fj

∂ui2

)
=

∂
∂ui1

(∑r
h=1

∂Fj

∂xh

∂fh

∂ui2

)
=
∑r

h=1
∂

∂ui1

(
∂Fj

∂xh

∂fh

∂ui2

)
=

=
∑r

h=1

(((
∂

∂ui1

(
∂Fj

∂xh

))
∂fh

∂ui2
+

∂Fj

∂xh

(
∂

∂ui1

(
∂fh

∂ui2

)))
=
∑r

h=1

((
∂

∂xh

(
∂Fj

∂ui1

))
∂fh

∂ui2
+

∂Fj

∂xh

∂2fh

∂ui1
∂ui2

))
=

=
∑r

h=1

((
∂

∂xh

(∑r
l=1

∂Fj

∂xl

∂fl

∂ui1

))
∂fh

∂ui2

)
+
∑r

h=1

(
∂Fj

∂xh

∂2fh

∂ui1
∂ui2

)
=
∑r

h=1

(∑r
l=1

∂2Fj

∂xh∂xl

∂fl

∂ui1
+

∂Fj

∂xl

∂2fl

∂xh∂ui1

)
∂fh

∂ui2
+∑r

h=1

(
∂Fj

∂xh

∂2fh

∂ui1
∂ui2

)
=
∑r

h=1

(∑r
l=1

∂2Fj

∂xh∂xl

∂fh

∂ui1
+

∂Fj

∂xh

∂fl

∂ui1

)
∂fh

∂ui2
+
∑r

h=1

(
∂Fj

∂xh

∂2fh

∂ui1
∂ui2

)
=

=
r∑

h=1

(
r∑

l=1

(
∂2Fj

∂xh∂xl

+
∂Fj

∂xh

)
∂fl

∂ui1

)
∂fh

∂ui2

+
r∑

h=1

(
∂Fj

∂xh

∂2fh

∂ui1∂ui2

)
. (3.8)

This implies, by (3.6), that

r∑
h=1

(
r∑

l=1

(
∂2Fj

∂xh∂xl

(0) +
∂Fj

∂xh

(0)

)
xl

)
xh +

r∑
h=1

(
∂Fj

∂xh

(0)xh

)
∈ I(O2,X,0) (3.9)

where I(O2,X,0) = (a11x1 + · · ·+ a1rxr, . . . , am1x1 + · · ·+ amxxr).
Consider now

Spec

(
K[x1, . . . , xr]

I(X ∩O2,X,0)

)
= Spec

(
K[x1, . . . , xr]

I(X) + I(O2,X,0)

)
=

= Spec

(
K[x1, . . . , xr]

(F1, . . . , Fs,
∑r

i=1 a1ixi, . . . ,
∑r

i=1 amixi)

)
=

= Spec

(
K[x1, . . . , xr]

(
∑d1

i=1 F1i, . . . ,
∑ds

i=1 Fsi,
∑r

i=1 a1ixi, . . . ,
∑r

i=1 amixi)

)
:= A

Since T0(X) ⊆ O2,X,0 then

1.
∑r

h=1
∂Fj

∂xh
(0)xh ∈ I(X ∩O2,X,0) then

A ' Spec

(
K[x1, . . . , xr]

(
∑d1

i=2 F1i, . . . ,
∑ds

i=2 Fsi,
∑r

i=1 a1ixi, . . . ,
∑r

i=1 amixi)

)
:= B
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The k-th osculating space

2. together with (3.9),
∑r

h,l=1
∂2Fj

∂xh∂xl
(0)xhxl ∈ I(X ∩O2,X,0) then

B ' Spec

(
K[x1, . . . , xr]

(
∑d1

i=3 F1i, . . . ,
∑ds

i=3 Fsi,
∑r

i=1 a1ixi, . . . ,
∑r

i=1 amixi)

)
:= C

because, as in the case of the tangential space, if Fj2 = bj11x
2
1+bj12x1x2+· · ·+bjrrx

2
r for all j =

1, . . . , s and some bj,h,l ∈ K, then
∂2Fj

∂xi1
∂xi2

(0) = bji1i2 , ans so Fj,2 =
∑r

i1,i2=1
∂2Fj

∂xi1
∂xi2

(0)xi1xi2 .

But now

C ' Spec

(
K[x1, . . . xr′ ]

(
∑d1

i=3 F ′
1i, . . . ,

∑ds

i=3 F ′
si)

)
for some F ′

j ∈ K[x1, . . . , xr′ ] for all j = 1, . . . , s and r −
(

n+2
2

)
− n ≤ r′ ≤ r and

Spec

(
K[x1, . . . xr′ ]

(
∑d1

i=3 F ′
1i, . . . ,

∑ds

i=3 F ′
si)

)
⊇ Spec

(
K[x1, . . . , xr′ ]

(x1, . . . , xr′)3

)
.

Therefore the intersection between X and O2,X,0 is at least a 3-fat point.

The k-th osculating space

We can generalize the argument of the tangent space and of the second osculating space to the k-th
osculating space.

Proof. of Proposition 3.1.3 .

• From (3.3) we always know that
∂kFj

∂ui1 · · · ∂uik

= 0.

• If we write it in function of x1, . . . , xr we find an expression of the type:

r∑
h1,...,hk=1

(
∂kFj

∂xh1 · · · ∂xhk

+
∂k−1Fj

∂xh1 · · · ∂xhk−1

+ · · ·+ ∂Fj

∂xh1

)
∂fh1

∂ui1

· · · ∂fhk

∂uik

+

+
r∑

h1,...,hk−1=1

(
∂k−1Fj

∂xh1 · · · ∂xhk−1

+ · · ·+ ∂Fj

∂xh1

)(
∂2fh1

∂ui1∂ui2

∂fh1

∂ui3

· · ·
∂fhk−1

∂uik

+ · · ·+

74



The k-th osculating space

+
∂2fhk−1

∂uik−1
∂uik

∂fh1

∂ui1

· · ·
∂fhk−2

∂uik−2

)
+

+ · · ·+
r∑

h1=1

∂Fj

∂xh1

∂kfh1

∂ui1 · · · ∂uik

= 0

from which we get that the elements of the type:(
r∑

i1,...,ik=1

(
∂kFj

∂xi1 · · · ∂xik

(0) +
∂k−1Fj

∂xi1 · · · ∂xik−1

(0) + · · ·+ ∂Fj

∂xi1(0)

)
xi1 · · ·xik

)
+ · · ·+

+ · · ·+

(
r∑

i1,i2=1

(
∂2Fj

∂xi1∂xi2

(0) +
∂Fj

∂xi1

(0)

)
xi1xi2

)
+

r∑
i=1

∂Fj

∂xi

(0)xi

belong to I(Ok,X,0) by using the perpendicularity relations:

(ai1, . . . , air) · Fui1
···uil

= 0

for all ui1 , . . . , uil ∈ {u1, . . . , un}, for all l ≤ n, and where the ai1, . . . , air are the coefficients
of the defining system of Ok,X,0:

a11x1 + · · ·+ a1rxr = 0
...
am1x1 + · · ·+ amrxr = 0

and m ≥
∑k

i

(
n+i

i

)
≥ dim(Ok,X,0).

• Now, if we observe that

T0(X) ⊆ O2,X,0 ⊆ O3,X,0 ⊆ · · · ⊆ Ok,X,0

we should be able to proove the following chain of isomorphisms:

Spec

(
K[x1, . . . , xr]

I(X ∩Ok,X,0)

)
= Spec

(
K[x1, . . . , xr]

(F1, . . . , Fs,
∑r

i=1 a1ixi, . . . ,
∑r

i=1 amixi)

)
'

' Spec

(
K[x1, . . . , xr]

(
∑d1

i=2 F1i, . . . ,
∑ds

i=2 Fsi,
∑r

i=1 a1ixi, . . . ,
∑r

i=1 amixi)

)
'
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The k-th osculating space

' Spec

(
K[x1, . . . , xr]

(
∑d1

i=3 F1i, . . . ,
∑ds

i=3 Fsi,
∑r

i=1 a1ixi, . . . ,
∑r

i=1 amixi)

)
'

' · · · ' Spec

(
K[x1, . . . , xr]

(
∑d1

i=k+1 F1i, . . . ,
∑ds

i=k+1 Fsi,
∑r

i=1 a1ixi, . . . ,
∑r

i=1 amixi)

)
'

' Spec

(
K[x1, . . . , xr′ ]

(
∑d1

i=k+1 F1i, . . . ,
∑ds

i=k+1 Fsi)

)
⊇ Spec

(
K[x1, . . . , xr′ ]

(x1, . . . , xr′)k+1

)
with

∑k
i=1

(
n+i

i

)
≤ r′ ≤ r.

The statement of Proposition 3.1.3 follows.

We can also prove Proposition 3.1.3 in a shorter way.

Proof. Let U0 ⊂ Cn be an open neighborhood of 0 ∈ Cn in the Euclidian topology; and let
{u1, . . . , un} be a set of coordinates in Cn.
Now let F : U0 → X be a local parametrization such that F (0) = P and

F (u1, . . . , un) = (f1(u1, . . . , un), . . . fr(u1, . . . , un)).

Fix the following notation:

Fui1
···uih

(0) =

(
∂hf1

∂ui1 · · ·uih

(0), . . . ,
∂hfr

∂ui1 · · · ∂uih

(0)

)
=: (aI1, . . . , aIr) (3.10)

if I = (i1, . . . , ih) and i1, . . . , ih ∈ {1, . . . , n}.
The affine k-th osculating space to X at P is spanned by:

Ok,X,P =< (a01, . . . , a0r), . . . , (aI1, . . . , aIr), . . . , (aN1, . . . , aNr) >

where I = (i1, . . . , ih), h ≤ k and N = {n, . . . , n︸ ︷︷ ︸
k

}.

Let M be the matrix whose columns are the vectors spanning Ok,X,P , i.e.:

M :=

 a01 . . . aI1 . . . aN1
...

...
...

a0r . . . aIr . . . aNr


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The k-th osculating space

and let m = rk(M). Then there exist bi,j ∈ K, with i = 1, . . . ,m and j = 1, . . . , r, such that

I(Ok,X,P ) =< b11x1 + · · ·+ b1rxr, . . . , bm1x1 + · · ·+ bmrxr >⊂ K[x1, . . . , xr].

Now
F ∗(bi1x1 + · · ·+ birxr) = bi1f1(u1, . . . , un) + · · ·+ birfr(u1, . . . , un) (3.11)

for all i = 1, . . . ,m. Each fj can be decomposed via Taylor’s polynomial around P = 0, in particular
there exist some coefficients cI ∈ K such that

fj(u1, . . . , un) =
∑
|I|≤k

cIaIju
I +

deg(fj)∑
|I|=k+1

cIaIju
I

where the aIj’s are defined as in (3.10) and uI = ui1 · · ·uih if I = (i1, . . . , ih). Hence (3.11) can be
rewritten as

bi1

∑
|I|≤k

cIaI1u
I

+ · · ·+ bir

∑
|I|≤k

cIaIru
I

+

+bi1

 deg(f1)∑
|I|=k+1

cIaI1u
I

+ · · ·+ bir

 deg(fr)∑
|I|=k+1

cIaIru
I

 .

Now, the first r addends of the above summand are all zero since bi1x1 + · · · + birxr = 0 for all
(x1, . . . , xr) ∈ Ok,X,P . This means that bi1x1 + · · · + birxr ∈ ℘k+1 where ℘ is the prime ideal
associated to P . Then

Spec

(
K[x1, . . . , xr]

I(X ∩Ok,X,P )

)
⊇ Spec

(
K[x1, . . . , xr]

℘k+1

)
.

3.1.3 Dimension of the k-th osculating space

We are interested in discovering the dimension of the k-th osculating space of an n-dimensional
projective variety X ⊂ Pr at a smooth point P ∈ X.
Since Ok,X,P is spanned by all the first k partial derivatives of the polynomials defining a parame-
terization of X around a smooth point P , it is clear that

dim(Ok,X,P ) ≤ min

{
r,

(
n + k

k

)
− 1

}
:= e.
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The k-th osculating space

It is also clear that if P ∈ X is a flex point (for a definition of flex point see Definition 4.1.3) and
e =

(
n+k

k

)
− 1 then dim(Ok,X,P ) < e because if F : U0 → X is a local parametrization around

the point P such that F (u1, . . . , un) = (f1(u1, . . . , un), . . . , fr(u1, . . . , un)) and Fui
(0) and Fuiuj

(0)
are defined as in Definition 3.1.1 then the vectors Fui

(0), Fuiuj
(0) are not independent for all

i, j = 1, . . . , n.

Example: Suppose that maxj=1,...,r{deg(fj)} = m then dim(Ok,X,P ) <
(

n+k
k

)
− 1 for all k > m;

hence for the integers k > m such that e =
(

n+k
k

)
− 1 it always happens that dim(Ok,X,P ) < e.

Example: Consider a projective variety X ⊂ Pr having around [0] ∈ X the following parameteri-
zation:

Cn × Cm → CN

(u1, . . . , un; v1, . . . , vm) 7→ (g1(u1, . . . , un), . . . , g(n
k)

(u1, . . . , un);

f1(v1, . . . , vm), . . . , fr−(n
k)

(v1, . . . , vm))

such that
g1(u1, . . . , u1) = uk

1,

g2(u1, . . . , u1) = uk−1
1 u2,

...

g(n
k)

(u1, . . . , uk) = uk
n.

Then:

• ∂fi(v1,...,vm)
∂uj

= 0 for i = 1, . . . , r −
(

n
k

)
and j = 1, . . . , n;

• ∂k+1gi(u1,...,un)
∂ui1

···∂uik+1
= 0 for i = 1, . . . ,

(
n
k

)
and i1, . . . , ik ∈

{
1, . . . ,

(
n
k

)}
.

Therefore, if
(

n+m+k
k

)
− 1 ≤ r and h ≥ k + 1, then dim(Oh,X,P ) ≤

(
n+m+h

h

)
− 1−

∑h
l=k+1

(
n
l

)
.

Example: Let C be a non degenerate projective curve. Let

v : C → Pn

t 7→ (f0(t), . . . , fn(t))

be a local parameterization of C such that v(t0) = P ∈ C. We use the following notation:

v(i)(t) := ∂iv
∂it

. The k-th osculating space to C at P is

Ok,C,P = v(t0)+ < v(1)(t0), . . . , v
(k)(t0) > .
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The k-th osculating varieties to Veronese varieties

It has the expected dimension if and only if

v(t0) ∧ v(1)(t0) ∧ · · · ∧ v(k)(t0) 6= 0.

Suppose in fact that v(t0) ∧ v(1)(t0) ∧ · · · ∧ v(k)(t0) = 0 and that w(t0) := v(t0) ∧ v(1)(t0) ∧ · · · ∧
v(k−1)(t0) 6= 0, these imply that there exist αi ∈ C, for i = 0, . . . , k − 1, such that:

v(k)(t0) =
k−1∑
i=0

αiv
(i)(t0). (3.12)

Moreover
w(1)(t0) = v(1)(t0) ∧ v(1)(t0) ∧ · · · ∧ v(k−1)(t0)+

+v(t0) ∧ v(2)(t0) ∧ v(2)(t0) ∧ · · · ∧ v(k−1)(t0)+
...
+v(t0) ∧ · · · ∧ v(k−1)(t0) ∧ v(k−1)(t0)+
+v(t0) ∧ · · · ∧ v(k−2)(t0) ∧ v(k)(t0)

= v(t0) ∧ · · · ∧ v(k−2)(t0) ∧ v(k)(t0).

So, by (3.12), we have

w(1)(t0) = αk−1v(t0) ∧ · · · ∧ v(k−1)(t0) = αk−1w(t0).

Hence there exist c = (c1, . . . , cn) ∈ Cn such that

w(t0) = c · eαk−1t0 = [c1, . . . , cn] ∈ Pn.

Therefore for a generic t ∈ C the vectors v(t), v(1)(t), . . . , v(k−1)(t) span the same Pk−1, then v(t) ∈
Pk−1 for a generic t, so the curve C ⊂ Pk−1 that is a contradiction since C is not degenerate in Pn.

3.2 The k-th osculating varieties to Veronese varieties

Definition 3.2.1. Let X ⊂ PN be a variety and let X0 ⊂ X be the dense set of the smooth points
where Ok,X,P has maximal dimension. The k-th osculating variety to X is defined as:

Ok,X =
⋃

P∈X0

Ok,X,P .
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The k-th osculating varieties to Veronese varieties

We are interested in the study of the k-th osculating variety to the Veronese variety νd(Pn). We
set Ok,n,d := Ok,νd(Pn).

For all this section we will assume that N :=
(

n+d
d

)
− 1.

Let us assume (and from now on this assumption will be implicit) that d ≥ k. If L ∈ S1 is a
linear form, we can write a point P ∈ νd(Pn) as P = [Ld]. It is easy to see that the k-th osculating
space to νd(Pn) at a point P = [Ld] is

Ok,νd(Pn),P = {[M ] ∈ P(Sd) |M = Ld−kF, where F ∈ Sk}. (3.13)

Notice that Ok,νd(Pn),P has maximal dimension dim(Sk)−1 =
(

k+n
n

)
− 1 for all P ∈ νd(Pn). This

can be seen in the following way: the fat point (k + 1)P on νd(Pn) gives independent conditions to
the hyperplanes of PN , since it gives independent conditions to the forms of degree d in Pn.
Hence, Ok,n,d =

⋃
P∈νd(Pn) Ok,νd(Pn),P .

As we have already noticed, for k = 0 the equality (3.13) gives Ok,νd(Pn),P = {P} = {[Ld]}, and for
k = 1 it becomes O1,νd(Pn),P = TP (νd(Pn)) = {[M ] ∈ P(Sd) |M = Ld−1F, where F ∈ S1}.
In general, we have:

Ok,n,d = {[M ] ∈ P(Sd) |M = Ld−kF, where L ∈ S1, and F ∈ Sk}.

In the following we also need to know the tangent space TQ(Ok,n,d) of Ok,n,d at the generic point
Q = [Ld−kF ] with L ∈ S1 and F ∈ Sk ; one has that the affine cone over TQ(Ok,n,d) is

W = W (L, F ) =< Ld−kRk, L
d−k−1FR1 > . (3.14)

Lemma 3.2.2. The dimension of Ok,n,d is always the expected one, that is:

dim(Ok,n,d) = min

{
N, n +

(
k + n

n

)
− 1

}

Proof. By (3.14), the dimension of Ok,n,d is dim(W (L, F )) − 1, for a generic choice of L ∈ S1

and F ∈ Sk, so that we can assume that L does not divide F . When P(W ) 6= PN , we have
dim(W ) = dim(< Ld−kSk >) + dim(< Ld−k−1FS1 >) − dim(< Ld−kSk > ∩ < Ld−k−1FS1 >) =(

k+n
n

)
+ (n + 1) − 1 =

(
k+n

n

)
+ n, since there is only the obvious relation between LSk and FS1,

namely LF − FL = 0.
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3.3 The (s− 1)-secant variety to Ok,n,d

What we present in this section for n > 2 is also described in the joint work [BCGI].
From the analysis of the previous section it is now obvious that the (s−1)-secant variety to the

k-th osculating variety to the Veronese νd(Pn) is

Secs−1(Ok,n,d) = {[M ] ∈ P(Sd) |M = Ld−k
1 F1+· · ·+Ld−k

s Fs, where Li ∈ S1 and Fi ∈ Sk, for i = 1, . . . , s}.

Hence if we are interested in answering to the question:

“which is the minimum integer s such that the form M = Ld−k
1 F1+· · ·+Ld−k

s Fs, where Li ∈
S1 and Fi ∈ Sk, for i = 1, . . . , s, is canonical”,

we have to answer to:

“which is the minimum integer s such that Secs−1(Ok,n,d) is equal to PN?”.

In this chapter we will study the dimension of Secs−1(Ok,n,d).
Notice that, since d ≥ k, one has dim(Ok,n,d) = N if and only if

(
d+n

n

)
≤ n +

(
k+n

n

)
, hence for

all such k, n, d and for any s we have dim(Secs−1(Ok,n,d)) = expdim(Secs−1(Ok,n,d)) = N .
So we have to study this problem when

(
d+n

n

)
> n+

(
k+n

n

)
and s ≥ 2; it is easy to check that whenever

n ≥ 2 this condition is equivalent to d ≥ k+1; on the other hand the case n = 1 (osculating varieties
of rational normal curves) can be easily described (we will prove that Secs−1(Ok,1,d) have always
the expected dimension), thus the question becomes:

“For all k, n, d such that d ≥ k + 1, n ≥ 2, describe all s for which

dim(Secs−1(Ok,n,d)) < min

{
N, s

(
n +

(
k + n

n

)
− 1

)
+ s− 1

}”
.

Remark: Terracini’s Lemma 2.6.1 says that dim(Secs−1(Ok,n,d)) = N − h0(IX ⊗ OPN (1)), where
X is a generic union of 2-fat points on Ok,n,d; we are not able to handle directly the study of
h0(IX ⊗OPN (1)), nevertheless, Terracini’s Lemma says that the tangent space to Secs−1(Ok,n,d) at
a generic point of < P1, . . . , Ps >, with Pi ∈ Ok,n,d for i = 1, . . . , s, is the span of the tangent spaces
of Ok,n,d at each Pi; i.e. if TPi

(Ok,n,d) = P(Wi), then

dim(Secs−1(Ok,n,d)) = dim(< TP1(Ok,n,d), . . . , TPs(Ok,n,d) >) = dim(< W1, . . . ,Ws >)− 1.
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We want to prove, via Macaulay’s theory of “inverse systems”, that there exists a 0-dimensional
projective scheme Z = Z(k, n), that we will analyze further, such that for a single Wi,

dim(Wi) = N + 1− h0(Pn, IZ(d))

and, if Y = Y (k, n, s) is a generic union in Pn of s 0-dimensional schemes isomorphic to Z, then

dim(< W1, ...,Ws >) = N + 1− h0(Pn, IY (d))

Hence,
dim(Secs−1(Ok,n,d)) = dim(< W1, ...,Ws >)− 1 = N − h0(Pn, IY (d)).

Notation: If W ⊂ Sd = K[x0, . . . , xn]d, we indicate with W⊥ ⊂ Rd = K[y0, . . . , yn]d the orthogonal
to W with respect to the Inverse System perfect pairing, i.e. (W⊥)−1 = W .

Lemma 3.3.1. There exists a 0-dimensional projective scheme Z(k, n, d) ∈ Pn such that the degree
d part of the inverse system of its defining ideal is equal to the affine cone over the tangent space
to Ok,n,d at a generic point Q ∈ Ok,n,d. Moreover, if O ∈ Pn is the support of Z(k, n, d), then for
all k, n and d ≥ k + 2, we have:

(k + 1)O ⊂ Z(k, n, d) ⊂ (k + 2)O.

Proof. Let W =< Ld−kSk, Ld−k−1FS1 >⊂ Sd be the affine cone over TQ(Ok,n,d) at a generic point
Q = [Ld−kF ], with L ∈ S1 and F ∈ Sk. Without loss of generality we can choose L = x0, so that
W =< xd−k−1

0 x0Sk, x
d−k−1
0 FS1 >, hence < xd−k

0 Sk >⊂ W ⊂< xd−k−1
0 Sk+1 >. So for any (k, n, d),

< xd−k−1
0 Sk+1 >⊥⊂ W⊥ ⊂< xd−k

0 Sk >⊥ . (3.15)

Now, denoting by ℘ the ideal (x1, . . . , xn), we have:

(xd−t
0 St)

⊥ =< {xi0
0 · · ·xin

n |Σjij = d, i0 ≤ d− t− 1} >=

=< (℘d)d, x0(℘
d−1)d−1, . . . , x

d−t−1
0 (℘t+1)t+1 >= (℘t+1)d.

Let us view everything in (3.15) as the degree d part of an homogeneous ideal; we get:

(℘k+2)d ⊂ (I(Z(k, n, d)))
d
⊂ (℘k+1)d.

Let (x1, . . . , xn) be local coordinates in Pn around the point O = (1, 0, . . . , 0); the above inclusions
give, in terms of 0-dimensional schemes in Pn:

(k + 1)O ⊂ Z(k, n, d) ⊂ (k + 2)O.
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Lemma 3.3.2. For any k, n, d with d ≥ k +2, the length of Z = Z(k, n, d) defined in Lemma 3.3.1
is:

l(Z) = dim(W ) =

((
k + n

n

)
+ n

)
.

Proof. We have seen that Z(k, n, d) ⊂ (k+2)O, with O ∈ Pn. Setting X := (k+2)O, the condition
d ≥ k + 2 then gives

(
d+n

n

)
≥ l(X) =

(
k+1+n

n

)
≥ l(Z).

We have W 6= Sd by assumption, since d ≥ k+2 implies
(

d+n
n

)
≥
(

k+2+n
n

)
=
(

k+n
n

)
+
(

k+n
n−1

)
+
(

k+1+n
n−1

)
≥(

k+n
n

)
+ n.

Hence, dim(Id) = dim(W⊥) =
(

d+n
n

)
− dim(W ), hence if we prove that dim(Id) =

(
d+n

n

)
− l(Z), i.e.

Z imposes indipendent conditions to the forms of degree d, thesis follows.
One (k + 2)-fat point always imposes independent conditions to the forms of degree d, and since(

d+n
n

)
≥ l(X), then h1(IX(d)) = 0. The cohomology of the exact sequence:

0→ IX(d)→ IZ(d)→ IZ,X(d) ' OD → 0

where D is a 0-dimensional scheme of length l(X)− l(Z) then gives h1(IZ(d)) = 0.

Now we have seen that our problem can be translated into a problem of studying certain schemes
Z(k, n, d) ⊂ Pn; we want to check that actually these schemes are the same for all d ≥ k + 2, say
Z(k, n, d) = Z(k, n).

Lemma 3.3.3. For any k, n and d ≥ k + 2, we have Z(k, n, d) = Z(k, n, k + 2). Henceforth we
will denote Z(k, n) = Z(k, n, d), for all d ≥ k + 2.

Proof. By the previous lemmata we already know that Z(k, n, d) and Z(k, n, k + 2) have the same
support and the same length, hence it is enough to show that Z(k, n, d) ⊂ Z(k, n, k+2) (as schemes)
in order to conclude. This will be done if we check that I(Z(k, n, k + 2))d ⊂ I(Z(k, n, d))d; in fact,
since both ideals are generated in degrees≤ d, this will imply that I(Z(k, n, k+2))j ⊂ I(Z(k, n, d))j,
for all j ≥ d, hence the inclusion will hold also between the two saturations, implying Z(k, n, d) ⊂
Z(k, n, k + 2).

Let f ∈ I(Z(k, n, k +2))d, then f = h1g1 + · · ·+hrgr, where hj ∈ Sd−k−2 and gj ∈ I(Z(k, n, k +
2))k+2; since I(Z(k, n, d))d is the perpendicular (via apolarity duality) to W =< Ld−kSk, L

d−k−1FS1 >,
it is enough to check that hjgj ∈ W⊥, j = 1, . . . , r. Without loss of generality we can assume L = x0;
hence, since gj ∈< L2Sk, LFS1 >⊥, gj = x0g

′ + g′′, with g′, g′′ ∈ K[x1, . . . , xn] and g′ ∈ (FS1)
⊥. It

will be enough to prove xi0
0 · · ·xin

n gj = xi0+1
0 · · ·xin

n g′+xi0
0 · · ·xin

n g′′ ∈ W⊥, for all i0, . . . , in such that
i0 + · · ·+ in = d− k− 2. It is clear that xi0

0 · · ·xin
n g′′ ∈ W⊥, since i0 ≤ d− k− 2; on the other hand,

xi0+1
0 · · ·xin

n g′ ∈ (xd−k
0 Sk)

⊥ again by looking at the degree of x0, while xi0+1
0 · · ·xin

n g′ ∈ (xd−k−1
0 FS1)

⊥

since g′ ∈ (FS1)
⊥.
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Remark: From the lemmata above it follows that in order to study the dimension of Secs−1(Ok,n,d),
for all d ≥ k+2, we only need to study the postulation of unions of schemes Z(k, n). For d = k+1,
we will work directly on W , see Proposition 3.3.9
What we got is a sort of “generalized Terracini” for osculating varieties to Veronesean, since the
formula dim(Secs−1(Ok,n,d)) = N − h0(IY (d)) reduces to the one in Corollary 2.6.2 for k = 0.
Instead of studying 2-fat points on Ok,n,d, we can study the schemes Y ⊂ Pn.

Definition 3.3.4. Let Y ⊂ Pn be a 0-dimensional scheme; we say that Y is Regular in degree d,
d ≥ 0, if the restriction map ρ : H0(OPn(d))→ H0(OY (d)) has maximal rank, i.e. if

h0(IY (d)) · h1(IY (d)) = 0.

We set exp(h0(IY (d))) := max{0,
(

d+n
n

)
− l(Y )}; hence to say that Y is regular in degree d amounts

to saying that h0(IY (d)) = exp(h0(IY (d))).

Since we always have h0(IY (d)) ≥ exp(h0(IY (d))), we write

h0(IY (d)) = exp(h0(IY (d))) + δ,

where δ = δ(Y, d); hence whenever
(

d+n
n

)
− l(Y ) ≥ 0, we have δ = h1(IY (d)), while if

(
d+n

n

)
− l(Y ) ≤

0, δ =
(

d+n
n

)
− l(Y ) + h1(IY (d)); in any case, by setting exp h1(IY (d)) := max

{
0, l(Y )−

(
d+n

n

)}
,

we get: h1(IY (d)) = exp(h1(IY (d))) + δ.

Remark: For any k, n, d such that d ≥ k+1, let Z = Z(k, n) be the scheme defined and studied in
Lemmas 3.3.1 and 3.3.3, let Y = Y (k, n, s) ⊂ Pn be the generic union of s 0-dimensional schemes
isomorphic to Z(k, n) and δ = δ(Y, d). Then

dim(Secs−1(Ok,n,d)) = expdim(Secs−1(Ok,n,d))− δ.

In particular, dim(Secs−1(Ok,n,d)) = expdim(Secs−1(Ok,n,d)) if and only if:

• h0(IY (d)) = 0, when
(

d+n
n

)
≤ s
(

k+n
n

)
+ sn;

• h0(IY (d)) = N+1−l(Y ) =
(

d+n
n

)
−s
(

k+n
n

)
−sn (i.e. h1(IY (d)) = 0), when

(
d+n

n

)
≥ s
(

k+n
n

)
+sn.

Example: In the case of n = 1 every Secs−1(Ok,1,d), with d ≥ k + 2, has the expected dimension;
in fact here Z(k, 1) = (k + 2)O, and the scheme Y = {s (k + 2)-fat points} ⊂ P1 is regular in any
degree d. Notice that for d = k + 1 we trivially have Ok,1,k+1 = PN .

The case of n = 2 will be treat in the next section.
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Example: If k = 1 we have already observed at the beginning of this chapter that O1,n,d =
T (νd(Pn)), i.e. the tangential variety to the Veronese variety. In [CGG2] it is shown that Z(1, n)
is a “(2, 3)−scheme” (i.e. the intersection in Pn of a 3-fat point with a double line); this is easy to
see, e.g. by choosing coordinates so that L = x0 and F = x1.
The postulation of generic unions of such schemes in Pn, and hence the defectivity of Secs−1(O1,n,d),
has been studied. Moreover, a conjecture regarding all defective cases is stated there:

Conjecture 3.3.5. ([CGG2]) The variety Secs−1(O1,n,d) is not defective, except in the following
cases:

1. for d = 2 and n ≥ 2s, s ≥ 2;

2. for d = 3 and n = s = 2, 3, 4.

In [CGG2] the conjecture is proved for s ≤ 5 (any d, n), for s ≥ 1
3

(
n+2

2

)
+1 (any d, n); for d = 2

(any s, n), for d ≥ 3 and n ≥ s + 1, for d ≥ 4 and s = n. In [Ba], the conjecture is proved for
n = 2, 3 (any s, d).

The following lemma describes what can be deduced about the postulation of the scheme Y from
information on fat points:

Lemma 3.3.6. Let P1, . . . , Ps be generic points in Pn, and set X := (k + 1)P1 ∪ · · · ∪ (k + 1)Ps,
T := (k+2)P1∪· · ·∪(k+2)Ps. Now let Zi be a 0-dimensional scheme supported on Pi , (k+1)Pi ⊂
Zi ⊂ (k + 2)Pi, with l(Zi) = l((k + 1)Pi) + n for each i = 1, . . . , s, , and set Y := Z1 ∪ · · · ∪ Zs.
Then:

1. Y is regular in degree d if one of the following (a) or( b) holds:

(a) h1(IT (d)) = 0, (hence
(

d+n
n

)
≥ s
(

k+n+1
n

)
);

(b) h0(IX(d)) = 0, (hence
(

d+n
n

)
≤ s
(

k+n
n

)
).

2. Y is not regular in degree d, with defectivity δ, if one of the following (a) or (b) holds:

(a) h1(IX(d)) > exp, h1(IY (d)) = max{0, l(Y ) −
(

d+n
n

)
}; in this case δ ≥ h1(IX(d))) −

exp(h1(IY (d)).

(b) h0(IT (d)) > exp(h0(IY (d))) = max{0,
(

d+n
n

)
− l(Y )}; in this case δ ≥ h0(IT (d)) −

exp(h0(IY (d))).
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Proof. The statement follows by considering the cohomology of the exact sequences:

0→ IT (d)→ IY (d)→ IY,T (d)→ 0

and

0→ IY (d)→ IX(d)→ IX,Y (d)→ 0

where we have: h1(IY,T (d)) = h1(IX,Y (d)) = 0 since those two sheaves are supported on a 0-
dimensional scheme.

Lemma 3.3.7. Let s ≥ n + 2 and d < k + 1 + 2
(

k+1
n

)
. Then Secs−1(Ok,n,d) is not defective and

Secs−1(Ok,n,d) = PN .

Proof. Let Y ⊂ Pn be as in Lemma 3.3.6; we have to prove that h0(IY (d)) = 0 in our hypotheses.
Let {P1, . . . , Ps} be the support of Y ; we can always choose a rational normal curve C ⊂ Pn

containing n + 2 of the Pi’s . For any hypersurface F given by a section of IY (d), since nd <
(k+1)(n+2), by Bezout we get C ⊂ F . But we can always find a rational normal curve containing
n + 3 points in Pn, so this would imply that any P ∈ Pn is on F , i.e. IY (d) = 0.

Lemma 3.3.8. Assume s = n + 1; if d ≤ k + 1 + k+2
n

, then Secs−1(Ok,n,d) = PN .

Proof. Since d ≥ k+1, we can set d = k+ j with j > 0; let Wi =< Lj
iSk, Lj−1

i FiS1 > with Fi ∈ Sk

for i = 1, . . . , s; since s = n+1, without loss of generality we can assume that L1 = x0, . . . , Ln+1 =
xn.
Hence W1 + · · · + Ws contains U := xj

0Sk + · · · + xj
nSk; now in U the missing monomials are

xi0
0 · · ·xin

n with il ≤ j − 1 for each l = 0, . . . , n, and d = deg (xi0
0 · · ·xin

n ) ≤ (n + 1)(j − 1). Hence if
d ≥ (n + 1)(j − 1), i.e. d < k + 1 + k+1

n
, we get U = Sd.

If d = (n + 1)(j − 1) the only missing monomial in U is xj−1
0 · · ·xj−1

n , hence it is enough to choose
one of the Fi’s in a proper way to get W1 + · · ·+ Ws = Sd.
If d = (n+1)(j−1)−1, i.e. d = k+1+ k+2

n
, the n+1 missing monomials in U are xj−1

0 · · ·xj−2
i · · ·xj−1

n

with i = 0, . . . , n and again it is possible to choose the Fi’s so that W1 + · · ·+ Ws = Sd.
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3.3.1 The case of Ok,n,k+1

The description for k = 1 given in [CGG2], together with following proposition, describes this case
completely.

Proposition 3.3.9. If s ≥ 2, k ≥ 2 and d = k+1, consider the secant variety Secs−1(Ok,n,d) ⊂ PN ;
then:

1. if s ≤ n− 1 and its expected dimension is s
(

k+n
n

)
+ sn− 1, then Secs−1(Ok,n,k+1) is defective

with defect

δ = s2 − s + s

(
k + n

n

)
+

(
n− s + d

d

)
−N ;

2. if s ≤ n− 1 and the expected dimension is N =
(

d+n
n

)
− 1 then

(a) Secs−1(Od−1,n,d) is defective with defect δ =
(

n−s+d
d

)
− s(n− s + 1) if s < 1

d

(
n−s+d

d−1

)
;

(b) Secs−1(Od−1,n,d) = PN if s ≥ 1
d

(
n−s+d

d−1

)
;

3. if s ≥ n then Secs−1(Od−1,n,d) = PN .

Proof. 1. We have that W = W1 + · · · + Ws =< x0Sk, . . . , xs−1Sk; F1S1, . . . , FsS1 > in Sd. We
can suppose that the Fi’s, i = 1, . . . , s are generic in K[xs, . . . , xn]d−1 := S ′d−1, and we have

that Sd

W
' S′d

(F1,...,Fs)d
. Then, since (F1, . . . , Fs)d =< F1S1, . . . , FsS1 > and the Fi’s are generic,

dim(F1, . . . , Fs)d = min
{(

n−s+d
d

)
, s(n− s + 1)

}
.

From this, and from our hypothesis about the expected dimension, we immediately get that
dim(W ) = N −

(
n−s+d

d

)
+ s(n− s+ 1), and hence that the defectivity is δ = s2− s+ s

(
k+n

n

)
+(

n−s+d
d

)
−N .

2. If s
(

n+d−1
n

)
+ ns ≥

(
n+d

n

)
we expect that Secs−1(Od−1,n,d) = PN . Proceeding as in the pre-

vious case, in order to compute dim(W ) we can actually just consider the vector space
< F1S1, . . . , FsS1 >; whose dimension is min

{(
n−s+d

d

)
, s(n− s + 1)

}
; so we get that

(a) if s(n− s + 1) <
(

n−s+d
d

)
, then Secs−1(Od−1,n,d) is defective. This happens if and only if

s < 1
d

(
n−s+d

d−1

)
, in this case the defect is δ =

(
n−s+d

d

)
− s(n− s + 1).

(b) if s(n − s + 1) ≥
(

n−s+d
d

)
, then Secs−1(Od−1,n,d) = PN (for example this is always true

for d ≥ n);
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3. It suffices to prove that Secs−1(Od−1,n,d) = PN for s = n.

If s = n and d = k + 1, then the subspace W1 + · · ·+ Ws can be written as follows:
< x0Sk, F1S1, . . . , xn−1Sk, FnS1 >; it turns out to be equal to < x0Sk, . . . , xn−1Sk, x

k+1
n >=

Sk+1, so Secn−1(Od−1,n,d) = PN .

Example: Let us consider the secant varieties of the 4th-osculating variety O4,6,5 ⊂ P461. We begin
with Sec1(O4,6,5); we are in case 1. of Proposition 3.3.9, and we expect that dim(Sec1(O4,6,5)) = 431,
but we get that the defectivity is δ = 86 so that dim(Sec1(O4,6,5)) = 345.

When s = 3, 4 we are in case 2. of Proposition 3.3.9, and δ = 44 for Sec2(O4,6,5), while δ = 9
for Sec3(O4,6,5). Eventually, Sec4(O4,6,5)) = P461

So, even if we expect that Sec2(O4,6,5) should fill up PN , even the 3-secant variety does not.
In terms of forms we get that neither we can write a generic f ∈ (K[x0, . . . , x6])5 as f =

L1F1 + L2F2 + L3F3 with Li ∈ S1 and Fi ∈ S4 (as we expect), nor as f = L1F1 + · · · + L4F4, but
we need five addenda.

3.3.2 Some examples for d = k + 2 and d = k + 3

The case of d = k + 2

• Let us consider first the Veronese surface νk+2(P2).

Corollary 3.3.10. Assume d = k + 2 and n = 2. Then, Secs−1(Ok,2,k+2) is not defective for
s ≥ 3 and k ≥ 1, and Secs−1(Ok,2,k+2) is defective for s = 2 and k ≥ 1.

Proof. By Lemma 3.3.7 and Lemma 3.3.8, Secs−1(Ok,2,k+2) is not defective for s ≥ 3 and
d ≥ 3, i.e. k ≥ 2; the case k = 1 is already known by [Ba].
For s = 2 and k ≥ 1, let Y = Y (k, 2) ⊂ P2 be the 0-dimensional scheme defined in 3.3.6; it is
easy to check that exp(h0(IY (d))) = exp(h0(IT (d))) = 0, where T denotes the generic union
of two (k + 2)-fat points in P2. Since T is not regular in degree d = k + 2 for any k ≥ 1, we
conclude by Lemma 3.3.6 case 2.(b) that Secs−1(Ok,n,k+2) is defective with defectivity grater
or equal than h0(IT (d)) = 1 (the only section is given by the (k + 2)-ple line through the two
points).

• Let us now consider the case of νk+2(P3).

Corollary 3.3.11. Assume d = k + 2 and n = 3. Then, Secs−1(Ok,3,k+2) = PN for s ≥
n + 1 = 4 and k ≥ 1, while Secs−1(Ok,3,k+2) is defective for s ≤ 3.
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Proof. The case s ≤ 3 will be treated in Proposition 3.3.15.
If s = 4 and k = 1, Sec3(O1,3,3) = PN by [CGG2], (4.6). If s = 4 and k = 2, we have
Sec3(O2,3,4) = PN by Lemma 3.3.8.
If s ≥ 5 and k ≥ 1, or s = 4 and k ≥ 3, the thesis follows by Lemmata 3.3.7 and 3.3.8,
respectively.

• As last case we consider νk+2(P4).

Corollary 3.3.12. Assume d = k + 2 and n = 4. Then, Secs−1(Ok,4,k+2) = PN for s ≥ 5
and k ≥ 1, while Secs−1(Ok,4,k+2) is defective for s ≤ 4.

Proof. The case s ≤ 4 will be given by Proposition 3.3.15.
If s ≥ 5 and k = 1, Secs−1(O1,4,3) = PN by [CGG2], (4.6) and (4.5). If s = 5 and k = 2, 3,
we have Sec4(Ok,4,k+2) = PN by Lemma 3.3.8.
If s ≥ n + 2 = 6 and k ≥ 2, or s = 5 and k ≥ 4, thesis follows by Lemmata 3.3.7 and 3.3.8,
respectively.

The case of d = k + 3

For the Veronese surface we can prove the following:

Corollary 3.3.13. Assume d = k + 3 and n = 2. Then:

1. for s = 2 and k = 1, 2: dim(Sec1(Ok,2,k+3)) = s
(

k+2
2

)
+ 2s− 1 (the expected one);

2. for s = 2 and k ≥ 3: Sec1(Ok,2,k+3) is defective;

3. for s ≥ 3 and k ≥ 1: Secs−1(Ok,2,k+3) = PN .

Proof. If s ≥ n + 2 = 4 and k ≥ 2, or s = 3 and k ≥ 4, the thesis follows by Lemmata 3.3.7 and
3.3.8, respectively.
If s ≥ 3 and k = 1, Secs−1(O1,2,k+3) = PN by [CGG2], (4.5).
If s = 3 and k = 2, 3, we have Sec1(Ok,2,k+3) = PN by Lemma 3.3.8.
If s = 2 and k = 1, or s = 2 and k = 2, Sec1(Ok,2,k+3) 6= PN is not defective by [CGG2], (4.6) and
[BF1], Theorem 1, respectively.
If s = 2 and k ≥ 3, then, in the notations of Lemma 3.3.6, we have :
for k = 3, 4 exp(h1(IX(d))) = exp(h1(IY (d))) = 0, and the union X of 2 (k + 1)-fat points is not
regular in degree d = k + 3;
for k ≥ 5 exp(h0(IY (d))) = exp(h0(IT (d))) = 0, and the union T of 2 (k + 2)-fat points is not
regular in degree d = k + 3; so we conclude by 3.3.6, cases 2.(a) and 2.(b).
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3.3.3 Partial results for s ≤ n + 1

If we want to study the (s − 1)-secant variety to Ok,n,d and we know that s ≤ n + 1 we can
deeply use the Inverse System theory because we can always choose a particular tangent space to
Secs−1(Ok,n,d) in such a way we can be sure that it is not a restrictive hypothesis.

Proposition 3.3.14. If s ≤ n + 1, d ≥ 2k + 1 and k ≥ 2 then Secs−1(Ok,n,d) is regular.

Proof. We have to study the dimension of the vector space W1+· · ·+Ws =< Ld−k
1 Sk, L

d−k−1
1 F1S1, . . . ,

Ld−k
s Sk, L

d−k−1
s FsS1 >, where L1, . . . , Ls are generic in S1 and F1, . . . , Fs are generic in Sk. Since s ≤

n+1, without loss of generality we may suppose Li = xi−1 for i = 1, . . . , s. Since d ≥ 2k+1, for β =
d−k ≥ 3, the vector space W1+· · ·+Ws can be written as < xβ

0Sk, x
β−1
0 F1S1, . . . , x

β
s−1Sk, x

β−1
s−1 FsS1 >.

If we show that for a particular choice of F1, . . . , Fs ∈ Sk the dimension of W1 + · · · + Ws =
expdim(Secs−1(Ok,n,d))+1 we can conclude by semi-continuity that Secs−1(Ok,n,d) has the expected

dimension. Let us consider the case Fi = xixi+1F̃i for i = 1, . . . , s − 2, Fs−1 = xs−1x0F̃s−1 and
Fs = x0x1F̃s, where the F̃j’s are generic forms in Sk−2, j = 1, . . . , n + 1. Let < xβ

i Sk >=: Ai

and < xβ−1
i Fi+1S1 >=: A′

i, i = 0, . . . , s − 1; then we get A′
i =< xβ−1

i xi+1xi+2F̃i+1S1 >, i =

0, . . . , s − 3; A′
s−2 =< xβ−1

s−2 xs−1x0F̃s−1S1 > and A′
s−1 =< xβ−1

s−1 x0x1F̃sS1 >. Now W1 + · · · +
Ws =

∑s−1
j=0 Aj +

∑s−1
j=0 A′

j. We can easily notice that A′
i ∩

(∑s−1
j=0 Aj +

∑s−1
j=0,j 6=i A

′
j

)
= Ai ∩(∑s−1

j=0,j 6=i Aj +
∑s−1

j=0 A′
j

)
= Ai ∩ A′

i =< xβ
i Sk > ∩ < xβ−1

i xi+1xi+2F̃i+1S1 >=< xβ
i xi+1xi+2F̃i+1 >

for any fixed i = 0, . . . , s − 3 (analogously if i = s − 2, s − 1). So we have found exactly s rela-

tions and we can conclude that dim(W1 + · · · + Ws) = dim
(∑s−1

j=0 Aj

)
+ dim

(∑s−1
j=0 A′

j

)
− s =

s
(

k+n
n

)
+ s(n + 1)− s, which is exactly the expected dimension.

Proposition 3.3.15. If s ≤ n and k + 2 ≤ d ≤ 2k then Secs−1(Ok,n,d) is defective with defect δ
such that:

1. δ ≥
(

n−s+d
d

)
if the expected dimension is

(
d+n

n

)
− 1;

2. δ ≥
(

s
2

)(
2k−d+n

n

)
if the expected dimension is s

(
k+n

n

)
+ sn− 1.

Proof. Let β := d− k ≥ 2; we can rewrite the vector space W1 + · · ·+ Ws as follows:
< xβ

0Sk, x
β−1
0 F1S1, . . . , xβ

s−1Sk, x
β−1
s−1 FsS1 >.

1. We can observe that K[xs, . . . , xn]d∩(W1+· · ·+Ws) = {0}, so if we expect that Secs−1(Ok,n,d) =
PN we get a defect δ ≥

(
n−s+d

d

)
.
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2. Suppose now that s
[(

k+n
n

)
+ n
]

<
(

d+n
n

)
. If Secs−1(Ok,n,d) were to have the expected di-

mension we would not be able to find more relations among the Wi’s other than xβ
i Fi+1 ∈<

xβ
i Sk > ∩ < xβ−1

i Fi+1S1 >, for i = 0, . . . , s− 1 (as it happens in Proposition 3.3.14. But it is
easy to see that xβ

i xβ
j F ∈< xβ

i Sk > ∩ < xβ
j Sk > with i 6= j and F ∈ Sk−β. We have exactly(

s
2

)
such terms for any choice of F ∈ Sk−β. We can also suppose that the Fi ∈ Sk that appear

in W1 + · · · + Ws are different from xβ
j F for any F ∈ Sk−β and j = 0, . . . , s − 1, because

F1, . . . , Fs are generic forms of Sk. Then we can be sure that the form xβ
i xβ

j F belonging to

< xβ
i Sk > ∩ < xβ

j Sk > is not one of the xβ
i Fi+1 that belongs to < xβ

i Sk > ∩ < xβ−1
i Fi+1S1 >.

Now dim(Sk−β) =
(

k−β+n
n

)
so we can find

(
s
2

)(
k−β+n

n

)
independent forms that give defectivity.

Hence in case s
[(

k+n
n

)
+ n
]

<
(

d+n
n

)
we have dim(Secs−1(Ok,n,d)) ≤ expdim(Secs−1(Ok,n,d))−(

s
2

)(
k−β+n

n

)
= expdim(Secs−1(Ok,n,d))−

(
s
2

)(
2k−d+n

n

)
.

Proposition 3.3.16. If s = n+1, k+2 ≤ d ≤ 2k and expdim(Secn(Ok,n,d)) = (n+1)
((

k+n
n

)
+ n
)
−1

then Secn(Ok,n,d) is defective with defect δ ≥
(

n+1
2

)(
2k−d+n

n

)
.

Proof. The proof of this fact is the same as case 2. of the previous proposition.

Proposition 3.3.17. If s = n + 1, n ≥ k+2
d−k−2

, k + 2 < d ≤ 2k and expdim(Secn(Ok,n,d)) = N then

Secn(Ok,n,d) is defective with defect δ ≥
(
(n+1)(d−k−1)−(d+1)

n

)
.

Proof. If k + 2 < d ≤ 2k, then 2 < β := d − k ≤ k and we have to study the dimension of
W1 + · · · + Wn+1 =< xβ

0Sk, x
β−1
0 F1S1, . . . , x

β
nSk, x

β−1
n Fn+1S1 >. It is easy to see that a monomial

of the form f = xβ0

0 · · ·xβn
n with

∑n
i=0 βi = d and 0 ≤ βi ≤ β − 2 for all i ∈ {0, . . . , n} is

a form of degree d which does not belong to W1 + · · · + Wn+1. In fact f can be written as

x
d−(γ0+k+2)
0 · · ·xd−(γn+k+2)

n with
∑n

i=0 γi = nd − (n + 1)(k + 2) and γi ≥ 0 for all i = 0, . . . , n and

these forms are exactly
(

n+(n+1)(d−k−2)−d
n

)
=
(
(n+1)(d−k−1)−(d+1)

n

)
. In order for these forms to exist,

one needs that (n + 1)(d− k− 2)− d ≥ 0, i.e. that n ≥ k+2
d−k−2

. This is sufficient to show that if we

expect that Secn(Ok,n,d) = PN , and if n ≥ k+2
d−k−2

and k + 2 < d ≤ 2k, then Secn(Ok,n,d) is defective.
Let us notice that what we just saw is not sufficient to say that the defect δ is exactly equal to(

(n+1)(d−k−1)−(d+1)
n

)
, because in Sdr < W1 + · · ·Wn+1 > we can find also monomials like xβ0

0 · · ·xβn
n

with
∑n

i=0 βi = d, at least one βi = β − 1 and each of the others βj ≤ β − 2. Hence δ ≥(
(n+1)(d−k−1)−(d+1)

n

)
.

All the results on defectivity lead us to formulate the following:
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Conjecture 3.3.18. The variety Secs−1(Ok,n,d) is defective only if Y is as in case 2. (a) or 2. (b)
of Lemma 3.3.6.

The conjecture amounts to say that the defectivity of Y can only occur if defectivity of the fat
points schemes X or T imposes it.

Remark: In many examples the defectivity of Y is exactly the one imposed by X or by T (i.e.
the inequalities on δ in Lemma 3.3.6 are equalities), but this is not always the case: for example if
we consider the variety Sec1(O4,5,6) (see the example after Proposition 3.3.9), here we get that the
corresponding scheme Y has defectivity 86 in degree 5. Here we have that X is given by two 5-fat
points in P6, and it is easy to check that h0(IX(5)) = 126 (all 5-tics through X can be viewed as
cones over a 5-tic of a P4), so that its defectivity is 84. Hence, even if Y is “forced” to be defective
by X, its defectivity is bigger, i.e. Y should impose to 5-tics 12 conditions more than X, but it
imposes only ten conditions more.

It is easy to find similar behavior if d = k + 1, for instance for n = 8, s = 3, d = k + 1 = 2 or
n = 10, s = 3, d = k + 1 = 2.

3.4 The secant varieties to the osculating varieties to the

Veronese surface

In this section we want to study the particular case of Secs−1(Ok,2,d). Since for all this section we
will work with n = 2, we write Ok,n instead of Ok,2,n.

What we are going to present here is in part contained in the joint work [BC]: in that note we
proved the Conjecture 3.3.18 for cases n = 2 and s = 3, 4, 5, 6, 9 (with some omitted details); here
we want to give all the detailed proofs and to show that Conjecture 3.3.18 holds also for n = 2 and
s = 7, 8.

In [Ba] and [BF1] the authors study the (s − 1)-secant varieties of Ok,n for k = 1, 2 and they
prove the following results:

Proposition 3.4.1. For k = 1, the (s − 1)-secant variety of the tangential variety to νd(P2) has
the expected dimension, unless s = 2 and d = 3.

Proposition 3.4.2. For k = 2, the (s− 1)-secant variety of 2-osculating variety to νd(P2) has the
expected dimension, unless s = 2 and d = 4.

Remark: In general it is a hard problem to determine the postulation for a union of m-fat points.
There is a conjecture for the postulation of a generic union X ⊂ P2 of s m-fat points (e.g. see
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[Harb]): for s ≥ 10, the conjecture says that X is regular in any degree d. This has been proved
for m ≤ 20 in [CCMO], and, when s is a square, by L.Evain in [Ev]. For s ≤ 9 all the defective
cases are known (e.g., see [CCMO] or [Harb]), more precisely, for any m ∈ N and s ≤ 9 the cases
in which X ⊂ P2 is not regular are:

1. s = 2, and m ≤ d ≤ 2m− 2;

2. s = 3, and 3m
2
≤ d ≤ 2m− 2;

3. s = 5, and 2m ≤ d ≤ 5m−2
2

;

4. s = 6, and 12m
5
≤ d ≤ 5m−2

2
;

5. s = 7, and 21m
8
≤ d ≤ 8m−2

3
;

6. s = 8, and 48m
17
≤ d ≤ 17m−2

6
.

Notation: Only for this section, since we are studying the case n = 2, we indicate with S the
coordinate ring K[x, y, z].

Proposition 3.4.3. For d = k + 1 and s ≥ 2, we have Secs−1(Ok,d) = PN .

Proof. It is an easy consequence of Proposition 3.3.9, point 3. Since for d = k + 1 we have that
Sec1(Ok,d) = PN then the statement holds for s ≥ 2.

Notation: Let P = [Ld−kF ] be a generic point of Ok,d with L ∈ S1 and F ∈ Sk, and let TP (Ok,d)
be the tangent space of Ok,d at P . The affine cone over TP (Ok,d) is

W =< Ld−kSk, L
d−k−1FS1 > .

Terracini’s Lemma says that the tangent space of Secs−1(Ok,d) at a generic point of < P1, . . . , Ps >
for P1, . . . , Ps ∈ Ok,d, is the span of the tangent spaces to Ok,d at Pi = [Ld−k

i Fi] with Li ∈ S1 and
Fi ∈ Sk for 1 ≤ i ≤ s. If TOk,d,Pi

= P(Wi) = P(< Ld−k
i Sk, L

d−k−1
i FiS1 >), then

dim(Secs−1(Ok,d)) = dim(< TP1(Ok,d), . . . , TPs(Ok,d) >) = dim(< W1, . . . ,Ws >)− 1. (3.16)

With an abuse of notation we consider W⊥
i ⊂ Sd, for all 1 ≤ i ≤ s. It generates an ideal in S

defining a scheme Zi(k, d) ⊂ P2. Let Y be a generic union of s schemes

Zi(k, d) ⊂ P2, (3.17)

for 1 ≤ i ≤ s. Since dim(< W1, . . . ,Ws >) − 1 = N − dim[< W1, . . . ,Ws >]⊥ = N − dim(W⊥
1 ∩

· · · ∩W⊥
s ) = N − h0(P2, IY (d)), we have:
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dim(Secs−1(Ok,d)) = N − h0(P2, IY (d)) = H(Y, d)− 1 (3.18)

where H(Y, d) is the Hilbert function of Y in degree d.
For d ≥ k + 2, the schemes Zi(k, d) are zero-dimensional, and do not depend on d, in fact we

can rephrase the Lemmata 3.3.1, 3.3.2, 3.3.3 as follows:

Lemma 3.4.4. Let Z(k, d) = Zi(k, d) be one such scheme with support at P . For d ≥ k + 2, we
have:

1. (k + 1)P ⊂ Z(k, d) ⊂ (k + 2)P ;

2. the length of Z(k, d) is l(Z) =
(

k+2
2

)
+ 2;

3. Z(k, d) = Z(k, k + 2).

Henceforth for d ≥ k + 2 we will denote Z(k, d) by Z(k), or Z, if k is obvious by the context.
From (3.18) and the lemma above it follows that for d ≥ k + 2 in order to study the dimension

of Secs−1(Ok,d), we only need to study the postulation of unions of generic schemes Z(k).

Remark: Let d ≥ k + 2. Recall that Z(k) is defined by the ideal generated by W⊥ ⊂ Sd, where
W =< Ld−kSk, L

d−k−1FS1 >, with L ∈ S1 and F ∈ Sk. Now we choose the scheme Z(k): set
L = x and F = yk; we get

W =< xd−kSk, x
d−k−1ykS1 >

hence

W⊥ = < xd−k−1yk−1z2, . . . , xd−k−1yzk, xd−k−1zk+1, xd−k−2yk+2, xd−k−2yk+1z, . . . ,
xd−k−2yzk+1, xd−k−2zk+2, xd−k−3yk+1, xd−k−3ykz, . . . , xd−k−3yzk, xd−k−3zk+1, . . . ,
xyd−1, xyd−2z, . . . , xyzd−2, xzd−1, yd, yd−1z, . . . , yzd−1, zd > .

Let I be the ideal generated by W⊥. By a direct computation, it is easy to show that the
saturation of I is the ideal

(I)sat = (y, z)k+1 ∩
(
(y, z)k+2 + (z2)

)
(3.19)

that defines a scheme supported at a point of P2, whose structure is given by the union of its k-th
infinitesimal neighbourhood, with the intersection of its (k+1)-th infinitesimal neighbourhood with
a double line.

Notation: We fix, as in the previous section, the following notation:
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• let P1, . . . , Ps be s generic points in P2;

• let X be the union of s generic (k + 1)-fat points in P2, with support in P1, . . . , Ps;

• let T be the union of s generic (k + 2)-fat points in P2, with support in P1, . . . , Ps;

• let Zi be a 0-dimensional scheme in P2, as defined in (3.17), with support in Pi;

• let Y = Z1 + · · ·+ Zs;

• denote by “(k + 1, k + 2)P” a 0-dimensional scheme whose defining ideal is ℘k+1 ∩ (℘k+2 + l2)
where ℘ is the homogeneous ideal in S = K[x, y, z] of a point P ∈ P2, and l is the ideal of a
generic line through P ; we call (k + 1, k + 2)P a “(k + 1, k + 2)-point”;

• let Zi be a (k+1, k+2)-point with support in Pi. By (3.19), the scheme Zi is a specialization
of the scheme Zi;

• let Y = Z1 + · · ·+ Zs (so Y is a specialization of the scheme Y ). We have

deg(Y) = deg(Y ) = s

((
k + 2

2

)
+ 2

)
= deg(X) + 2s;

• if C ⊂ P2 is a curve, and Z is a zero-dimensional scheme, the scheme Z ′ defined by the ideal
(IZ : IC) is called the residual of Z with respect to C, and it is denoted by ResCZ.

In the following lemma we determine the subscheme of a (k + 1, k + 2)-point with support in
P , residual to a curve C.

Lemma 3.4.5. Let Z be a (k+1, k+2)-point, with support in P with defining ideal ℘k+1∩(℘k+2+l2),
where ℘ is the ideal of P , and l = (L) is the ideal of a generic line through P . Let C ⊂ P2 be a curve
having at P a singularity of multiplicity m, and having L as tangent direction with multiplicity t.
Then ResC(Z) is defined by the ideal

IResC(Z) = ℘max{k+1−m;0} ∩
(
℘max{k+2−m;0} + lmax{2−t;0}) .

The residual ResC(Z) is a fat point or a (k + 1 −m, k + 2 −m)-point, except for m < k + 1 and
t = 1, more precisely:

ResC(Z) =


0P for m ≥ k + 2, or m = k + 1 and t ≥ 2;
1P for m = k + 1 and t ≤ 1;
2P for m = k and t = 0;
(k + 1−m)P for m < k + 1 and t ≥ 2;
(k + 1−m, k + 2−m)P for m < k and t = 0.
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Proof. Without loss of generality, we assume that ℘ = (x, y), L = x, and, by abuse of notation,
that x, y are affine coordinates.

Let xtf1 + f2 = 0 be an equation defining the curve C, where f1 is a homogeneous polynomial
of degree m− t, f1 /∈ (x) , and f2 ∈ (x, y)m+1. We have to prove that

((x, y)k+1∩((x, y)k+2 +(x2))) : (xtf1 +f2) = (x, y)max{k+1−m;0}∩
(
(x, y)max{k+2−m;0} + (xmax{2−t;0})

)
.

(3.20)
This is obvious for m ≥ k + 2, and for m = k + 1, t ≥ 2, since in these cases ResC(Z) is supported
on the emptyset.

Let m = k + 1, t ≤ 1. In this case the equality (3.20) becomes

((x, y)k+1 ∩ ((x, y)k+2 + (x2))) : (xtf1 + f2) = (x, y).

“⊆” : To prove this inclusion, let g = a+h, a ∈ K, h ∈ (x, y). If g ·(xtf1+f2) = (a+h)(xtf1+f2) ∈
((x, y)k+2 + (x2)), since f2 ∈ (x, y)m+1, hxtf1 ∈ (x, y)m+1 and m + 1 = k + 2, it follows that
axtf1 ∈ ((x, y)k+2 + (x2)). But f1 is a homogeneous polynomial of degree m− t, f1 /∈ (x), t ≤ 1, so
it easily follows that a = 0, and we get g ∈ (x, y). The reverse inclusion is obvious.

Since IResC(Z) = (x, y), we have ResC(Z) = 1P
Now, let m < k + 1, t ≥ 2. In this case we have to prove that:

((x, y)k+1 ∩ ((x, y)k+2 + (x2))) : (xtf1 + f2) = (x, y)k+1−m.

If g · (xrf1 + f2) ∈ (x, y)k+1, it immediately follows that g ∈ (x, y)k+1−m, and the reverse inclusion
is obvious. Moreover, since IResC(Z) = (x, y)k+1−m, we have that ResC(Z) = (k + 1−m)P .

Let m < k + 1, t ≤ 1. Now we have to prove that

((x, y)k+1 ∩ ((x, y)k+2 + (x2))) : (xtf1 + f2) = (x, y)k+1−m ∩ ((x, y)k+2−m + (x2−t)).

“⊆” : As in the previous case, if g · (xtf1 + f2) ∈ (x, y)k+1, it follows that g ∈ (x, y)k+1−m, so
we can write

g = xg1 + ayk+1−m + g2,

where g1 ∈ (x, y)k−m is homogeneous of degree k −m, g2 ∈ (x, y)k+2−m, a ∈ K. In order to prove
that

g · (xtf1 + f2) = (xg1 + ayk+1−m + g2)(x
tf1 + f2) ∈ ((x, y)k+2 + (x2)))

since g2x
tf1, and f2 ∈ (x, y)k+2, it suffices that

xt+1g1f1 + axtyk+1−mf1 ∈ ((x, y)k+2 + (x2)).

Since xt+1g1f1 + axtyk+1−mf1 is homogeneous of degree k + 1, and f1 /∈ (x), we get that xt+1g1 +
axtyk+1−m ∈ (x2). For t = 1, this implies a = 0, so g ∈ ((x, y)k+2−m + (x)). For t = 0 this implies
a = 0, and g1 ∈ (x), so g ∈ ((x, y)k+2−m + (x2)).
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“⊇” : This inclusion is obvious.
So we have proved that, for m ≤ k and t ≤ 1:

IResC(Z) =


(x, y)k+1−m ∩ ((x, y)k+2−m + (x)) = (x, y)k+1−m ∩ (x, yk+2−m) for m ≤ k and t = 1,
(x, y) ∩ ((x, y)2 + (x2)) = (x, y)2 for m = k and t = 0,
(x, y)k+1−m ∩ ((x, y)k+2−m + (x2)) for m < k and t, = 0

hence for m = k and t = 0 we have ResC(Z) = 2P , for m < k and t = 0 we have ResC(Z) =
(k + 1−m, k + 2 − m)P , while for m ≤ k and t = 1, ResC(Z) is the union of the fat point
(k + 1−m)P with the intersection of the line {x = 0} with the fat point (k + 2−m)P .

We wish to notice that the expected dimension for Secs−1(Ok,d) is

expdim(Secs−1(Ok,d)) = min{sn + s− 1, N},

where n = dim(Ok,d) = min
{(

k+2
2

)
+ 1,

(
d+2
2

)
− 1
}

= min
{(

k+2
2

)
+ 1, N

}
= min

{
deg(Y )

s
− 1, N

}
.

Hence it easily follows that

expdim(Secs−1(Ok,d)) = min{deg(Y ), N + 1} − 1 = exp(H(Y, d))− 1

where exp(H(Y, d)) is the expected value for the Hilbert function H(Y, d) of Y in degree d.
In next Lemmata we show that the postulation of Y is strictly related with the postulation of the
specialized scheme Y , and of the scheme of fat points X.

Lemma 3.4.6. If the Hilbert function of the specialized scheme Y in degree d is

H(Y , d) = min{H(X, d) + 2s, N + 1},

then
H(Y, d) = min{H(X, d) + 2s, N + 1}.

Proof. It follows from the obvious inequalities: H(Y , d) ≤ H(Y, d) ≤ min {H(X, d)+2s, N+1}.

Lemma 3.4.7. Let s > 2. Then:

1. for k = 1, Y = Y = (2, 3)P1 + · · ·+ (2, 3)Ps, and H(Y , d) = min{deg(Y ), N + 1};

2. for k = 2, Y = (3, 4)P1 + · · ·+ (3, 4)Ps, and H(Y , d) = min{deg(Y ), N + 1}.
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Proof. 1. If d = 2 see [CGG2], Proposition 3.3; for d = 3 see [CGG2], Proposition 4.5; for
d ≥ 4 see [Ba], Theorem 1.

2. follows from [BF1] Theorems 1 and 2.

Lemma 3.4.8. 1. If H(Y , d0) = H(X, d0) + 2s, then for every d ≥ d0 we have

H(Y , d) = H(X, d) + 2s;

2. if (IY)d0 = (0), then for every d ≤ d0 we have (IY)d = (0).

Proof. 1. Since X ⊂ Y and H(Y , d0) = H(X, d0)+2s, then it easily follows that dim (IX/IY)d0
=

2s. Therefore there are 2s forms f1, . . . , f2s ∈ (IX)d0 linearly independent module (IY)d0 . Let
{l = 0} be a line not through any of the points P1, . . . , Ps. The forms f1l

d−d0 , . . . , f2sl
d−d0 ∈

(IX)d are linearly independent module (IY)d, hence dim (IX/IY)d ≥ 2s, so we have H(Y , d) ≥
H(X, d) + 2s. Since obviously H(Y , d) ≤ H(X, d) + 2s, then the conclusion follows.

2. Obvious.

Now we will study the postulation of Y for each s = 3, . . . , 9 separately, but first we wish to
mention the case s = 2.

Proposition 3.4.9. For s = 2 we have:

H(Y , d) =



for k = 1 :


N + 1 if d ≤ 2;
H(T, d) = 9 < exp(H(Y , d)) if d = 3;
H(X, d) + 4 = deg(Y ) if d ≥ 4;

for k = 2 :


N + 1 if d ≤ 3;
H(T, d) = 14 < exp(H(Y , d)) if d = 4;
H(X, d) + 4 = deg(Y ) if d ≥ 5;

for k ≥ 3 :


N + 1 if d ≤ k + 1;
H(T, d) < exp(H(Y , d)) if d = k + 2;
H(X, d) + 4 < exp(H(Y , d)) if k + 3 ≤ d ≤ 2k;
H(X, d) + 4 = deg(Y ) if d ≥ 2k + 1.
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Proof. The case d ≤ k + 1 follows from Lemma 3.4.8, 2., and Proposition 3.3.9, 3.
For d = k + 2 observe that the line L through P1 and P2 is a component of multiplicity at

least 2(k + 1) − d = k for the curves defined by the forms both of (IY)d and of (IT )d. Since
ReskLY = ReskLT = 2P1 + 2P2 (see Lemma 3.4.5), we get

dim(IY)k+2 = dim(IT )k+2 = dim(I2P1+2P2)2 = 1

(the only curve is the (k+2)-uple line through the two points)). Thus H(Y , d) = H(T, d). Moreover,
since T is not regular in degree k + 2, we get H(Y , d) < exp(H(Y , d)) (see Corollary 3.3.10).

For k = 1, 2 and d ≥ k + 3, see Corollary 3.3.13. For k ≥ 3, and d ≥ 2k + 1 see Proposition
3.3.14.

Now let k ≥ 3, and k + 3 ≤ d ≤ 2k. For d = k + 3 the line L through P1 and P2 is a component
of multiplicity at least ν = 2(k + 1)− d = k − 1 for the curves defined by the forms of both (IY)d,
and (IX)d, hence from the case k = 1, d = 4, we get

dim(IY)k+3 = dim(IY ′)k+3−(k−1) = dim(IY ′)4 = 15− 10 = 5,

dim(IX)k+3 = dim(IX′)4 = 9,

where Y ′ = ResνLY = (2, 3)P1 + (2, 3)P2 (see Lemma 3.4.5), and X ′ = ResνLX = 2P1 + 2P2.
It follows that H(Y , k + 3) = H(X, k + 3) + 4. Hence by Lemma 3.4.8 1., for every d ≥ k + 3

we have
H(Y , d) = H(X, d) + 4.

Since two (k + 1)-fat points impose independent conditions to curves of degree d if and only if
d ≥ 2k + 1 (see the first Remark in the present section), then, for k + 3 ≤ d ≤ 2k, we have
H(X, d) < deg(X), thus

H(Y , d) = H(X, d) + 4 < deg(X) + 4 = deg(Y ).

Moreover, since for d = k + 3, dim(IY)k+3 = 5, then for d ≥ k + 3, dim(IY)d is positive, that is
H(Y , d) <

(
d+2
2

)
. It follows that k+3 ≤ d ≤ 2k, then H(Y , d) < min

{
deg(Y ),

(
d+2
2

)}
exp(H(Y , d)).

(For k ≥ 3, and k + 3 ≤ d ≤ 2k, see also Proposition 3.3.15).

Proposition 3.4.10. For s = 3 we have:

1.

H(Y , d) =


N + 1 if d ≤

⌈
3(k+1)

2

⌉
;

H(X, d) + 6 < deg(Y ) if
⌈

3(k+1)
2

⌉
+ 1 ≤ d ≤ 2k;

H(X, d) + 6 = deg(Y ) if d ≥ max
{⌈

3(k+1)
2

⌉
+ 1; 2k + 1

}
.
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2.

H(Y , d) < exp(H(Y , d)) iff


⌈

3(k+1)
2

⌉
+ 2 ≤ d ≤ 2k if k + 1 is even;

⌈
3(k+1)

2

⌉
+ 1 ≤ d ≤ 2k if k + 1 is odd.

Proof. 1. In case d ≤
⌈

3(k+1)
2

⌉
, it suffices to prove that (IY)d = (0) for d =

⌈
3(k+1)

2

⌉
.

Let C be the curve formed by the three lines P1P2, P1P3, P2P3. For d =
⌈

3(k+1)
2

⌉
, the curve

C is a fixed component, of multiplicity at least

ν = 2(k + 1)− d =

{
k+1
2

if k + 1 is even,
k
2

if k + 1 is odd,

for the curves defined by the forms of (IY)d, so we have (see Lemma 3.4.5)

dim(IY)d = dim(IY ′)d−3ν

where

Y ′ = ResνCY =

{
P1 + P2 + P3 if k + 1 is even,
2P1 + 2P2 + 2P3 if k + 1 is odd;

d− 3ν =

{
0 if k + 1 is even,
2 if k + 1 is odd.

It immediately follows that (IY)d = (0).

Now let d ≥
⌈

3(k+1)
2

⌉
+ 1. In order to prove that H(Y , d) = H(X, d) + 6, by Lemma 3.4.8 it

suffices to prove that H(Y , d) = H(X, d) + 6 for d =
⌈

3(k+1)
2

⌉
+ 1.

Let d =
⌈

3(k+1)
2

⌉
+ 1. The curve C is a fixed component, with multiplicity at least

ν = 2(k + 1)− d =

{
k−1
2

if k + 1 is even,
k−2
2

if k + 1 is odd,

for the curves defined by the forms of both (IY)d and (IX)d, then we have

dim(IY)d = dim(IY ′)d−3ν ,

dim(IX)d = dim(IX′)d−3ν
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where (see Lemma 3.4.5)

d− 3ν =

{
4 if k + 1 is even
6 if k + 1 is odd,

Y ′ = ResνCY =

{
(2, 3)P1 + (2, 3)P2 + (2, 3)P3 if k + 1 is even,
(3, 4)P1 + (3, 4)P2 + (3, 4)P3 if k + 1 is odd,

X ′ =

{
2P1 + 2P2 + 2P3 if k + 1 is even,
3P1 + 3P2 + 3P3 if k + 1 is odd.

Since it is well known that dim(I2P1+2P2+2P3)4 = 6 and dim(I3P1+3P2+3P3)6 = 10, we have

dim(IX′)d−3ν =

{
6 if k + 1 is even,
10 if k + 1 is odd,

moreover, by Lemma 3.4.7 we get that

dim(IY ′)d−3ν =

{
0 if k + 1 is even,
4 if k + 1 is odd.

It follows that dim(IX)d − dim(IY)d = 6, hence H(Y , d)−H(X, d) = 6.

Since three (k +1)-fat points impose independent conditions to curves of degree d if and only

if d ≥ 2k + 1 (see the first Remark of this section), then for
⌈

3(k+1)
2

⌉
+ 1 ≤ d ≤ 2k we have

H(X, d) < deg(X), while if d ≥ max
{⌈

3(k+1)
2

⌉
+ 1; 2k + 1

}
, then H(X, d) = deg(X). Since

deg(Y ) = deg(X) + 6 we get:

H(Y , d) =

 H(X, d) + 6 < deg(Y ) if
⌈

3(k+1)
2

⌉
+ 1 ≤ d ≤ 2k,

H(X, d) + 6 = deg(Y ) if d ≥ max
{⌈

3(k+1)
2

⌉
+ 1; 2k + 1

}
.

2. For d ≤
⌈

3(k+1)
2

⌉
, or d ≥ max

{⌈
3(k+1)

2

⌉
+ 1; 2k + 1

}
, from 1. we have H(Y , d) = exp(H(Y , d)).

If k +1 is even and d =
⌈

3(k+1)
2

⌉
+1, then dim(IY)d = 0, hence H(Y , d) =

(
d+2
2

)
, the expected

one.

If k + 1 is even and d =
⌈

3(k+1)
2

⌉
+ 2, from 1., since dim(IX)d−1 = 6 implies dim(IX)d > 6, we

have:

dim(IY)d =

(
d + 2

2

)
−H(Y , d) =

(
d + 2

2

)
−H(X, d)− 6 = dim(IX)d − 6 > 0.
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Hence if k+1 is even, d ≥
⌈

3(k+1)
2

⌉
+2, and so also for d ≥

⌈
3(k+1)

2

⌉
+2 we have dim(IY)d > 0,

that is H(Y , d) <
(

d+2
2

)
. Since, by 1., if

⌈
3(k+1)

2

⌉
+ 1 ≤ d ≤ 2k, then H(Y , d) < deg(Y ), it

follows that
⌈

3(k+1)
2

⌉
+ 2 ≤ d ≤ 2k we have H(Y , d) < min

{
deg(Y ),

(
d+2
2

)}
= exp(H(Y , d))

If k + 1 is odd and d ≥
⌈

3(k+1)
2

⌉
+ 1, from the proof of i) we get dim(IY)d > 0, hence

H(Y , d) <
(

d+2
2

)
.

Moreover, by 1., if
⌈

3(k+1)
2

⌉
+ 1 ≤ d ≤ 2k, then H(Y , d) < deg(Y ), and the conclusion imme-

diately follows.

Proposition 3.4.11. For s = 4 we have:

H(Y , d) =


for k ≤ 6 :

{
N + 1 if d ≤ 2k + 2,
H(X, d) + 8 = deg(Y ) if d ≥ 2k + 3,

for k ≥ 6 :

{
N + 1 if d ≤ 2k + 1,
H(X, d) + 8 = deg(Y ) if d ≥ 2k + 2.

Proof. If d ≤ 2k + 1, by Bezout Theorem, each element of (IY)d is divisible by every form defining
an irreducible conic through P1, . . . , P4, hence (IY)d = (0).

Let d = 2k + 2. Recall that the ideal of the scheme Zi is ℘k+1
i ∩ (℘k+2

i + l2i ), where li defines
a generic line Li through Pi (1 ≤ i ≤ 4) such that deg(Y ∩ Li) = k + 2. Let Ci be the conic
through P1, . . . , P4, tangent in Pi to Li. For the genericity of the Li’s, the conics C1, . . . , C4 are
distinct. Bezout’s Theorem implies that each conic Ci is a component of each curve defined by
the forms of (IY)d. By Lemma 3.4.5 we can determine IResC1+···+C4Y , and it is an easy computation
that the intersection multiplicities of the curves defined by the forms of (IResC1+···+C4Y)d−8 with
a conic Ci, is bigger than 2(d − 8). Hence by Bezout’s Theorem we get that each conic Ci is a
component with multiplicity at least 2 of each curve defined by the forms of (IY)d. So these curves
have a component of degree 16. It follows that, if (IY)d 6= (0), then d ≥ 16, that is k ≥ 7.
Thus, for k ≤ 6, we have (IY)d = (0), hence H(Y , d) = N + 1. Observe that for k = 6, we have
N + 1 = H(X, d) + 8 = deg(Y ), in fact in this case d = 2k + 2 = 14, N + 1 =

(
16
2

)
= 120, and,

since four 7-fat points impose independent conditions to curves of degree 14 (see the first Remark
of this section), then H(X, d) = 112. If k ≥ 7 we have

dim(IY)2k+2 = dim(IY ′)2k+2−16,
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where Y ′ = Res2C1+···+2C4Y = (k − 7)P1 + · · · + (k − 7)P4 is a scheme of four (k − 7)-fat points
(see Lemma 3.4.5). Since Y ′ imposes independent conditions to curves of degree 2k − 14 (see the
first Remark of this section), then H(Y , 2k + 2) =

(
2k+4

2

)
− dim(IY)2k+2 =

(
2k+4

2

)
− dim(IY ′)2k−14 =(

2k+4
2

)
−
(
2k−12

2

)
+ 4
(

k−6
2

)
= 4
(

k+2
2

)
+ 8 = H(X, 2k + 2) + 8 = deg(Y ).

Now let d ≥ 2k + 3. It suffices to prove that H(Y , 2k + 3) = H(X, 2k + 3) + 8 = deg(Y ) (see
Lemma 3.4.8 point 1.), hence let d = 2k + 3. By induction on k. For k = 1 see Lemma 3.4.7. Let
k ≥ 2. Let C be an irreducible conic through P1, . . . , P4, and let Q1, Q2, Q3 be three points on C.
Let Ỹ = Y+Q1 + Q2 + Q3. By Bezout’s Theorem, the conic C is a fixed component for the curves
of degree 2k + 3 through Ỹ , then

dim(I eY)2k+3 = dim(I eY ′)2k+1 =

(
2k + 3

2

)
−H(Ỹ ′, 2k + 1),

where Ỹ ′ = ResCỸ = ResCY =
∑4

i=1(k, k + 1)Pi (see Lemma 3.4.5). By the inductive hypothesis

we have that H(Ỹ ′, 2k + 1) = deg(Ỹ ′) = 4
(

k+1
2

)
+ 8, hence

H(Ỹ , 2k + 3) =

(
2k + 5

2

)
−
(

2k + 3

2

)
+ 4

(
k + 1

2

)
+ 8 = deg(Y) + 3 = deg(Ỹ).

Hence Ỹ imposes independent conditions to curves of degree 2k + 3. Since Y ⊂ Ỹ , also Y imposes
independent conditions to curves of degree 2k + 3, that is H(Y , 2k + 3) = deg(Y).

Proposition 3.4.12. For s = 5 we have:

H(Y , d) =


N + 1 if d ≤ 2k + 3,

H(X, d) + 10 < exp(H(Y , d)) if 2k + 4 ≤ d ≤
⌊

5(k+1)
2

⌋
− 1,

H(X, d) + 10 = deg(Y ) if d ≥ max
{

2k + 4;
⌊

5(k+1)
2

⌋}
.

Proof. Let d ≤ 2k + 3. If we prove that (IY)d = (0) for d = 2k + 3 we are done. So let d = 2k + 3.
For k = 1 see Lemma 3.4.7.

Let k ≥ 2. Any curve defined by a nonzero element of (IX)d has the conic C through P1, . . . , P5

as a component of multiplicity at least 5(k + 1)− 2d = k − 1, where X is the fat point subscheme
of 5 points of multiplicity k + 1, hence the same is true for Y in place of X, since X ⊂ Y , so we
have:

dim(IY)2k+3 = dim(IY ′)2k+3−2(k−1) = dim(IY ′)5,
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where, by Lemma 3.4.5, Y ′ = Res(k−1)CY = (2, 3)P1 + · · ·+ (2, 3)P5. Since, by Lemma 3.4.7 point
1., dim(IY ′)5 = 0, then the conclusion follows.

Now let d ≥ 2k + 4. We have to prove that

H(Y , d) = H(X, d) + 10.

By Lemma 3.4.8, it is sufficient to prove that H(Y , d) = H(X, d) + 10 for d = 2k + 4, so let
d = 2k + 4. For k = 1, 2 see Lemma 3.4.7. If k = 3 (hence d = 10), let Q be a point on the conic C
through P1, . . . , P5. The scheme Y + Q imposes independent conditions to the curves of degree 10.
In fact, since the conic C is a fixed locus for (IY+Q)10, from the case k = 2 we get:

dim(IY+Q)10 = dim(IY ′)8 =

(
8 + 2

2

)
−5(8) = 5 =

(
10 + 2

2

)
−5(12)−1 =

(
10 + 2

2

)
−deg(Y+Q),

where Y ′ = ResC(Y + Q) = (3, 4)P1 + · · · + (3, 4)P5 (see Lemma 3.4.5). Since Y + Q imposes
independent conditions to curves of degree 10, then also Y and X do the same. It follows that

H(Y , 10) = deg(Y) = deg(X) + 10 = H(X, 10) + 10.

For k ≥ 4, since C is a fixed component with multiplicity at least (k − 3) for curves defined both
by (IY)2k+4 and by (IX)2k+4, it follows that

dim(IY)2k+4 = dim(IY ′)2k+4−2(k−3) = dim(IY ′)10,

dim(IX)2k+4 = dim(IX′)10,

where (see Lemma 3.4.5)

Y ′ = Res(k−3)CY = (4, 5)P1 + · · ·+ (4, 5)P5,

X ′ = Res(k−3)C4P1 + · · ·+ 4P5.

From the case k = 3 it follows that
dim(IY)2k+4 = 6,

dim(IX)2k+4 = 16,

hence H(Y , d) = H(X, d) + 10.
So we have proved that for d ≥ 2k + 4

H(Y , d) = H(X, d) + 10
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Now, since dim(IY)2k+4 is positive, then H(Y , d) <
(

d+2
2

)
for any d ≥ 2k + 4. Moreover, since

five generic (k + 1)-fat points impose independent conditions to curves of degree d if and only if

d ≥
⌊

5(k+1)
2

⌋
(see the first Remark of this section), then for 2k + 4 ≤ d ≤

⌊
5(k+1)

2

⌋
− 1, we have

H(X, d) < deg(X), hence

H(Y , d) = H(X, d)+10 < min

{
deg(X) + 10,

(
d + 2

2

)}
= min

{
deg(Y ),

(
d + 2

2

)}
= exp(H(Y , d)).

If d ≥ max
{

2k + 4;
⌊

5(k+1)
2

⌋}
, then H(X, d) = deg(X), so H(Y , d) = deg(Y ).

Proposition 3.4.13. For s = 6 we have:

H(Y , d) =



for k = 1 :

{
N + 1 if d ≤ 6,
H(X, d) + 12 = deg(Y ) if d ≥ 7,

for k = 2 :

{
N + 1 if d ≤ 8,
H(X, d) + 12 = deg(Y ) if d ≥ 9,

for k ≥ 3
k ≡ 2 (mod 5) :


N + 1 if d ≤

⌈
12(k+1)

5

⌉
− 1,

H(X, d) + 12 < exp(H(Y , d)) if
⌈

12(k+1)
5

⌉
≤ d ≤

⌊
5(k+1)

2

⌋
− 1,

H(X, d) + 12 = deg(Y ) if d ≥ max
{⌈

12(k+1)
5

⌉
;
⌊

5(k+1)
2

⌋}
,

for k ≥ 3
k 6≡ 2(mod 5) :


N + 1 if d ≤

⌈
12(k+1)

5

⌉
,

H(X, d) + 12 < exp(H(Y , d)) if
⌈

12(k+1)
5

⌉
+ 1 ≤ d ≤

⌊
5(k+1)

2

⌋
− 1,

H(X, d) + 12 = deg(Y ) if d ≥ max
{⌈

12(k+1)
5

⌉
+ 1;

⌊
5(k+1)

2

⌋}
.

Proof. We start by proving four particular cases, that we need later in the proof.

Lemma 3.4.14. We have:

1. dim(I(8,9)P1+···+(8,9)P6)20 = 3;

2. dim(I(6,7)P1+···+(6,7)P6)15 = 0;

3. dim(I(5,6)P1+···+(5,6)P6)13 = 3;

4. dim(I(4,5)P1+···+(4,5)P6)11 = 6.
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Proof. We prove 1. by specializing the scheme Y . The proofs of 2., 3. and 4. are done by using
[CoCoA].

1. Let Q ∈ P2 be a generic point, and let F = {F = 0} be a rational integral curve of degree 5
passing through Q, and having at each Pi, 1 ≤ i ≤ 6, an ordinary singularity of multiplicity
2, (so F ∈ (I2P1+···+2P6)5), and let {l̃i = 0} be one of the two distinct lines contained in the
tangent space TF ,Pi

to F at the point Pi.

Recall that the defining ideal of Y = (8, 9)P1 + · · ·+ (8, 9)P6 is

IY = (℘8
1 ∩ (℘9

1 + l21)) ∩ · · · ∩ (℘8
6 ∩ (℘9

6 + l26)).

Specialize the scheme Y putting li = l̃i for i = 1, 2, 3, 4, and let Y∗ be such specialization of
Y . Since the expected dimension of (IY)20 is

(
20+2

2

)
− deg(Y) = 231 − 228 = 3, then if we

prove that dim(IY∗)20 = 3, we are done.

It is easy to see that the curves defined by the forms of (IY∗+Q)20 have the quintic F as fixed
component with multiplicity 2, hence

dim(IY∗+Q)20 = dim(IW)10

where W = Res2F(Y∗ + Q) = 4P1 + 4P2 + 4P3 + 4P4 + (4, 5)P5 + (4, 5)P6. Now let W∗ be

a specialization of W obtained by putting li = l̃i for i = 5, 6. Since the quintic F is as fixed
component with multiplicity 2 for (IW∗+Q)10, and since Res2F(W∗ + Q) = ∅ (see Lemma
3.4.5) we have

dim(IW∗+Q)10 = dim(IRes2F (W∗+Q))0 = 1.

Thus for the specialized scheme W∗ we have dim(IW∗)10 = 2 =
(
10+2

2

)
− degW∗. Then

W∗, and so also W , imposes independent conditions to curves of degree 10. It follows that
dim(IW)10 = 2. So dim(IY∗+Q)20 = 2, hence dim(IY∗)20 = 3, and we are done.

2. By using [CoCoA] we verified that H(Y , 15) = N + 1 = 136.

3. By using [CoCoA] we verified that H(Y , 13) = H(X, 13) + 12 = 90 + 12 = 102.

4. By using [CoCoA] we verified that H(Y , 11) = H(X, 11) + 12 = 60 + 12 = 72.

Now let k + 1 = 5q + r, (0 ≤ r ≤ 4). Thus k ≡ 2 (mod 5) iff r = 3.
For k = 1, 2 see Lemma 3.4.7.
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Let k ≥ 3. Let Ci be the conic through P1, . . . , P̂i, . . . , P6, (i = 1, . . . , 6), and let C =
∑6

i=1 Ci.
Observe that if 2d < 5(k + 1), then the curves defined by the forms of (IY)d, and by the forms of
(IX)d have the six conics Ci as fixed components with multiplicity at least ν = 5(k + 1)− 2d.

Then
dim(IY)d = dim(IY ′)d−12ν ,

dim(IX)d = dim(IX′)d−12ν ,

where

Y ′ = ResνCY = (k + 1− 5ν, k + 2− 5ν)P1 + · · ·+ (k + 1− 5ν, k + 2− 5ν)P6,

X ′ = ResνCX = (k + 1− 5ν)P1 + · · ·+ (k + 1− 5ν)P6.

We split the proof in four cases.

1. k ≡ 2 (mod 5), and d ≤
⌈

12(k+1)
5

⌉
− 1 = 12q + 7.

In this case it suffices to prove that (IY)d = (0) for d = 12q + 7. Since 2d = 2(12q + 7) <
5(k+1) = 5(5q+3), then the curves defined by the forms of (IY)d should have a fixed locus of
degree 12ν = 12q + 12, and this is impossible, since d = 12q + 7. It follows that (IY)d = (0).

2. k ≡ 2 (mod 5), and d ≥
⌈

12(k+1)
5

⌉
= 12q + 8.

First we will prove that
H(Y , d) = H(X, d) + 12.

By Lemma 3.4.8, it suffices to prove that H(Y , d) = H(X, d) + 12, for d = 12q + 8. Since
k ≥ 3, and k + 1 = 5q + 3, then we have q ≥ 1. Let q = 1, so d = 20, k + 1 = 8,
Y = (8, 9)P1 + · · · + (8, 9)P6, and X = 8P1 + · · · + 8P6. Since dim(I(8,9)P1+···+(8,9)P6)20 = 3
(see Lemma 3.4.14 point 1.), and six 8-fat points impose independent conditions to curves
of degree 20 (see the first Remark of this section), we have dim(IX)20 = 15. It follows that
H(Y , d) = H(X, d) + 12. If q > 1, then νC =

∑6
i=1 νCi is a fixed locus for (IY)d and (IX)d.

Since ν = 5(k+1)−2d = 5(5q+3)−2(12q + 8) = q−1, we have d−12ν = 12q+8−12(q−1) =
20, and k + 1− 5ν = 5q + 3− 5(q − 1) = 8. So

dim(IY)d = dim(IY ′)20 = 3,

dim(IX)d = dim(IX′)20 = 15,

where Y ′ = ResνCY = (8, 9)P1 + · · · + (8, 9)P6, X ′ = ResνCX = 8P1 + · · · + 8P6. Hence, we
easily get that H(Y , d) = H(X, d) + 12.
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So we have proved that H(Y , d) = H(X, d) + 12.

Now, since for d = 12q + 8, dim(IY)d is positive (and in fact it is equal to dim(IY ′)20 = 3),
then H(Y , d) <

(
d+2
2

)
for any d ≥ 12q + 8.

Since six generic (k +1)-fat points impose independent conditions to curves of degree d if and

only if d ≥
⌊

5(k+1)
2

⌋
(see the first Remark of this section), then for 12q +8 ≤ d ≤

⌊
5(k+1)

2

⌋
− 1

we have H(X, d) < deg(X), hence

H(Y , d) = H(X, d) + 12 < min

{
deg(X) + 12,

(
d + 2

2

)}
=

= min

{
deg(Y ),

(
d + 2

2

)}
= exp(H(Y , d)).

While for d ≥ max
{

12q + 8;
⌊

5(k+1)
2

⌋}
, we have H(X, d) = deg(X), so H(Y , d) = H(X, d) +

12 = deg(X)+12 = deg(Y ). If 12q +8 ≤ d ≤
⌊

5(k+1)
2

⌋
−1, we have H(X, d) < deg(X), hence

H(Y , d) < deg(Y ). Moreover, since for d = 12q + 8, dim(IY)d is positive (as shown above, it
is equal to dim(IY ′)20), then H(Y , d) <

(
d+2
2

)
for any d ≥ 12q + 8.

That is enough to finish the proof of this case.

3. k 6≡ 2 (mod 5), and d ≤
⌈

12(k+1)
5

⌉
.

By Lemma 3.4.8 we have only to prove that H(Y , d) = N +1 for d =
⌈

12(k+1)
5

⌉
= 12q +

⌈
12r
5

⌉
.

Since k ≥ 3, we have k + 1 = 5q + r ≥ 4, hence q ≥ 4−r
5

. As above, let ν = 5(k + 1) − 2d,
Y ′ = ResνCY , and let d′ = d− 12ν. We have:

r k + 1 d ν Y ′ d′

0 5q 12q q > 0 P1 + · · ·+ P6 0
1 5q + 1 12q + 3 q − 1 ≥ 0 (6, 7)P1 + · · ·+ (6, 7)P6 15
2 5q + 2 12q + 5 q > 0 (2, 3)P1 + · · ·+ (2, 3)P6 5
4 5q + 4 12q + 10 q ≥ 0 (4, 5)P1 + · · ·+ (4, 5)P6 10

Since for ν = 0, we have Y ′ = Y and d′ = d, then for every ν ≥ 0 we have:

dim(IY)d = dim(IY ′)d′ .
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Now we will prove that dim(IY ′)d′ = 0.

For r = 0 it is obvious. For r = 2 see Lemma 3.4.7. For r = 1 by Lemma 3.4.14 point 2.,
we have dim(I(6,7)P1+···+(6,7)P6)15 = 0. For r = 4, let F = {F = 0} be a rational integral
curve of degree 5 having at each Pi (1 ≤ i ≤ 6) an ordinary singularity of multiplicity 2,
(F ∈ (I2P1+···+2P6)5). If there exists a form G 6= 0, G ∈ (I(4,5)P1+···+(4,5)P6)10, then FG 6= 0 and
FG ∈ (I(6,7)P1+···+(6,7)P6)15, but this is impossible by the previous case r = 1.

4. k 6≡ 2 (mod 5), and d ≥
⌈

12(k+1)
5

⌉
+ 1.

First we will to prove that
H(Y , d) = H(X, d) + 12.

By Lemma 3.4.8, it suffices to prove that H(Y , d) = H(X, d) + 12 for d =
⌈

12(k+1)
5

⌉
+ 1 =

12q +
⌈

12r
5

⌉
+ 1.

As usual, let ν = 5(k + 1)− 2d, Y ′ = ResνCY , X ′ = ResνCX, and d′ = d− 12ν. We have:

r k + 1 d ν k + 1− 5ν Y ′ X ′ d′

0 5q 12q + 1 q − 2 10
∑6

i=1(10, 11)Pi

∑6
i=1 10Pi 25

1 5q + 1 12q + 4 q − 3 16
∑6

i=1(16, 17)Pi

∑6
i=1 16Pi 40

2 5q + 2 12q + 6 q − 2 12
∑6

i=1(12, 13)Pi

∑6
i=1 12Pi 30

4 5q + 4 12q + 11 q − 2 14
∑6

i=1(14, 15)Pi

∑6
i=1 14Pi 35

Since for ν = 0, we have Y ′ = Y , X ′ = X, and d′ = d, then for every ν ≥ 0 we have:

dim(IY)d = dim(IY ′)d′ ,

dim(IX)d = dim(IX′)d′ .

It follows that
H(Y , d)−H(X, d) = H(Y ′, d′)−H(X ′, d′).

Hence in case ν ≥ 0 we have only to prove that:

(a) H(
∑6

i=1(10, 11)Pi, 25) = H(
∑6

i=1 10Pi, 25) + 12;

(b) H(
∑6

i=1(12, 13)Pi, 30) = H(
∑6

i=1 12Pi, 30) + 12;

(c) H(
∑6

i=1(14, 15)Pi, 35) = H(
∑6

i=1 14Pi, 35) + 12;

(d) H(
∑6

i=1(16, 17)Pi, 40) = H(
∑6

i=1 16Pi, 40) + 12;
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Now we need the following lemma:

Lemma 3.4.15. Let:
Y = (m,m + 1)P1 + · · ·+ (m, m + 1)P6,

Ỹ = (m + 2, m + 3)P1 + · · ·+ (m + 2, m + 3)P6,

X̃ = (m + 2)P1 + · · ·+ (m + 2)P6.

If the integer η = 5(d + 5)− 12(m + 2) + 1 ≥ 0, and H(Y , d) = deg(Y), then

1. H(Ỹ , d + 5) = deg(Ỹ), H(X̃, d + 5) = deg(X̃);

2. H(Ỹ , d + 5) = H(X̃, d + 5) + 12.

Proof. 1. Let F be (as above) a rational curve of degree 5 having at each Pi (1 ≤ i ≤ 6),
an ordinary singularity of multiplicity 2. Let Q1, . . . , Qη ∈ F be generic points. Since
5(d+5) < 6(2(m+2))+η, by Bezout Theorem F is a fixed component for the curves defined

by the forms of
(
I eY+Q1+···+Qη

)
d+5

. It follows that

dim
(
I eY+Q1+···+Qη

)
d+5

= dim (IY)d .

Since
(

d+5+2
2

)
−deg(Ỹ + Q1 + · · ·+ Qη) = 1

2
(d+7)(d+6)−(deg(Y)+6(m+2)+6(m+1)+η) =(

d+2
2

)
− deg(Y) =

(
d+2
2

)
−H(Y , d) = dim(IY)d, we have

dim
(
I eY+Q1+···+Qη

)
d+5

=

(
d + 5 + 2

2

)
− deg

(
Ỹ + Q1 + · · ·+ Qη

)
hence H(Ỹ + Q1 + · · ·+ Qη, d + 5) = deg(Ỹ + Q1 + · · ·+ Qη).

Since obviously X̃ ⊂ Ỹ ⊂ Ỹ + Q1 + · · ·+ Qη, it follows that H(Ỹ , d + 5) = deg(Ỹ), and

H(X̃, d + 5) = deg(X̃).

2. Obvious.

By Case 2) we know that H
(∑6

i=1(8, 9)Pi, 20
)

= H
(∑6

i=1 8Pi, 20
)
+12 = deg

(∑6
i=1(8, 9)Pi

)
,

so by Lemma 3.4.15 point 2. we have (a): H
(∑6

i=1(10, 11)Pi, 25
)

= H
(∑6

i=1 10Pi, 25
)

+ 12.

Moreover, by Lemma 3.4.15 point 1., H
(∑6

i=1(10, 11)Pi, 25
)

= deg
(∑6

i=1(10, 11)Pi

)
, hence by

Lemma 3.4.15 point 2. we get (b): H
(∑6

i=1(12, 13)Pi, 30
)

= H
(∑6

i=1 12Pi, 30
)

+ 12.
Analogously, by Lemma 3.4.15, we have that (b) ⇒ (c) ⇒ (d), so, for ν ≥ 0, we have proved

that H(Y , d) = H(X, d) + 12.
Now let ν < 0. In this case, since k + 1 = 5q + r ≥ 3, we are left with the folloving cases:
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r q k + 1 Y X d

0 1 5
∑6

i=1(5, 6)Pi

∑6
i=1 5Pi 13

1 1 6
∑6

i=1(6, 7)Pi

∑6
i=1 6Pi 16

1 2 11
∑6

i=1(11, 12)Pi

∑6
i=1 11Pi 28

2 1 7
∑6

i=1(7, 8)Pi

∑6
i=1 7Pi 18

4 0 4
∑6

i=1(4, 5)Pi

∑6
i=1 4Pi 11

4 1 9
∑6

i=1(9, 10)Pi

∑6
i=1 9Pi 23

hence we have to prove that:
(e): H

(∑6
i=1(5, 6)Pi, 13

)
= H

(∑6
i=1 5Pi, 13

)
+ 12;

(f): H
(∑6

i=1(6, 7)Pi, 16
)

= H
(∑6

i=1 6Pi, 16
)

+ 12;

(g): H
(∑6

i=1(11, 12)Pi, 28
)

= H
(∑6

i=1 11Pi, 28
)

+ 12;

(h): H
(∑6

i=1(7, 8)Pi, 18
)

= H
(∑6

i=1 7Pi, 18
)

+ 12;

(i): H
(∑6

i=1(4, 5)Pi, 11
)

= H
(∑6

i=1 4Pi, 11
)

+ 12;

(l): H
(∑6

i=1(9, 10)Pi, 23
)

= H
(∑6

i=1 9Pi, 23
)

+ 12.

By Lemma 3.4.14 points 3. and 4., it easily follows that (e) and (i) hold, moreover by Lemma
3.4.15 we have that (e) ⇒ (h) ⇒ (l) ⇒ (g), and (i) ⇒ (f), so we have proved that H(Y , d) =
H(X, d) + 12 also for ν < 0.

Now, for d =
⌈

12(k+1)
5

⌉
+ 1, as shown above, we have:

for ν ≥ 0:

dim(IY)d = dim(IY ′)d′ =

(
d′ + 2

2

)
− deg(X ′)− 12 =



(
25+2

2

)
− 6
(
10+1

2

)
− 12 = 9 for r = 0,(

40+2
2

)
− 6
(
16+1

2

)
− 12 = 33 for r = 1,(

30+2
2

)
− 6
(
12+1

2

)
− 12 = 16 for r = 2,(

35+2
2

)
− 6
(
14+1

2

)
− 12 = 24 for r = 4;

111



The secant varieties to the osculating varieties to the Veronese surface

for ν < 0:

dim(IY)d =



(
13+2

2

)
− 6
(
5+1
2

)
− 12 = 3 for r = 0, q = 1,(

16+2
2

)
− 6
(
6+1
2

)
− 12 = 15 for r = 1, q = 1,(

28+2
2

)
− 6
(
11+1

2

)
− 12 = 27 for r = 1, q = 2,(

18+2
2

)
− 6
(
7+1
2

)
− 12 = 10 for r = 2, q = 1,(

11+2
2

)
− 6
(
4+1
2

)
− 12 = 6 for r = 4, q = 0,(

23+2
2

)
− 6
(
9+1
2

)
− 12 = 18 for r = 4, q = 1;

hence dim(IY)d is positive, and this implies that H(Y , d) <
(

d+2
2

)
for any d ≥

⌈
12(k+1)

5

⌉
+ 1.

Moreover, since six generic (k + 1)-fat points impose independent conditions to curves of degree

d if and only if d ≥
⌊

5(k+1)
2

⌋
(see the first Remark of this section), then for

⌈
12(k+1)

2

⌉
+ 1 ≤ d ≤⌊

5(k+1)
2

⌋
− 1, we have H(X, d) < deg(X), hence

H(Y , d) = H(X, d)+12 < min

{
deg(X) + 12,

(
d + 2

2

)}
= min

{
deg(Y ),

(
d + 2

2

)}
= exp(H(Y , d)).

While for d ≥ max
{⌈

12(k+1)
5

⌉
+ 1;

⌊
5(k+1)

2

⌋}
, we have H(X, d) = deg(X), so H(Y , d) =

H(X, d) + 12 = deg(X) + 12 = deg(Y ).

If
⌈

12(k+1)
5

⌉
+ 1 ≤ d ≤

⌊
5(k+1)

2

⌋
− 1, we have H(X, d) = deg(X), so H(Y , d) = H(X, d) + 12 =

deg(X) + 12 = deg(Y ).

For the study of cases s = 6, 7 we need to introduce here a Lemma that uses Cremona trans-
formations.

Lemma 3.4.16. Let Π1 ' Π2 ' P2 be two copies of P2 with coordinate rings K[x, y, z] and
K[X, Y, Z] respectively. Let ϕ : Π1 − − > Π2 be the Cremona transformation ϕ(x, y, z) =
(yz, xz, xy) = (X,Y, Z). Let I ⊂ K[x, y, z] be the ideal of a (m, m + 1)-point with support
P = (0, 0, 1), ℘ = (x − y, y) be its representative ideal and l = {x − y = 0} the line such that
I = ℘k+1 ∩ (℘k+2 + l2). Then < Id >'< J2d−m > where

J = (X, Y )d ∩ (X, Z)d−m ∩ (Y, Z)d−m ∩ ((Y −X)2, Z).
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Proof. By hypothesis I is the ideal I = (x − y, y)m ∩ ((x − y, y)m+1, (x − y)2) = ((x − y)m, (x −
y)m−1y, (x− y)m−2y2, . . . , (x− y)2ym−2, (x− y)ym, ym+1).
Let fd(x, y, z) ∈ Id then fd(x, y, z) = (

∑m−2
i=0 ai(x − y)m−iyi)zd−m +

∑d
i=m+1 giz

d−i where gi ∈
(K[x, y])i and ai ∈ K for all i = 1, . . . , d.
Obviously ϕ(fd(x, y, z)) =: F2d(X, Y, Z) ∈ (K[X, Y, Z])2d and
F2d(X, Y, Z) = (XY )d−mZm

(∑m−2
i=0 ai(Y −X)m−iX i

)
+
∑d

i=m+1(XY )d−iZiGi where Gi ∈ (K[X, Y ])i

for all i = m + 1, . . . , d.
Now F2d is the total transforme of fd but we are looking for the strict transforme F̃2d−m defined by
F2d = ZmF̃2d−m; then F̃2d−m(X,Y, Z) = (XY )d−m

(∑m−2
i=0 ai(Y −X)m−iX i

)
+
∑d

i=m+1(XY )d−iZi−mGi.

Now the F̃2d−m(X, Y, Z), as ai ∈ K and Gi ∈ (K[X, Y ])i vary, give the part of degree 2d −m of
the ideal J ⊂ K[X, Y, Z] where J = (X, Y )d ∩ (X, Z)d−m ∩ (Y, Z)d−m ∩ ((Y −X)2, Z). It is easy to

see that F̃2d−m ∈ J2d−m.
The other inclusion, i.e. that all h(X, Y, Z) ∈ J2d−m can be written as F̃2d−m, can be computa-

tionally verified.

Remark: Let P1, P2, P3 be three generic points of P2. Consider the Cremona transformation that
acts as an isomorphism on P2 r {P1, P2, P3}. Therefore, if I and J are as in the lemma above and
the point P of the lemma is one of the Pi for i = 1, . . . , s, then

H(K[x, y, z]/I, d) = H(K[X,Y, Z]/J, 2d−m).

Proposition 3.4.17. For s = 7 we have:

H(Y , d) =



for k = 1 :

{
N + 1 if d ≤ 6,
H(X, d) + 14 = deg(Y ) if d ≥ 7,

for k = 2 :

{
N + 1 if d ≤ 9,
H(X, d) + 14 = deg(Y ) if d ≥ 9,

for k ≥ 3
k ≡ 1, 4 (mod 8) :


N + 1 if d ≤

⌈
21(k+1)

8

⌉
− 1,

H(X, d) + 14 < deg(Y ) if
⌈

21(k+1)
8

⌉
≤ d ≤

⌊
8k
3

⌋
+ 2,

H(X, d) + 14 = deg(Y ) if d ≥ max
{⌈

21(k+1)
8

⌉
,
⌊

8k
3

⌋
+ 3
}

,

for k ≥ 3
k 6≡ 1, 4 (mod 8) :


N + 1 if d ≤

⌈
21(k+1)

8

⌉
,

H(X, d) + 14 < deg(Y ) if
⌈

21(k+1)
8

⌉
+ 1 ≤ d ≤

⌊
8k
3

⌋
+ 2,

H(X, d) + 14 = deg(Y ) if d ≥ max
{⌈

21(k+1)
8

+ 1
⌉

,
⌊

8k
3

⌋
+ 3
}

.
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Proof. For k = 1, 2 the statement is known by [Ba] and [BF1].

For k ≥ 3 we prove first that (IY)d = (0) if

d =


⌈

21(k+1)
8

⌉
and k 6≡ 1, 4 (mod 8) or

⌈
21(k+1)

8

⌉
− 1 and k ≡ 1, 4 (mod 8)

so that (IY)d = (0) for all d less or equal to that value.

Consider the seven cubics Ci, for i = 1, . . . , 7, through P1, . . . , 2Pi, . . . , P7. If 8(k+1) > 3d, then
the seven cubics Ci are fixed components for (IY)d with multiplicity ν = 8(k + 1)− 3d, therefore

dim (IY)d = dim
(
IY−P7

i=1 νCi

)
d−21ν

(3.21)

where Y−
∑7

i=1 νCi is the union of seven 0-dimensional schemes of the type (k+1−8ν, k+2−8ν).

Let

k + 1 = 8q + r.

In the following table we summarize the cases we need to study in order to compute

dim
(
IY−P7

i=1 νCi

)
d−21ν

.

r d ν Y −
∑7

i=1 νCi d− 21ν

0 21q q
∑7

i=1 Pi 0

1 21q + 3 q − 1
∑7

i=1(9, 10)Pi 24 (*)

2 21q + 5 q + 1
∑7

i=1(−6,−5)Pi −16

3 21q + 8 q
∑7

i=1(3, 4)Pi 8 (*)

4 21q + 11 q − 1
∑7

i=1(12, 13)Pi 32 (*)

5 21q + 13 q + 1
∑7

i=1(−3,−2)Pi −8

6 21q + 16 q
∑7

i=1(6, 7)Pi 16 (*)

7 21q + 19 q − 1
∑7

i=1(15, 16)Pi 40 (*)

Since some case has to be excluded from this procedure, in the table above there are some cases
excluded:
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r q d Y
1 1 24

∑7
i=1(9, 10)Pi (*)

3 0 8
∑7

i=1(3, 4)Pi

4 0 11
∑7

i=1(4, 5)Pi (*)

4 1 32
∑7

i=1(12, 13)Pi (*)

6 0 16
∑7

i=1(6, 7)Pi (*)

7 0 19
∑7

i=1(7, 8)Pi (*)

7 1 40
∑7

i=1(15, 16)Pi (*)

In the cases where d− 21ν = 0,−16,−8 we clearly have
(
IY−

P7
i=1 νCi

)
d−21ν

= (0). The case of

seven (3, 4)-points is from [Ba]. For all the remaining cases (that are those we have marked with
a “(*)”) we will use Lemma 3.4.16.

Let us start with the scheme (k + 1, k + 2)P1 ∪ · · · ∪ (k + 1, k + 2)P7. Consider the Cremona
transformation

ϕ1,2,3 that acts as an isomorphism on P2 r {P1, P2, P3}. (3.22)

The image of
(
I(k+1,k+2)P1+···+(k+1,k+2)P7

)
d

via ϕ1,2,3 is the degree (2d − 3k − 3) part of the ideal
representing the following scheme:

3∑
i=1

(d− 2k − 2)P ′
i +

6∑
i=1

Ri +
3∑

i=1

(k + 1, k + 2)Qi

where P ′
i = ϕ1,2,3(< P1, P̂i, P2 >) for i = 1, 2, 3; Qi = ϕ1,2,3(Pi+3) for i = 1, 2, 3; and R1, R2 are

two simple points on the line < P ′
1, P

′
2 >, R3, R4 are two simple points on the line < P ′

1, P
′
3 >, and

R5, R6 are two simple points on the line < P ′
2, P

′
3 >.

From now on we will use an abuse of notation and we will keep calling, after the Cremona trans-
formation, a point Pi instead of P ′

i .
Consider now the following successive Cremona transformations:

ϕ4,5,6, that acts as isomorphism on P2 r {P4, P5, P6},

ϕ1,2,7, that acts as isomorphism on P2 r {P1, P2, P7},
ϕ3,4,5, that acts as isomorphism on P2 r {P3, P4, P5}, (3.23)

ϕ3,6,7, that acts as isomorphism on P2 r {P3, P6, P7}.
At the end we have to study the Hilbert function in degree 8d− 21(k + 1) of the scheme:

Y ′ =
7∑

i=1

(3d− 8k − 8)Pi +
14∑
i=1

Ri (3.24)
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where Pi are seven generic points of P2 and Ri ∈ P2 are 14 points such that:

R1, R2 belong to a conic through P1, P2;

R3, R4 belong to another different conic through P1, P2;

R5, R6 belong to a conic through P1, P3;

R7, R8 belong to a conic through P2, P3; (3.25)

R9, R10 belong to a conic through P4, P5;

R11, R12 belong to a conic through P4, P6;

R13, R14 belong to a conic through P5, P6.

Let ϕ be the composition of the Cremona transformations defined in (3.22) and in (3.23):

ϕ := ϕ3,6,7 ◦ ϕ3,4,5 ◦ ϕ1,2,7 ◦ ϕ4,5,6 ◦ ϕ1,2,3. (3.26)

The action of ϕ on (IY)d in the cases “(*)” of the last table, gives the degree (8d− 21k − 21) part
of the ideal IY ′ described in (3.24), in particular they become the following:

1. (IY ′)8d−21k−21 =
(
IP14

i=1 Ri

)
3

= (0), if r = 1 and q > 1;

2. (IY ′)8d−21k−21 =
(
IP14

i=1 Ri

)
1

= (0), if r = 3 and q > 0;

3. (IY ′)8d−21k−21 =
(
IP14

i=1 Ri

)
4
, if r = 4 and q > 1;

4. (IY ′)8d−21k−21 =
(
IP14

i=1 Ri

)
2

= (0), if r = 6 and q > 0;

5. (IY ′)8d−21k−21 =
(
IP14

i=1 Ri

)
5
, if r = 7 and q ≥ 0;

6. (IY ′)8d−21k−21 =
(
IP7

i=1 P ′′
i +

P14
i=1 Ri

)
4

= (0), if r = 4 and q = 0.

For the cases 3. and 5. the idea to use Cremona transformations is not useful. Those cases, before

transformations, were
(
IP7

i=1(4,5)Pi

)
11

and
(
IP7

i=1(7,8)Pi

)
19

respectively. For the first one we used

the help of [CoCoA] system that immediately gives that
(
IP7

i=1(4,5)Pi

)
11

= (0). For the second

case we study the residual scheme obtained by cutting with some particular conics.
Let ℘7

i ∩ (℘8
i + l2i ) be the ideal of the scheme (7, 8)Pi, let Ci,j,h,k,l

a,b,c,d,e ⊂ P2 be the conics through
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Pa, Pb, Pc, Pd, Pe for a, b, c, d, e ∈ {1, . . . , 7} such that the tangent space to Ci,j,h,k,l
a,b,c,d,e at Pα is lα if

α ∈ {i, j, k, l} ⊂ {1, . . . , 7} (i.e. we are specializing the scheme (7, 8)Pα in such a way that this can
be possible). The curve C = C1,2,3,4

1,2,3,4,5 ∪C1,2,3,4,5
1,2,3,4,5 ∪C5,6

3,4,5,6,7 ∪C6,7
1,4,5,6,7 ∪C7

1,2,4,6,7 ∪C1,2,3,6,7 ∪C2,3,5,6,7

is a fixed component for
(
IP7

i=1(7,8)Pi

)
19

, hence
(
IP7

i=1(7,8)Pi

)
19

=
(
IResC

P7
i=1(7,8)Pi

)
5
. Then Lemma

3.4.5 assures that (
IP7

i=1(7,8)Pi

)
19

=
(
IResC

P7
i=1(7,8)Pi

)
5

=
(
IP7

i=1 2Pi

)
5

= (0).

This conclude the proof for

d ≤


⌈

21(k+1)
8

⌉
and k 6≡ 1, 4 (mod 8) or

⌈
21(k+1)

8

⌉
− 1 and k ≡ 1, 4 (mod 8)

.

Now for

d ≥


⌈

21(k+1)
8

⌉
+ 1 and k 6≡ 1, 4 (mod 8) or

⌈
21(k+1)

8

⌉
and k ≡ 1, 4 (mod 8)

(3.27)

it is sufficient to prove that H(Y , d) = H(X, d) + 14 for d =
⌈

21(k+1)
8

⌉
+ 1 if k 6≡ 1, 4 (mod 8) or

d =
⌈

21(k+1)
8

⌉
if k ≡ 1, 4 (mod 8) by Lemma 3.4.8.

The criterion we use in order to reduce the number of cases to check is the same of the previous
discussion. In the table that follows we summarize the passages:

• we start with (IY)d and we write k + 1 = 8q + r,

• we use the relation (3.21), and we compute the scheme Y −
∑7

i=1 νCi and the degree d− 21ν,

• we apply to
(
IY−P7

i=1 νCi

)
d−21ν

the map ϕ defined in (3.26) and we write the “result” in the

last column of the table: the notation will be very concise in order to make the material

better readable, we will write L(α, β) to indicate
(
IP7

i=1 βPi+
P14

i=1 Ri

)
α
.
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r d ν Y −
∑7

i=1 νCi d− 21ν L(α, β)

0 21q + 1 q − 3
∑7

i=1(24, 25)Pi 64 L(8, 0)

1 21q + 4 q − 4
∑7

i=1(33, 34)Pi 88 L(11, 0)

2 21q + 6 q − 2
∑7

i=1(18, 19)Pi 48 L(6, 0)

3 21q + 9 q − 3
∑7

i=1(27, 28)Pi 72 L(9, 0)

4 21q + 12 q − 4
∑7

i=1(36, 37)Pi 96 L(12, 0)

5 21q + 14 q − 2
∑7

i=1(21, 22)Pi 56 L(7, 0)

6 21q + 17 q − 3
∑7

i=1(30, 31)Pi 80 L(10, 0)

7 21q + 20 q − 4
∑7

i=1(39, 40)Pi 104 L(13, 0)

Since in the table above ν has to be positive, we have some cases that do not appear in that
table, we enumerate them in the following tables (the last column of the tables below describe,
with the same notation of the table above, the schemes we obtain after having applied to (IY)d the
composition of Cremona transformations ϕ defined in (3.26)):

r = 0 q d Y L(α, β)

1 22
∑7

i=1(8, 9)Pi L(8, 2)

2 43
∑7

i=1(16, 17)Pi L(8, 1)

3 64
∑7

i=1(24, 25)Pi L(8, 0)

r = 1 q d Y L(α, β)

1 25
∑7

i=1(9, 10)Pi L(11, 3)

2 45
∑7

i=1(17, 18)Pi L(11, 2)

3 67
∑7

i=1(25, 26)Pi L(11, 1)

4 88
∑7

i=1(33, 34)Pi L(11, 0)

r = 2 q d Y L(α, β)

0 6
∑7

i=1(2, 3)Pi solved in [CGG2]

1 27
∑7

i=1(10, 11)Pi L(6, 1)

2 48
∑7

i=1(18, 19)Pi L(6, 0)

r = 3 q d Y L(α, β)

0 9
∑7

i=1(3, 4)Pi solved in [Ba]

1 30
∑7

i=1(11, 12)Pi L(9, 2)

2 51
∑7

i=1(19, 20)Pi L(9, 1)

3 72
∑7

i=1(27, 28)Pi L(9, 0)
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r = 4 q d Y L(α, β)

0 12
∑7

i=1(4, 5)Pi L(12, 4)

1 33
∑7

i=1(12, 13)Pi L(12, 3)

2 54
∑7

i=1(20, 21)Pi L(12, 2)

3 75
∑7

i=1(28, 29)Pi L(12, 1)

4 96
∑7

i=1(36, 37)Pi L(12, 0)

r = 5 q d Y L(α, β)

0 14
∑7

i=1(5, 6)Pi L(7, 2)

1 35
∑7

i=1(13, 14)Pi L(7, 1)

2 56
∑7

i=1(21, 22)Pi L(7, 0)

r = 6 q d Y L(α, β)

0 17
∑7

i=1(6, 7)Pi L(10,3)

1 38
∑7

i=1(14, 15)Pi L(10, 2)

2 59
∑7

i=1(22, 23)Pi L(10, 1)

3 80
∑7

i=1(30, 31)Pi L(10, 0)

r = 7 q d Y L(α, β)

0 20
∑7

i=1(7, 8)Pi L(13, 4)

1 41
∑7

i=1(15, 16)Pi L(13, 3)

2 62
∑7

i=1(23, 24)Pi L(13, 2)

3 83
∑7

i=1(31, 32)Pi L(13, 1)

4 104
∑7

i=1(39, 40)Pi L(13, 0)

The use of Cremona transformations allows us to study the degree α part of the ideals repre-
senting only five schemes: L(α, 4), L(α, 3), L(α, 2), L(α, 1) and L(α, 0); Lemma 3.4.8 allows us to
compute the regularity of the Hilbert functions of those schemes only for the lowest values of α.
Hence we have to study only the following cases:

1.
(
IP7

i=0(10,11)Pi

)
27

,

2.
(
IP7

i=0(18,19)Pi

)
48

,

3.
(
IP7

i=0(4,5)Pi

)
12

,
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4.
(
IP7

i=0(5,6)Pi

)
14

,

5.
(
IP7

i=0(6,7)Pi

)
17

.

The cases 3., 4. and 5. were verified by using [CoCoA] since the computational complexity
was not too hight. For the cases 1. and 2. we study the residual schemes obtained by cutting with
some particular curves. We write here only the curve we use in order to compute the residual. We
will specialize the schemes (k + 1, k + 2)P1, . . . , (k + 1, k + 2)P7 in such a way that the curves we
are going to describe do exist. If the dimension of the degree d part of the ideal representing the
specialized scheme is the expected one, then, by semi-continuity, the Hilbert function of the not
specialized scheme in degree d is the expected one.

1. Let R1, . . . , R7 ∈ P2 be seven points chosen on the cubics we will enumerate below and let
Y ′ = Y+

∑7
i=1 Ri =

∑7
i=1(10, 11)Pi +

∑7
i=1 Ri. Since exp(H(Y , 27)) = H(X, 27)+2 ·7 = 359

and N + 1 =
(
27+2

2

)
= 406, if we prove that (IY ′)27 = (0) we will have that dim (IY)27 = 7

and H(Y , 27) = exp(H(Y , 27)).

Let

• Cj,k
i be the cubic passing through P1, . . . , P7, having in Pi a double point and such that

TPj
(Cj,k

i ) = lj, TPk
(Cj,k

i ) = lk (where lj and lk are the lines appearing in the definition
of the schemes (k + 1, k + 2)Pj and (k + 1, k + 2)Pk);

• Cj,k
m,i be the cubic passing through P1, . . . , P7, Rm, having in Pi a double point and such

that TPj
(Cj,k

i ) = lj, TPk
(Cj,k

i ) = lk;

• Cj
m,i be the cubic passing through P1, . . . , P7, Rm having in Pi a double point and such

that TPj
(Cj

li) = lj;

• C5
5,6,7 be the cubic passing through P1, . . . , P7, R5, R6, having in P7 a double point and

such that TP5(C
5
5,6,7) = l5;

• C be the cubic passing through P3, P4, P6, R7 and having in P3, P4, P6 three double points.

For the first case we use the degree 27 curve

Q = C2,3
1 ∪ C2,3

1,1 ∪ C1,4
2 ∪ C1,4

2,2 ∪ C6,7
5 ∪ C6,7

3,5 ∪ C5
4,7 ∪ C5

5,6,7 ∪ C

that is a fixed component for the curves defined by (IY ′)27. By using Lemma 3.4.5 we have
that ResQY ′ = ∅ then dim ((IY ′)27) = 0 and we are done.
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2. Let R1, . . . , R14 ∈ P2 be points on the cubics and conic we will enumerate below and let
Y ′ = Y+

∑14
i=1 Ri =

∑7
i=1(18, 19)Pi+

∑14
i=1 Ri. Since exp(H(Y , 48)) = H(X, 48)+2 ·7 = 1211

and N + 1 =
(
48+2

2

)
= 1225, if we prove that (IY ′)48 = (0) we will have that dim (IY)48 = 14

and H(Y , 48) = exp(H(Y , 48)).

Let

• Cj
i be the cubic passing through P1, . . . , P7, having in Pi a double point and such that

TPj
(Cj,k

i ) = lj (where lj is the line appearing in the definition of the scheme (k + 1, k +
2)Pj);

• Cj
m,i be the cubic passing through P1, . . . , P7, Rm, having in Pi a double point and such

that TPj
(Cj,k

i ) = lj;

• C8,9,7 be the cubic passing through P1, . . . , P7, R8, R9 and having in P7 a double point;

• C10,11,12,7 be the cubic passing through P1, . . . , P7, R10, R11, R12 and having in P7 a double
point;

• C be the conic passing through P1, . . . , P5, R13, R14;

• r be the line through P6, P7.

For the this case we use the degree 48 curve

Q = C2
1∪C2

1,1∪C1
2∪C1

2,2∪C4
3∪C4

3,3∪C3
4∪C3

4,4∪C6
5∪C6

5,5∪C5
6∪C5

6,6∪C7,7∪C8,9,7∪C10,11,12,7∪C∪r

that is a fixed component for the curves defined by (IY ′)48. By using Lemma 3.4.5 we have
that ResQY ′ = ∅ then dim ((IY ′)48) = 0 and we are done.

We have finally proved that H(Y , d) = H(X, d) + 14 if we are in the case (3.27). By the first

remark of this section we have that H(X, d) < exp(H(X, d)) if 21(k+1)
8
≤ d ≤ 8(k+1)−2

3
, thus, for the

same values of d, we have that H(Y , d) < deg(Y) and this ends the proof.
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Proposition 3.4.18. For s = 8 we have:

H(Y , d) =



k = 1 :

{
N + 1 if d ≤ 7,
H(X, d) + 16 = deg(Y ) if d ≥ 8,

k = 2 :

{
N + 1 if d ≤ 9,
H(X, d) + 16 = deg(Y ) if d ≥ 10,

3 ≤ k ≤ 7
k = 12
k ≡ 0, 5, 6, 11 (mod 17)




N + 1 if d ≤
⌈

48(k+1)
17

⌉
H(X, d) + 16 < deg(Y ) if

⌈
48(k+1)

17

⌉
+ 1 ≤ d ≤

⌊
17k+15

6

⌋
,

H(X, d) + 16 = deg(Y ) if d ≥ max
{⌈

48(k+1)
17

⌉
,
⌊

17k+15
6

⌋}
+ 1,

k ≥ 8
k 6= 12
k 6≡ 0, 5, 6, 11 (mod 17)




N + 1 if d ≤
⌈

48(k+1)
17

⌉
− 1,

H(X, d) + 16 < deg(Y ) if
⌈

48(k+1)
17

⌉
≤ d ≤

⌊
17k+15

6

⌋
,

H(X, d) + 16 = deg(Y ) if d ≥ max
{⌈

48(k+1)
17

⌉
,
⌊

17k+15
6

⌋
+ 1
}
.

Proof. For k = 1, 2 see [Ba] and [BF1].
For k ≥ 3 consider P1, . . . , P8 ∈ P2 eight generic points. Let Si be the curve of degree 6 that

is double at seven generic points P1, . . . , P̂i, . . . , P8 and triple at Pi. If 17(k + 1) > 6d then the
eight sestics Si are fixed components with multiplicity ν = 17(k + 1) − 6d, then dim ((IY)d) =

dim

((
IY−

P8
i=1 νSi

)
(d−48ν)

)
. The scheme

Y ′ = Y −
8∑

i=1

νSi (3.28)

is the union of (k + 1− 17ν, k + 2− 17ν)-points.
Fix the notation:

ϕi,j,k is the Cremona Transformation that acts as an isomorphism on P2 r {Pi, Pj, Pk}.

Let now ϕ be the composition of the following Cremona transformations:

ϕ := ϕ3,6,8 ◦ ϕ3,4,5 ◦ ϕ1,2,8 ◦ ϕ5,6,7 ◦ ϕ2,3,4 ◦ ϕ1,7,8 ◦ ϕ4,5,6 ◦ ϕ1,2,3. (3.29)

Suppose to apply ϕ to
(
IP8

i=1(k+1,k+2)Pi

)
d

(with an abuse of notation we keep calling Pi the

points after the transformation):

ϕ
((

IP8
i=1(k+1,k+2)Pi

)
d

)
=
(
IP8

i=1(6d−17k−17)Pi+
P16

i=1 Qi

)
(17d−48k−48)

(3.30)
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where:
Q1, Q2 belong to a conic through P1, P2,
Q3, Q4 belong to a conic through P1, P3,
Q5, Q6 belong to a conic through P2, P3,
Q7, Q8 belong to a conic through P1, P7,
Q9, Q10 belong to a conic through P1, P8,
Q11, Q12 belong to a conic through P4, P5,
Q13, Q14 belong to a conic through P4, P6,
Q15, Q16 belong to a conic through P5, P6.

Let us first consider d =
⌈

48(k+1)
17

⌉
if k ≤ 7, k = 12, k ≡ 0, 5, 6, 11 (mod 17), and d =

⌈
48(k+1)

17

⌉
−1

if k ≥ 8, k 6= 12, k 6≡ 0, 5, 6, 11 (mod 17). If we prove that H(X, d) = N + 1 for such a d, we will
be done for any smaller d.

In the following table we summarize what happens if we apply the map ϕ defined in (3.29) to
the degree (d− 48ν) part of the ideal representing the scheme Y ′ obtained in (3.28). When in the
last column we write

L(d′, m′) (3.31)

we mean that we have, after having applied the map ϕ to (IY ′)(d−48ν), a scheme of type (3.30) with
d′ = 17d− 48k − 48 and m′ = 6d− 17k − 17. The values r, q ∈ N are defined by

k + 1 = 17q + r. (3.32)
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r d ν Y −
∑8

i=1 νSi d− 48ν L(d′, m′)

0 48q q
∑8

i=1 Pi 0 /

1 48q + 3 q − 1
∑8

i=1(18, 19)Pi 51 L(3, 0)

2 48q + 5 q + 4
∑8

i=1(−66,−65)Pi −187 /

3 48q + 8 q + 3
∑8

i=1(−48,−47)Pi −136 /

4 48q + 11 q + 2
∑8

i=1(−30,−29)Pi −85 /

5 48q + 14 q + 1
∑8

i=1(−12,−11)Pi −34 /

6 48q + 17 q
∑8

i=1(6, 7)Pi 17 L(1, 0)

7 48q + 20 q − 1
∑8

i=1(24, 25)Pi 68 L(4, 0)

8 48q + 22 q + 4
∑8

i=1(−60,−59)Pi −170 /

9 48q + 25 q + 3
∑8

i=1(−42,−41)Pi −119 /

10 48q + 28 q + 2
∑8

i=1(−24,−23)Pi −68 /

11 48q + 31 q + 1
∑8

i=1(−6,−5)Pi −17 /

12 48q + 34 q
∑8

i=1(12, 13)Pi 34 L(2, 0)

13 48q + 36 q + 5
∑8

i=1(−72,−71)Pi −204 /

14 48q + 39 q + 4
∑8

i=1(−54,−53)Pi −153 /

15 48q + 42 q + 3
∑8

i=1(−36,−35)Pi −102 /

16 48q + 45 q + 2
∑8

i=1(−18,−17)Pi −51 /

Since in the table above ν has to be positive, we are not considering all the cases where ν ≤ 0;
we enumerate them in the following table (now the notation L(α, β) denote the degree α = (17d−
48k − 48) part of the ideal representing - as in (3.30) - the scheme

∑8
i=1 βPi +

∑16
i=1 Qi, with

β = 6d− 17k − 17, obtained by applying the map ϕ, defined in (3.29), to (IY)d):

r q Y d L(α, β)

1 0
∑8

i=1(1, 2) 3 Solved in [CGG2]

1 1
∑8

i=1(18, 19) 51 L(3, 0)

6 0
∑8

i=1(6, 7) 17 L(1, 0)

7 0
∑8

i=1(7, 8) 20 L(4, 1)

7 1
∑8

i=1(24, 25) 68 L(4, 0)

12 0
∑8

i=1(12, 13) 34 L(2, 0)

13 0
∑8

i=1(13, 14) 37 L(5, 1)

The use of Cremona transformations allows us to study the degree α part of the ideals represent-
ing only two schemes: L(α, 0) and L(α, 1); Lemma 3.4.8 allows us to check only the two following
cases (the ones with higher values of α):
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1.
(
IP8

i=1(13,14)Pi

)
37

that corresponds to L(5, 1) =
(
IP8

i=1 Pi+
P16

i=1 Qi

)
5
, then dim

((
IP8

i=1(13,14)Pi

)
37

)
=

dim
((

IP8
i=1 Pi+

P16
i=1 Qi

)
5

)
= 0 as expected;

2.
(
IP8

i=1(24,25)

)
68

that corresponds to L(4, 0) =
(
IP16

i=1 Qi

)
4
, then dim

((
IP8

i=1(24,25)Pi

)
68

)
=

dim
((

IP16
i=1 Qi

)
4

)
= 0 as expected.

This ends the proof for the cases d ≤
⌈

48(k+1)
17

⌉
if k ≤ 7, k = 12, k ≡ 0, 5, 6, 11 (mod 17), and

d ≤
⌈

48(k+1)
17

⌉
− 1 if k ≥ 8, k 6= 12, k 6≡ 0, 5, 6, 11 (mod 17).

Consider now the remaining cases.

With the notation (3.28), (3.29), (3.30), (3.31) and (3.32) we construct the following tables as
we did in the previous case.

r d ν Y −
∑8

i=1 νSi d− 48ν L(d′, m′)

0 48q + 1 q − 6
∑8

i=1(102, 103)Pi 289 L(17, 0)

1 48q + 4 q − 7
∑8

i=1(120, 121)Pi 340 L(20, 0)

2 48q + 6 q − 2
∑8

i=1(36, 37)Pi 102 L(6, 0)

3 48q + 9 q − 3
∑8

i=1(54, 55)Pi 153 L(9, 0)

4 48q + 12 q − 4
∑8

i=1(72, 73)Pi 204 L(12, 0)

5 48q + 15 q − 5
∑8

i=1(90, 91)Pi 255 L(15, 0)

6 48q + 18 q − 6
∑8

i=1(108, 109)Pi 306 L(18, 0)

7 48q + 21 q − 7
∑8

i=1(126, 127)Pi 357 L(21, 0)

8 48q + 83 q − 2
∑8

i=1(42, 43)Pi 119 L(7, 0)

9 48q + 26 q − 3
∑8

i=1(60, 61)Pi 170 L(10, 0)

10 48q + 29 q − 4
∑8

i=1(78, 79)Pi 221 L(13, 0)

11 48q + 32 q − 5
∑8

i=1(96, 97)Pi 272 L(16, 0)

12 48q + 35 q − 6
∑8

i=1(114, 115)Pi 323 L(19, 0)

13 48q + 37 q − 1
∑8

i=1(30, 31)Pi 85 L(22, 0)

14 48q + 40 q − 2
∑8

i=1(48, 49)Pi 136 L(5, 0)

15 48q + 43 q − 3
∑8

i=1(66, 67)Pi 187 L(11, 0)

16 48q + 46 q − 4
∑8

i=1(84, 85)Pi 238 L(14, 0)

Since in the table above ν has to be positive, we are not considering all the cases where ν ≤ 0
that we enumerate in the following tables:
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r = 0 q
∑8

i=1(k + 1, k + 1)Pi d L(α, β)

1
∑8

i=1(17, 18)Pi 49 L(17, 5)

2
∑8

i=1(34, 35)Pi 97 L(17, 4)

3
∑8

i=1(51, 52)Pi 145 L(17, 3)

4
∑8

i=1(68, 69)Pi 193 L(17, 2)

5
∑8

i=1(85, 86)Pi 241 L(17, 1)

6
∑8

i=1(102, 103)Pi 289 L(17, 0)

r = 1 q
∑8

i=1(k + 1, k + 1)Pi d L(α, β)

1
∑8

i=1(18, 19)Pi 52 L(20, 6)

2
∑8

i=1(35, 36)Pi 100 L(20, 5)

3
∑8

i=1(52, 53)Pi 148 L(20, 4)

4
∑8

i=1(69, 70)Pi 196 L(20, 3)

5
∑8

i=1(86, 87)Pi 244 L(20, 2)

6
∑8

i=1(103, 104)Pi 292 L(20, 1)

7
∑8

i=1(120, 121)Pi 340 L(20, 0)

r = 2 q
∑8

i=1(k + 1, k + 1)Pi d L(α, β)

1
∑8

i=1(19, 20)Pi 54 L(6, 1)

2
∑8

i=1(36, 37)Pi 102 L(6, 0)

r = 3 q
∑8

i=1(k + 1, k + 1)Pi d L(α, β)

1
∑8

i=1(20, 21)Pi 57 L(9, 2)

2
∑8

i=1(37, 38)Pi 105 L(9, 1)

3
∑8

i=1(54, 55)Pi 153 L(9, 0)

r = 4 q
∑8

i=1(k + 1, k + 1)Pi d L(α, β)

0
∑8

i=1(4, 5)Pi 13 L(29, 10)

1
∑8

i=1(21, 22)Pi 60 L(12, 3)

2
∑8

i=1(38, 39)Pi 108 L(12, 2)

3
∑8

i=1(55, 56)Pi 156 L(12, 1)

4
∑8

i=1(72, 73)Pi 204 L(12, 0)

126



The secant varieties to the osculating varieties to the Veronese surface

r = 5 q
∑8

i=1(k + 1, k + 1)Pi d L(α, β)

0
∑8

i=1(5, 6)Pi 16 L(32, 11)

1
∑8

i=1(22, 23)Pi 63 L(15, 4)

2
∑8

i=1(39, 40)Pi 111 L(15, 3)

3
∑8

i=1(56, 57)Pi 159 L(25, 2)

4
∑8

i=1(73, 74)Pi 207 L(15, 1)

5
∑8

i=1(90, 91)Pi 255 L(15, 0)

r = 6 q
∑8

i=1(k + 1, k + 1)Pi d L(α, β)

0
∑8

i=1(6, 7)Pi 18 L(18, 6)

1
∑8

i=1(23, 24)Pi 66 L(18, 5)

2
∑8

i=1(40, 41)Pi 114 L(18, 4)

3
∑8

i=1(57, 58)Pi 162 L(18, 3)

4
∑8

i=1(74, 75)Pi 206 L(18, 2)

5
∑8

i=1(91, 92)Pi 258 L(18, 1)

6
∑8

i=1(108, 109)Pi 306 L(18, 0)

r = 7 q
∑8

i=1(k + 1, k + 1)Pi d L(α, β)

0
∑8

i=1(7, 8)Pi 21 L(21, 7)

1
∑8

i=1(24, 25)Pi 69 L(21, 6)

2
∑8

i=1(41, 42)Pi 117 L(21, 5)

3
∑8

i=1(58, 59)Pi 165 L(21, 4)

4
∑8

i=1(75, 76)Pi 213 L(21, 3)

5
∑8

i=1(91, 93)Pi 261 L(21, 2)

6
∑8

i=1(109, 110)Pi 309 L(21, 1)

7
∑8

i=1(126, 127)Pi 357 L(21, 0)

r = 8 q
∑8

i=1(k + 1, k + 1)Pi d L(α, β)

0
∑8

i=1(8, 9)Pi 24 L(24, 8)

1
∑8

i=1(25, 26)Pi 71 L(7, 1)

2
∑8

i=1(42, 43)Pi 116 L(7, 0)
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r = 9 q
∑8

i=1(k + 1, k + 1)Pi d L(α, β)

0
∑8

i=1(9, 10)Pi 26 L(10, 3)

1
∑8

i=1(26, 27)Pi 74 L(10, 2)

2
∑8

i=1(43, 44)Pi 122 L(10, 1)

3
∑8

i=1(60, 61)Pi 170 L(10, 0)

r = 10 q
∑8

i=1(k + 1, k + 1)Pi d L(α, β)

0
∑8

i=1(10, 11)Pi 29 L(13, 4)

1
∑8

i=1(27, 28)Pi 77 L(13, 3)

2
∑8

i=1(44, 45)Pi 125 L(13, 2)

3
∑8

i=1(61, 62)Pi 173 L(13, 1)

4
∑8

i=1(78, 79)Pi 221 L(13, 0)

r = 11 q
∑8

i=1(k + 1, k + 1)Pi d L(α, β)

0
∑8

i=1(11, 12)Pi 32 L(16, 5)

1
∑8

i=1(28, 29)Pi 80 L(16, 4)

2
∑8

i=1(45, 46)Pi 128 L(16, 3)

3
∑8

i=1(62, 63)Pi 176 L(16, 2)

4
∑8

i=1(79, 80)Pi 224 L(16, 1)

5
∑8

i=1(96, 97)Pi 272 L(16, 0)

r = 12 q
∑8

i=1(k + 1, k + 1)Pi d L(α, β)

0
∑8

i=1(12, 13)Pi 35 L(19, 6)

1
∑8

i=1(29, 30)Pi 83 L(19, 5)

2
∑8

i=1(46, 47)Pi 131 L(19, 4)

3
∑8

i=1(63, 64)Pi 179 L(19, 3)

4
∑8

i=1(80, 81)Pi 227 L(19, 2)

5
∑8

i=1(97, 98)Pi 275 L(19, 1)

6
∑8

i=1(114, 115)Pi 323 L(19, 0)

r = 13 q
∑8

i=1(k + 1, k + 1)Pi d L(α, β)

0
∑8

i=1(13, 14)Pi 38 L(22, 7)

1
∑8

i=1(30, 31)Pi 85 L(22, 0)
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r = 14 q
∑8

i=1(k + 1, k + 1)Pi d L(α, β)

0
∑8

i=1(14, 15)Pi 40 L(8, 2)

1
∑8

i=1(31, 32)Pi 88 L(8, 1)

2
∑8

i=1(48, 49)Pi 136 L(8, 0)

r = 15 q
∑8

i=1(k + 1, k + 1)Pi d L(α, β)

0
∑8

i=1(15, 16)Pi 43 L(11, 3)

1
∑8

i=1(32, 33)Pi 91 L(11, 2)

2
∑8

i=1(49, 50)Pi 139 L(11, 1)

3
∑8

i=1(66, 67)Pi 187 L(11, 0)

r = 16 q
∑8

i=1(k + 1, k + 1)Pi d L(α, β)

0
∑8

i=1(16, 17)Pi 46 L(14, 4)

1
∑8

i=1(33, 34)Pi 94 L(14, 3)

2
∑8

i=1(50, 51)Pi 142 L(14, 2)

3
∑8

i=1(67, 68)Pi 190 L(14, 1)

4
∑8

i=1(84, 85)Pi 238 L(14, 0)

The use of Cremona transformations allows us to study only the degree α part of the ideals
representing 11 schemes: L(α, 0), L(α, 1), L(α, 2), L(α, 3), L(α, 4), L(α, 5), L(α, 6), L(α, 7), L(α, 8),
L(α, 10) and L(α, 11). Lemma 3.4.8 allows us to verify only the following cases (those for lower
values of α), we checked them by direct computations:

1.
(
IP8

i=1(19,20)Pi

)
54

that corresponds to L(6, 1) =
(
IP8

i=1 Pi+
P16

i=1 Qi

)
6
, then dim

((
IP8

i=1(19,20)Pi

)
54

)
=

dim
((

IP8
i=1 Pi+

P16
i=1 Qi

)
6

)
= 4 as expected;

2.
(
IP8

i=1(36,37)Pi

)
102

that corresponds to L(6, 0) =
(
IP16

i=1 Qi

)
6

then dim
((

IP8
i=1(36,37)Pi

)
102

)
=

dim
((

IP16
i=1 Qi

)
6

)
= 12 as expected;

3.
(
IP8

i=1(4,5)Pi

)
13

that corresponds to L(29, 10) =
(
IP8

i=1 10Pi+
P16

i=1 Qi

)
29

then dim
((

IP8
i=1(4,5)Pi

)
13

)
=

dim
((

IP8
i=1 10Pi+

P16
i=1 Qi

)
29

)
= 9 as expected;
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4.
(
IP8

i=1(5,6)Pi

)
16

that corresponds to L(32, 11) =
(
IP8

i=1 11Pi+
P16

i=1 Qi

)
32

then dim
((

IP8
i=1(5,6)Pi

)
16

)
=

dim
((

IP8
i=1 11Pi+

P16
i=1 Qi

)
32

)
= 17 as expected;

5.
(
IP8

i=1(6,7)Pi

)
18

that corresponds to L(18, 6) =
(
IP8

i=1 6Pi+
P16

i=1 Qi

)
18

then dim
((

IP8
i=1(6,7)Pi

)
18

)
=

dim
((

IP8
i=1 6Pi+

P16
i=1 Qi

)
18

)
= 6 as expected;

6.
(
IP8

i=1(7,8)Pi

)
21

that corresponds to L(21, 7)) =
(
IP8

i=1 7Pi+
P16

i=1 Qi

)
21

then dim
((

IP8
i=1(7,8)Pi

)
21

)
=

dim
((

IP8
i=1 7Pi+

P16
i=1 Qi

)
21

)
= 13 as expected;

7.
(
IP8

i=1(8,9)Pi

)
24

that corresponds to L(24, 8) =
(
IP8

i=1 8Pi+
P16

i=1 Qi

)
24

then dim
((

IP8
i=1(8,9)Pi

)
24

)
=

dim
((

IP8
i=1 8Pi+

P16
i=1 Qi

)
24

)
= 21 as expected;

8.
(
IP8

i=1(9,10)Pi

)
26

that corresponds to L(10, 3) =
(
IP8

i=1 3Pi+
P16

i=1 Qi

)
10

then dim
((

IP8
i=1(9,10)Pi

)
26

)
=

dim
((

IP8
i=1 3Pi+

P16
i=1 Qi

)
10

)
= 2 as expected;

9.
(
IP8

i=1(10,11)Pi

)
29

that corresponds to L(13, 4) =
(
IP8

i=1 4Pi+
P16

i=1 Qi

)
13

then dim
((

IP8
i=1(10,11)Pi

)
29

)
=

dim
((

IP8
i=1 4Pi+

P16
i=1 Qi

)
13

)
= 9 as expected;

10.
(
IP8

i=1(11,12)Pi

)
32

that corresponds to L(16, 5) =
(
IP8

i=1 5Pi+
P16

i=1 Qi

)
16

then dim
((

IP8
i=1(11,12)Pi

)
32

)
=

dim
((

IP8
i=1 5Pi+

P16
i=1 Qi

)
16

)
= 17 as expected;

11.
(
IP8

i=1(14,15)Pi

)
40

that corresponds to L(8, 2) =
(
IP8

i=1 2Pi+
P16

i=1 Qi

)
8
then dim

((
IP8

i=1(14,15)Pi

)
40

)
=

dim
((

IP8
i=1 2Pi+

P16
i=1 Qi

)
8

)
= 5 as expected.

We have finally proved that H(Y , d) = H(X, d) + 16 for d ≥
⌈

48(k+1)
17

⌉
+ 1 and 3 ≤ k ≤ 7 and

k = 12 and k ≡ 0, 5, 6, 11 (mod 17), and for d ≥
⌈

48(k+1)
17

⌉
and k ≥ 8 and k 6= 12 and k 6≡ 0, 5, 6, 11

(mod 17). Now the statement of the proposition follows from the first remark of this section that

assure that H(X, d) < exp(H(X, d)) if 48(k+1)
17

≤ d ≤ 17(k+1)
6

.
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Proposition 3.4.19. For s = 9 we have:

H(Y , d) =



k = 1 :

{
N + 1 if d ≤ 8,
H(X, d) + 18 = deg(Y ) if d ≥ 8,

k = 2 :

{
N + 1 if d ≤ 10,
H(X, d) + 18 = deg(Y ) if d ≥ 11,

k = 3 :

{
N + 1 if d ≤ 13,
H(X, d) + 18 = deg(Y ) if d ≥ 14,

k ≥ 4 :

{
N + 1 if d ≤ 3k + 3,
H(X, d) + 18 = deg(Y ) if d ≥ 3k + 4.

Proof. For k = 1, 2 the statement is known by [Ba] and [BF1].
Let k = 3, so Y = (4, 5)P1 + · · · + (4, 5)P9. For d = 13, by [CoCoA], or by specializing the

scheme Y it is easy to check that dim(IY)13 = 0, hence for d ≤ 13 the conclusion follows from
Lemma 3.4.8.

Now let C be the unique (smooth) cubic curve passing through the support of Y , i.e., through
P1, . . . , P9. Consider the following exact sequence, where Y ′ = ResCY :

0→ IY ′(d− 3)→ IY(d)→ IY∩C,C(d)→ 0.

We have that IY∩C,C(d) = OC(dH −Y ∩C), where H is a line section of C, and deg(OC(dH −Y ∩
C)) = 3d− 9(k + 1).

Let d = 14. Since k = 3, we have deg(OC(dH − Y ∩ C)) = 14 · 3 − 4 · 9 = 6. It follows that
h1(OC(dH−Y∩C)) = 0. Since Y ′ = (3, 4)P1 + · · ·+(3, 4)P9, from the case k = 2 we get h1(IY ′(d−
3)) = h1(IY ′(11)) = 0. So by the exact sequence above it follows that h1(I(4,5)P1+···+(4,5)P9(14)) = 0,
which implies H(Y , 14) = degY . For d > 14 the conclusion follows from Lemma 3.4.8.

Let k ≥ 4.
Now we proceed by induction on k. For k = 4, we have Y = (5, 6)P1+· · ·+(5, 6)P9, and 3k+4 = 16.
By [CoCoA], or by specializing the scheme Y it is easy to check that dim(IY)16 = 0. So, since
N + 1 =

(
16+2

2

)
= 9 · 17 = deg(Y), it follows that H(Y , 16) = N + 1 = deg(Y). Hence, by Lemma

3.4.8 it follows that for d ≤ 16 we have H(Y , d) = N+1, while for d ≥ 16 we have H(Y , d) = deg(Y).
Let k > 4. We have:

Y = (k + 1, k + 2)P1 + · · ·+ (k + 1, k + 2)P9

Y ′ = (k, k + 1)P1 + · · ·+ (k, k + 1)P9.
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Since obviously if d ≥ 3k+4, then d−3 ≥ 3(k−1)+4, and if d ≤ 3k+3, then d−3 ≤ 3(k−1)+3,by
induction hypothesis we have H(Y ′, d− 3) = N ′ + 1 for d− 3 ≤ 3(k − 1) + 3, (N ′ =

(
d−3+2

2

)
), and

H(Y ′, d− 3) = deg(Y ′) for d− 3 ≥ 3(k − 1) + 4. That is:

h0(IY ′(d− 3)) = 0 for d− 3 ≤ 3(k − 1) + 3,

h1(IY ′(d− 3)) = 0 for d− 3 ≥ 3(k − 1) + 4.

Moreover, since deg(OC(dH−Y∩C)) = 3d−9(k+1) ≤ 0 for d ≤ 3k+3, and deg(OC(dH−Y∩C)) =
3d− 9(k + 1) ≥ 3 for d ≥ 3k + 4, we have:

h0(IY∩C,C(d)) = 0 for d ≤ 3k + 3,

h1(IY∩C,C(d)) = 0 for d ≥ 3k + 4.

So whenever d ≤ 3k+3, we get h0(IY ′(d−3)) = h0(IY∩C,C(d)) = 0, which by the exact sequence
above implies h0(IY (d)) = 0.

When d ≥ 3k + 4, we get h1(IY ′(d − 3)) = h1(IY∩C,C(d)) = 0, so by the exact sequence above
we have h1(IY (d)) = 0, and we are done.

With all these partial results we have actually proved the main results of this section:

Theorem 3.4.20. For s ≤ 9, then

dim(Secs−1(Ok,d)) = min

{
H(X, d) + 2s,

(
d + 2

2

)}
− 1

except when s = 2, d = k + 2 where dim(Sec1(Ok,k+2)) = H(T, d)− 1 =
(

d+2
2

)
− 2 = N − 1.

Proof. For s = 1, since H(X, d) = min
{(

k+2
2

)
,
(

d+2
2

)}
, then the result follows from (3.16).

For s = 2 and d = k + 2, since H(Y , d) = H(T, d) (see Proposition 3.4.9), by the obvious
inequalities H(Y , d) ≤ H(Y, d) ≤ H(T, d) we get H(Y, d) = H(Y , d) = H(T, d) and the conclusion
follows from (3.18).

In the other cases by Lemma 3.4.6 and Propositions from 3.4.9 to 3.4.19 we have

H(Y, d) = H(Y , d) = min{H(X, d) + 2s, N + 1},

hence from (3.18) we get the conclusion.

Corollary 3.4.21. Let δ = min{deg(Y )− 1, N}−dim(Secs−1(Ok,d)) be the defect of Secs−1(Ok,d).
If s ≤ 9, then Secs−1(Ok,d) is defective only in the following cases:
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1. s = 2, d = k + 2; with defect δ = 1.

2. s = 2, k ≥ 3, k + 3 ≤ d ≤ 2k; with defect δ = min
{(

2(k+1)−d
2

)
; (d− k)2 − 4

}
.

3. s = 3, k ≥ 7, k odd ,
⌈

3(k+1)
2

⌉
+2 ≤ d ≤ 2k; with defect δ = min

{
3
(
2(k+1)−d

2

)
;
(
2d−3k−1

2

)
− 6
}
.

4. s = 3, k ≥ 6, k even,
⌈

3(k+1)
2

⌉
+1 ≤ d ≤ 2k; with defect δ = min

{
3
(
2(k+1)−d

2

)
;
(
2d−3k−1

2

)
− 6
}
.

5. s = 5, k ≥ 5, 2k + 4 ≤ d ≤
⌊

5(k+1)
2

⌋
− 1; with defect δ = min

{(
5(k+1)−2d

2

)
; 5
(

d−2k−1
2

)
− 9
}
.

6. s = 6, k ≡ 2 (mod 5), k ≥ 17,
⌈

12(k+1)
5

⌉
≤ d ≤

⌊
5(k+1)

2

⌋
− 1, with defect

δ = min
{

6
(
5(k+1)−2d

2

)
;
(
5d−12k−10

2

)
− 12

}
.

7. s = 6, k 6≡ 2 (mod 5), k ≥
{

19 if k odd
24 if k even

,
⌈

12(k+1)
5

⌉
+ 1 ≤ d ≤

⌊
5(k+1)

2

⌋
− 1 , with defect

δ = min
{

6
(
5(k+1)−2d

2

)
;
(
5d−12k−10

2

)
− 12

}
.

8. s = 7, k ≡ 1, 4 (mod 8), k ≥
{

33 if k ≡ 1 (mod 8)
36 if k ≡ 4 (mod 8)

,
⌈

21(k+1)
8

⌉
≤ d ≤

⌊
8k
3

⌋
+ 2, with defect

δ = min
{

7
(
8(k+1)−3d

2

)
,
(
8d−21k−19

2

)
− 14

}
.

9. s = 7, k 6≡ 1, 4 (mod 8), k ≥


39 if k ≡ 0 (mod 3)
43 if k ≡ 1 (mod 3)
47 if k ≡ 2 (mod 3)

,
⌈

21(k+1)
8

⌉
+ 1 ≤ d ≤

⌊
8k
3

⌋
+ 2, with

defect δ = min
{

7
(
8(k+1)−3d

2

)
,
(
8d−21k−19

2

)
− 14

}
.

10. s = 8, k ≡ 0, 5, 6, 11 (mod 17), k ≥


153 if k ≡ 0 (mod 17)
141 if k ≡ 5 (mod 17)
159 if k ≡ 6 (mod 17)
147 if k ≡ 11 (mod 17)

,
⌈

48(k+1)
17

⌉
+ 1 ≤ d ≤

⌊
17k+15

6

⌋
, with defect δ = min

{
8
(
17(k+1)−6d

2

)
,
(
17d−48k−46

2

)
− 16

}
.
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11. s = 8, k 6≡ 0, 5, 6, 11 (mod 17), k ≥



36 if k ≡ 0 (mod 6)
67 if k ≡ 1 (mod 6)
50 if k ≡ 2 (mod 6)
33 if k ≡ 3 (mod 6)
118 if k ≡ 4 (mod 6)
101 if k ≡ 5 (mod 6)

,
⌈

48(k+1)
17

⌉
≤ d ≤

⌊
17k+15

6

⌋
with

defect δ = min
{

8
(
17(k+1)−6d

2

)
,
(
17d−48k−46

2

)
− 16

}
.

Proof. First we observe that:

• k + 3 ≤ 2k implies k ≥ 3;

• if k is odd and
⌈

3(k+1)
2

⌉
+ 2 ≤ 2k, then 3(k + 1) + 4 ≤ 4k, that is k ≥ 7;

• while if k is even and
⌈

3(k+1)
2

⌉
+ 1 ≤ 2k, then k ≥ 6;

• from 2k + 4 ≤
⌊

5(k+1)
2

⌋
− 1 we get k ≥ 5;

• for k ≡ 2 (mod 5), it is easy to compute that
⌈

12(k+1)
5

⌉
≤
⌊

5(k+1)
2

⌋
− 1 implies k ≥ 17;

• while for k 6≡ 2 (mod 5), if
⌈

12(k+1)
5

⌉
+ 1 ≤

⌊
5(k+1)

2

⌋
− 1, then k ≥

{
19 if k odd
24 if k even

;

• for k ≡ 1, 4 (mod 8), if
⌈

21(k+1)
8

⌉
≤ d ≤

⌊
8k
3

⌋
+ 2, then k ≥

{
33 if k ≡ 1 (mod 8)
36 if k ≡ 4 (mod 8)

;

• while for k 6≡ 1, 4 (mod 8), if
⌈

21(k+1)
8

⌉
+1 ≤ d ≤

⌊
8k
3

⌋
+2, then k ≥


39 if k ≡ 0 (mod 3)
43 if k ≡ 1 (mod 3)
47 if k ≡ 2 (mod 3)

;

• for k ≡ 0, 5, 6, 11 (mod 17), if
⌈

48(k+1)
17

⌉
+1 ≤ d ≤

⌊
17k+15

6

⌋
, then k ≥


153 if k ≡ 0 (mod 17)
141 if k ≡ 5 (mod 17)
159 if k ≡ 6 (mod 17)
147 if k ≡ 11 (mod 17)

;
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• while for k 6≡ 0, 5, 6, 11 (mod 17), if
⌈

48(k+1)
17

⌉
≤ d ≤

⌊
17k+15

6

⌋
,

then k ≥



36 if k ≡ 0 (mod 6)
67 if k ≡ 1 (mod 6)
50 if k ≡ 2 (mod 6)
33 if k ≡ 3 (mod 6)
118 if k ≡ 4 (mod 6)
101 if k ≡ 5 (mod 6)

.

From what we have seen above, by (3.16), and Propositions form 3.4.9 to 3.4.19, we get that
Secs−1(Ok,d) is defective only in the cases from 1. to 11., and, except for s = 2 and d = k + 2, we
know that H(Y, d) = H(X, d) + 2s.

For s = 2 and d = k + 2, since dim(Sec1(Ok,k+2)) = N − 1, while the expected dimension is N ,
we have δ = 1.
In the other cases we have:

δ = min{deg(Y )− 1, N} − dim(Secs−1(Ok,d)) = min{deg(Y )− 1, N} −H(Y, d) + 1

= min{deg(Y )−H(X, d)− 2s, N + 1−H(X, d)− 2s} = min{deg(X)−H(X, d), dim(IX)d− 2s}.

For s = 2, k ≥ 3 and k + 2 ≤ d ≤ 2k, computing the dimension of (IX)d by removing the line
P1P2 (2(k + 1)− d) times, we get:

dim(IX)d = dim(IX′)2(d−k−1) =

(
2(d− k − 1) + 2

2

)
− 2

(
d− k

2

)
= (d− k)2,

where X ′ = (d− k − 1)P1 + (d− k − 1)P2, hence

deg(X)−H(X, d) = 2

(
k + 2

2

)
−
(

d + 2

2

)
+ (d− k)2 =

(
2(k + 1)− d

2

)
,

δ = min

{(
2(k + 1)− d

2

)
; (d− k)2 − 4

}
.

In cases 3. and 4., computing the dimension of (IX)d by cutting off the three lines P1P2, P1P3,
P2P3, 2(k + 1)− d times each, we have:

dim(IX)d = dim(IX′)d−3(2k+2−d) = dim(IX′)2(2d−3k−3) =

=

(
2(2d− 3k − 3) + 2

2

)
− 3

(
2d− 3k − 2

2

)
=

(
2d− 3k − 1

2

)
,
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where X ′ =
∑3

i=1(k + 1− 2(2k + 2− d))Pi =
∑3

i=1(2d− 3k − 3)Pi, and from here we easily get:

deg(X)−H(X, d) = 3

(
k + 2

2

)
−
(

d + 2

2

)
+

(
2d− 3k − 1

2

)
= 3

(
2(k + 1)− d

2

)
,

δ = min

{
3

(
2(k + 1)− d

2

)
;

(
2d− 3k − 1

2

)
− 6

}
.

For s = 5 computing the dimension of (IX)d by cutting off the three lines P1P2, P1P3, P2P3,
2(k + 1)− d times each, we have:

dim(IX)d = dim(IX′)d−2(5k+5−2d) = dim(IX′)5(d−2k−2) =

=

(
5(d− 2k − 2) + 2

2

)
− 5

(
2d− 4k − 3

2

)
= 5

(
d− 2k − 1

2

)
+ 1,

where X ′ =
∑5

i=1(k + 1− (5k + 5− 2d))Pi =
∑5

i=1(2d− 4k − 4)Pi, and from here we get:

deg(X)−H(X, d) = 5

(
k + 2

2

)
−
(

d + 2

2

)
+ 5

(
d− 2k − 1

2

)
+ 1 =

(
5(k + 1)− 2d

2

)
,

δ = min

{(
5(k + 1)− 2d

2

)
; 5

(
d− 2k − 1

2

)
− 9

}
.

For s = 6, calculating the dimension of (IX)d by removing every conic Ci (see the proof of
Proposition 3.4.13) (5(k + 1)− 2d) times, we get

dim(IX)d = dim(IX′)d−12(5k+5−2d) = dim(IX′)25d−60k−60 =

=

(
25d− 60k − 60 + 2

2

)
− 6

(
10d− 24k − 24 + 1

2

)
=

(
5d− 12k − 10

2

)
,

where X ′ =
∑6

i=1(k + 1− 5(5k + 5− 2d))Pi =
∑6

i=1(10d− 24k − 24)Pi, and from here we get:

deg(X)−H(X, d) = 6

(
k + 2

2

)
−
(

d + 2

2

)
+

(
5d− 12k − 10

2

)
= 6

(
5(k + 1)− 2d

2

)
,

δ = min

{
6

(
5(k + 1)− 2d

2

)
;

(
5d− 12k − 10

2

)
− 12

}
.

For s = 7, computing the dimension of (IX)d by cutting off the fixed locus (that is the union of
the seven cubics through P1, . . . , 2Pi, . . . , P7 with multiplicity 8(k + 1)− 3d) we get:

dim(IX)d = dim(IX′)d−21(8k+8−3d) = dim(IX′)64d−168k−168 =
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=

(
64d− 168k − 168 + 2

2

)
− 7

(
24d− 63k − 63 + 1

2

)
=

(
8d− 21k − 19

2

)
where X ′ =

∑7
i=1(k + 1− 8(8(k + 1)− 3d))Pi =

∑7
i=1(24d− 63k − 63). Then

deg(X)−H(X, d) = 7

(
k + 2

2

)
−
(

d + 2

2

)
+

(
8d− 21k − 19

2

)
= 7

(
8(k + 1)− 3d

2

)
and

δ = min

{
7

(
8(k + 1)− 3d

2

)
,

(
8d− 21k − 19

2

)
− 14

}
.

Finally, for s = 8, computing the dimension of (IX)d by removing the fixed locus (that is the
union of eight curves of degree 6 that are triple in one point and double in the other seven remaining
points) we get:

dim(IX)d = dim(IX′)d−48(17(k+1)−6d) = dim(IX′)289d−816k−816 =

=

(
289d− 816k − 816 + 2

2

)
− 8

(
102d− 288k − 288 + 1

2

)
=

(
17d− 48k − 46

2

)
where X ′ =

∑8
i=1(k + 1− 17(17(k + 1)− 6d))Pi =

∑8
i=1(102d− 288k − 288)Pi. Then

deg(X)−H(X, d) = 8

(
k + 2

2

)
−
(

d + 2

2

)
+

(
17d− 48k − 46

2

)
= 8

(
17(k + 1)− 6d

2

)
and

δ = min

{
8

(
17(k + 1)− 6d

2

)
,

(
17d− 48k − 46

2

)
− 16

}
.

E.Ballico and C.Fontanari in [BF2] give partial results about the regularity of Secs−1(Ok,d) for
2 ≤ s ≤ 8. Our Corollary 3.4.21, for s ≤ 9, improves the results of [BF2] and gives a complete
classification of all the defective cases.

Remark: We wish to notice that there are no defective cases for s = 4 or s = 9.
In case s = 2, d = k+2 defectivity is forced by the defectivity of T , in fact, since Y ⊂ T implies

that H(Y, k + 2) ≤ H(T, k + 2), and since H(T, k + 2) = N < exp(H(Y, k + 2)) = N + 1, it follows
that H(Y, k +2) < exp(H(Y, k +2)) . In the other cases defectivity of Secs−1(Ok,d) is forced by the
defectivity of X.
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Remark: At the light of this last Remark and the results of L.Evain in [Ev], we would like to
conjecture that if s is a square, then Secs−1(Ok,d) is regular in any degree d.

Anyway by the results of L.Evain, and 3.3.6, we easily deduce a partial result about the regularity
of Secs−1(Ok,d):

Corollary 3.4.22. If s is a square, and N+1 ≤ deg(X) or N+1 ≥ deg(T ), then dim(Secs−1(Ok,d))
is as expected.

In fact if s is a square, by [Ev] we know that X and T have maximal Hilbert function. Hence
if N + 1 ≤ deg(X), then dim(IX)d = 0, and if N + 1 ≥ deg(T ), then H(T, d) = deg(T ). Since
X ⊂ Y ⊂ T , it follows that if dim(IX)d = 0, then H(Y, d) = N + 1, and if H(T, d) = deg(T ), then
H(Y, d) = deg(Y ), and now the conclusion follows from the first Remark of this section.
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Chapter 4

Secant varieties to the Split varieties

In this chapter we study the second question presented in Section 2.6.1:

“which is the least integer s such that the following form is canonical:

L
(1)
1 · · ·L

(1)
d + · · ·+ L

(s)
1 · · ·L

(s)
d ?”

where L
(j)
i ∈ K[x0, . . . , xn]1 ∀ i = 1, . . . , d and j = 1, . . . , s.

We have already observed that this problem is equivalent to the following:

“which is the minimum integer s such that the (s−1)-secant variety to the Split variety

Splitd(Pn) fills up P(n+d
d )−1?”

where the Split variety Splitd(Pn) is the variety that parameterizes forms of degree d that split into
product of d linear forms of S = K[x0, . . . , xn]. We have defined it as the image of the map (2.15).

The dimension of Splitd(Pn) is nd, hence the expected dimension of its (s− 1)-secant variety is:

expdim(Secs−1(Splitd(Pn))) = min

{(
n + d

d

)
− 1, snd + s− 1

}
.

4.1 What we can do with Inverse Systems

In the section 2.6.1 we have shown why the Eherenborg conjecture 2.6.4 (see [Eh]) does not work.
The counterexample we produced was:
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“the typical rank of the Grassmannian G(3, 6) is 4, but the typical rank of Split4(P3) is
3.”

The typical rank of G(3, 6) is well known (see for example [CGG4]), but for the typical rank of
Split4(P3) we made computations with [CoCoA]. The method we used for these computations
uses Inverse Systems.
Consider the map

φ : S1 × · · · × S1︸ ︷︷ ︸
d

→ Sd,

(L1, . . . , Ld) 7→ L1 · · ·Ld.

If A1, . . . , Ad ∈ S1, then limt→0
d
dt

(φ(L1+tA1, . . . , Ld+tAd)) =
∑d

i=1 L1 · · ·Li−1AiLi+1 · · ·Ld. There-
fore the affine cone over the tangent space TP (Splitd(Pn)) at a regular point P = [L1 · · ·Ld] ∈
Splitd(Pn) is spanned by:

T̂P (Splitd(Pn)) =< S1L2 · · ·Ld, . . . , S1L1 · · ·Li−1Li+1 · · ·Ld, . . . , S1L1 · · ·Ld−1 > . (4.1)

By using Terracini’s lemma we can write the affine cone W over the tangent space to Secs−1(Splitd(Pn))

at a regular point Q: let P1, . . . , Ps ∈ Splitd(Pn) such that Pi = [L
(i)
1 · · ·L

(i)
d ] ∈ P(Sd), let

Q ∈< P1, . . . .Ps >, then

W =< S1L
(1)
2 · · ·L

(1)
d , . . . , S1L

(1)
1 · · ·L

(1)
i−1L

(1)
i+1 · · ·L

(1)
d , . . . , S1L

(1)
1 · · ·L

(1)
d−1; . . .

. . . ; S1L
(s)
2 · · ·L

(s)
d , . . . , S1L

(s)
1 · · ·L

(s)
i−1L

(s)
i+1 · · ·L

(s)
d , . . . , S1L

(s)
1 · · ·L

(s)
d−1 > . (4.2)

What can be done in the case Split4(P3) is:

• choose twelve forms L
(1)
1 , . . . , L

(1)
4 , L

(2)
1 , . . . , L

(2)
4 , L

(3)
1 , . . . , L

(3)
4 ∈ K[x0, x1, x2, x3]1,

• explicitly write down the particular tangent space to Sec2(Split4(P3)) that we obtain with
this (particular) choice of linear forms,

• make computation and find out that the dimension is actually the expected one (by using
[CoCoA]).

It is clear that this easy check works if the particular tangent space we choose, via the choice of the
linear forms, has the expected dimension (that is what happens for Sec2(Split4(P3))). This method
works only if we have to verify few particular examples and if we find that Secs−1(Splitd(Pn)) has
the expected dimension.

Remark: If d = 2 the variety Split2(Pn) parameterizes forms of the type: L1L2 ∈ S2 and this means
that Split2(Pn) is nothing else that the tangential variety to the double Veronese variety T (ν2(Pn))
defined in the previous chapter. This case was already studied in [CGG2] (see Proposition 3.3):
the authors proved the following proposition:
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Proposition 4.1.1. For all s ≥ 2

1. if n < 2s, then Secs−1(T (ν2(Pn))) = P(n+2
2 )−1 as expected;

2. if n ≥ 2s, then dim(Secs−1(T (ν2(Pn)))) = s(2n + 1)− 2(s2 − s)− 1, i.e.:

• if
(

n+2
2

)
≥ s(2n+1), then dim(Secs−1(T (ν2(Pn)))) = 2(s2−s) < expdim(Secs−1(T (ν2(Pn)))),

• if
(

n+2
2

)
≤ s(2n+1), then dim(Secs−1(T (ν2(Pn)))) =

(
n−2s+2

2

)
< expdim(Secs−1(T (ν2(Pn)))).

We want to point out here that the defective cases found in proposition 4.1.1 are the only known
defective ones for secant varieties to the Split varieties.

Remark: Since K is an algebraically closed field it is obvious that if L1, L2 ∈ S1 = K[x0, . . . , xn]1,
then there always exist L′, L′′ ∈ S1 such that L2

1 +L2
2 = L′ ·L′′. In terms of varieties parameterizing

forms this means that Sec1(ν2(Pn)) = Split2(Pn). Therefore

Sec1(ν2(Pn)) = Split2(Pn) = T (ν2(Pn)).

This implies that such secant variety is defective, since its dimension is 2n = dim(T (ν2(Pn))) instead
that 2n + 1.

In general for any d such that sd ≤ n + 1, since we can choose coordinate so that Li = xi ∈ S1, we
can compute the ideal I ⊂ R = K[y0, . . . , yd] such that (I−1)d = T̂Q(Secs−1(Splitd(Pn))).
We present here the case of d = 3 in order to show the complexity of the computational problem.

4.1.1 The case of Split3(Pn)

If d = 3 then the affine cone over the tangent space to Split3(Pn) at a point P = [L1L2L3] ∈ P(S3)
is

T̂P (Split3(Pn)) =< S1L2L3, S1L1L3, S1L1L2 > .

Now if 3 ≤ n + 1 then we can suppose, without loss of generality, that Li = xi−1, for i = 1, 2, 3.
With those assumptions it is not difficult to verify that the ideal I0,1,2 ⊂ R = K[y0, . . . , yn] such

that (I−1
0,1,2)3 = T̂P (Split3(Pn)) is

I0,1,2 = (y3
0, y

3
1, y

3
2) + (y2

0, y
2
1, y

2
2)(y3, . . . , yn) + (y0, y1, y2)(y3, . . . , yn)2 + (y3, . . . , yn)3. (4.3)

(The choice of the name “I0,1,2” is motivated by the assumption “Li = xi−1, for i = 1, 2, 3”.)
The projective scheme associated to I has dimension −1, so its support is the empty set. This fact
can be verified by observing that √

I0,1,2 = (y0, ..., yn).
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Consider now the (s − 1)-secant variety to Split3(Pn). Let Pi = [L
(i)
1 L

(i)
2 L

(i)
3 ] ∈ Split3(Pn), for

i = 1, . . . , s, then the affine tangent space W to Secs−1(Splitd(Pn)) at Q ∈< P1, . . . , Ps > is (by
(4.2), for d = 3):

W =< S1L
(1)
2 L

(1)
3 , S1L

(1)
1 L

(1)
3 , S1L

(1)
1 L

(1)
2 ; . . . ; S1L

(s)
2 L

(s)
3 , S1L

(s)
1 L

(s)
3 , S1L

(s)
1 L

(s)
2 > .

Now, if 3s ≤ n + 1 we can choose L
(1)
1 = x0, . . . , L

(s)
3 = x3s−1; therefore the ideal I ⊂ R =

K[y0, . . . , yn] such that the degree 3 part of its inverse system is W , can be obtained as the inter-
section of s ideals of the type (4.3):

I = I0,1,2 ∩ · · · ∩ I3s−3,3s−2,3s−1.

It is not difficult to verify that

I = (y3
0, . . . , y

3
3s−1) +

∑
i ≡3 0

i = 0, . . . , 3s − 3

(y2
i , y

2
i+1, y

2
i+2)(y0, . . . , yi−1, ŷi, ŷi+1, ŷi+2, yi+3, . . . , yn)+

+(y0, . . . , y3s−1)(y3s, . . . , yn)2+∑
i, j, k ≡3 0

i 6= j, i 6= k, j 6= k;
i, j, k = 0, . . . , 3s − 3

(yi, yi+1, yi+2)(yj, yj+1, yj+2)(yk, yk+1, yk+2)+

+

 ∑
i, j ≡3 0

i 6= j = 0, . . . , 3s − 3

(yi, yi+1, yi+2)(yj, yj+1, yj+2)

 (y3s, . . . , yn)+

+(y3s, . . . , yn)3 +
∑

i, j ≡3 0
i 6= j = 0, . . . , 3s − 3

(yiyi+1, yiyi+2, yi+1yi+2)(yjyj+1, yjyj+2, yj+1yj+2),

where i ≡3 0 means that there exists m ∈ Z such that i = 3m and we write ŷi when the term yi

does not appear.
The Hilbert function H(R/I, 3) of I can be easily computed; it turns out to be:(

n + 3

3

)
−
(

3s + 3s(n− 2) + 3s

(
n− 3s + 2

2

)
+ 27

(
s

3

)
+ 9(n− 3s + 1)

(
s

2

)
+

(
n− 3s + 3

3

))
=

= 3n + s− 1 = expdim(Secs−1(Split3(Pn))).

Since dim(Secs−1(Split3(Pn))) = H(R/I, 3)− 1, we have proved the following Proposition:
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Proposition 4.1.2. If 3s ≤ n + 1 then Secs−1(Split3(Pn)) has the expected dimension.

The general case Secs−1(Splitd(Pn)) for sd ≤ n+1 can be treated in an analogous way for d ≥ 3:

• the affine cone over the tangent space to Splitd(Pn) at a point P = [L1 · · ·Ld] ∈ Splitd(Pn) is
computed in (4.1);

• we can suppose that Li = xi−1, for i ≥ 1, since sd ≤ n + 1;

• the ideal I0,...,d−1 ⊂ R = K[y0, . . . , yn] such that (I−1
0,...,d−1)d = W defines a scheme whose

support is the empty set and it is of the form:

I0,...,d−1 = (yd, . . . , yn)d+
+(yd, . . . , yn)d−1(y0, . . . , yd−1)+
+(yd, . . . , yn)d−2(y0, . . . , yd−1)

2+
...
+(yd, . . . , yn)2(y0, . . . , yd−1)

d−2+
+(yd, . . . , yn)

[
(yd−1

0 , . . . , yd−1
d−1)+

+
∑d−1

i=0 (yd−2
i )(y0, . . . , ŷi, . . . , yd−1)+

+
∑d−1

i=0 (yd−3
i )(y0, . . . , ŷi, . . . , yd−1)

2+
...

+
∑d−1

i=0 (y2
i )(y0, . . . , ŷi, . . . , yd−1)

d−3
]
+

+(yd
0 , . . . , y

d
d−1)+

+
∑d−1

i=0 (yd−1
i )(y0, . . . , ŷi, . . . , yd−1)+

+
∑d−1

i=0 (yd−2
i )(y0, . . . , ŷi, . . . , yd−1)

2+
...

+
∑d−1

i=0 (y3
i )(y0, . . . , ŷi, . . . , yd−1)

d−3+

+
∑d−1

i=0 (yi)
2
[
(yd−2

0 , . . . , ŷd−2
i , . . . , yd−2

d−1)+

+
∑d−1

j 6=i; j=0(yi)
d−3(y0, . . . , ŷi, . . . , ŷj, . . . , yd−1)+

+
∑d−1

j 6=i; j=0(yi)
d−4(y0, . . . , ŷi, . . . , ŷj, . . . , yd−1)

2+
...

+
∑d−1

j 6=i; j=0(yi)
2(y0, . . . , ŷi, . . . , ŷj, . . . , yd−1)

d−4
]
;

• let W = T̂Q(Secs−1(Splitd(Pn))) defined as in (4.2); the ideal I ⊂ R such that (I−1)d = W , is
obtained as the intersection of s ideals of the type I0,...,d−1:

I = I0,...,d−1 ∩ · · · ∩ I(s−1)d,...,s(d−1);
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At this point it would be possible to compute H(I, d) but we prefer to perform a different and
more efficient kind of approach to establish the regularity or the defectivity of Secs−1(Splitd(Pn))
in many cases. We will present it in the section 4.2; before doing that we want to offer motivation
for the study of Split3(Pn) which is of particular interest in fact this variety can be characterized
in the following way.

A characterization of Split3(Pn)

Let X ⊂ Pr be an irreducible hypersurface. Let P ∈ X be a simple point of X and let A(P ) be
the set of lines such that their intersection with X in P has multiplicity at least 3. We have the
following:

• If A(P ) ≡ TP (X) then P is a flex point, otherwise

• the set A(P ) is an (r− 2)-dimensional quadric cone, with a double point in P and contained
in TP (X); A(P ) is called the Asymptotic Cone to X in P .

Definition 4.1.3. If 1 ≤ k < r−1, then a simple point P of an irreducible hypersurface X ⊂ Pr is
said to be a k-Parabolic Point for X if the vertex of the asymptotic cone A(P ) is a k-dimensional
linear subspace of TP (X). The point P is an (r − 1)-parabolic point of X if P is a flex point.

If f = 0 is an equation of X, one can check that P ∈ X is a k-parabolic point for X if and only
if

rk

(
∂2f

∂xi∂xj

)
i,j=0,...,r

≤ r − k + 1.

Proposition 4.1.4. The variety Splitd(Pn) is contained in the projectivization of

{p ∈ Sd : p divides all the 3× 3 minors of Hess(p)}.

Proof. Let [p] ∈ Splitd(Pn), i.e. p represents a polynomial of degree d that can be written as
a product of d linear forms: p = L1 · · ·Ld; hence p represents a hypersurface H ⊂ Pn which is
the union of d hyperplanes of Pn, so each point of H is a flex point, i.e. an (n − 1)-parabolic
point (see [Il]). If p is without multiple components then this last condition is equivalent to the
fact that the polynomial p divides all the 3 × 3 minors of Hess(p) (see [Se]). If p has multiple
components we consider the dense open subset of Splitd(Pn) contained in the projectivization of
the algebraic set of the forms dividing their Hessian. Now since Splitd(Pn) is an irreducible variety,
we can conclude, by continuity, that Splitd(Pn) is contained in the projectivization of the set
{p ∈ Sd : p divides all the 3× 3 minors of Hess(p)}.
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Corollary 4.1.5. If d = 3 the variety Split3(Pn) ⊂ P(S3) is the locus of all cubics of S3 which
divide all the 3× 3 minors of their Hessian.

Proof. One inclusion is a direct consequence of previous Proposition. For the other inclusion it is
sufficient to observe that if p ∈ S3 is such that p divides all the 3× 3 minors of its Hessian then:

• if p has not multiple components, then, by [Se], p divides all the 3× 3 minors of its Hessian
if and only if the hypersurface H ⊂ P(S3) of degree 3 represented by p is made only by flexes
points;

• if p has multiple components then p can only be a product of three linear forms.

Both the conclusions above are equivalent to the fact that H is the union of three hyperplanes,
therefore [p] ∈ Split3(Pn).

4.2 Another approach

In this section we show a different way to approach the study of the dimension of secant varieties
of the Split varieties which will turn out to be more efficient.

In (2.15) we have given the definition of the Split variety as the image of the map

φ : P(S1)× · · · × P(S1)︸ ︷︷ ︸
d

→ P(Sd)

([L1], . . . , [Ld]) 7→ [L1 · · ·Ld]

where S = K[x0, . . . , xn]. Let us work in more details. Let A1, . . . , Ad be vector spaces of dimension
n + 1; consider the space P(A1) × · · · × P(Ad). On each P(Aj), for j = 1, . . . , d, we consider

the coordinate ring S(j) = K[x
(j)
0 , . . . , x

(j)
n ]. On P(A1) × · · · × P(Ad) we consider the ring S :=

K[x
(1)
0 , . . . , x

(1)
n ; . . . ; x

(d)
0 , . . . , x

(d)
n ] of multi-homogeneous coordinates, then Splitd(Pn) is the image

of the map

φ : P(S
(1)
1 )× · · · × P(S

(d)
1 ) → P(Sd)

([x
(1)
0 , . . . , x

(1)
n ], . . . , [x

(d)
0 , . . . , x

(d)
n ]) 7→ [x

(1)
0 · · ·x

(d)
0 ,∑d

i=1 x
(1)
0 · · ·x

(i−1)
0 x

(i)
1 x

(i+1)
0 · · ·x(d)

0 ,
...

x
(1)
n · · ·x(d)

n ]
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i.e. Splitd(Pn) parameterizes the multi-degree (1, . . . , 1) forms of S that are symmetric.

Notation: If a point Q ∈ P(A1)× · · · × P(Ad) we will write:

Q = (Q(1), . . . , Q(d))

with Q(j) ∈ P(Aj), for j = 1, . . . , d.

This characterization of the Split variety together with Terracini’s Lemma 2.6.1, Corollary 2.6.2
and Proposition 2.6.3 allow us to say that Secs−1(Splitd(Pn)) has the expected dimension if and
only if s double points of P(A1)× · · · × P(Ad) impose independent conditions to the multi-degree
(1, . . . , 1) symmetric forms of S.

Lemma 4.2.1. Let R be a generic point of P(A1)× · · · × P(Ad) with defining multi-homogeneous
ideal IR ⊂ S. Then a 2-fat point 2R imposes independent conditions to the symmetric multi-degree
(1, . . . , 1)-forms of S.

Proof. A double point R in P(A1) × · · · × P(Ad) imposes dn + 1 conditions to forms of S hence,
in order to prove the lemma, it is sufficient to find dn + 1 symmetric forms in S of multi-degree
(1, . . . , 1) such that nd of them generate IR, the other one does not vanish at R and such that all
those dn + 1 forms must be independent module the ideal (IR)2. Let R ∈ P(A1) × · · · × P(Ad),
R = (R(1), . . . , R(d)). Let us view the points R(1), . . . , R(d) in a same projective space Pn with
coordinate ring S̃ = K[y0, . . . , yn]; i.e. consider for j = 1, . . . , d the maps:

φj : P(Aj) → Pn

(x
(j)
0 , . . . , x

(j)
n ) 7→ (y0, . . . , yn)

, (4.4)

we indicate φj(R
(j)) with Q(j). Let P1, . . . , Pn be generic points of Pn. Consider the linear forms

f
(1)
1 , . . . , f

(1)
n ; f

(2)
1 , . . . , f

(2)
n ; . . . ; f

(d)
1 , . . . , f

(d)
n of S̃ that define the following hyperplanes π

(j)
i of Pn for

j = 1, . . . , d and i = 1, . . . , n:

f
(1)
1 (y0, . . . , yn) = 0 ←→ π

(1)
1 =< Q(1), P̂1, P2, . . . , Pn >

f
(1)
2 (y0, . . . , yn) = 0 ←→ π

(1)
2 =< Q(1), P1, P̂2, . . . , Pn >

...

f
(1)
n (y0, . . . , yn) = 0 ←→ π

(1)
n =< Q(1), P1, . . . , Pn−1, P̂n >
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f
(2)
1 (y0, . . . , yn) = 0 ←→ π

(2)
1 =< Q(2), P̂1, P2, . . . , Pn >

... (4.5)

f
(2)
n (y0, . . . , yn) = 0 ←→ π

(2)
n =< Q(2), P1, . . . , Pn−1, P̂n >

f
(3)
1 (y0, . . . , yn) = 0 ←→ π

(3)
1 =< Q(3), P̂1, P2, . . . , Pn >

...

...

f
(d)
n (y0, . . . , yn) = 0 ←→ π

(d)
n =< Q(d), P1, . . . , Pn−1, P̂n > .

I.e. the f
(j)
i ∈ S are linear forms such that f

(j)
i |π(j)

i
≡ 0 where

π
(j)
i :=< Q(j), P1, . . . , P̂i, . . . , Pn >

is the space spanned by Q(j), P1, . . . , Pi−1, Pi+1, . . . , Pn, for all i = 1, . . . , n and for all j = 1, . . . , d.
Now consider the linear form g ∈ S̃ which defines the hyperplane π :=< P1, . . . , Pn >. Let us define
the following nd + 1 symmetric (1, . . . , 1)-forms in S:

F
(j)
i = f

(j)
i (x

(1)
0 , . . . , x(1)

n ) · f (j)
i (x

(2)
0 , . . . , x(2)

n ) · · · f (j)
i (x

(d)
0 , . . . , x(d)

n ), (4.6)

with i = 1, . . . , n and j = 1, . . . , d; and

G = g(x
(1)
0 , . . . , x(1)

n ) · g(x
(2)
0 , . . . , x(2)

n ) · · · g(x
(d)
0 , . . . , x(d)

n ). (4.7)

By construction the F
(j)
i are nd symmetric multi-degree (1, . . . , 1)-forms in S that generate the

ideal IQ ⊂ S, moreover G is a form of the same type that does not vanish on Q. In order to check
that those forms are independent module the ideal (IQ)2 it is sufficient to verify that the tangent
spaces to the hypersurfaces individuated by the forms above generate the ideal IQ. Also this last
fact follows from our construction.

Proposition 4.2.2. If d > 2 and d(s− 1) ≤ n, then

dim(Secs−1(Splitd(Pn))) = expdim(Secs−1(Splitd(Pn))).
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Proof. As we have already recalled, the statement of the proposition can be equivalently reformu-
lated in the following way:

“if d > 2 and d(s−1) ≤ n then s double points of P(A1)×· · ·×P(Ad) impose independent
conditions to the multi-degree (1, . . . , 1) symmetric forms of S.”

Let R, T1, . . . , Ts−1 be s generic points of P(A1) × · · · × P(Ad). If we want to prove that they
impose independent conditions to the (1, . . . , 1) symmetric forms of S, it is sufficient to find dn+1
symmetric (1, . . . , 1) forms of S such that:

• dn of them vanish with multiplicity at least 2 on T1, . . . , Ts−1 and with multiplicity 1 on R,

• one of them does not vanish on R,

• all the dn + 1 are independent in S/(IR)2.

We can apply the same construction used to prove the previous Lemma.
Let Pn be the projective space with coordinate ring K[y0, . . . , yn].
Since n ≥ d(s − 1) we can choose d(s − 1) P1, . . . , Pd(s−1) ∈ Pn (since n ≥ d(s − 1), they will be
linearly independent). Let φj : P(Aj)→ Pn defined for all j = 1, . . . , d as in (4.4). We can choose

Ti ≡ (T
(1)
i , . . . , T

(d)
i ), for i = 1, . . . , s− 1, in such a way that

φj(T
(j)
i ) = Pd(i−1)+j (4.8)

for i = 1, . . . , d. In that way T1, . . . , Ts−1 are s− 1 generic points of P(A1)× · · · × P(Ad).
Choose a generic point R ≡ (R(1), . . . , R(d)) and let φj(R

(j)) =: Q(j) ∈ Pn.

We can construct f
(j)
i , g ∈ K[y0, . . . , yn] such that if

π
(j)
i =< Q(j), P1, . . . , P̂i, . . . , Pd(s−1) >⊂ Pn

for i = 1, . . . , d(s− 1), j = 1, . . . , d, and

π =< P1, . . . , Pd(s−1) >⊂ Pn

then f
(j)
i |π(j)

i
≡ 0 for i = 1, . . . , d(s− 1), j = 1, . . . , d, and g|π ≡ 0.

Now we can construct F
(j)
i ∈ S = K[x

(1)
0 , . . . , x

(1)
n ; . . . ; x

(d)
0 , . . . , x

((d))
n ], for i = 1, . . . , n and j =

1, . . . , d, as in (4.6), and G ∈ S as in (4.7). They will turn out to be dn + 1 symmetric (1, . . . , 1)

forms of S such that F
(1)
1 , . . . , F

(d)
dn vanish with multiplicity at least 2 on T1, . . . , Ts−1 and simply

on R; the form G does not vanish on R and they all are independent module (IR)2.
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Example: We consider the case of n = 7, d = 3 and s = 3. We want to see that Sec2(Split3(P7))
has the expected dimension. In terms of number of conditions imposed by fat points to forms
of S = K[x

(1)
0 , . . . , x

(1)
7 ; x

(2)
0 , . . . , x

(2)
7 ; x

(3)
0 , . . . , x

(3)
7 ], it means that three double points of P(A1) ×

P(A2)×P(A3), with dim(P(A1)) = dim(P(A2)) = dim(P(A3)) = 7, impose independent conditions
to the (1, 1, 1) symmetric forms of S.

Consider the points R, T1, T2 ∈ P(A1)× P(A2)× P(A3) such that:

• if φj is defined as in (4.4), then R ≡ (R(1), R(2), R(3)) ∈ P(A1)× P(A2)× P(A3) is such that:

– φ1(R
(1)) := Q(1) = (1, 0, . . . , 0) ∈ P7 = φ1(P(A1)),

– φ2(R
(2)) := Q(2) = (1, α1, . . . , α7) ∈ P7 = φ2(P(A2)), with α1, . . . , α7 ∈ K,

– φ3(R
(3)) := Q(3) = (1, β1, . . . , β7) ∈ P7 = φ3(P(A3)), with β1, . . . , β7 ∈ K;

• T1 ≡ (T
(1)
1 , T

(2)
1 , T

(3)
1 ) ∈ P(A1)× P(A2)× P(A3) is such that

– φ1(T
(1)
1 ) := P1 = (0, 1, 0, . . . , 0) ∈ P7 = φ1(P(A1)),

– φ2(T
(2)
1 ) := P2 = (0, 0, 1, 0, . . . , 0) ∈ P7 = φ2(P(A2)),

– φ3(T
(3)
1 ) := P3 = (0, 0, 0, 1, 0, 0, 0, 0) ∈ P7 = φ3(P(A3));

• T2 ≡ (T
(1)
2 , T

(2)
2 , T

(3)
2 ) ∈ P(A1)× P(A2)× P(A3) is such that

– φ1(T
(1)
2 ) := P4 = (0, 0, 0, 0, 1, 0, 0, 0) ∈ P7 = φ1(P(A1)),

– φ2(T
(2)
2 ) := P5 = (0, 0, 0, 0, 0, 1, 0, 0) ∈ P7 = φ2(P(A2)),

– φ3(T
(3)
2 ) := P6 = (0, 0, 0, 0, 0, 0, 1, 0) ∈ P7 = φ3(P(A3));

If S̃ = K[y0, . . . , y7] is the coordinate ring over P7 = φj(Aj) for j = 1, 2, 3, the forms of (4.5)
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are the following:

Q(1) :


f

(1)
1 (y0, . . . , y7) = y1

f
(1)
2 (y0, . . . , y7) = y2

...

f
(1)
7 (y0, . . . , y7) = y7

Q(2) :


f

(2)
1 (y0, . . . , y7) = y1 − α1y0

f
(2)
2 (y0, . . . , y7) = y2 − α2y0

...

f
(2)
7 (y0, . . . , y7) = y7 − α7y0

Q(3) :


f

(3)
1 (y0, . . . , y7) = y1 − β1y0

...

f
(3)
7 (y0, . . . , y7) = y7 − β7y0

g(y0, . . . , y7) = y0.

Consider now the corresponding multi-degree (1, 1, 1) symmetric forms in S constructed as in (4.6)

e (4.7) we get the following 22 forms F
(j)
i , G ∈ S = K[x

(1)
0 , . . . , x

(1)
7 ; x

(2)
0 , . . . , x

(2)
7 ; x

(3)
0 , . . . , x

(3)
7 ] for

j = 1, 2, 3 and i = 1, . . . , 7:
F

(1)
1 (x) = x

(1)
1 x

(2)
1 x

(3)
1

F
(1)
2 (x) = x

(1)
2 x

(2)
2 x

(3)
2

...

F
(1)
7 (x) = x

(1)
7 x

(2)
7 x

(3)
7

F
(2)
1 (x) = (x

(1)
1 − α1x

(1)
0 )(x

(2)
1 − α1x

(2)
0 )(x

(3)
1 − α1x

(3)
0 )

... (4.9)

F
(2)
7 (x) = (x

(1)
7 − α7x

(1)
0 )(x

(2)
7 − α7x

(2)
0 )(x

(3)
7 − α7x

(3)
0 )

F
(3)
1 (x) = (x

(1)
1 − β1x

(1)
0 )(x

(2)
1 − β1x

(2)
0 )(x

(3)
1 − β1x

(3)
0 )

...

F
(3)
7 (x) = (x

(1)
7 − β7x

(1)
0 )(x

(2)
7 − β7x

(2)
0 )(x

(3)
7 − β7x

(3)
0 )
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G(x) = x
(1)
0 x

(2)
0 x

(3)
0 .

It is evident that the F
(j)
i , with i = 1, . . . , 7 and j = 1, 2, 3, are the 21 symmetric forms of multi-

degree (1, 1, 1) of S that generate the ideal IR ⊂ S and that they are double at T1 and at T2.
Moreover G is double in T1 and T2 (actually, G has multiplicity 3 at Ti, it is sufficient that they
are at least double points) but it does not vanish in R.

Remark: The forms F
(j)
i of the previous example are double in T1, T2 but in general, the F

(j)
i ’s,

with i = 1, . . . , n and j = 1, . . . , d, defined in (4.6), vanish up to order (d − 1) at T1, . . . , Ts−1

chosen as in the previous example. Moreover, the proof works because in the hypothesis we have
that d > 2 and this allows to construct the F

(j)
i , vanishing to the order at least two (d− 1 ≥ 2) at

T1, . . . , Ts−1, for i = 1, . . . , n, j = 1, . . . , d.

Now we have to verify that the 22 forms defined in (4.9) are independent module the ideal (IR)2.
In order to do that we consider the following construction (as it is done in [CGG3], see Theorem
1.1): let f be the map

f : P(A1)× P(A2)× P(A3) −→ A21

with dim(P(Ai)) = 7 for i = 1, 2, 3, defined on the open affine set {x(1)
0 x

(2)
0 x

(3)
0 6= 0} such that:

f((x
(1)
0 , . . . , x

(1)
7 ), (x

(2)
0 , . . . x

(2)
7 ), (x

(3)
0 , . . . x

(3)
7 )) =

(
1;

x
(1)
1

x
(1)
0

, . . . ,
x

(1)
7

x
(1)
0

;
x

(2)
1

x
(2)
0

, . . . ,
x

(2)
7

x
(2)
0

;
x

(3)
1

x
(3)
0

, . . . ,
x

(3)
7

x
(3)
0

)
.

If Z ⊂ P(A1)×P(A2)×P(A3) is a 0-dimensional scheme contained in the affine chart {x(1)
0 x

(2)
0 x

(3)
0 6=

0} then Z ' f(Z).
Consider the image of R via f , i.e. f(R) = (1; 0, 0, 0, 0, 0, 0; α1, . . . , α7; β1, . . . , β7) which, with
a slight abuse of notation, we will still indicate with R. With the same kind of notation, the
affinization of the F

(j)
i ’s, with i = 1, . . . , 7 and j = 1, 2, 3, and of G are:

F
(1)
1 (x) = x

(1)
1 x

(2)
1 x

(3)
1

...

F
(1)
7 (x) = x

(1)
7 x

(2)
7 x

(3)
7

F
(2)
1 (x) = (x

(1)
1 − α1)(x

(2)
1 − α1)(x

(3)
1 − α1)
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...

F
(2)
7 (x) = (x

(1)
7 − α7)(x

(2)
7 − α7)(x

(3)
7 − α7)

F
(3)
1 (x) = (x

(1)
1 − β1)(x

(2)
1 − β1)(x

(3)
1 − β1)

F
(3)
7 (x) = (x

(1)
7 − β7)(x

(2)
7 − β7)(x

(3)
7 − β7)

G(x) = 1

where (x) := (x
(1)
0 , . . . , x

(1)
7 ; x

(2)
0 , . . . x

(2)
7 ; x

(3)
0 , . . . x

(3)
7 ). We consider, only for simplicity, the transla-

tion of A21 that sends R to the origin:

X
(1)
1 = x

(1)
1

...

X
(1)
7 = x

(1)
7

X
(2)
1 = x

(2)
1 − α1

...

X
(2)
7 = x

(2)
7 − α7

X
(3)
1 = x

(3)
1 − β1

...

X
(3)
7 = x

(3)
7 − β7.

After this translation the F
(j)
i and G become the following F̃

(j)
i and G̃ respectively:

F̃
(1)
1 (X) = X

(1)
1 (X

(2)
1 + α1)(X

(3)
1 + β1)

...

F̃
(1)
7 (X) = X

(1)
7 (X

(2)
7 + α7)(X

(3)
7 + β7)

F̃
(2)
1 (X) = X

(2)
1 (X

(1)
1 + α1)(X

(3)
1 + β1 − α1)

...

F̃
(2)
7 (X) = X

(2)
7 (X

(1)
7 + α7)(X

(3)
7 + β7 − α7)
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F̃
(3)
1 (X) = X

(3)
1 (X

(1)
1 + β1)(X

(2)
1 + α1 − β1)

...

F̃
(3)
7 (X) = X

(3)
7 (X

(1)
7 + β7)(X

(2)
7 + α7 − β7)

G̃(X) = 1

where, as above, (X) := (X
(1)
1 , . . . , X

(1)
7 ; . . . ; X

(3)
1 , . . . , X

(3)
7 ). The form G̃ does not vanish at the

origin; the tangent planes to the F̃
(j)
i have equations: X

(j)
i = 0 respectively for all i = 1, . . . , 7 and

j = 1, 2, 3.
Now it is clear that those forms generate IO and so they are independent module the ideal (IO)2.

As we have already observed, the forms F
(j)
i and G defined in (4.6) and (4.7) are symmetric forms

of S of multi-degree (1, . . . , 1) that vanish with multiplicity (d − 1) on T1, . . . , Ts−1 chosen as in
(4.8).

We have already observed that if we want to prove that s double fat points R, T1, . . . , Ts−1 ∈
P(A1)× · · · ×P(Ad) impose independent conditions to the multi-degree (1, . . . , 1) symmetric forms
of S, it is sufficient to find dn + 1 of these forms such that:

• dn of them vanish with multiplicity at least 2 on T1, . . . , Ts−1 and with multiplicity 1 on R,

• one of them does not vanish on R,

• all the dn + 1 are independent in S/(IR)2.

Therefore the T1, . . . , Ts−1 can be chosen in a less restrictive way with respect to what we have done

in the last proposition: it is not necessary that the F
(j)
i and G are zero on them up to the degree

d− 1, it is sufficient that they are double in those points. Hence we can improve Proposition 4.2.2.

Proposition 4.2.3. If d > 2 and n ≥ 3(s− 1), then

dim(Secs−1(Splitd(Pn))) = expdim(Secs−1(Splitd(Pn))).
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Proof. The proof of this proposition is very similar to that of the previous one; it is sufficient to
choose s generic points of P(A1)× · · · × P(Ad): R and Ti ≡ (T

(1)
i , . . . , T

(d)
i ) ∈ P(A1)× · · · × P(Ad)

with i = 1, . . . , s− 1 such that:
T

(1)
i := P3(i−1)+1 ∈ P(A1),

T
(2)
i := P3(i−1)+2 ∈ P(A2),

T
(3)
i := P3(i−1)+3 ∈ P(A3)

where Pj, for j = 1, . . . , 3(s−1), is the j-th coordinate point of Pn. Now the proof works exactly as

the proof of Proposition 4.2.2 with the only difference that F
(j)
i defined in (4.6) are only double at

T1, . . . , Ts−1 and G defined in (4.7) vanishes with multiplicity 3, and then this is sufficient to prove

that the F
(j)
i ’s and G are independent in S/(IR)2.

4.3 Linear subspaces of Splitd(Pn)

Our study of the Split varieties will now aim to understand the structure of the linear subspaces
of Splitd(Pn).

Let us recall Bertini’s Theorem:

Theorem 4.3.1. (Bertini) If X ⊂ Pn is a complex projective variety, Σ a linear system on X

without fixed components and such that all D ∈ Σ are reducible, then the rational map ρ : X
|D|
99K

Y ⊂ Pr factorizes through a curve C:

ρ : X
|D|
99K Y

τ ↘ ↗ σ
C

where τ : X 99K C has connected fibers, and σ : C → Y is a finite morphism. The composition
ρ = σ ◦ τ is called the Stein factorization.

Proposition 4.3.2. Let [M0], . . . , [Mr] be linearly independent in Splitd(Pn). Let L1 · · ·Ls be their
greatest common divisor and, for i = 0, . . . , r write

Mi := L1 · · ·LsLi,s+1 · · ·Li,d.

Then, the r-dimensional span Vr ⊂ P(n+d
d−1) of M0, . . . ,Mr is contained in Splitd(Pn) if and only if

one of the following cases occur:
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1. s ≤ d − 2 and there exist L′, L′′ ∈ S1 such that all Li,j ∈ K[L′, L′′]. In this case, Vr ⊂
P(K[L′, L′′]d−s) = Pd−s.

2. s ≥ d− 1. In this case, Vr ⊂ P(S1) = Pn.

Proof. Since Vr = Pr ⊂ Splitd(Pn) ⊂ P(Sd) and the elements of Splitd(Pn) represent forms of degree
d obtained as product of d linear forms, Vr is the span of r + 1 of them

Vr =< L0,1 · · ·L0,d, . . . , Lr,1 · · ·Lr,d > .

An element D ∈ Vr is such that:

D := L1 · · ·Ld = α0L0,1 · · ·L0,d + · · ·+ αrLr,1 · · ·Lr,d

for some α0, . . . , αr ∈ K.
Therefore we are interested in studying linear systems Σ = |L0,1 · · ·L0,d, . . . , Lr,1 · · ·Lr,d| on Pn

whose elements are all of the form L1 · · ·Ld.

1. (a) If s = 0 we can apply Bertini’s Theorem because the hypothesis assure us that Σ
is without fixed components. Therefore there exist three maps ρ : Pn → Γ ⊂ Pr,
τ : Pn → C and σ : C → Γ such that C is a curve, ρ is the rational map given by Σ,
τ has connected fibers, σ is a finite morphism and ρ = σ ◦ τ . If P ∈ Γ, the pre-image
σ−1(P ) is a set of d points on C. The curve C is a P1 because τ is linear. Therefore
ρ−1(P ) = τ−1(σ−1(P )) is a set of d hyperplanes of Pn. This fact implies also that the d
fibers of τ meet in the same Pn−2. Therefore Vr is contained in a Pd that is obtained as
P(K[L′, L′′]d) with L′, L′′ ∈ S1.

(b) If 0 ≤ s ≤ d− 2 then D ∈ Vr is of the form:

D = α0M0 + · · ·+ αrMr = L1 · · ·Ls · (α0L0,s+1 · · ·L0,d + · · ·+ αrLr,s+1 · · ·Lr,d).

We can apply Bertini’s Theorem to a system Σ′ whose elements are all of the form
D′ = α0L0,s+1 · · ·L0,d + · · ·+αrLr,s+1 · · ·Lr,d. If ρ, τ, σ are defined as in the previous case
(the map ρ now is the the rational map given by Σ′ and τ, σ are then well defined) we
observe now that length({σ−1(P )}) = d− l and then ρ−1(P ) is a set of d−s hyperplanes
of Pn meeting in the same Pn−2 then D = L1 · · ·Ls · F where F ∈ K[L′, L′′]d−s.

2. The last case is obvious.
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4.4 Splitd(Pn) and G(n− 1, n + d− 1)

The variety Splitd(Pn) has dimension nd and parameterizes all forms of degree d that are decom-
posable as products of d linear forms. From a geometric point of view Splitd(Pn) parameterizes the
unions of d hyperplanes.

Example: If d = 2 an element of Split2(Pn) represents a quadric of Pn which is the union of two
hyperplanes; therefore, if MQ is the symmetric matrix of Mn(K) representing a quadric Q ∈ S2,
then:

Split2(Pn) = {[Q] ∈ P(S2) | rk(MQ) ≤ 2}. (4.10)

We need to recall that the Grassmannian G(k, n) is the projective variety which parameterizes
the k-spaces in PN . Grassmannians can be viewed in a projective space by looking at their Plücker
embedding. For this, we will use the Plücker coordinates, but in a way that is dual to the standard
one (i.e. describing the k-spaces as intersection of hyperplanes rather than as spanned by points).

Let Λ ⊂ PN be the space H1∩· · ·∩HN−k ⊂ PN where Hi is the hyperplane ui,0x0+· · ·+ui,NxN =
0. For each i0 < · · · < ik we define pi0···ik to be the determinant

pi0···ik :=

∣∣∣∣∣∣∣
u1,i0 · · · u1,ik

...
...

uN−k,i0 · · · uN−k,ik

∣∣∣∣∣∣∣ .
The Plücker embedding is defined as follows:

p : G(k, n) ↪→ P(n+1
k+1)−1

Λ 7→ {{pi0···ik} | 0 ≤ i0 < · · · < ik ≤ n}
(4.11)

Example: If d = 2, it easy to find the equations for G(n − 1, n + 1). Let Λ be an (n − 1)-space
of Pn+1, then Λ is defined by the intersection of two independent hyperplanes H1, H2 ⊂ Pn+1. Let
their equations be u1,0x0 + · · ·+ u1,n+1xn+1 = 0 and u2,0x0 + · · ·+ u2,n+1xn+1 = 0 respectively. If p

is the map defined in (4.11), the image p(Λ) in Pn2+3n
2 is

(p0,1, p0,2, . . . , p0,n+1,
p1,2, . . . , p1,n+1,

. . .

pn,n+1)
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where pi,j =

∣∣∣∣ u1,i u1,j

u2,i u2,j

∣∣∣∣ for i, j = 0, . . . , n + 1.

Let π0, . . . , πn+1 ⊂ Pn+1 be the n + 2 hyperplanes defined by the following equations respectively:

0x0 + p0,1x1 + p0,2x2 + · · ·+ p0,n+1xn+1 = 0,

−p0,1x0 + 0x1 + p1,2x2 + · · ·+ p1,n+1xn+1 = 0,

...

−p0,n+1x0 − · · · − pn,n+1xn + 0xn+1 = 0.

If we consider the intersections Λi,j = πi ∩ πj for all i 6= j, and the image p(Λi,j), we obtain that
the coordinates of p(Λi,j) are the 2× 2 minors of the following skew symmetric matrix:

Mn+1 :=


0 p0,1 · · · p0,n+1

−p0,1 0 · · · p1,n+1
...

. . . . . .
...

−p0,n+1 · · · −pn,n+1 0

 . (4.12)

If the rank of this matrix is two, then Λ0,1, . . . , Λn,n+1 are the same codimension 2 subspace of Pn+1.

Then a rank 2 skew symmetric (n + 2)× (n + 2) matrix describes an element Λ ∈ G(n− 1, n + 1).
Vice versa if an (n−1)-subspace of Pn+1 is given by the intersection of n+2 hyperplanes π0, . . . , πn+1

as above then rk(Mn+1) = 2.
Now it is not difficult to believe that imposing rk(Mn+1) = 2 is equivalent to finding the equations

of G(n− 1, n + 1) in Pn2+3n
2 .

We like to observe that we have already noticed that the elements of Split2(Pn) are represented
by the rank at most 2 quadrics of Pn. We will see that this is not only a coincidence.

Remark: Observe that, when N = n + d − 1 and k = n − 1 we obtain that G(n − 1, n + d − 1)

has dimension nd and it is contained in P(n+d
d )−1, exactly as it happens for Splitd(Pn).

The remark above induced Ehrenborg (in [Eh]) to state a conjecture (see 2.6.4) in terms of Secant
varieties of Splitd(Pn) and of G(n − 1, n + d − 1). In Section 2.6.1 we have already shown a
counterexample to this conjecture but we have also checked that it easily works when d = 2. The
Ehrenborg conjecture and the many cases where it works suggest the interest in the study of the
intersection between Splitd(Pn) and the Grassmannian G(n− 1, n + d− 1).
The first idea to study this intersection comes from a way to embed the Veronese variety νd(Pn)
into the Grassmannian G(n− 1, n + d− 1) (see for instance [AP]).
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Proposition 4.4.1. Identify S1 with K[t0, t1]n by assigning to u0x0 + · · ·+ unxn ∈ S1 the homoge-
neous form u0t

n
0 + u1t

n−1
0 t1 + · · ·+ unt

n
1 ∈ K[t0, t1]. Then P(S1) is naturally identified with the set

of schemes of length n on P1. The identifications are the following:

1. The map φ : P(S1) → G(n − 1, n + d − 1) that assigns to any scheme of length n on P1 its
span as a scheme in νn+d−1(P1) is defined in coordinates as φ((u0, . . . , un)) = intersection of
the hyperplanes: 

u0x0 + · · ·+ unxn = 0
u0x1 + · · ·+ unxn+1 = 0
...
u0xd−1 + · · ·+ unxn+d−1 = 0

.

2. There is a linear change of coordinates in the Plücker space P(n+d
d )−1 such that the image of

φ (which is the set of (n− 1)-spaces of Pn+d−1 that are n-secant to the rational normal curve)

is the Veronese variety. This yields a canonical identification of P(n+d
d )−1 with P(Sd).

By using the idea of this proposition that shows how one can embed the Veronese variety inside
a Grassmannian, we can prove the following theorem which will be of some interest in order to
discover a set that is contained in the intersection between Splitd(Pn) and G(n − 1, n + d − 1).
An interesting fact will be that this set, in the case of d = 2, will be exactly the intersection
Splitd(Pn) ∩G(n− 1, n + d− 1).

Consider the embedding

φ : Pn νd
↪→ νd(Pn)

µd
↪→ G(n− 1, n + d− 1) (4.13)

which sends a point (u0, . . . , un) ∈ Pn into the (n− 1)-space obtained as the intersection of hyper-
planes: 

u0x0 + · · ·+ unxn = 0
u0x1 + · · ·+ unxn+1 = 0
...
u0xd−1 + · · ·+ unxn+d−1 = 0

.

If we think at νd as the dual embedding we can think at an element of νd(Pn) as the d-th power
of a linear form L ∈ K[x0, . . . , xn], but Proposition 4.4.1 lets us to interpret an element of νd(Pn)
as an (n − 1)-space of Pn+d−1 that is n-secant to the rational normal curve νn+d−1(P1), or better,
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consider the following composition of maps:

P1

↓ νn+d−1

νn+d−1(P1)
↓ ηn+d−1

φ : Pn νd→ νd(Pn)
µd→ G(n− 1, n + d− 1)

then Proposition 4.4.1 says that

µd(νd(Pn))∩G(n− 1, n+ d− 1) = {Λ ∈ G(n− 1, n+ d− 1) | length{Λ∩ ηn+d−1(νn+d−1(P1))} ≥ n}.
(4.14)

Now let P1, . . . , Pn−1, P be points of νn+d−1(P1). By Proposition 4.4.1 the span of < P1, . . . , Pn−1, P >
is represented by a point in µd(νd(Pn))∩G(n−1, n+d−1): i.e. ΛP := ηn+d−1(< P1, . . . , Pn−1, P >) ∈
µd(νd(Pn))∩G(n−1, n+d−1), hence there exists a linear form u0x0+ · · ·+unxn ∈ K[x0, . . . , xn]1 =
(Pn)∗ such that

µd((u0x0 + · · ·+ unxn)d) = ΛP .

Consider now the following embedding:

νn : P1 ↪→ Pn '< νn(P1) >,

whose dual is
(P1)∗ = P(K[t0, t1]1)

νn
↪→< P(K[t0, t1]n) >= (Pn)∗. (4.15)

By this identification we can view a linear form u0x0 + · · ·+unxn ∈ (Pn)∗ as a polynomial of degree
n in the variable t0, t1:

P(K[x0, . . . , xn]1) = (Pn)∗ ' νn(P1) =< P(K[t0, t1]n) >
[u0x0 + · · ·+ unxn] ↔ [u0t

n
0 + u1t

n−1
0 t1 + · · ·+ unt

n
1 ]

. (4.16)

Therefore

G(n− 1, n + d− 1) ∩ µd(νd(Pn)) ↔ P(K[t0, t1]n)
ηn+d−1(< P1, . . . , Pn−1, P >) ↔ [u0t

n
0 + u1t

n−1
0 t1 + · · ·+ unt

n
1 ]

. (4.17)

By the same reason

G(n− 2, n + d− 2) ∩ µd(νd(Pn−1)) ↔ P(K[t0, t1])n−1

ηn+d−2(< P1, . . . , Pn−1 >) ↔ [v0t
n−1
0 + v1t

n−2
0 t1 + · · ·+ vn−1t

n−1
1 ]

. (4.18)
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Theorem 4.4.2. Let a0t
n−1
0 + a1t

n−2
0 t1 + · · · + an−1t

n−1
1 ∈ K[t0, t1]n−1, let P1, . . . , Pn−1 be n − 1

points on νn+d−1(P1) corresponding to the solutions of a0t
n−1
0 + a1t

n−2
0 t1 + · · · + an−1t

n−1
1 = 0 and

set L1 =
∑n−1

i=0 aixi ∈ S1 and L2 =
∑n−1

i=0 aixi+1 ∈ S1. Then the locus {Λ ∈ G(n − 1, n + d −
1) | ηn+d−1(P1), . . . , ηn+d−1(Pn−1) ∈ Λ} parameterizes the forms of K[L1, L2]d.

Proof. If P ∈ νn+d−1(P1) =< K[t0, t1]n+d−1 >, then there exists (e0t0 + e1t1) ∈ K[t0, t1] such that:

P ↔
[
(e0t0 + e1t1)

n+d−1
]
∈ P(K[t0, t1]n+d−1)

for some e0, e1 ∈ K. For (4.17) there exist u0, . . . , un ∈ K such that ηn+d−1(< P1, . . . , Pn−1, P >)
corresponds to [u0t

n
0 + u1t

n−1
0 t1 + · · · + unt

n
1 ]. Now, the considerations (4.16), (4.17) and (4.18)

above imply that if P1, . . . , Pn−1 are roots of a0t
n−1
0 + a1t

n−2
0 t1 + · · ·+ an−1t

n−1
1 ∈ K[t0, t1]n−1 then

u0t
n
0 + u1t

n−1
0 t1 + · · ·+ unt

n
1 has to factorizes as (e0t0 + e1t1)(a0t

n−1
0 + a1t

n−2
0 t1 + · · ·+ an−1t

n−1
1 ) =

e0(a0t
n
0 + a1t

n−1
0 t1 + · · · + an−1t0t

n−1
1 ) + e1(a0t

n−1
0 t1 + a1t

n−2
0 t21 + · · · + an−1t

n
1 ) = e0(a0x0 + a1x1 +

· · · + an−1xn−1) + e1(a0x1 + · · · + anxn) = e0L1 + e1L2. So we have shown that there is a 1 : 1
correspondence between the Pd = {Λ ∈ G(n− 1, n + d− 1) | ηn+d−1(P1), . . . , ηn+d−1(Pn) ∈ Λ} and
P(K[L1, L2]d) obtained by the following construction:

Pd = {Λ ∈ G(n− 1, n + d− 1) | ηn+d−1(P1), . . . , ηn+d−1(Pn) ∈ Λ} ↪→ P(K[x1, . . . , xn]d) → P(K[L1, L2]d)
ΛP =< P1, . . . , Pn−1, P > 7→ (u0x0 + · · ·+ unxn)d 7→ (e0L1 + e1L2)d

where P1, . . . , Pn−1, P and L1, L2 are defined as above.

Corollary 4.4.3. The locus of (n−1)-linear spaces which are (n−1)−secant to ηn+d−1(νn+d−1(P1))
is contained in Splitd(Pn) ∩G(n− 1, n + d− 1).

Proof. It is a consequence of the previous theorem and of the fact that if L1 and L2 are two linear
forms of S1 then P(K[L1, L2]d) ⊂ Splitd(Pn).

Definition 4.4.4. Let f, g ∈ K[x1, . . . , xn] of positive degree in x1:

f = a0x
l
1 + · · ·+ al, a0 6= 0,

g = b0x
m
1 + · · ·+ bm, b0 6= 0,
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where ai, bi ∈ K[x2, . . . , xn]. We define the Resultant of f and g with respect to x1 to be the
determinant

Res(f, g, x1) = det



a0

a1 a0

a1
. . .

...
. . . a0

... a1

al

al
...

. . .

al︸ ︷︷ ︸
m columns

b0

b1 b0

b1
. . .

...
. . . b0

... b1

bm

bm
...

. . .

bm︸ ︷︷ ︸
l columns


where the empty spaces are filled by zeros.

Lemma 4.4.5. Let f, g ∈ K[x1, . . . , xn] have positive degree in x1. Then Res(f, g, x1) = 0 if and
only if f and g have a common factor in K[x1, . . . , xn] which has positive degree in x1.

Proof. For a proof see for example [CLO].

Consider now a generalization of the Resultant.

Lemma 4.4.6. Let f = a0x
d
1+· · ·+ad, g = b0x

d
1+· · ·+bd ∈ K[x1, . . . , xn] of degree d in the variable

x1, where ai, bi ∈ K[x2, . . . , xn] and a0, b0 6= 0. The two polynomials f and g have a common factor
of degree d− r in x1 if and only if the rank of the following (r + d + 1)× (2r + 2) matrix is strictly
less then 2r + 2: 

a0 b0
...

. . .
...

. . .

ar · · · a0 br · · · b0

ar+1
... br+1

...
...

...
...

...

ad
... bd

...
. . .

...
. . .

...
ad bd


(4.19)
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Proof. The two polynomials a and b have a common factor e ∈ K[x1, . . . , xn] of degree d− r in the
variable x1 if and only if there exist c, d ∈ K[x1, . . . , xn] of degree r in x1 such that a = e · d and
b = e · c. This is equivalent to

a · c + b · d = 0. (4.20)

Now, by taking as variables the coefficients of c and d, the equation (4.20) becomes a homogeneous
linear system, and saying that it admits solution is equivalent to ask that the matrix (4.19) has
rank at most 2r + 1.

Proposition 4.4.7. The intersection between the Grassmannian G(n− 1, n + 1) and Split2(Pn) in

Pn2+3n
2 is the locus {Λ ∈ G(n− 1, n + 1) | length{Λ ∩ ηn+1(νn+1(P1))} ≥ n− 1}.

Proof. The inclusion {Λ ∈ G(n − 1, n + 1) | length{Λ ∩ ηn+1(νn+1(P1))} ≥ n − 1} ⊂ Split2(Pn) ∩
G(n− 1, n + 1) is a consequence of Theorem 4.4.2. Let us look at the other inclusion.

As we have recalled above G(n − 1, n + 1) ' G(1, n + 1). Moreover, if Mn+1 is defined as in
(4.12), we have shown, in that example, that the equations of G(1, n+1) are obtained by imposing
that rk(Mn+1) = 2.
Let {pi,j}0≤i≤n,1≤j≤n+1 be the Plücker coordinates for G(1, n + 1). For example, if L is the line of
Pn+1 spanned by the points (u0, . . . , un, 0), (0, u0, . . . , un) ∈ Pn+1, then

pi,j =

∣∣∣∣ ui uj

ui−1 uj−1

∣∣∣∣
with the assumption that ui−1 = 0 if i = 0 and uj = 0 if j = n + 1.

Let us consider the Veronese variety ν2(Pn), embedded into PN with N =
(

n+2
2

)
− 1 as follows:

ν2(Pn) ↪→ PN

(u0, . . . , un) 7→ (p0,1, . . . , pn,n+1).

The points (α0,0, . . . , αn,n) of PN are in (1 : 1)-correspondence with quadrics
∑n

i,j=0 αi,jxixj of
S2 and the relation between αi,j and pi,j is via the ui:{

αi,i = u2
i , if i = j;

αi,j = 2uiuj, if i 6= j.

The quadric of Pn can be represented by the symmetric matrix An = (αi,j)0≤i,j≤n where αi,j =
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{
pi,j+1 + αi−1,j+1, if i ≤ j;
αj,i, if i > j.

with αi−1,j+1 = 0 if i = 0 or j = n. Therefore:

An =


p0,1 p0,2 p0,3 · · · p0,n+1

p0,2 p1,2 + p0,3 p1,3 + p0,4 · · · p1,n+1

p0,3 p1,3 + p0,4 p2,3 + p1,4 + p0,5 · · · p2,n+1
...

...
...

p0,n+1 p1,n+1 · · · · · · pn,n+1

 . (4.21)

With this description it turns out that imposing the vanishing of all 3 × 3 minors of An is
equivalent to describe Split2(Pn) set theoretically.
This condition is equivalent to asking that there exist a0, . . . , an, b0, . . . , bn ∈ K such that

An =

 a0 b0
...

...
an bn

( a0 · · · an

b0 · · · bn

)
.

We can rewrite the matrix Mn+1 defined in (4.12) as Mn+1 = (mi,j)0≤i,j≤n by using these
ai, bj ∈ K. The matrix Mn+1 is skew symmetric and

mi,j = αi,j−1 − αi−1,j = ai−1aj−2 + bi−1bj−2 − (ai−2aj−1 − bi−2bj−1) =

=
(
−ai−2 ai−1 −bi−2 bi−1

)
aj−1

aj−2

bj−1

bj−2

 .

Now one can observe that Mn+1 can be obtained as follows:

Mn+1 =


a0 0 b0 0
a1 a0 b1 b0
...

...
...

...
an an−1 bn bn−1

0 an 0 bn




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0




a0 a1 · · · an 0
0 a0 · · · an−1 an

b0 b1 · · · bn 0
0 b0 · · · bn−1 bn

 =: CT GC.

This means that if rk(An) = 2 then rk(Mn+1) ≤ 4.
Now we want to prove the inclusionG(n−1, n+1)∩Split2(Pn) ⊆ {Λ ∈ G(n−1, n+1) | length{Λ∩

ηn+1(νn+1(P1))} ≥ n− 1}.
We have to consider the condition “rk(Mn+1) = 2”, which, since Mn+1 is skew symmetric, is

equivalent at “rk(Mn+1) ≤ 3”. Now rk(Mn+1) ≤ 3 iff rk(C) ≤ 3 that is equivalent, by Lemma
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4.4.6, to say that the two polynomials a := a0t
n
0 + a1t

n−1
0 t1 + · · · + ant

n
1 ∈ K[t0, t1]n and b :=

b0t
n
0 + b1t

n−1
0 t1 + · · ·+ bnt

n
1 ∈ K[t0, t1]n have a common factor of degree n− 1. This implies exactly

that the elements of G(n− 1, n + 1)∩ Split2(Pn) are (n− 1)-spaces that intersect νn+1(P1) at least
n− 1 times.

Remark: We have already observed that Sec1(ν2(Pn)) = Split2(Pn). In (4.10) we have character-
ized Split2(Pn) via the symmetric n× n matrices of rank at most 2. This is not by chance because
the elements of ν2(Pn) represent the symmetric n × n matrices of rank 1, hence Sec1(ν2(Pn)) has
to parameterizes the quadrics of Pn whose representative n × n matrices are symmetric and have
at most rank 2. In fact a generic element of Secr−1(ν2(Pn)) is obtained as a linear combination of
r elements of ν2(Pn) and the linear combination of r symmetric matrices of rank 1 is a symmetric
matrix of rank less or equal than r.

Lemma 4.4.8. If An and Mn+1 are defined as in (4.21) and (4.12) respectively, and if

Tn+1 :=


tn+1
0

tn0 t1
...

tn+1
1

 , (4.22)

then rk(An) ≤ r if and only if the system Mn+1 · Tn+1 = 0 admits at least n− r + 1 solutions in P1,
counted with multiplicity.

Proof. For the easiest implication (“⇐”) we will show that solving the system

Mn+1 · Tn+1 = 0 (4.23)

is equivalent to solve
An · Tn = 0 (4.24)

then, since Mn+1 · Tn+1 = 0 admits n + 1− r solutions if and only if the polynomials appearing in
Mn+1 ·Tn+1 have a degree n + 1− r common factor, then also the entries of An ·Tn have a common
factor of the same degree, and this implies that rk(An) = r.

Let Mn+1(i) and An(i) be the i-th rows of Mn+1 and An respectively. The first row of the system
(4.23) can be written as [0, An(1)] ·Tn+1 = 0 where [0, An(1)] is a row whose first element is zero and

the others are the same of An(1). Now [0, An(1)] · Tn+1 = 0 is equivalent to [0, An(1)] ·


0

tn0 t1
...

tn+1
1

 = 0
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that is clearly equivalent to t1An(1) · Tn = 0. This meas that, if t1 6= 0, then Mn+1(1) · Tn+1 = 0 iff
An(1) · Tn = 0.
For i > 1 we will show that(

[An(i−1), 0] + Mn+1(i)

)
· Tn+1 = [0, An(i)] · Tn+1

from which Mn+1(i) · Tn+1 = 0 if and only if An(i) · Tn = 0 that will give the first implication.
Let ai,j, a′i,j and mi,j be the j-th elements of An(i), [An(i), 0] and Mn+1(i) respectively. Now we need
only to make an easy calculation to prove that

a′i−1,j + mi,j =

{
0, if j = 1;
ai,j−1, if j > 1;

where (ai,j)1≤i,j≤n+1 = An:

if j = 1 : a′i−1,1 + mi,1 = ai−1,1 + mi,1 = p0,i−1 − p0,i−1 = 0;
if 1 < j < i : a′i−1,j + mi,j = ai−1,j + mi,j = pj−1,i−1 + ai,j−1 − pj−1,i−1 = ai,j−1;
if j = i : a′i−1,j + mi,j = ai−1,i + mi,i = ai−1,i + 0 = ai,i−1 = ai,j−1;
if i < j < n + 2 : a′i−1,j + mi,j = ai−1,j + mi,j = ai−1,j + pi−1,j−1 = ai,j−1;
if j = n + 2 : a′i−1,j + mi,j = 0 + mi,j = pi−1,n+1 = ai,n+1.

The other implication (“rk(An) = r ⇒ Mn+1 · Tn+1 = 0 admits n − r + 1 solutions”) is more
computational.

First we observe that if i ≤ j, then:

ai,j =

min{i−1,n−j+1}∑
k=0

mi−k,j+k+1.

Moreover, since rk(Mn+1) = 2 and Mn+1 is a skew symmetric matrix, there exist α0, . . . , αn+1 and
β0, . . . , βn+1 ∈ K such that

Mn+1 =

 α0 β0
...

...
αn+1 βn+1

( 0 1
−1 0

)(
α0 · · · αn+1

β0 · · · βn+1

)
.

Therefore ai,j = αi−1βj−αjβi−1+ai−1,j+1 =
∑min{i,n−(j−1)}

k=1 αi−kβj+k−1−
∑min{i,n−(j−1)}

k=1 αj+(k−1)βi−k

if i ≤ j.
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Let us define the following matrices:

Er :=



α0 · · · αr αr+1 · · · αn+1 0 · · · 0

0
. . .

...
...

. . . . . .
...

...
. . . . . .

...
...

. . . 0
0 · · · 0 α0 α1 · · · · · · · · · · · · αn+1

β0 · · · βr βr+1 · · · βn+1 0 · · · 0

0
. . .

...
...

. . . . . .
...

...
. . . . . .

...
...

. . . 0
0 · · · 0 β0 β1 · · · · · · · · · · · · βn+1


∈M2r+2,r+n+2(K),

Hr :=



0 · · · 0 1
0 1 0

... 0 1 0

0 −1 0
...

0 −1 0
−1 0 · · · 0


∈M2r+2(K).

One can observe (we omit the computations because they are too tedious) that the product ET
r HrEr

(which we write by blocks) is the sum of the following (n + r + 2)× (n + r + 2) matrices:

ET
r HrEr =

 0 0

−An 0

+

 0 An

0 0

 .

Now, since the rank of An is at most r by hypothesis, the rank of ET
r HrEr has to be at most 2r;

this fact is equivalent to “rk(ET
r HrEr) ≤ 2r + 1” because ET

r HrEr is skew symmetric, then also
rk(Er) ≤ 2r + 1. This last condition is equivalent, by Lemma 4.4.6, to say that a := α0t

n+1
0 +

α1t
n
0 t1 + · · ·+ αn+1t

n+1
1 ∈ K[t0, t1]n+1 and b := β0t

n+1
0 + β1t

n
0 t1 + · · ·+ βn+1t

n+1
1 ∈ K[t0, t1]n+1 have

a common factor of degree n− r + 1.

By last Remark in Section 4.1 we know that Split2(Pn) = Sec1(ν2(Pn)), then Proposition 4.4.7
cas be rephrased as

“The intersection between the Grassmannian G(n−1, n+1) and Sec1(ν2(Pn)) in Pn2+3n
2

is the locus {Λ ∈ G(n− 1, n + 1) | length{Λ ∩ ηn+1(νn+1(P1))} ≥ n− 1}. ”

We can now generalize Proposition 4.4.7 to Secr−1(ν2(Pn)).
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Proposition 4.4.9. The intersection between the Grassmannian G(n − 1, n + 1) and the variety
Secr−1(ν2(Pn)) (which corresponds to the locus Qr := {A ∈Mn+1(K) s.t. A is symmetric and rk(A) ≤
r}) corresponds to the set of all (n − 1)-spaces of Pn+1 that are (n − r + 1)-secant to the rational
normal curve νn+1(P1) embedded into G(n− 1, n + 1) via the map ηn+1 defined in (4.14).

Proof. Let us identify only for this proof, with an abuse of notation, an element of G(n− 1, n + 1)
with a skew symmetric (n+1)× (n+1) matrix Mn+1 defined in (4.12). By the previous lemma, the
locus {A ∈Mn+1(K) | rk(A) ≤ r and A = AT} corresponds to the subset of G(n− 1, n + 1) of the
skew symmetric (n+ 1)× (n+ 1) matrices Mn+1 such that the system Mn+1 ·Tn+1 = 0, where Tn+1

is defined in (4.22), admits at most n− r + 1 solutions. Such an Mn+1 describes an (n− 1)-space
of Pn+1 that is (n− r + 1)- secant to the embedding of νn+1(P1) into G(n− 1, n + 1) via ηn+1.

Corollary 4.4.10. The intersection between Secs−1(Split2(Pn)) and G(n−1, n+1) is set-theoretically
the locus {Λ ∈ G(n− 1, n + 1) | Λ is (n− 2s + 1)− secant to ηn+1(νn+1(P1))}.

Proof. This is a consequence of the previous proposition and of the observation that, since Split2(Pn) =
{A ∈Mn+1(K) s.t. A is symmetric and rk(A) = 2} and the elements of Split2(Pn) are of the form
[L1 · L2] with L1, L2 ∈ S1, then Secs−1(Split2(Pn)) = {[L1L2 + · · · + L2s−1L2s] ∈ P(S2) | Li ∈
S1 for i = 1, . . . , 2s} is the set of all symmetric matrices of Mn+1(K) of rank at most 2s.

4.4.1 A conjecture

Conjecture 4.4.11. The intersection between Splitd(Pn) and G(n − 1, n + d − 1) is the locus
{Λ ∈ G(n− 1, n + d− 1) | length{Λ ∩ ηn+d−1(νn+d−1(P1))} ≥ n− 1}.

As we have seen, the conjecture is proved for d = 2.
In the case of d = 3 we have computed with [Macaulay] the example of n = 2 and it turns out
that in fact:

G(1, 4) ∩ Split3(P2) = {l ∈ G(1, 4) | length{l ∩ η4(ν4(P1))} ≥ 1}.

We will only give a hint that suggests at least one inclusion (see Proposition 4.4.14).
The embedding µd defined in (4.13) can be generalized to the domain K[x0, . . . , xn]d. With

this generalization there can exist degree d forms, different from d-th power of linear forms, whose
image via µd are elements of G(n− 1, n + d− 1).

Proposition 4.4.12. Let L1, L2 be two linear forms of S1 = K[x0, . . . , xn]1. If there exists M ∈
K[L1, L2]3 such that µ3(M) ∈ G(n − 1, n − 2) then µ3(K[L1, L2]3) is completely contained in
G(n− 1, n + 2).
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Proof. Consider the cubic C = (αL1 + βL2)
3 ∈ K[L1, L2]3. Since it is the third power of a

linear form αL1 + βL2 ∈ K[x0, . . . , xn]1, C can be interpreted as an element of ν3(Pn), then
µ3(C) ∈ G(n−1, n+2) for all α, β ∈ K. Therefore the image of the whole twisted cubic µ3(ν3(P1)) =
µ3((αL1 + βL2)

3) ∈ µ3(K[L1, L2]3) for α, β ∈ K is contained in G(n − 1, n + 2). Hence we have
that both µ3(M) and the image of the twisted cubic µ3(ν3(P1)) are in G(n − 1, n + 2), then it is
possible to find a line completely contained in G(n−1, n+2) passing through µ3(M) and bi-secant
to µ3(ν3(P1)). But the Grassmannian is generated by quadrics, then the span of µ3(ν3(P1)) is
completely contained in G(n− 1, n + 2); i.e. µ3(K[L1, L2]3) ⊂ G(n− 1, n + 2).

Lemma 4.4.13. Let A, B ∈ µd(νd(Pn)). If there exists a point C ∈ µd(Sec1(νd(Pn)))∩G(n−1, n+
d− 1) such that C ∈< A, B > rµd(νd(Pn)), then < A, B >⊂ G(n− 1, n + d− 1).

Proof. The set of the three points {A, B, C} is contained in the intersection < A, B > ∩G(n−1, n+
d− 1). Since the Grassmannian is an intersection of quadrics, it cannot exist a point D ∈< A, B >
but D /∈ G(n− 1, n + d− 1) then < A, B >⊂ G(n− 1, n + d− 1).

Proposition 4.4.14. The intersection between µd(Sec1(νd(Pn))) and G(n−1, n+d−1) is contained
in {Λ ∈ G(n− 1, n + d− 1) | length{Λ ∩ ηn+d−1(νn+d−1(P1))} ≥ n− 1}.

Proof. Let us take a point A ∈ µd(Sec1(νd(Pn)) ∩ G(n − 1, n + d − 1)) r νd(Pn), then there exist
π1, π2 ∈ νd(Pn) such that A ∈ µd(< π1, π2 >). Since µd(νd(Pn)) is the locus of the (n − 1)-spaces
of Pn+d−1 that are n-secant to ηn+d−1(νn+d−1(P1)), there exist P1, . . . , Pn, Q1, . . . , Qn ∈ νn+d−1(P1)
such that µd(π1) = ηn+d−1(< P1, . . . , Pn >) and µd(π2) = ηn+d−1(< Q1, . . . , Qn >). Therefore
µd(< π1, π2 >) ⊂ µd(Sec1(νd(Pn))) ⊂ Splitd(Pn). By the Lemma 4.4.13 µd(< π1, π2 >) ⊂ G(n −
1, n + d − 1). The image of the span µd(< π1, π2 >) parameterizes a pencil of (n − 1)-spaces
contained in Pn ⊂ Pn+d−1 and containing a Pn−2. Then P1, . . . , Pn, Q1, . . . , Qn lie on a Pn instead
of being generic in < νn+d−1(P1) >= Pn+d−1, hence ]{P1, . . . , Pn, Q1, . . . , Qn} = n + 1.
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Chapter 5

Secant varieties of Segre Varieties

In this chapter we finally present the study of the last problem mentioned in the section 2.6.1. This
section is of an expository nature; here we will describe two different methods of approaching the
study of secant varieties to Segre varieties. The first one is finalized to the study of their dimensions,
the second one presents an algorithm to compute their ideals, in particular it will allow to prove
the Garcia, Stillman, Strumfeld conjecture (see [GSS]) on the generation of the ideal of the first
secant variety to the Segre variety with three factors: Sec1(Seg(P(A1) ⊗ P(A2) ⊗ P(A3))), where
A1, A2, A3 are three vector spaces.

5.1 Inverse System for Segre Varieties

In this first section we want to present how the Apolarity method was used in [CGG1] and [CGG3]
in order to study the dimension of the secant varieties to Segre varieties.

We study the embedding of Pn1 × · · · × Pnk into PN , with N = Πk
i=1(1 + ni) − 1, given by the

following embedding:

Pn1 × · · · × Pnk → PN

(x1,0, . . . , x1,n1 ; . . . ; xk,0, . . . xk,nk
) 7→ (x1,0 · · ·xk,0, . . . , x1,i1 · · ·xk,ik , . . . , x1,n1 · · ·xk,nk

)

where ij ∈ {0, . . . , nj}, j = 1, . . . , k, and {xi,0, . . . , xi,ni
} are homogeneous coordinates in Pni .

Another way of viewing the Segre variety is as the variety which parameterizes completely
decomposable tensors.

Definition 5.1.1. Let A1, . . . , Ak be vector spaces; a tensor T ∈ A1 ⊗ · · · ⊗ Ak is said to be
decomposable if there exist vectors vi ∈ Ai for i = 1, . . . , k such that T = v1 ⊗ · · · ⊗ vk.
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If A1, . . . , Ak are of dimension n1 +1, . . . , nk +1 respectively, and we set {xi,0, . . . , xi,ni
} as basis

of Ai, then any T ∈ A1 ⊗ · · · ⊗ Ak can be written as

T =
∑

0≤ji≤ni; 1≤i≤t

αj1,...,jtx1,j1 ⊗ · · · ⊗ xk,jk
.

Definition 5.1.2. The Tensor Rank of T ∈ A1 ⊗ · · · ⊗ Ak is the minimal s such that T is a sum
of s decomposable tensors.

Observe that the tensor rank of every vector in A1⊗· · ·⊗Ak is at most Πk−1
i=1 (ni +1). Moreover

for any T ∈ A1 ⊗ · · · ⊗Ak and any scalar λ 6= 0, both T and λT have the same tensor rank. Thus
it makes sense to speak of the tensor rank of an element in P(A1 ⊗ · · · ⊗ Ak).

If T ∈ A1 ⊗ · · · ⊗ Ak, then T corresponds to a multi-linear form

A∗
1 × · · · × A∗

k → K.

Then a tensor T is completely described by its values on k-uples of basis vector {x∗0,i, . . . , x
∗
i,ni
}:

T (x∗1,j1
, . . . , x∗k,jk

) = αj1,...,jk
.

Let Sj := K[xj,0, . . . , xj,nj
] for j = 1, . . . , k, and S := K[x1,0, . . . , x1,n1 ; . . . ; xk,0, . . . , xk,nk

].
Consider the usual identifications A∗

i = Si
1 and A∗

1 ⊗ · · · ⊗A∗
k = S1 where 1 = (1, . . . , 1). With this

point of view, we can describe the Segre variety as the image of the embedding

(Pn1)∗ × · · · × (Pnk)∗ ' P(S1
1)× · · · × P(Sk

1 ) → P(S1)
([L1], . . . , [Lk]) 7→ [L1 ⊗ · · · ⊗ Lk]

.

The image of this map is the classical Segre Variety Seg(Pn1 × · · · × Pnk) and it is clear that it
parameterizes decomposable tensors in A1 ⊗ · · · ⊗ Ak.

So the problem of finding the tensor rank s for a generic tensor T ∈ A1⊗ · · · ⊗Ak is equivalent
to find the minimum integer s such that the (s−1)-secant variety to the Segre variety Seg(P(A1)×
· · · × P(Ak)) fills up PN .

The idea of the method used in [CGG1] and [CGG3] is to use Terracini’s Lemma (see Lemma
2.6.1) in order to translate the problem of determining the dimension of secant varieties into the
one of determining the value of the Hilbert function of generic sets of 2-fat points in Pn1×· · ·×Pnk .

Terracini’s Lemma translates the problem from the study of Secs−1(Seg(P(A1)×· · ·×P(Ak))) to
the study of the vector space T1,...,s :=< TP1(Seg(P(A1)× · · ·×P(Ak))), . . . , TPs(Seg(P(A1)× · · ·×
P(Ak))) > where TPi

(Seg(P(A1)× · · · × P(Ak))) is the tangent space to Seg(P(A1)× · · · × P(Ak))
at a generic point Pi ∈ Seg(P(A1)× · · · × P(Ak)) for i = 1, . . . , s.
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The Corollary 2.6.2 allows to translate again the problem into the study of a projective scheme of
s generic 2 fat points in Seg(P(A1)× · · · × P(Ak)). If we apply that corollary to the Segre Variety
we find that

dim(Secs−1(Seg(P(A1)× · · · × P(Ak)))) = N − dim(H0(Pn1 × · · · × Pnk ,OPn1×···×Pnk (1, . . . , 1))).

If Z is a sub-scheme of s generic 2 fat points in X = Pn1 × · · · × Pnk , then the Hilbert function
H(Z, j), with j ∈ Nk, is

H(Z, j) = dim(Sj)− dim(H0(X, IZ(j))).

In particular the typical rank of the Segre variety Seg(P(A1) × · · · × P(Ak)) is the smallest s for
which there are no (1, . . . , 1)-forms in the ideal of s generic 2-fat points in Pn1 × · · · × Pnk .

It is classically known that the tangent space TP (Seg(P(A1) × · · · × P(Ak))) at a point P '
L1 ⊗ · · · ⊗ Lk ∈ Seg(P(A1)× · · · × P(Ak)) is isomorphic to:{

k∑
j=1

L1 · · ·Lj−1MjLj+1 · · ·Lk |Mj ∈ Rj
1, j = 1, . . . , k

}
⊂ S1.

Let W1 be the affine cone over the tangent space TP (Seg(P(A1)×· · ·×P(Ak))) ⊂ S1. It is not re-
strictive to suppose that Li = xi,0 for i = 1, . . . , k. Hence, consider in R := K[y1,0, . . . , y1,n1 ; . . . ; yk,0, . . . , yk,nk

]
the ideal:

℘2 = (y1,1, y1,2, . . . , y1,n1 ; . . . ; yk,1, yk,2, . . . , yk,nk
)2. (5.1)

Its inverse system is such that (℘2)−1
1 = W1.

Notice that ℘2 is the ideal of a 2-fat point in Pn1 × · · · × Pnk .
The ideal I ⊂ R1 such that (I−1)1 is equal to the affine cone over T1,...,s is

I = (℘2
1 ∩ · · · ∩ ℘2

s),

where each ℘2
i ⊂ R1 is defined as an ideal of the form (5.1) with support on a point Pi, and

P1, . . . , Ps are generic points.
Thus, if Z is the projective scheme defined by the ideal I, then

dim(T1,...,s) = H(Z, (1, . . . , 1)). (5.2)

The methods used in [CGG1] and in [CGG3] are slightly different.
In order to present the main result in [CGG1] we need some notation.

Notation:
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• A coordinate point of Pn1 × · · · × Pnk is a point Pr = (Pr1 , . . . , Prk
) where Prj

is the rj-th
coordinate point of Pnj .

• Given r1 = (r1,1, . . . , r1,k) and r2 = (r2,1, . . . , r2,k) in J := {r = (r1, . . . , rk) | 0 ≤ ri ≤ ni}, we
say that the Hamming distance between r1 and r2 is l if (r1,1− r2,1, . . . , r1,k− r2,k) has exactly
l non-zero entries.

A result in [CGG1] gives a translation of this problem in terms of code theory:

Theorem 5.1.3. Let Pr1
, . . . , Prs

be a set of coordinate points in Pn1 × · · · × Pnk . Let ℘i be the
ideal of Pri

and let Z be the scheme defined by ℘2
1 ∩ · · · ∩ ℘2

s. Then

H(Z, 1) = |{r ∈ J | r has Hamming distance ≤ 1 from at least one of r1, . . . , rs}|.

This theorem allows the authors to get some result: especially in the monomial case.
In [CGG3] the authors present another technique to compute (5.2). That paper examines

a more general problem: it studies the secant varieties of the so called Segre-Veronese varieties
that are the embedding of Pn1 × · · · × Pnk into PN given by L = OPn1×···×Pnk (a1, . . . , ak) where
ai ∈ N. It is clear that the Segre variety is the particular case of the Segre-Veronese where
(a1, . . . , ak) = (1, . . . , 1).

Let n = n1 + · · ·+ nk and consider the birational map:

g : Pn1 × · · · × Pnk 99K An

((x1,0, . . . , x1,n1), . . . , (xk,1, . . . , xk,nk
)) 7→

(
x1,1

x1,0
, . . . ,

x1,n1

x1,0
; . . . ;

xk,1

xk,0
, . . . ,

xk,nk

xk,0

)
which is defined in the open subset of Pn1 × · · · × Pnk given by {x1,0, . . . , xk,0 6= 0}.

Consider K[z0, z1,1, . . . , z1,n1 , z2,1, . . . , z2,n2 , . . . , zk,1, . . . , zk,nk
] as the coordinate ring of Pn and

the embedding ϕ : An → Pn whose image is the chart An
0 = {z0 = 1}. By composing ϕ ◦ g we get:

f : Pn1 × · · · × Pnk 99K Pn

((x1,0, . . . , x1,n1), . . . , (xk,1, . . . , xk,nk
)) 7→

(
1, x1,1

x1,0
, . . . ,

x1,n1

x1,0
; . . . ;

xk,1

xk,0
, . . . ,

xk,nk

xk,0

)
=

= (x1,0 · · ·xk,0, x1,1x2,0 · · ·xk,0, . . . , x1,0 · · ·xk−1,0xk,nk
).

Let Z ⊂ Pn1 × · · · × Pnk be a zero dimensional scheme which is contained in the affine chart
{x1,0 · · ·xk,0 6= 0} and let Z ′ = f(Z). We can construct now a scheme W ⊂ Pn such that H(W, a) =
H(Z, (a1, . . . ak)) where a = a1 + · · ·+ ak.

Let Q0, Q1,1, . . . , Q1,n1 , . . . , Qk,1, . . . , Qk,nk
be the coordinate points of Pn, then consider the

hyperplanes Πi ' Pni−1, with Πi =< Qi,1, . . . , Qi,ni
>; let Wi be the scheme given by (a − ai)Πi,

i.e. the scheme defined by the ideal (IΠi
)a−ai . Notice that Wi ∩Wj = ∅ for i 6= j.
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Theorem of [CGG3] that allows to translate the problem of the study of the Hilbert function of
a projective scheme in Pn1 × · · · ×Pnk into the study of the Hilbert function of a projective scheme
in Pn is the following:

Theorem 5.1.4. Let Z and Z ′ be as above, let W = Z ′ ∪W1 ∪ · · · ∪Wk ⊂ Pn, then

dim(IW )a = dim(IZ)(a1,...,ak)

where a = a1 + · · ·+ ak.

Corollary 5.1.5. Let Z ⊂ Pn1 × · · · × Pnk be a generic set of s 2-fat points, let W ⊂ Pn be as in
Theorem 5.1.4, then

dim(Secs−1(Seg(Pn1 × · · · × Pnk))) = H(Z, (a1, . . . , ak))− 1 = N − dim(IW )a.

Then the authors use the “Lemme d’Horace différentiel” (see [AH]) to do computations in many
cases.

What we have seen here are methods to compute the dimension of the (s− 1)-secant variety to
the Segre variety; in the next section we will see a method to determine the generators of the ideal
of the secant variety to the Segre variety.

5.2 Representations of Finite Groups

In this section we present an introduction about the Representation Theory of Finite Groups in
order to present the method used in [LM1] to compute the ideals of the secant varieties of Segre
varieties. Moreover they have proved that the ideal of Sec1(Seg(P(A1)⊗P(A2)⊗P(A3))) is generated
in degree 3 (this is, for the case of three factors, the Garcia, Stillman, Strumfeld conjecture: see
[GSS]).

This introductive section follows the exposition of [FHar].

5.2.1 Preliminary Definitions

Definition 5.2.1. A Representation of a finite group G on a finite-dimensional complex vector
space V is an homomorphism

ρ : G→ GL(V )

on the group of automorphisms of V .
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This map gives V a structure of a G-module on V . In the language of Representation Theory
the G-module V , equipped with the homomorphism ρ, is called a representation of G.

Definition 5.2.2. A map ϕ between two representations V and W of G is a vector space map
ϕ : V → W such that the following diagram commutes for every g ∈ G:

V
ϕ→ W

g ↓ ↓ g

V
ϕ→ W

.

Such a map is called a G-linear map between V and W .

Definition 5.2.3. A Subrepresentation of a representation V is a vector subspace W ⊂ V which
is invariant under G.

Definition 5.2.4. A representation is called Irreducible if there is no proper nonzero invariant
subspace W of V .

Proposition 5.2.5. If V and W are representations of G, then also V ⊕ W , V ⊗ W , V ⊗m,
Symm(V ),

∧m(V ), V ∗ = Hom(V,C) and Hom(V, W ) are representations of G.

Proof. The representation V ⊗W is induced by g(v ⊗ w) = gv ⊗ gw.
The only one that is not obtained in an obvious way is V ∗. If ρ : G → GL(V ) is a representation
then ρ∗ : G→ GL(V ∗) must satisfy the following relation for all g ∈ G, v ∈ V and w∗ ∈ V ∗:

< ρ∗(g)(w∗), ρ(g)(v) >=< w∗, v >

where < , > is the natural pairing between V ∗ and V . This forces us to define the dual represen-
tation by

ρ∗(g) = tρ(g−1) : V ∗ → V ∗

for all g ∈ G; the meaning of tρ(g−1) is given by the following:

< ρ∗(g)(w∗), v >=< w∗, ρ(g−1)(v) > .

Now, since Hom(V, W ) ' V ∗ ⊗W , we have

(gϕ)(v) = g[ϕ(g−1v)]
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for all ϕ ∈ Hom(V, W ) and v ∈ V . In other words the following diagram has to commute:

V
ϕ→ W

g ↓ ↓ g

V
gϕ→ W

.

Definition 5.2.6. If X is any finite set and G acts on the left on X, i.e. G → Aut(X) is an
homomorphism to the permutation group of X, there is an associated Permutation Representation:
let V be a vector space with basis {ex : x ∈ X}, then G acts on V by

g ·
∑

axex =
∑

axegx.

The Regular Representation RG corresponds to the left action of G on itself, i.e. it is the space of
complex-valued functions on G, where an element g ∈ G acts on a function α by (gα)(h) = α(g−1h).

5.2.2 Schur’s Lemma

Definition 5.2.7. A representation is said to be Indecomposable if it cannot be expressed as a direct
sum of other representations.

Proposition 5.2.8. If W is a subrepresentation of a representation V of a finite group G, then
there is a complementary invariant subspace W ′ of V , so that V = W ⊕W ′.

Proof. Let U be a complementary subspace of W in V and π0 : V → W be the projection given by
the direct sum decomposition V = W⊕U . Let π : V → W be defined by π(v) =

∑
g∈G g(π0(g

−1v)).
This is a G-linear map from V onto W and it is the multiplication by |G| on W ; its kernel will be
a subspace of V invariant under G and complementary to W .

Corollary 5.2.9. Any representation of a finite group is a direct sum of irreducible representations.

This property is called “Complete Reducibility” or “Semisimplicity”, but we will see it better
in Definition 5.5.6.

We are now ready to state Schur’s Lemma:

Lemma 5.2.10. (Schur) If V and W are irreducible representations of a finite group G and
ϕ : V → W is a G-module homomorphism, then
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1. either ϕ is an isomorphism, or ϕ = 0;

2. if V = W , then ϕ = λ · I for some λ ∈ C, where I is the identity map.

Proof. The first claim is a consequence of the fact that Ker(ϕ) and Im(ϕ) are invariant subspaces.
For the second one it is sufficient to observe that there exists a λ ∈ C such that ϕ − λI has a
nonzero kernel and apply the first claim from which ϕ as to be equal to λI.

One of the most important consequences of this theorem is the following proposition (when we
will quote Schur’s Lemma we will usually be referring to this proposition).

Proposition 5.2.11. For any representation V of a finite group G, there is a decomposition

V = V ⊕a1
1 ⊕ · · · ⊕ V ⊕ak

k ,

where the Vi are distinct irreducible representations. This decomposition of V is unique, as are the
Vi that occur and their multiplicities ai.

Proof. If W is another representation of G with decomposition W = ⊕W
bj

j , and ϕ : V → W is

a map of representations, then ϕ must map the summand V ⊕ai
i into a summand W

⊕bj

j for which
Wj ' Vi; when applied to the identity map of V to V , the stated uniqueness follows.

A consequence of character theory (that we have not used yet but that we will introduce in
Section 5.6) is the following:

Proposition 5.2.12. Any irreducible representation V of G appears in the Regular Representation
dim(V ) times.

5.3 The Group Algebra

The group algebra CG associated to a finite group G that we are going to define can completely
replace the group G itself when we consider representations of G, since any proposition we can
formulate about representations of G has an exactly equivalent statement in terms of its group
algebra.

The underlying vector space of the group algebra of G is a vector space with basis {eg | g ∈ G},
i.e. the underlying vector space of the Regular Representation.

The algebra structure on that space is defined as follows:

eg · eh = egh.
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A representation of the algebra CG on a vector space V is just an algebra homomorphism:

CG→ End(V )

so that a representation V of CG is a left CG-module.
Observe that a representation ρ : G→ Aut(V ) will extend by linearity to a map

ρ̃ : CG→ End(V ) (5.3)

so that representations of CG correspond to representations of G; the left CG-module given by CG
itself corresponds to the regular representation.

By applying this linear extension to any Wi appearing in the irreducible decomposition of the
regular representation of G:

R =
⊕

(Wi)
⊕dim(Wi),

we get a canonical map

ϕ : CG→
⊕

End(Wi)

that is injective since the representation is faithful. Now dim(CG) =
∑

(dimWi)
2 = dim(

⊕
End(Wi))

then
CG '

⊕
End(Wi).

5.4 Symmetric group and its Representations

5.4.1 Definitions

Definition 5.4.1. A Permutation Group is a finite group G whose elements are permutations of
a given set and whose group operation is composition of permutations in G.

Definition 5.4.2. The Symmetric Group Sm of degree m is the group of all permutations on m
symbols.

The group Sm is therefore a permutation group of order m! and it contains as subgroups every
group of order m. The number of conjugacy classes of Sm is given by the partition function p(m)
which gives the number of ways of writing the integer m as a sum of positive integers, where the
order of addends is not considered significant and it is obtained from the following formula:

∞∑
m=0

p(m)tm =
∞∏

n=1

(
1

1 + tn

)
= (1 + t + t2 + · · · )(1 + t2 + t4 + · · · )(1 + t3 + · · · ). (5.4)
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5.4.2 Young tableaux

The conjugacy classes of Sm correspond to the partitions of m. If λ = (λ1 . . . λk) is a partition of
m (i.e. m = λ1 + · · · + λk and λ1 ≥ · · · ≥ λk) then the corresponding conjugacy class is made by
disjoint cycles of length λ1, . . . , λk.

Example: m = 3

partitions of 3 conjugacy classes of S3

111 ↔ (1)
21 ↔ (12)
3 ↔ (123)

m = 4

partitions of 4 conjugacy classes of S4

1111 ↔ (1)
211 ↔ (12)
31 ↔ (123)
4 ↔ (1234)
22 ↔ (12)(34)

The number of irreducible representations of Sm is the number p(m), defined in (5.4), of conjugacy
classes which is the number of partitions of m. Therefore we can give a one to one correspondence
between partitions of m and representations of Sm.
In order to do that, we introduce Young diagrams and Young tableau. To a partition λ = (λ1 . . . λk)
is associated a Young diagram such that the number of boxes in its j-th row is exactly λj; for
example: if m = 9, the Young diagram associated to the partition (3321) is the following:

λ1

λ2

λ3

λ4

Now a Young tableau is obtained by numbering the boxes of the corresponding Young diagram
from 1 to m starting from left top to the right bottom; for example the previous Young diagram
becomes the following Young tableau Y(3321):

1 2 3
4 5 6
7 8
9
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Therefore for every partition λ = (λ1 . . . λk) of m there is a well defined Young tableau Yλ. Then
for every λ we can define two subgroups of the symmetric group:

Pλ := {g ∈ Sm | g preservs each row of Yλ},
Qλ := {g ∈ Sm | g preservs each column of Yλ}.

In correspondence of those subgroups we define the following two elements of the group algebra
CSm:

aλ :=
∑

g∈Pλ
eg,

bλ =
∑

g∈Qλ
sgn(g)eg,

then we can define the so called “Young symmetrizer”:

cλ = aλ · bλ ∈ CSm.

Theorem 5.4.3. For all partitions λ of m ∈ N there exists some scalar multiple of the Young
symmetrizer cλ which is idempotent, i.e., c2

λ = nλcλ, and the image of cλ (by right multiplication
on CSm) is an irreducible representation Vλ of Sm. Every irreducible representation of Sm can be
obtained in this way for a unique partition.

For the proof see [FHar].

This theorem allows us to write the one to one correspondence between partitions λ = (λ1 . . . λk)
and irreducible representations of Sm as follows:

λ←→ Vλ := CSm · cλ (5.5)

where Vλ is the Sm-module corresponding to the partition λ.

Example: Consider the case m = 3. Then

a(111) = eId, b(111) =
∑

g∈S3
sgn(g)eg,

a(21) = e(12) + eId, b(21) = −e(13) + eId,
a3 =

∑
g∈S3

eg, b3 = eId;

c(111) = b(111),
c(21) = (e(12) + eId) · (eId − e(13)) = 1 + e(12) − e(13) − e(12)e(13) = 1 + e(12) − e(13) − e132,
c3 = a3.

The previous theorem allows us to write all the possible irreducible representations of S3:
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1. V(111) = CS3 ·
∑

g∈S3
sgn(g)eg = C ·

∑
g∈S3

sgn(g)eg that is the Alternating representation;

2. V3 = CS3 ·
∑

g∈S3
eg = C ·

∑
g∈S3

eg that is the Trivial representation;

3. V(21) = CS3 ·(1+e(12)−e(13)−e(132)) =< c(21), (13)·c(21) > that is the Standard representation.

In general, for any vector space V , we can define an action of Sm on V ⊗m (by permuting factors)
such that the image of aλ through the map ρ̃ : CSm → End(V ⊗m), where ρ̃ is defined as in (5.3),
is the subspace

ρ̃(aλ) = Symλ1V ⊗ · · · ⊗ SymλkV

which we can view as a subspace of V ⊗m by grouping factors according to the rows of the Young
tableau Yλ. In the same way we can see that

ρ̃(bλ) = ∧µ1V ⊗ · · · ⊗ ∧µkV ⊂ V ⊗m

where µ is the conjugate partition to λ.
From those simple observations we get that what we have seen in case 1. and 2. of the previous
example is a general fact. If λ = (m), then c(m) = a(m) =

∑
g∈Sm

eg and the image of c(m) in V ⊗m

is SymmV . When λ = (1 . . . 1), then c(1...1) = b(1...1) =
∑

g∈Sm
sgn(g)eg , and the image of c(1...1) in

V ⊗m is
∧m V . Therefore Young diagrams of the trivial and alternating representations of Sm are

always of the following forms respectively:

and

each one with m boxes.
One can also prove that the standard representation corresponds to the partition m = (m− 1) + 1,
therefore its Young diagram is of the following form:

.

We are interested now in the image ρ̃(cλ) when λ is a generic partition.
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5.5 Decomposition of Symm(A1 ⊗ · · · ⊗ Ak) into irreducible

modules

5.5.1 Schur power

Definition 5.5.1. Let λ be a partition of the integer m and V a vector space. The λ-th Schur power,
denoted by SλV , of V is the image of cλ in V ⊗m via the composition of the maps ρ̃ : CSm → End(V )
defined in (5.3), and End(V )→ V ⊗m obtained by grouping factors:

Im(cλ|V ⊗m) := SλV = V ⊗m ⊗CSm Vλ = V ⊗m · cλ.

Three consequences of this definition are:

1. SλV = HomSm(Vλ, V
⊗m);

2. if λ = (m) then the m-th Schur power of V is

SmV = Symm(V )

because SmV = V ⊗m · c(m) = V ⊗m · am = Im(am) = Symm(V );

3. if λ = (1 . . . 1) then the (1 . . . 1)-th Schur power of V is S(1...1) =
∧m V .

The goal of this section is to prove the following result (see [LM1] Proposition 4.1):

Theorem 5.5.2. Let A1, . . . , Ak be vector spaces. Then

Symm(A1 ⊗ · · · ⊗ Ak) =
⊕

|π1|=···=|πk|=m

(Vπ1 ⊗ · · · ⊗ Vπk
)SmSπ1A1 ⊗ · · · ⊗ Sπk

Ak (5.6)

where π1, . . . , πk are partitions of m and (Vπ1 ⊗ · · · ⊗ Vπk
)Sm denotes the space of Sm-invariants in

the tensor product.

5.5.2 Schur duality

Consider the action ρm of GL(V ), the General Linear Group, on V ⊗m via the m-th tensor power
of its defining representation:

ρm(g)(v1 ⊗ · · · ⊗ vm) = gv1 ⊗ · · · ⊗ gvm (5.7)

181



Decomposition of Symm(A1 ⊗ · · · ⊗ Ak) into irreducible modules

for v1, . . . , vm ∈ V .
The symmetric group Sm also acts on the tensor space V ⊗m (by permuting factors):

σm(s)(v1 ⊗ · · · ⊗ vm) = vs−1(1) ⊗ · · · ⊗ vs−1(m),

the notation vs(i) denotes just a permutation of factors: the vector vi is sent to position s(i).
These two actions clearly commute, in fact:

σm(s)ρm(g) = ρm(g)σm(s)

for all s ∈ Sm and g ∈ GL(V ).

Definition 5.5.3. Let V be a finite dimensional vector space. For any subset S of End(V ), the
Commutator of S is:

Comm(S) := {x ∈ End(V ) : xs = sx ∀ s ∈ S}.

Remark: The commutator is an associative algebra.

Each one of the two actions of GL(V ) and of Sm on V ⊗m generates the centralizer of the other, in
fact any linear transformation on V ⊗m that commutes with σm(Sm) is a linear combination of the
transformation ρm(g) with g ∈ GL(V ). This is the so called Schur duality :

Theorem 5.5.4. If A = ρm(C[GL(V )]) and B = σm(C[Sm]). Then Comm(B) = A and Comm(A) =
B.

Now we need two definitions before we can state a more general result (see [Go1]).

Definition 5.5.5. An associative algebra A is called Simple if it contains no nontrivial ideals.

Definition 5.5.6. A finite dimensional associative algebra A with unit is said to be Semisimple if
it is the direct sum of simple algebras.

Proposition 5.5.7. If A ⊂ End(V ) is a semisimple algebra with IV ∈ A and irreducible decompo-
sition A '

⊕r
i=1 End(Ui), then

V '
r⊕

i=1

Ui ⊗Wi

where Wi = HomA (Ui, V ).
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Proof. The linear map wich turns out to be an A-module isomorphism is the following:

S :
⊕

i(Wi ⊗ Ui) → V∑
i wi ⊗ ui →

∑
i wi(ui)

.

Now we have all the ingredients to prove the following theorem:

Theorem 5.5.8. If V is an n-dimensional vector space which is a representation of Sm, then

V ⊗m '
⊕

|λ|=m Sλ(V )⊗C Vλ (5.8)

where Sλ(V ) is the λ-th Schur power of V defined in Definition 5.5.1.

Proof. First we have to observe that, if λ has more parts than m, then Sλ(V ) = 0.
By Schur’s Lemma (5.2.10), if Vλ is defined as in (5.5), then V '

∑
λ Vλ.

From the definition of Sλ(V ) one immediately gets that Sλ(V ) ' HomSm(Vλ, V
⊗m).

The actions of GL(V ) and of Sm commute on V ⊗m.
Now it is sufficient to apply Proposition 5.5.7 to V ⊗m in order to obtain what we wanted to
prove.

5.5.3 Decomposition of Symm(A1 ⊗ · · · ⊗ Ak)

We are finally ready to prove Theorem 5.5.2.

Proof. Let A1, . . . , Ak be vector spaces as in the statement. By definition of tensor power (A1 ⊗
· · · ⊗ Ak)

⊗m ' A⊗m
1 ⊗ · · · ⊗ A⊗m

k . Let us apply (5.8) that says that each A⊗m
i is isomorphic to⊕

|λ|=m Vλ ⊗ Sλ(Ai). Therefore

(A1 ⊗ · · · ⊗ Ak)
⊗m '

⊕
|π1|=···=|πk|=m

(Vπ1 ⊗ · · · ⊗ Vπk
)⊗ (Sπ1(A1)⊗ · · · ⊗ Sπk

(Ak)) (5.9)

where π1, . . . , πk are partitions of m.
Recall now that, if V is any finite dimensional vector space, the space Symm(V ) is, by definition,

the quotient of V ⊗m by the subspace

< {v1⊗· · ·⊗vm−vσ(1)⊗· · ·⊗vσ(m) | v1, . . . , vm ∈ V, σ permutes two successive factors} >, (5.10)
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and also that, even if the usual immersion i : Symm(V ) ↪→ V ⊗m is not canonical, i(Symm(V )) ⊂
V ⊗m is the space of invariants for the right action of Sm on V ⊗m.
Therefore we have that Symm(A1⊗· · ·⊗Ak) is just the quotient of (A1⊗· · ·⊗Ak)

⊗m by the space
(5.10) when V = A1 ⊗ · · · ⊗ Ak; and also that Symm(A1 ⊗ · · · ⊗ Ak) is the space of invariants for
the right action of Sm on (A1 ⊗ · · · ⊗ Ak).
Now by using last observation and formula (5.9) we get that

Symm(A1 ⊗ · · · ⊗ Ak) '
⊕

|π1|=···=|πk|=m

((Vπ1 ⊗ · · · ⊗ Vπk
)⊗ (Sπ1(A1)⊗ · · · ⊗ Sπk

(Ak)))
Sm .

The last step is to recall that Sλ(V ) = HomSm(Vλ, V
⊗m) = HomSm(Vλ, V

⊗m), then

Symm(A1 ⊗ · · · ⊗ Ak) '
⊕

|π1|=···=|πk|=m

(Vπ1 ⊗ · · · ⊗ Vπk
)Sm ⊗ (Sπ1(A1)⊗ · · · ⊗ Sπk

(Ak))

that is exactly what we wanted to prove!

5.6 Secant varieties of homogeneous varieties and their ide-

als

5.6.1 Some previous considerations

Let SmV ∗ be the set of homogeneous polynomials of degree m on V ∗.

Definition 5.6.1. If A ⊂ SmV ∗, the p-th prolongation of A is

A(p) := (A⊗ SpV ∗) ∩ Sp+mV ∗.

The meaning of the intersection above is not clear because a priori Sp+mV ∗ is not contained in
SpV ∗ ⊗ SmV ∗, so we need to explain what we actually mean.
If q ∈ Sp+mV ∗ we can write:

q(u + v) =

p+m∑
d=0

(
p + m

d

)∑
i

Rd,i(u)Qp+m−d,i(v) (5.11)

where Rd,i ∈ SpV ∗ and Qp+m−d,i ∈ SmV ∗ for all u, v ∈ V ∗. Hence we will consider Sp+mV ∗ ⊂
SpV ∗ ⊗ SmV ∗ via the following immersion:

Sp+mV ∗ ↪→ SpV ∗ ⊗ SmV ∗

q 7→
∑(

p+m
d

)
(Rd,i ⊗Qp+m−d,i)

.
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Example: Let V be a 2-dimensional vector space and m = p = 1. If u = (u1, u2), v = (v1, v2) ∈ V
and q = xy then q(u + v) = (u1 + v1)(u2 + v2) = u1u2 + u1v2 + u2v1 + v1v2 then for q = xy we can
have the following three images:

xy ⊗ 1 ∈ S2V ∗ ⊗ S0V ∗

↗
xy → 1

2
(x⊗ y + y ⊗ x) ∈ S1V ∗ ⊗ S1V ∗

↘
1⊗ xy ∈ S0V ∗ ⊗ S2V ∗

.

In the same way, if q = x2, the evaluation q(u + v) = u2
1 + u1v1 + v2

1, therefore

x2 ⊗ 1 ∈ S2V ∗ ⊗ S0V ∗

↗
x2 → x⊗ x ∈ S1V ∗ ⊗ S1V ∗

↘
1⊗ x2 ∈ S0V ∗ ⊗ S2V ∗

.

The same can be done for q = y2. Now, since {x2, xy, y2} is a base for S2V ∗ and we are interested
in its image into S1V ∗ ⊗ S1V ∗, we can write:

S2V ∗ → S1V ∗ ⊗ S1V ∗

x2 7→ x⊗ x
xy 7→ 1

2
(x⊗ y + y ⊗ x)

y2 7→ y ⊗ y

.

Now it should be more clear what (A⊗ SpV ∗) ∩ Sp+mV ∗ means.

Let now A ⊂ S2V ∗ and consider A(p−1) = (A⊗ Sp−1V ∗) ∩ Sp+1V ∗.

Example: If A = (x2) ⊂ (C[x, y])2 then A(p−1) is given by:

Sp+1V ∗ ↪→ S2V ∗ ⊗ Sp−1V ∗ → (S2V ∗ ⊗ Sp−1V ∗) ∩ (A⊗ Sp−1V ∗)
xp+1 7→ x2 ⊗ xp−1 7→ x2 ⊗ xp−1

xpy 7→ 1
2
(x2 ⊗ xp−2y + xy ⊗ xp−1) 7→ 1

2
x2 ⊗ xp−2y

xp−1y2 7→ 1
3
(x2 ⊗ xp−3y2 + xy ⊗ xp−2y + y2 ⊗ xp−2) 7→ 1

3
x2 ⊗ xp−3y2

...
...

...

In the same way the elements of A(p) are all of the form x2 ⊗ xp−iyi−1 with 0 ≤ i ≤ p.
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Remark: We can observe that A(p−1) =
{

∂q
∂v
| q ∈ A(p)

}
.

Moreover, if we define:
Base(A) := {[v] ∈ P(V ) | q(v) = 0 ∀q ∈ A}

we can also observe that A(p−1) = I(Base(A(p))Sing).

We can now state the following proposition (see [LM1], Lemma 3.1).

Proposition 5.6.2. Let A ⊂ S2V ∗ be a system of quadrics with base locus Base(A) ⊂ P(V ). Then

Base(Ak−1) ⊇ Seck−1(Base(A)).

Moreover if Base(A) is linearly non-degenerate, then for k ≥ 2, Ik(Seck−1(Base(A))) = 0 and if
A = I2(Base(A)), then Ik+1(Seck−1(Base(A))) = A(k−1).

The prove can be found in [LM2] (see Lemma 2.2). We give here a slightly different version.

Proof. First we give the proof for k = 2.
We denote with B the affine cone over Base(A). Let x, y ∈ B, s, t ∈ C and v = sx + ty ∈

Sec1(Base(A)).
For the inclusion A(1) ⊆ I3(Sec1(Base(A))) we need to prove that all q ∈ A(1) are zero on every

element v ∈ Sec1(Base(A)).
If q ∈ A(1) then deg(q) = 3.
The image of q(v) = q(sx + ty) ∈ S3V ∗ into (S2V ∗ ⊗ S1V ∗) ∩ (A⊗ S1V ∗) is

3∑
d=0

(
3

d

)∑
i

Rd,i(sx)Q3−d,i(ty) =
∑

i

t3Q3,i(y)+3st2R1,i(x)Q2,i(y)+3s2tR2,i(x)Q1,i(y)+s3R3,i(x) = 0

because Qj,i(y) and Rj,i(x) are zero if j ≥ 2 since q ∈ A(1) = (A⊗ S1V ∗) ∩ S3V ∗.
Now we want to prove that A(1) ⊃ I3(Sec1(Base(A))).

Consider q ∈ I3(Sec1(Base(A))), then

0 = q(sx + ty) =
3∑

j=0

(
3

j

)∑
i

Rj,i(sx)Q3−j,i(ty)

for all s, t ∈ C and for all x, y ∈ B. In particular q(x) = 0 and q(y) = 0 therefore R3,i(x) = 0
and Q3,i(y) = 0, hence q(sx + ty) =

∑2
j=1

(
3
j

)∑
i Rj,i(sx)Q3−j,i(ty) is equal to zero if and only if

Rj,i(sx)Q3−j,i(ty) = 0 for j = 1, 2 and for all s, t ∈ C and x, y ∈ B, in particular R2,i(x)Q1,i(ty) = 0
for all x, y ∈ B hence for all y ∈ V .
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Thus, for all y ∈ V , R2,i(·)Q1,i(y) is a quadric vanishing on Base(A), hence it belongs to A =
I2(Base(A)), that is equivalent to say that q ∈ A(1).

If k ≥ 2 the proof is not very different.
Consider q ∈ A(k−1) = (A⊗ Sk−1V ∗) ∩ Sk+1V ∗. We want to show that q(s1x1 + · · ·+ skxk) = 0

for s1, . . . , sk ∈ C and for all x1, . . . , xk ∈ B. The polynomial q(s1x1 + · · · + skxk) = 0 can be
decomposed as

k+1∑
j=0

(
k + 1

j

)∑
i

Rj,i(s1x1 + · · ·+ sk−1xk−1)Qk+1−j,i(skxk) (5.12)

that is equal to

k+1∑
j=0

(
k + 1

j

)∑
i

sk+1−j
k Rj,i(s1x1 + · · ·+ sk−1xk−1)Qk+1−j,i(xk).

Since q ∈ A(k−1), the polynomial Qk+1−j(xk) = 0 if k + 1− j ≥ 2, i.e. for all j ≤ k − 1. Therefore
q(s1x1 + · · ·+skxk) =

∑
i((k+1)s1Rk,i(s1x1 + · · ·+sk−1xk−1)Q1(xk)+Rk+1,i(s1x1 + · · ·+sk−1xk−1)).

Let us consider:
Rk,i(s1x1 + · · ·+ sk−1xk−1).

The study of Rk+1,i(s1x1 + · · · + sk−1xk−1) is similar to the study of q since they are polynomials
of the same degree.
The decomposition of Rk,i(s1x1 + · · ·+ sk−1xk−1) is

k∑
j=0

(
k

j

)∑
i

Rj,i(s1x1 + · · ·+ sk−2xk−2)Qk−j,i(sk−1xk−1)

that is equal to
k∑

j=0

(
k

j

)∑
i

sk−j
k−1Rj,i(s1x1 + · · ·+ sk−2xk−2)Qk−j,i(xk−1).

Now Qk−j,i(xk−1) = 0 for all j ≤ k − 2, then

Rk,i(s1x1+· · ·+sk−1xk−1) =
∑

i

(ksk−1Rk−1,i(s1x1+· · ·+sk−2xk−2)Q1,i(xk−1)+Rk,i(s1x1+· · ·+sk−2xk−2)).

We can continue in decomposing Rk−1,i(s1x1+· · ·+sk−2xk−2) and after it we will have to decompose
Rk−2,i(s1x1 + · · ·+ xk−3xk−3), and so on; we will arrive to

R3,i(s1x1 + s2x2) =
∑

i

(R2,i(s1x1)Q1,i(s2x2) + R3,i(s1x1))
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that is equal to
∑

i(s
2
1s2R2,i(x1)Q1,i(x2)+s3

1R3,i(x1) which is zero because q ∈ A(k−1), hence Rj,i(x) =
0 for all j ≥ 2.
Therefore

A(k−1) ⊂ Ik−1(Seck−1(Base(A))).

For the other inclusion we consider q ∈ Ik+1(Seck−1(Base(A))), then q(s1x1 + · · · + skxk) = 0
for s1, . . . , sk ∈ C and for all x1, . . . , xk ∈ B and it can be decomposed as in (5.12). Working as
before, via k − 1 decompositions we get at R2,i(x1)Q1,i(s2x2) = 0 for all x2 ∈ B and s2 ∈ C, hence
for all x2 ∈ V , therefore R2,i(·)Q1,i(x) is a quadric vanishing on Base(A).

Corollary 5.6.3. Let X ⊂ P(V ) be a variety with I(X) generated in degree d. Then for all k ≥ 0,
Id+k−2(Seck−1(X)) = 0.

5.6.2 Homogeneous varieties and highest weight vectors

At this point we need to do a digression on what an homogeneous variety is and how it is related
to the concept of highest weight vector.

Homogeneous spaces

The following description of Homogeneous spaces is from [GW] and we will refer to that book for
the proofs that we omit here.

Definition 5.6.4. A Quasiprojective Algebraic Set is a subset M ⊂ Pn defined by a finite set of
equalities and inequalities of the form:

fi(x) = 0, i = 1, . . . , k;

gj(x) 6= 0, j = 1, . . . , l,

where fi and gj are homogeneous polynomials in C[x0, . . . , xn] and x = (x0, . . . , xn).

In topological terms, M is the intersection of the closed set

Y = {[x] ∈ Pn | fi(x) = 0, i = 1, . . . , k}

and the open set

Z = {[x] ∈ Pn | gj(x) 6= 0, j = 1, . . . , l}.
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Definition 5.6.5. An Algebraic Action of a linear algebraic group G on a quasiprojective algebraic
set M is a regular map α : G×M →M , written as (g,m) 7→ g ·m, such that

g · (h ·m) = (gh) ·m, 1 ·m = m

for all g, h ∈ G and m ∈M .

Theorem 5.6.6. Let G be a group acting on a quasi projective algebraic set M ⊂ Pn. For every
x ∈ M , the stabilizer Gx of x is an algebraic subgroup of G and the orbit G · x is a smooth
quasiprojective subset of M .

Corollary 5.6.7. There exists a point x ∈M so that G · x is closed in M .

Let H be an algebraic subgroup of an algebraic group G. By the previous theorem there is a
regular representation π : G → GL(V ) of G and a point x0 ∈ P(V ) so that H is the stabilizer of
x0. The map g 7→ g · x0 is a bijection from the coset space G/H to the orbit G · x0. So when we
view G/H as a smooth quasiprojective algebraic set by identifying it with the orbit G · x0.

Theorem 5.6.8. Let H ⊂ G be an algebraic subgroup of an algebraic group G. Let π : G→ GL(V )
be a regular representation of G and x0 ∈ G be stable under the action of H. Then:

1. The quasiprojective algebraic set structure on G/H is independent on the choice of the repre-
sentation π.

2. The quotient map from G to G/H is regular.

3. If M is any quasiprojective algebraic set on which G acts algebraically, and x ∈ M is such
that H ⊂ Gx, then the map gH 7→ g · x from G/H to the orbit G · x is regular.

Definition 5.6.9. A quotient space G/H with the previous properties is called a Homogeneous
Space.

The vector x0 will be called highest weight vector when H ⊂ G is a parabolic subgroup.
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Highest weight for GL(n,C)

We need now to introduce the Theorem of the Highest Weight. We will do it for the irreducible
regular representations of GL(n,C) as it is done in [Go2]; analogous results hold for any complex
reductive algebraic group (see [GW], Chap. 5).

Let H, N, Ñ ⊂ GL(n,C) be the subgroup of diagonal matrices, the subgroup of upper triangular
unipotent matrices (all diagonal entries equal 1) and the subgroup of lower triangular unipotent

matrices respectively. Then ÑHN is a Zariski dense open subset of GL(n,C), and a generic element

g ∈ GL(n,C) has a unique factorization g = ñhn for some ñ ∈ Ñ , h ∈ H and n ∈ N . Thus a
regular representation of GL(n,C) is completely determined by its restriction to the subgroups

Ñ ,H and N .

Notation: Assume G is a reductive finite group, and let Ĝ be the equivalence classes of irreducible
finite-dimensional regular representations of G.

Definition 5.6.10. An Algebraic Torus is an algebraic group T isomorphic to C× × · · · × C×︸ ︷︷ ︸
l

. The

integer l is called the rank of the torus.

Definition 5.6.11. If G is a linear algebraic group, then a torus H ⊂ G is Maximal if it is not
contained in any larger torus in G and it is diagonalizable.

The subgroup H of diagonal matrices is a maximal algebraic torus in GL(n,C). The irreducible
representations of H are one dimensional and given by h = diag[x1, . . . , xn] 7→ hµ = xm1

1 · · ·xmn
n

where µ = [m1, . . . ,mn] ∈ Zn. Thus we may identify Ĥ with Zn. If ρ : G → GL(V ) is a regular
representation of G, then the restriction of ρ to H decomposes into weight spaces :

V =
⊕

µ∈Φ(V )

V (µ)

where V (µ) 6= 0 and ρ(h)v = hµv for v ∈ V (µ). We call Φ(V ) ⊂ Ĥ the set of weights of V .
Let NormG(H) be the normalizer of H in G (i.e. the set of all g ∈ G such that HgH = gH)

and W = NormG(H)/H be the Weyl group of G. The elements of W permute the weight spaces
and the weights of V . In this case, W ' Sn may be identified with the group of permutation
matrices in G, and the action of W on H and Ĥ is by the usual permutation of coordinates. Every
W orbit in Ĥ contains a unique dominant weight

µ = [m1, . . . ,mn]
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with m1 ≥ · · · ≥ mn. We denote by Zn
++ the set of all such µ ∈ Zn, and the corresponding vector

is called highest weight vector.

Example: Let V = Cn be the defining representation of G. Then Φ(V ) = {ε1, . . . , εn} where
ε(h) = xi for h = diag[x1, . . . , xn]. Here Φ(V ) = W · ε1 is a single W orbit with dominant weight
ε1.

Example: Let V =
⊗k Cn. A basis {eI} diagonalizes ρk(H) where ρk is defined as in (5.7). For

an index I = [i1, . . . , ik], with 1 ≤ ij ≤ n, define

µI = [µ1, . . . , µn]

where µp = ]{j | ij = p}. Then ρk(h)eI = hµIeI for h ∈ H. Hence for λ ∈ Ĥ,

V (λ) = Span{eI | µI = λ}.

In particular V (λ) 6= 0 if and only if λi ≥ 0 for i = 1, . . . , n and |λ| = k, where |λ| = λ1 + · · ·+ λn.
Thus Φ(

⊗k Cn) = W · Par(k, n) where Par(k, n) is the set of all partitions of k with at most n
parts. Each such partition defines a dominant weight µ of H such that h 7→ hµ is a polynomial
function on H (no negative powers of the coordinates xi).

Definition 5.6.12. Let G be a C∞ manifold such that the underlying set has a group structure.
We write m(x, y) = xy (the group multiplication) and η(x) = x−1 (the group inverse). We say that
G is a Lie group if m : G×G→ G and η : G→ G are C∞ maps.

Example: The group GL(n,R) = {M ∈Mn(R) | det(M) 6= 0} is a Lie group.

Definition 5.6.13. A vector space L over a field F , with an operation L × L → L, denoted
(x, y) 7→ [xy], called Bracket or Commutator of x and y, is said to be a Lie algebra over F if the
following properties are satisfied:

1. The bracket operation is bilinear.

2. [xx] = 0 for all x ∈ L.

3. [x[yz]] + [y[zx]] + [z[xy]] = 0 for all x, y, z ∈ L.

The third axiom is called Jacobi identity. Notice that 1. and 2. applied to [x + y, x + y] imply
anticommutativity: [xy] = −[yx].

There is a way to associate a Lie algebra to a Lie group. Let G be a Lie group. Let Lg : G→ G
be defined by Lgx = gx. Then Lg is of class C∞ and (Lg)

−1 = Lg−1 by the associative rule.
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Definition 5.6.14. Let M be a C∞ manifold. Then to give a Vector Field on M we ask to give,
for all p ∈M , an assignment p 7→ Xp ∈ Tp(M), in such a way that for all f ∈ C∞(M) the function
p 7→ Xpf is an element of C∞(M). We write (Xf)(x) = Xx(f). Thus a vector field defines an
endomorphism of C∞(M) as a vector space over R.

Example: Let M = Rn and v ∈ Rn. If we define for any f ∈ C∞(Rn):

vx · f =
d

dt
f(x + tv)|t=0,

then x 7→ vx is a vector field.

We can view a vector field on G as a derivation of C∞(G). That is, if X is a vector field and
f ∈ C∞(G) then Xf ∈ C∞(G), defined by Xf(x) = Xxf can be considered as the derivative of f
in Xx direction. We have:

X(fg) = (Xf)g + f(Xg).

Let G be a Lie group; set L∗gf = f ◦ Lg, then a vector field on G is said to be Left Invariant if, for
each g ∈ G: L∗g ◦X = X ◦ L∗g.

Definition 5.6.15. We set Lie(G) to be the space of all left invariant vector fields on G.

Proposition 5.6.16. The map X 7→ X1 defines a linear bijection between Lie(G) and T1(G). If
X, Y ∈ Lie(G) then [X, Y ] ∈ Lie(G). Thus Lie(G) is an n-dimensional Lie algebra over R, where
n = dim(G).

Following the above proposition we call Lie(G) the Lie algebra of G.

Example: Let g = Lie(GL(n,C)) = Mn(C) be the Lie algebra of G = GL(n,C), and let Ad(g)x =
gxg−1 be the adjoint representation. The weights are 0 and {εi − εj | 1 ≤ i 6= j ≤ n}. We call the
non-zero weights the roots of h on g (the algebra h is the Lie algebra of H ⊂ G the subgroup of
diagonal matrices). The corresponding root spaces are

g0 = h = Lie(H)

and
gεi−εj

= CEij

where Eij is the elementary matrix with 1 in position (i, j) and zero elsewhere. If α = εi− εj, then
we say α > 0 if i < j, and α < 0 if i > j. We denote the set of positive roots by Φ+ and the set of
negative roots by Φ−. Thus

n = Lie(N) =
⊕
α∈Φ+

gα,
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n = Lie(N) =
⊕

α∈Φ−

gα.

The Lie algebra additive version of the Gauss decomposition is the so called triangular decom-
position:

g = ñ⊕ h⊕ n.

If ρ : G → GL(V ) is any regular representation of G, then there is an associated Lie algebra
representation dρ of g defined by:

dρ(X)v =
d

dt
ρ(exp(tX))v|t=0.

One can prove that

dρ(n)V (µ) ⊂
⊕

λ∈µ+Φ+

V (λ).

We call µ ∈ Φ(V ) an N -extreme weight if µ + α /∈ Φ(V ) for all αΦ+.

Theorem 5.6.17. Let ρ : G→ GL(V ) be an irreducible representation of G = GL(n,C). There is
an unique N-extreme weight µ0 ∈ Φ(V ). This weight is dominant, the weight space V (µ0) = V N

(the N-fixed vectors in V ), and dim(V N) = 1.

We call µ0 the highest weight of the representation ρ : G → GL(V ). It determines the repre-
sentation uniquely up to isomorphism.

Extreme vectors and highest weight

The above construction that we have done in the particular case of GL(n,C) is more general. We
are going to present what happens in general without go into details. We will follow the presentation
of [Go1].

Let G be a classical group whose Lie algebra is semisimple. We fix a set Φ+ of positive roots. It is
a general fact (see Theorem 8.9 in [Go1]) that there always exists a sort of triangular decomposition
associated to g:

g = n + h + n.

We set b = h + n and call b a Borel subalgebra of g. We have

[b, b] = n, [h, n] = n.

Let P (g) be the weight lattice and P++(g) the dominant weights relative to the choice of Φ+. If
(π, V ) is a finite-dimensional representation of g, then V has a weight-space decomposition

V =
⊕

µ∈P (g)

V (µ),
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where V (µ) = {v ∈ V | π(Y )v = µ(Y )v for all Y ∈ h}. We denote by

χ(V ) = {µ ∈ P (g) | V (µ) 6= 0}

the set of weights of the g-module V .
Let {α1, . . . , αl} be the simple roots in Φ+ and let Q+(g) = Nα1 + · · · + Nαl be the semigroup
generated by the positive roots. We define a partial order on P (g) by

λ ≺ µ if λ = µ− β for some β ∈ Q+(g)r {0}.

Let (π, V ) be a representation of g (not necessarily finite-dimensional). A non-zero vector v0 ∈ V
is called b-extreme if π(b)v0 ⊂ Cv0. A vector v0 ∈ V is g-cyclic if V is spanned by v0 together with
the vectors π(x1) · · ·π(xp)v0, where xi ∈ g and p = 1, 2, . . ..

Proposition 5.6.18. Let (π, V ) be a finite-dimensional representation of g.

1. A vector v0 is b-extreme if and only if π(n)v0 = 0 and there exists µ ∈ P++(g) such that
π(H)v0 =< µ, H > v0 for all H ∈ h.

2. The b-extreme vectors in V span the subspace

V n = {v ∈ V | π(n)v = 0}.

3. Suppose µ is a maximal element of χ(V ) relative to the partial order ≺. Then µ is dominant
and V (µ) ⊂ V n. In particular V n 6= 0.

4. Suppose v0 ∈ V is b-extreme of weight µ and is cyclic under g. Then π is irreducible,
V (µ) = Cv0, and χ(V ) ⊂ µ−Q+(g).

Theorem 5.6.19. (Highest Weight) Suppose (π, V ) is an irreducible finite-dimensional repre-
sentation of g. Then V has a unique highest weight µ such that λ ≺ µ for all other weights λ of V .
One has µ ∈ P++(g) and dim(V (µ)) = 1. A non-zero vector v0 ∈ V (µ) is called a highest weight
vector of V . If U is another irreducible finite-dimensional g-module with highest weight µ, then
U ' V .

The definition of highest weight depends on the choice of the set of positive roots. However,
the elements of P++(g) are in one to one correspondence with the Weyl group orbits in P (g). Thus
every irreducible finite-dimensional representation of g corresponds to a unique WG-orbit in P g,
namely the orbit of the highest weight.
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We want to give some geometric interpretations of these and similar facts. Instead of looking at
the action of a Lie algebra on a representation, we look at the action of a group on the associated
projective vector space. In this context, it is natural to look at various geometric objects associated
to the action: for example, we look at closures of orbits of the action, which all turns out to be
algebraic variety, i.e. definable by polynomial equations.

The important fact we want to point out in this section is that an homogeneous variety defined
as the orbit of a point x0 stable under the action of the subgroup H ⊂ G in nothing else than the
closure of the highest weight vector’s orbit.

Theorem 5.6.20. Let G be a connected classical group. There is a projective algebraic set XG

on which G acts algebraically and transitively and there is a point x0 ∈ XG so that the stabilizer
B = Gx0 has Lie algebra b.

As example we want to study what happens if we look at the action of the group SL2(C) or
PGL2(C) on the associated projective spaces P(W ).

Example: How can we embed an homogeneous variety into P(V )? Let us do the example of

G = SL(2,C) =

{(
a b
c d

)
| ad− bc = 1

}
. The Borel subgroup B ⊂ G is B =

{(
a b
0 1/a

)}
.

Consider the (n + 1)-dimensional standard representation o SL(2,C):

ρ : SL(2)→ GL(V ) = GL(n)

it is Sn(C2) =< xn, xn−1y, xn−2y2, . . . , yn >.
We need to find the highest weight vector: it is a P ∈ Sn(V ∗) such that bP = λP for all
b ∈ B. The dimension of V is two, let {e, f} be a base of V and V ∗ =< x, y >. An element
P ∈ SnV ∗ is P = xkyn−k. By definition (b · P )(αe + βf) = P (b−1(αe + βf)) that is equal to

P

((
1/a −b
0 a

)(
α
β

))
since e =

(
1
0

)
and f =

(
0
1

)
. Then we have that (bP )(αe + βf) =

P ((α
a
− bβ)e + aβf) = (α

a
− bβ)k(aβ)n−k that is

(∑k
i=0(−1)i

(
k
i

)
αk−iai−kβibi

)
an−kβn−k that we can

write as
∑k

i=0(−1)i
(

k
i

)
an+i−2kbiαk−iβn−k+i. Therefore

bP =

(
a b
0 1/a

)
xkyn−k =

k∑
i=0

(−1)i

(
k

i

)
an+i−2kbixk−iyn−k+i.

Then the only P ∈ SnV ∗ for which bP = λP can be obtained for k = 0, this means that the highest
weight vector is yn.
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Now we need to find the orbit of yn. If g ∈ G then gP =

(
a b
c d

)
yn. By definition((

a b
c d

)
yn

)(
α
β

)
= yn

((
a b
c d

)−1(
α
β

))
= yn

(
dα− bβ
−cα + aβ

)
= (−cα + aβ)n that is

∑n
i=0(−1)i

(
n
i

)
an−iβn−iciαi then

(
a b
c d

)
yn =

∑n
i=0(−1)i

(
n
i

)
an−icixiyn−i. Therefore the immer-

sion we are looking for is:(
a 0
c 1/a

)
∈ SL(2)/B ↪→ P(V )

↓ ↓' ↓'
P1 ↪→ Pn

(a : c) 7→ (a : c) 7→ (an : −nan−1c :
(

n
2

)
an−2c2 : −

(
n
3

)
an−3c3 : · · · : (−1)ncn)

.

Example: For any vector space V and any positive integer n, we have a natural map, called the
Veronese embedding ;

P(V )∗ ↪→ P(Symn(V ∗))

that maps the line spanned by v ∈ V ∗ to the line spanned by vn ∈ Symn(V ∗). If dim(P(V ∗)) = 1
the image of the previous map is called the rational normal curve C = Cn of degree n. Choosing a
base {α, β} for V ∗ and {. . . , [n!/k!(n−k)!]αkβn−k, . . .} for Symn(V ∗) and expanding out (xα+yβ)n

we see that in coordinates this map may be given as

[x, y] 7→ [xn, xn−1y, . . . , yn].

From the definition, the action of PGL2(C) on Pn preserves Cn; conversely, since any automorphism
of Pn fixing Cn pointwise is the identity and since the group of automorphisms of Pn is PGLn+1(C),
the group G of automorphisms of Pn that preserve Cn is PGL2(C). Conversely if W is any (n+1)-
dimensional representation of SL2(C) and P(W ) ' Pn contains a rational normal curve of degree
n preserved by the action of PGL2(C), then we must have W ' Symn(V ).

5.6.3 Ideals of secant varieties of homogeneous varieties

Consider now the case X = G/H is an homogeneous variety, embedded as the orbit of the highest
weight vector vl ∈ Pn: if Vl =< vl > then G/H ⊂ P(Vl).

We will need to use the following unpublished Theorem of Konstant and a generalization of it.

196



Secant varieties of homogeneous varieties and their ideals

Theorem 5.6.21. (Konstant) If X = G/H ⊂ PVl is a homogeneous variety which is the orbit of
the highest weight vector vl ∈ Pn then

I2(X) = (V2l)
⊥ ⊂ S2V ∗

where V2l ⊂ S2V ∗ is generated by vl ◦ vl.

Theorem 5.6.22. (Generalization) If X = G/H ⊂ P(Vl) is a homogeneous variety which is the
orbit of the highest weight vector vl ∈ Pn then

Ik(X) = (Vkl)
⊥ ⊂ SkV ∗

where Vkl is generated by vl ◦ · · · ◦ vl, k times.

Proof. Let p ∈ SkV ∗ and consider p as a multi-linear form on K. Then p(vl◦· · ·◦vl) = 0 means that p
annihilates the vectors of weight kl in SkV . An irreducible module W ⊂ SkV ∗ having this property
for all p ∈ W satisfies W ⊂ V ⊥

kl . (This proof is from notes by J. M. Landsberg on Secant varieties,
Lie algebra and Rational Homogeneous varieties, see http://www.math.tamu.edu/∼jml/.)

We are now interested in studying the degree d part of the ideal I(Seck−1(X)) where X is an
embedded homogeneous variety.

Suppose that p ∈ SdV ∗, then, for every m = 0, . . . , d, there exist Ri ∈ SmV ∗ and Qd−i ∈ Sd−mV ∗

such that:
SdV ∗ → SmV ∗ ⊗ Sd−mV ∗

p 7→
∑

i Ri ⊗Qd−i
.

For example, if dim(V ) = 2, d = 3, m = 2 and p = x2y, then

S3V ∗ → S2V ∗ ⊗ S1V ∗

x2y 7→ 1
2
(x2 ⊗ y + xy ⊗ x)

.

More generally (see also Section 5.6.1), one can construct the following map:

SdV ∗ →
⊕d

m=0 SmV ∗ ⊗ Sd−mV ∗

p(u + v) 7→
∑d

i=1

(
d
i

)∑
j Ri,j(u)⊗Qd−i,j(v)

; (5.13)

For example, with the same conditions of the last example, if we write u = (u1, u2) and v = (v1, v2)
then p(u + v) = p((u1 + v1, u2 + v2)) = (u1 + v1)

2(u2 + v2) = [u2
1u2 + u2

1v2 + 2u1u2v1 + 2u1v1v2 +
v2

1u2 + v2
1v2] 7→ [(1⊗ x2y) + (2x⊗ xy + y⊗ x2) + (x2⊗ y + 2xy⊗ x) + (x2y⊗ 1)] ∈ (S0V ∗⊗S3V ∗)⊕

(S1V ∗ ⊗ S2V ∗)⊕ (S2V ∗ ⊗ S1V ∗)⊕ (S3V ∗ ⊗ S0V ∗).
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Now, for every m = 0, . . . , d, we can decompose again:

SmV ∗ →
k⊗

i=1

SmiV ∗ (5.14)

for all mi ∈ Z such that
∑k

i=1 mi = m.
For every decomposition SdV ∗ → Sm1V ∗ ⊗ · · · ⊗ SmkV ∗ we can consider the evaluation map at

the last argument:
Sm1V ∗ ⊗ · · · ⊗ SmkV ∗ → Sm1V ∗ ⊗ · · · ⊗ Smk−1V ∗.

We can also consider successive evaluations maps:

Sm1V ∗⊗ · · · ⊗SmkV ∗ → Sm1V ∗⊗ · · · ⊗Smk−1V ∗ → · · · → Sm1V ∗⊗Sm2V ∗ → Sm1V ∗ → C (5.15)

at the end of those we will have the evaluation of a polynomial p ∈ SdV ∗.
Now p ∈ Id(Seck−1(X)) if and only if p ∈ SdV ∗ and for all v1, . . . , vk ∈ X̂ (where X̂ ⊂ An+1 is

the affine cone over X ⊂ Pn) and for all λ1, . . . , λk ∈ C

p(λ1v1 + · · ·+ λkvk) = 0. (5.16)

By (5.13) and (5.14), SdV ∗ can be “naturally” embedded in the sum of all possible decomposition
of type (5.14), while (m1, . . . ,mk) varies in the set of partitions of d. Therefore the condition (5.16)
is equivalent to ask that the image of p(λ1v1 + · · ·+λkvk) ∈ SdV ∗ in each one of the decompositions
of type (5.14) composed with the successive evaluation maps of type (5.15) has to be zero: for all
m1, . . . ,mk ∈ Z such that

∑k
i=1 mi = d

SdV ∗ → Sm1V ∗ ⊗ · · · ⊗ SmkV ∗ → Sm1V ∗ ⊗ · · · ⊗ Smk−1V ∗ → · · ·
p(
∑k

i=1 λivi) 7→ p(
∑k

i=i λivi) 7→ eval in λkvk 7→ · · ·

· · · → Sm1 → C
· · · 7→ eval in

∑k
i=2 λivi 7→ 0

i.e. p ∈ Id(Seck−1(X)) if and only if p ∈ Ker(Sm1V ∗ ⊗ · · · ⊗ SmkV ∗ → C) for all (m1, . . . ,mk)
partitions of d.

For the generalized Theorem of Konstant we know that if X ⊂ P(Vl) is an homogeneous variety
then

Id(X) = (Vdl)
⊥ ⊂ SdV ∗. (5.17)

This fact has some important implications.
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Example: Suppose we want to study Id(Sec1(X)), we do not have to control that all the contrac-
tions, for all m, SmV ∗ ⊗ Sd−mV ∗ → SmV ∗ → C are the zero map, because p ∈ Id(Sec1(X)) if and
only if SdV ∗ 3 p(u+v) =

∑d
i=1

(
d
i

)∑
j Ri,j(u)Qd−i,j(v) 7→ 0 iff both Ri,j(u) 7→ 0 and Qd−i,j(v) 7→ 0,

i.e. Ri,j ∈ Ii(X) and Qd−i,j ∈ Id−i(X), that is the same to ask that for all i = 1, . . . , d the
Ri,j annihilate on (Vil)

⊥ and Qd−i,j annihilate on (V(d−i)l)
⊥, i.e. all contractions, for i = 1, . . . , d,

(Vil)
⊥ ⊗ (V(d−i)l)

⊥ → C are the zero map; but now this is equivalent to ask that all contractions

Sa1(Vl)⊗ Sa2(V2l)⊗ · · · ⊗ Sap(Vpl)→ C

such that a1 + · · ·+ ap = 2, a1 + 2a2 + · · ·+ pap = d, are the zero map.

What we pointed out in this example holds in general (the following proposition is the same of
Prop 3.3 on [LM1])

Proposition 5.6.23. If X ⊂ P(Vl) is a rational homogeneous variety then a module W ⊂ SdV ∗

is contained in Id(Seck−1(X)) if and only if for all (a1, . . . , ap) partitions of k ∈ Z such that
a1 + 2a2 + · · ·+ pap = d, the contraction

W ⊗ Sa1(Vl)⊗ Sa2(V2l)⊗ · · · ⊗ Sap(Vpl)→ C (5.18)

is the zero map.

Example: Suppose that k = 3 and d = 5, the only two partitions (a1, . . . , ap) of 3 such that∑p
i=1 iai = 5 are (a1, a2, a3) = (2, 0, 1), (1, 2, 0). Therefore if X ⊂ P(Vl) is an homogeneous variety

then a module W ⊂ S5(V ) is contained in I5(Sec2(X)) if and only if the following two contractions
are the zero map (and only those).

S2(Vl)⊗ S0(V2l)⊗ S1(V3l)→ C,

S1(Vl)⊗ S2(V2l)→ C.

Corollary 5.6.24. Let X = G/P ⊂ P(V ) be a rational homogeneous variety. Then for all d > 0

1. Id(Secd−1(X)) = 0;

2. if f ∈ Id+1(Secd−1(X)) then, for all v ∈ V 2, the element v ⊗ f belongs to the kernel of the
map V 2 ⊗ Sd+1V ∗ → Sd−1V ∗;

3. let W be an irreducible component of SdV ∗ and suppose that for all (a1 . . . ap) partitions of
k such that

∑p
i=1 iai = d, W ∗ is not an irreducible component of Sa1(V ) ⊗ Sa2(V 2) ⊗ · · · ⊗

Sap(V p). Then W ⊂ Id(Seck−1(X)).
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Proof. 1. It is a consequence of Corollary 5.6.3.

2. It follows from Proposition 5.6.2 and Proposition 5.6.23.

3. It follows from (5.18) and Schur’s Lemma because if an irreducible submodule W ⊂ SdV ∗

does not belong to Id(Seck−1(X)), one of the contraction maps (5.18) must be non-zero.

The following two “inheritance” will allow us to apply an algorithm for computing the ideal of
the secant varieties to Segre varieties.

Proposition 5.6.25. (First inheritance) Let A1, . . . , Ak be vector spaces and π1, . . . , πk be par-
titions of d. Suppose that an Sd-invariant I of Vπ1 ⊗ · · · ⊗ Vπk

defines a non-zero embedding
of I into Sπ1A

∗
1 ⊗ · · · ⊗ Sπk

A∗
k ⊂ Sd(A1 ⊗ · · · ⊗ Ak)

∗. Then for any vector spaces A′
1, . . . , A

′
k

such that dim(A′
i) ≥ dim(Ai) for all i, the image of the embedding of (Sπ1A

′
1)
∗ ⊗ · · · ⊗ (Sπk

A′
k)
∗

in Sd(A′
1 ⊗ · · · ⊗ A′

k)
∗ defined by I, is in Id(Secs−1(Seg(P(A′

1) × · · · × P(A′
k)))) if and only if

the image of the embedding of Sπ1A
∗
1 ⊗ · · · ⊗ Sπk

A∗
k in Sd(A1 ⊗ · · · ⊗ Ak)

∗ defined by I is in
Id(Secs−1(Seg(P(A1)× · · · × P(Ak)))).

Proof. The proof is a consequence of the fact that the action of Sd commutes both with the
action of GL(Ai) and the action of GL(A′

i), hence the invariant that defines the embedding of
Sπ1A

∗
1 ⊗ · · · ⊗ Sπk

A∗
k into Sd(A1 ⊗ · · · ⊗ Ak)

∗ is the same invariant that defines the embedding of
(Sπ1A

′
1)
∗ ⊗ · · · ⊗ (Sπk

A′
k)
∗ into Sd(A′

1 ⊗ · · · ⊗ A′
k)
∗. Therefore we can choose vector spaces Ai of

dimensions as small as possible.

Proposition 5.6.26. (Second inheritance) Let X be the Segre variety Seg(P(A1)×· · ·×P(Ak))

and X̃ be the Segre variety Seg(P(A2)×· · ·×P(Ak)). Then Id(Secd−2(X))∩ (SdA∗
1⊗Sd(A∗

2⊗· · ·⊗
A∗

k)) = SdA∗
1 ⊗ Id(Secd−2(X̃)).

Proof. One of the inclusions is quite obvious:

Id(Secd−2(X)) ∩ (SdA∗
1 ⊗ Sd(A∗

2 ⊗ · · · ⊗ A∗
k)) ⊆ SdA∗

1 ⊗ Id(Secd−2(X̃)).

If A := A1 and B := A2⊗· · ·⊗Ak, the inclusion above follows immediately from the standard way
to embed SdA∗ ⊗ SdB∗ into Sd(A ⊗ B)∗. Since S(d)V

∗ = SdV ∗ for any vector space V , Theorem
5.5.2 shows that SdA∗⊗SdB∗ ↪→ Sd(A⊗B)∗. The embedding SdA∗⊗SdB∗ ↪→ Sd(A⊗B)∗ is given
by Theorem 5.5.7 applied to the particular case of the decomposition into irreducible modules of
Sd(A⊗B)∗ obtained by the formula (5.6).
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The less obvious inclusion is

SdA∗
1 ⊗ Id(Secd−2(X̃)) ⊆ Id(Secd−2(X)) ∩ (SdA∗

1 ⊗ Sd(A∗
2 ⊗ · · · ⊗ A∗

k)).

Let Sec0
d−2(Seg(P(A1)⊗· · ·⊗P(Ak))) be the dense open subset of Secd−2(Seg(P(A1)⊗· · ·⊗P(Ak)))

such that if P ∈ Sec0
d−2(Seg(P(A1)⊗· · ·⊗P(Ak))) then P = λ1P1+· · ·+λd−1Pd−1 for distinct points

P1, . . . , Pd−1 ∈ Seg(P(A1)⊗ · · · ⊗ P(Ak)). We can write λiPi = ei ⊗ fi with each ei ∈ A1 and fi ∈
Seg(P(A2)⊗· · ·⊗P(Ak)), i.e. P = e1⊗f1+· · ·+ed−1⊗fd−1 . So any polynomial on A1 multiplied by a
polynomial in Id(Secd−2(Seg(P(A1)⊗· · ·⊗P(Ak)))) will vanish on Secd−2(Seg(P(A1)⊗· · ·⊗P(Ak))).
In fact if F ∈ Sd(A∗

1) and G ∈ Id(Secd−2(Seg(PA2 ⊗ · · · ⊗ PAk))) we can write (FG)(P ) =
F (e1)G(f1) + · · ·+ F (ed−1)G(fd−1). Since G(f) = 0 for all x ∈ Secd−2(Seg(P(A2)⊗ · · · ⊗ P(Ak))),
we get FG(x) = 0 for all x ∈ Sec0

d−2(Seg(P(A1) ⊗ · · · ⊗ P(Ak))), and now clearly FG is zero also
on the closure of Sec0

d−2(Seg(P(A1)⊗ · · · ⊗ P(Ak))) that is Secd−2(Seg(P(A1)⊗ · · · ⊗ P(Ak))).

ALGORITHM

• Fix π1, . . . , πk partitions of d.

• Compute the dimension m of (Vπ1 ⊗ · · · ⊗ Vπk
)Sd .

• Explicitly realize the representations Vπj
of Sd.

• Take independent elements ej ∈ Vπj
and average e1 ⊗ · · · ⊗ ek over Sd. The result is either a

nontrivial invariant I or zero.

• Continue finding such elements I until one has m independent such.

• Choose embeddings Sπj
(Aj) → A⊗d

j , the images of the invariants Ir, 1 ≤ r ≤ m give the
modules.

Example: Let k = 4 and d = 3. We want to study the secant of lines Sec2−1(Seg(P(A1) × · · · ×
P(A4))).

The partitions of d = 3 are (3), (111) and (21). They correspond to the trivial representation,
the alternating representation and the standard representation of S3 respectively:

The trivial representation U = VId is {v ∈ C3 | gv = v, g ∈ S3}; its Young diagram is:

.
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The alternating representation U ′ = V(111) is {v ∈ C3 | gv = sgn(g)v, g ∈ S3}; its Young
diagram is:

.

The standard representation V ′ = V(12) is {(z1, z2, z3) ∈ C3 | z1+z2+z3 = 0}; its Young diagram
is:

.

There are many ways to compute the dimension of a representation Vπ of Sd. The most intuitive
is a one using the notion of “hook length”.

Definition 5.6.27. The hook length of a box in a Young diagram is the number of squares directly
below and directly to the right of the box, including the box itself.

The hook length formula is

dim(Vπ) =
d!

Π(hook length)
.

If d = 3 we have:
dim(U) = 6

3·2·1 = 1,
dim(U ′) = 6

3·2·1 = 1,
dim(V ′) = 6

3·1·1 = 2.

Definition 5.6.28. If V is a representation of a group G, its character χV is the complex-valued
function on the group defined by:

χV (g) := Tr(g|V ),

the trace of g on V .

In particular we have χV (hgh−1) = χV (g), so that χV is constant on the conjugacy classes of a
group G. Note that χV (1) = dim(V ).

Let us compute χU , χU ′ , χV ′ :
χU(g) = 1 for all g ∈ S3,
χU ′(1) = 1, χU ′((12)) = −1, χU ′((123)) = 1 since gv = sgn(v) and (1)v = v, (12)v = −v and
(123)v = v.
The standard representation can be obtained as:

C3 = U ⊕ V ′
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where C3 is the permutation representation V , i.e. V = {(z1, z2, z3) ∈ C3 | g · (z1, z2, z3) =
(zg−1(1), zg−1(2), zg−1(3)), g ∈ S3}. The characters χV (g) of the permutation representation are al-
ways the number of independent elements of X that are fixed by g. In our case X = C3 =<
(1, 0, 0), (0, 1, 0), (0, 0, 1) >, then Id(v) = v for all v ∈ C3 hence χV (1) = 3; then χV ((12)) = 1
since (12)(1, 0, 0) = (0, 1, 0) 6= (1, 0, 0), (12)(0, 1, 0) = (1, 0, 0) 6= (0, 1, 0) and (12)(0, 0, 1) = (0, 0, 1);
eventually χV ((123)) = 0.
Now we apply the property that if V and W are two representations of a finite group G then

χ(V⊕W ) = χV + χW ,

therefore χV = χU + χV ′ then, χV ′ = (3, 1, 0)− (1, 1, 1) = (2, 0,−1).
We can draw the table of characters for S3 (in the first line we write the number of elements in
each conjugacy class, and in the second line the conjugacy classes):

1 3 2
1 (12) (123)

U 1 1 1
U’ 1 -1 1
V’ 2 0 -1

Which is the dimension of (V ′ ⊗ V ′ ⊗ V ′ ⊗ V ′)S3?
It is a general fact that the dimension of the space of invariants by the action of a group G is:

dim(V G) =
1

|G|
∑
g∈G

χV (g).

The order of S3 is 6.
If V and W are two representations of a finite group G then

χ(V⊗W ) = χV · χW .

Hence χ(V ′⊗V ′⊗V ′⊗V ′) = (χV ′)4 = (24, 04, 14) = (16, 0, 1).
Therefore

m := dim(V ′⊗4) =
1

6
(16 · 1 + 0 · 3 + 1 · 2) = 3.

Hence we have to find three independent invariants.
The space V ′ can be realized as {(z1, z2, z3) ∈ C3 | z1 + z2 + z3 = 0}, we consider the following

two independent generators: e = (1,−1, 0) and f = (0, 1,−1), then a base for V ′⊗4 is {e⊗e⊗e⊗e,
e⊗ e⊗ e⊗ f , . . . , f ⊗ f ⊗ f ⊗ f}.
The invariants of V ′⊗4 can be obtained by applying the averaging operator to the elements of the
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base of V ′⊗4; we will find only three of them that are independent.
The averaging operator is defined as:

ϕ =
1

|G|
∑
g∈G

g.

In the case of S3 one has ϕ = 1
6
(Id + (12) + (13) + (23) + (123) + (132)). In the following table we

list how an element of S3 acts on e, f ∈ V ′:

e f

Id e f
(12) −e e + f
(13) −f −e
(23) e + f −f
(123) −e− f e
(132) f −e− f

By applying the averaging operator at e⊗ e⊗ e⊗ e, e⊗ e⊗ f ⊗ f and e⊗ e⊗ e⊗ f respectively,
we obtain three independent generators for the space of the invariants (V ′ ⊗ V ′ ⊗ V ′ ⊗ V ′)S3 :

ϕ(e⊗ e⊗ e⊗ e) = 1
3
(e⊗ e⊗ e⊗ e + (e + f)⊗ (e + f)⊗ (e + f)⊗ (e + f) + f ⊗ f ⊗ f ⊗ f) := I1,

ϕ(e⊗e⊗f⊗f) = 1
6
(2e⊗e⊗e⊗e+e⊗e⊗e⊗f +e⊗e⊗f⊗e+e⊗f⊗e⊗e+f⊗e⊗e⊗e+3e⊗e⊗e⊗

f⊗f +3f⊗f⊗e⊗e+e⊗f⊗f⊗f +f⊗e⊗f⊗f +f⊗f⊗e⊗f +f⊗f⊗f⊗e+2f⊗f⊗f⊗f) := I2,

ϕ(e⊗ e⊗ e⊗ f) = −1
6
(2e⊗ e⊗ e⊗ e⊗ e + e⊗ e⊗ e⊗ f + e⊗ e⊗ f ⊗ e + e⊗ f ⊗ e⊗ e + e⊗ e⊗

f ⊗ f + e⊗ f ⊗ e⊗ f + 2f ⊗ e⊗ e⊗ f + e⊗ f ⊗ f ⊗ e + 2f ⊗ f ⊗ e⊗ e + 2f ⊗ e⊗ f ⊗ e + e⊗ f ⊗
f ⊗ f + 2f ⊗ e⊗ f ⊗ f + 2f ⊗ f ⊗ e⊗ f + 2f ⊗ e⊗ e⊗ e + f ⊗ f ⊗ f ⊗ e + 2f ⊗ f ⊗ f ⊗ f) := I3.

Now we have all the informations we need on (V ′⊗4)S3 . Let us study, for any vector space V , the
Schur power S(21)V = HomS3(V(21), V

⊗3). An element u ∈ S(21)V is an homomorphism u : V(21) →
V ⊗3 invariant by the action of S3. We define u(e) = E ∈ V ⊗3, s1 := (12) and s2 := (23), then
s1e = −e, hence s1E = u(s1e) = −E. Moreover f = s2e−e, hence u(f) = s2E−E and s1f = e+f .
Finally s1s2E + E = s1u(f) = s2E. Therefore

S(21)V
∗ ' {E ∈ V ⊗3 | s1E = −E, s1s2E + E − s2E = 0}.

The proof of Proposition 5.5.7, applied to our case, gives the following isomorphism:⊕
(Vπ1 ⊗ Vπ2 ⊗ Vπ3 ⊗ Vπ4)

S3 ⊗ (Sπ1A1 ⊗ Sπ2A2 ⊗ Sπ3A3 ⊗ Sπ4A4) → S3(A1 ⊗ A2 ⊗ A3 ⊗ A4)∑
J ⊗ (u1 ⊗ u2 ⊗ u3 ⊗ u4) 7→

∑
J(u1 ⊗ u2 ⊗ u3 ⊗ u4)
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where J ∈ (Vπ1 ⊗ Vπ2 ⊗ Vπ3 ⊗ Vπ4)
S3 and ui ∈ Sπi

Ai. Anytime we fix an invariant J there is an
associate immersion:

P J : Sπ1A1 ⊗ Sπ2A2 ⊗ Sπ3A3 ⊗ Sπ4A4 ↪→ S3(A1 ⊗ A2 ⊗ A3 ⊗ A4)
(u1 ⊗ u2 ⊗ u3 ⊗ u4) 7→

∑
J(u1 ⊗ u2 ⊗ u3 ⊗ u4)

.

Fix now the ui ∈ Sπi
Ai and consider the corresponding polynomial P J

(u1,u2,u3,u4).

We are studying the case when πi = (21) for i = 1, . . . , 4, and J ∈< I1, I2, I3 >; we will write
J = α1e⊗ e⊗ e⊗ e + · · ·+ α16f ⊗ f ⊗ f ⊗ f for some coefficients α1, . . . , α16.

An element v = λ1v1 + λ2v2 belongs to Sec2−1(Seg(P(A1) × · · · × P(A4))) if and only if
P J

u1,u2,u3,u4
(λ1v1 + λ2v2) = 0 for all λ1, λ2 ∈ K and v1, v2 ∈ Seg(P(A1) × · · · × P(A4)). By the

decomposition (5.11), there exist polynomials Qj,i, Rj,i of degree j for j = 0, . . . , 3 such that
P J

u1,u2,u3,u4
(λ1v1+λ2v2) =

∑3
d=0

(
3
d

)∑
i Rd,i(λ1v1)Q3−d,i(λ2v2). Hence P J

u1,u2,u3,u4
∈ I3(Sec1(Seg(P(A1)×

· · · × P(A4)))) if and only if 
R3,i(v1) = 0,
R2,i(v1)Q1,i(v2) = 0,
R1,i(v1)Q2,i(v2) = 0,
Q3,i(v2) = 0

for all v1, v2 ∈ Seg(P(A1)× · · · × P(A4)). Therefore it is sufficient to ask that R2,i(v1)Q1,i(v2) = 0
for all v1, v2 ∈ Seg(P(A1)× · · · × P(A4)).

Now, if J is any invariant of (Vπ1 ⊗ Vπ2 ⊗ Vπ3 ⊗ Vπ4)
S3 then

P J
u1,u2,u3,u4

(λ1v1 +λ2v2) = (α1e⊗e⊗e⊗e+ · · ·+α16f ⊗f ⊗f ⊗f)(u1⊗u2⊗u3⊗u4)(λ1v1 +λ2v2) =

= (α1eu1 ⊗ eu2 ⊗ eu3 ⊗ eu4 + · · ·+ α16fu1 ⊗ fu2 ⊗ fu3 ⊗ fu4)(λ1v1 + λ2v2) =

= α1(u1(e)⊗u2(e)⊗u3(e)⊗u4(e))(λ1v1+λ2v2)+· · ·+α16(u1(f)⊗u2(f)⊗u3(f)⊗u4(f))(λ1v1+λ2v2).

So P J
u1,u2,u3,u4

(λ1v1 + λ2v2) = 0 if and only if
(u1(e)⊗ u2(e)⊗ u3(e)⊗ u4(e))(λ1v1 + λ2v2) = 0

...
(u1(f)⊗ u2(f)⊗ u3(f)⊗ u4(f))(λ1v1 + λ2v2) = 0

Now we apply the decomposition (5.11) to all those sixteen polynomials. Let the decomposition of

the j-th of those polynomials be
∑3

d=0

(
3
d

)∑
i R

(j)
d,i (λ1v1)Q

(j)
3−d,i(λ2v2). By the consideration above

it is sufficient to look at the vanishing of R
(j)
2,i (v1)Q

(j)
1,i (v2).

Remind that ui(e) is skew symmetric in the first two arguments, hence the contributions of
αj(ui(e)⊗ u2(e)⊗ u2(e)⊗ u4(e))(λ1v1 + λ2v2) are zero for all j = 1, . . . , 15.
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Therefore P J
u1,u2,u3,u4

∈ I3(Sec1(Seg(P(A1) × · · · × P(A4)))) if and only if α16(u1(f) ⊗ u2(f) ⊗
u3(f)⊗ u4(f))(λ1v1 + λ2v2) = 0 for all λ1, λ2 ∈ K and v1, v2 ∈ Seg(P(A1)× · · · × P(A4)). This is
equivalent to asking that α16 = 0.

This condition allows us to write down explicitly the invariant J ∈< I1, I2, I3 >:

J = αI1 + βI2 + (α + β)I3

for α, β ∈ K.
Note that we have never used the fact that k = 4, hence we can state the following proposition:

Proposition 5.6.29. The space of modules in I3(Sec1(Seg(P(A1) × · · · × P(Ak)))) induced from
the representation (V(21))

⊗k is a codimension one subspace of the space of modules in S3V ∗ induced
from (V(21))

⊗k.

Now we have all the ingredients to determine which of the irreducible modules that appear
in the decomposition of S3(A1 ⊗ · · · ⊗ Ak)

∗ are in the decomposition into irreducible modules of
I3(Sec1(Seg(P(A1)× · · · × P(A4)))).

• Every component of S3(A1 ⊗ · · · ⊗ Ak)
∗ involving a wedge power is in the space of cubics

vanishing on Sec1(Seg(P(A1)× · · · × P(Ak))) because the assumption that P J
u1,u2,u3,u4

= 0 on
Sec1(Seg(P(A1)×· · ·×P(Ak))) is equivalent to R2,i(v1)Q1,i(v2) = 0 for all v1, v2 ∈ Seg(P(A1)×
· · · × P(Ak)): a cubic in Λ3V is always zero on an element of the form (v1, v1, v2).

• Every component involving a symmetric power is determined inductively by Proposition
5.6.26.

• The only remaining term is S(21)A1 ⊗ · · · ⊗ S(21)Ak that appears in the decomposition of
S3(A1 ⊗ · · · ⊗ Ak)

∗ with a certain multiplicity l, hence, by Proposition 5.6.29, the subspace
that vanishes on Sec1(Seg(P(A1)× · · · × P(Ak))) has multiplicity l − 1.

Let us study the decomposition of S3(A1 ⊗ · · · ⊗ Ak) in detail.
We have already observed that the irreducible representation of S3 are V(3) = S3V , V(21) and

V(1,1,1) = ∧3(V ). Let us compute the characters of (V(3))
⊗α, (V(21))

⊗β and (V(111))
⊗γ for some

α, β, γ ∈ N:
χ((V(3))

⊗α) = (1α, 1α, 1α) = (1, 1, 1),

χ((V(21))
⊗β) = (2β, 0, (−1)β),

χ((V(111))
⊗γ) = (1, (−1)γ, 1).

Then if β ≥ 1 the character of (V(3))
⊗α⊗(V(21))

⊗β⊗(V111)
⊗γ for α+β+γ = k is χ((V(3))

⊗α⊗(V(21))
⊗β⊗(V111)⊗γ) =

(1, 1, 1)·(2β, 0, (−1)β)·(1, (−1)γ, 1) = (2β, 0, (−1)β). Then dim(((V(3))
⊗α⊗(V(21))

⊗β⊗(V111)
⊗γ)S3) =
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1
6
(2β · 1 + 0 · 3 + (−1)β · 2) = 2β−1+(−1)β

3
.

Moreover if β = 0 we have that χ((V(3))
⊗α⊗(V111)⊗γ) = (1, 1, 1) · (1, (−1)γ, 1) = (1, (−1)γ, 1); then

dim(((V(3))
⊗α⊗ (V111)

⊗γ)S3) = 1
6
(1 · 1 + (−1)γ · 3 + 1 · 2) = 1+(−1)γ

2
that is zero if γ is odd, and it is

1 if γ is even.

We can therefore write down the decomposition of S3(A1 ⊗ · · · ⊗Ak) into irreducible modules.
Let ∆, Θ and Γ be multi-indices such that ∆ ∪ Θ ∪ Γ = {1, . . . , k} and α ∈ ∆, β ∈ Θ and γ ∈ Γ;
with the notation SπA∆ we indicate ⊗α∈∆SπAα.

S3(A1⊗· · ·⊗Ak) '
⊕

|∆| + |Θ| + |Γ| = k
|∆|, |Γ| ≥ 0; |Θ| ≥ 1

2β−1 + (−1)β

3
S(3)A∆⊗S(21)AΘ⊗S(111)AΓ

⊕
|∆| + |Γ| = k
|Γ| even

S(3)A∆⊗S(111)AΓ

Now we have the decomposition of S3(A1⊗ · · · ⊗Ak) into irreducible modules, then, by consid-
erations above, we can write down the decomposition of

I3(Sec1(Seg(P(A1)× · · · × P(Ak))))

in the following way: ⊕
|∆|+ |Θ|+ |Γ| = k
|Θ| ≥ 1, |Γ| ≥ 1

2β−1 + (−1)β

3
S(3)A∆ ⊗ S(21)AΘ ⊗ S(111)AΓ

⊕

⊕

 ⊕
|∆|+ |Θ| = k
|Θ| ≥ 1

(
2β−1 + (−1)β

3
− 1

)
S(3)A∆ ⊗ S(21)AΘ

⊕

⊕

 ⊕
|∆|+ |Γ| = k
|Γ| even

S(3)A∆ ⊗ S(111)AΓ

 .

This algorithm is efficient in a low degree and for small k. In order to show how the computa-
tional problem increases by increasing k we treat the examples k = 3 and k = 4.
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I3(Sec1(Seg(P(A)× P(B)× P(C)))) =

= (S(21)A⊗ S(21)B ⊗ Λ3C)∗ ⊕ (S(21)A⊗ Λ3B ⊗ S(21)C)∗ ⊕ (Λ3A⊗ S(21)B ⊗ S(21)C)∗⊕

⊕(S3A⊗ Λ3B ⊗ Λ3C)∗ ⊕ (Λ3A⊗ S3B ⊗ Λ3C)∗ ⊕ (Λ3A⊗ Λ3B ⊗ S3C).

(5.19)

I3(Sec1(Seg(P(A1)× · · · × P(A4)))) =

= (S(21)A1 ⊗ S(21)A2 ⊗ S(21)A3 ⊗ Λ3A4)
∗ ⊕ (S(21)A1 ⊗ S(21)A2 ⊗ Λ3A3 ⊗ S(21)A4)

∗⊕

⊕(S(21)A1 ⊗ Λ3A2 ⊗ S(21)A3 ⊗ S(21)A4)
∗ ⊕ (Λ3A1 ⊗ S(21)A2 ⊗ S(21)A3 ⊗ S(21)A4)

∗⊕

⊕(S(21)A1 ⊗ S(21)A2 ⊗ Λ3A3 ⊗ Λ3A4)
∗ ⊕ (S(21)A1 ⊗ Λ3A2 ⊗ S(21)A3 ⊗ Λ3A4)

∗⊕

⊕(S(21)A1 ⊗ Λ3A2 ⊗ Λ3A3 ⊗ S(21)A4)
∗ ⊕ (Λ3A1 ⊗ S(21)A2 ⊗ S(21)A3 ⊗ Λ3A4)

∗⊕

⊕(Λ3A1 ⊗ S(21)A2 ⊗ Λ3A3 ⊗ S(21)A4)
∗ ⊕ (Λ3A1 ⊗ Λ3A2 ⊗ S(21)A3 ⊗ S(21)A4)

∗⊕

⊕(S3A1 ⊗ S(21)A2 ⊗ S(21)A3 ⊗ Λ3A4)
∗ ⊕ (Λ3A1 ⊗ S(21)A2 ⊗ S(21)A3 ⊗ S3A4)

∗⊕

⊕(S(21)A1 ⊗ S(21)A2 ⊗ S3A3 ⊗ Λ3A4)
∗ ⊕ (S(21)A1 ⊗ S(21)A2 ⊗ Λ3A3 ⊗ S3A4)

∗⊕

⊕(S(21)A1 ⊗ S3A2 ⊗ S(21)A3 ⊗ Λ3A4)
∗ ⊕ (S(21)A1 ⊗ Λ3A2 ⊗ S(21)A3 ⊗ S3A4)

∗⊕

⊕(S(21)A1 ⊗ S3A2 ⊗ Λ3A3 ⊗ S(21)A4)
∗ ⊕ (S(21)A1 ⊗ Λ3A2 ⊗ S3A3 ⊗ S(21)A4)

∗⊕

⊕(S3A1 ⊗ S(21)A2 ⊗ Λ3A3 ⊗ S(21)A4)
∗ ⊕ (Λ3A1 ⊗ S(21)A2 ⊗ S3A3 ⊗ S(21)A4)

∗⊕

⊕(S3A1 ⊗ Λ3A2 ⊗ S(21)A3 ⊗ S(21)A4)
∗ ⊕ (Λ3A1 ⊗ S3A2 ⊗ S(21)A3 ⊗ S(21)A4)

∗⊕

⊕2(S(21)A1 ⊗ S(21)A2 ⊗ S(21)A3 ⊗ S(21)A4)
∗ ⊕ (Λ3A1 ⊗ Λ3A2 ⊗ Λ3A3 ⊗ Λ3A4)

∗⊕

⊕(S3A1 ⊗ S3A2 ⊗ Λ3A3 ⊗ Λ3A4)
∗ ⊕ (S3A1 ⊗ Λ3A2 ⊗ S3A3 ⊗ Λ3A4)

∗⊕

⊕(S3A1 ⊗ Λ3A2 ⊗ Λ3A3 ⊗ S3A4)
∗ ⊕ (Λ3A1 ⊗ S3A2 ⊗ S3A3 ⊗ Λ3A4)

∗⊕

⊕(Λ3A1 ⊗ S3A2 ⊗ Λ3A3 ⊗ S3A4)
∗ ⊕ (Λ3A1 ⊗ Λ3A2 ⊗ S3A3 ⊗ S3A4)

∗.

Now, if one wants to compute the dimensions of I3(Sec1(Seg(P(A) × P(B) × P(C)))) and of
I3(Sec1(Seg(P(A1)× · · · × P(A4)))), one need the fact that if V is a k-dimensional representation
of Sd, then

dim(SπV ) = Π
(k − i + j)

hi,j

,
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where the products are over the d pairs (i, j) that number the row and the column of boxes in π,
and hi,j is the hook number of the corresponding box.
If V is vector space of dimension n, then

dim(S3V ) =

(
n + 2

3

)
,

dim(Λ3V ) =

(
n

3

)
,

dim(S(21)V ) =
n(n− 1)(n + 1)

3
.

If A, B, C are vector spaces of dimensions a, b, c respectively, then:

dim(I3(Sec1(Seg(P(A)× P(B)× P(C)))) =

=
1

72
acb(2a2c + 2a2c2 + 16− 8a− 6ab− 6ac + 27acb− 5a2bc2 − 3a2bc + 2a2b− 8c + 2bc2 − 6bc+

−8b + 5a2b2c2 + 2a2b2 + 2b2c2 − 5ac2b2 + 2ab2 + 2ac2 + 2b2c− 5a2b2c− 3ac2b− 3acb2)

If A1, . . . A4 are vector spaces of dimension a, b, c, d respectively, then:

dim(I3(Sec1(Seg(P(A1)× · · · × P(A4))))) =

=
1

1296
abcd(368 + 10a2c2d2 + 10a2b2d2 + 10b2c2d2 + 10a2b2c2 + 18bc2d2 + 18ac2d2+

+18a2cd2 + 18a2bd2 + 18b2cd2 + 18a2c2d + 18a2b2d + 18ab2c2 + 18a2bc2 + 18a2b2c+

+18bcd2 + 18acd2 + 18abd2 + 18bc2d + 18ac2d + 18b2cd + 18a2cd + 18a2bd+

+18ab2d + 18abc2 − 54bcd + 18ab2c− 54acd− 54abd− 54abc− 72a+

−72c− 72d− 72b + 18ab2d2 + 18b2c2d + 8a2c2 + 8a2d2 + 8b2c2+

+8b2d2 − 72cd + 8a2b2 + 567abcd + 143a2b2c2d2 − 63a2b2c2d + 18a2bc− 72ab+

−72bd− 72bc− 72ad− 72ac− 8a2 − 8b2 − 8c2 − 8d2+

−27ab2cd− 27a2bcd− 27abcd2 − 45ab2cd2 − 45a2bcd2 − 63ab2c2d2 − 63a2bc2d2 − 63a2b2cd2+

+8c2d2 − 45ab2c2d− 45abc2d2 − 45a2bc2d− 45a2b2cd− 27abc2d).

Now, the authors of [LM1], by using the decomposition (5.19), can give the decomposition of
the degree 3 part of the ideal of Sec1(Seg(P(A)× P(B)× P(C))).
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Definition 5.6.30. Given V = A1 ⊗ · · · ⊗ Ak, a Flattening of V is a decomposition

V = (Ai1 ⊗ · · · ⊗ Aiq)⊗ (Aj1 ⊗ · · · ⊗ Ajk−q
) = AI ⊗ AJ

where I + J = {1, . . . , k} is a partition of {1, . . . , k} into two subsets.

Corollary 5.6.31. Let X = Seg(P(A)× P(B)× P(C)). Then (5.19) holds and I3(Sec1(X)) is the
space of 3× 3 minors of the three possible flattenings of A⊗B ⊗ C.

This Corollary gives the decomposition of I3(Sec1(Seg(P(A) × P(B) × P(C)))), but the main
result of the paper [LM1] is to solve the G.S.S. conjecture (see [GSS]) in the case of the Segre
variety of three factors.

Conjecture 5.6.32. (L.D. Garcia, M. Stillman, B. Strumfeld) The ideal of Sec1(Seg(P(A1)×
· · · × P(Ak))) is generated by the 3× 3 minors of flattenings, i.e. Sec1(Seg(P(A1)× · · · × P(Ak)))
is intersection as a scheme of the varieties Sec1(P(AI)× P(AJ)).

For the proof of the case k = 3 of this conjecture, the authors of [LM1] introduced another
algorithm that is longer than the one we have shown in this section, but it is more efficient in higher
degrees. In fact the algorithm we presented here is very useful to compute the decomposition of
the degree d part of the ideal of the secant variety to the Segre variety when d is not “too big” but
it does not give any information on what happens for big values of d.

The main result of [LM1] is given by the following two theorems (for their proofs we refer to
the paper mentioned above).

Theorem 5.6.33. Let X = Seg(P(A1) × · · · × P(Ak)) ⊂ P(A1 ⊗ · · · ⊗ Ak) be a Segre product of
projective spaces. Then the first secant variety Sec1(X) is defined set theoretically by the 3 × 3
minors of flattenings. Moreover I3(Sec1(X)) is spanned by the 3× 3 minors of flattenings.

Theorem 5.6.34. Let X = Seg(P(A1) × P(A2) × P(A3)) ⊂ P(A1 ⊗ A2 ⊗ A3) be a triple Segre
product. Then the ideal of the secant variety Sec1(X) is generated by cubics.
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