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A dynamic analysis of stock markets using a latent 

Markov model 

 

This paper proposes an innovative framework to detect financial crises, pinpoint the end of a 

crisis and predict future developments in stock markets. This proposal is based on a latent 

Markov model and allows for a specific focus on conditional mean returns. By analyzing 

weekly changes in the U.S. stock market indexes over a period of 20 years, this study obtains 

an accurate detection of stable and turmoil periods and a probabilistic measure of switching 

between different stock market conditions. The results contribute to the discussion of the 

capabilities of latent Markov models and give financial operators some appealing investment 

strategies.  

 

Keywords:  Stock market pattern analysis; Regime-switching; Forecasting; Latent Markov 

model; Financial crises; Market stability periods. 
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1. Introduction 

Since the seminal work by Hamilton [14], Markov-switching approaches have been applied 

frequently to analyze stock price index data. The initial autoregressive framework, with 

unobserved changes in regimes modelled by a first-order Markov chain, has been extended 

[15] with an autoregressive conditional hetereoskedasticity (ARCH) specification with regime 

switching, governed by an unobserved Markov chain (SWARCH), which can evaluate 

changes in stock market volatilities. This method prevents an excess of persistence, which 

ARCH models impute to stock index volatility, and improves forecasting performance. 

Further extensions of the Markov-switching model specification [15] investigate changes in 

stock market volatility [4, 9, 12, 13, 16, 19, 23]. This article offers another type of extension 

that can model stock index dynamics.  

Previous research mainly has investigated conditional variances, categorizing time 

periods according to variances in stock market indexes, such that periods with similar 

volatilities have relatively high probabilities of being allocated to the same category. 

However, we classify time periods on the basis of mean returns, which provide crucial proxies 

of expected returns. Accordingly, we investigate conditional means that characterize different 

stock market regimes, for which purpose we undertake an exploratory analysis of the latent 

stochastic process that underlies the observed time-series of the stock market return 

distribution, using a latent Markov model (LMM) [3]. The latent process comprises a discrete 

number of states that can be interpreted as different market regimes. Therefore, as our first 

research contribution, we provide a probabilistic classification of each time observation into 

market regimes, according to the value of the observed return at that time and the correlation 

structure of the series.  
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Furthermore, prior financial literature has addressed the topic of conditional means 

only marginally, claiming that “it is well known that conditional means are hard to estimate” 

[2] and thus rarely investigated them in depth. Some authors who consider differences in 

variances find similar or non-significantly different means across regimes that could be 

constrained to be equal [2, 9]. But an accurate evaluation of conditional means might improve 

time-series classification. Stable periods, crises, and financial bubbles should be characterized 

by significantly different mean returns, and our analysis reveals that in the U.S. stock market, 

the conditional means differ statistically significantly across time periods.  

We therefore undertake an endogenous detection of different market phases, which 

contributes to extant research involving Markov-switching models that usually identify the 

number of market regimes a priori, often predetermining the number of latent states that 

characterize the unobservable Markov chain [4, 9, 23]. For example, a study might select two 

predetermined latent states that represent a low-volatility regime (i.e., the bull market phase) 

and a high-volatility regime (i.e., the bear market phase) [17, 18, 22]. However, model 

complexity and the many parameters that must be estimated in SWARCH and MS-GARCH 

specifications make it impractical to include more than four latent states [23]. As an 

alternative, we determine the number of latent states by turning to statistical procedures and 

the more parsimonious LMM model, which introduces a new methodological dimension to 

this step and allows for more than two or four latent states. Therefore, LMM enables a 

researcher to focus on dynamics and regime switches across different stock market phases, 

which offers valuable insights for financial variables analyses.  

In Section 2, we discuss a formal introduction to the applied LMM. Section 3 includes 

the theoretical framework for our application of LMM, followed by a discussion in Section 4 

of the analyzed data, analysis, and results. We conclude in Section 5. 
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2. Latent Markov Model  

In this section, we introduce the latent Markov model specification, parameter estimation and 

model selection. Furthermore, we describe the classification procedure used for allocating the 

time observations to the estimated latent states. 

2.1. Model specification 

Although the LMM model originally was introduced to analyze categorical indicators [26, 

28], recent work has exploited its potential to analyze continuous variables [5, 18, 25, 29]. 

Our work extends such recent work by focusing on the stock market return distribution.  

Specifically, let zt denote the return observation of a stock market index at time t (t = 

1, …, T). The LMM analyzes f(z), or the probability density function of the return distribution 

of the market index over time, using a latent transition structure defined by a first-order 

Markov process. For each time point t, the model defines a single discrete latent variable 

denoted by yt, which consists of S latent classes (usually referred to as latent states). Thus the 

LMM includes T latent variables and can be specified as 
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Equation (1) reveals that the model is a mixture, with ST latent classes (mixture components). 

In the other mixture models, f(z) can be obtained by marginalizing with respect to the latent 

variables. Because the y are discrete variables, Equation (1) is a weighted average of 
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probability densities ),...,;( 1 Tyyzf , where the latent class membership probabilities (or prior 

probabilities) ),...,( 1 Tyyf  are weights [20]. Furthermore, Equations (2) and (3) depict the 

conditional independence assumption implied by the LMM, which can simplify the density 

functions ),...,( 1 Tyyf  and ),...,;( 1 Tyyzf . Equation (2) implies an additional model 

assumption, namely, that ),...,( 1 Tyyf  follows a first-order Markov process. Thus, latent state 

yt is associated with yt-1 and yt+1 only. Furthermore, )( 1yf  denotes the (latent) initial-state 

probability function. According to Equation (3), the return observation at time t is 

independent of observations at other time points, conditional on the latent state occupied at 

time t. 

Furthermore, )|( 1tt yyf  denotes the latent transition probability function, which 

provides the probability of being in a particular latent state at time t, conditional on the state 

occupied at the previous time point, t – 1. Assuming a homogenous transition process with 

respect to time, we achieve a latent transition matrix in which the generic element 

)|(obPr 1 jykyp ttjk    denotes the probability of switching from latent state j at time t 

– 1 to latent state k at time t, for j, k = 1, …, S. 

This LMM can be considered a restricted version of the regime-switching 

autoregressive model proposed by Hamilton [14], which restricts the autoregressive 

component to 0. Using the specification provided by Equations (1)–(3), we intend to model 

the latent stochastic process ty  to gain insights into stock market dynamics and a specific 

focus on the different conditional means )|( kyz tt   for k = 1, …, S. 

2.2. Parameter estimation 

For the parameter estimation, we maximize the log-likelihood function (LL) according to the 

expectation-maximization (EM) algorithm [7]. However, the iterative procedure of the EM 

algorithm is often impractical for estimating a LMM. For the expectation step, it must 
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compute and store ST entries of the joint posterior latent distribution, )|,...,( 1 zyyf T , so 

computational time increases exponentially with T, and even a moderate time-series length 

may prevent the convergence of the algorithm. We therefore use a variant of the EM 

algorithm, called the forward-backward or Baum-Welch algorithm [3], as extended by Paas et 

al. [21] for an application to data sets with multiple observed indicators and implemented in 

the Latent GOLD 4.5 computer program [27].  

The forward-backward algorithm exploits the conditional independence assumption of 

the LMM to compute the joint posterior latent distribution by estimating the missing data, 

which in the LMM are unobserved state memberships. This estimation is realized by 

computing the expected value of the log-likelihood function, given the current parameter 

values and the observed data. The maximization step uses standard maximum likelihood 

estimation methods for complete data to update the model parameters. The algorithm cycles 

between these steps until it reaches a previously defined convergence criterion.  

2.3. Model selection and class membership 

Model selection involves the choice of the number of latent states S, which in our framework 

represents the number of market regimes. This extension of existing approaches addresses 

their inability to estimate Markov switching models with S > 4 because of their complexity 

[23]. The choice of the appropriate number of latent classes is based on the Akaike 

information criterion (AIC) [1]:1 

NParLLAIC 22  , 

where NPar is the number of model parameters.  

For our analysis, stock index returns are the indicators zt, for t = 1, …, T. Each zt is 

classified into one latent state according to the estimated posterior probabilities. That is, zt is 

                                                 
1 Markov chain order identification in LMM remains an unresolved issue (see [6], Chap. 15 for a recent 
discussion), and there are several concerns about the robustness and reliability of information criteria. We also 
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allocated to latent state j if )|(ˆ)|(ˆ
tttt zkyfzjyf   for every k = 1, …, S. In this modal 

classification, time points with a similar development are more likely to be allocated to the 

same latent state than are those with highly divergent developments.  

3. Theoretical framework 

The use of the LMM for these purposes is promising, because financial markets are 

characterized by frequent changes in regimes. If stock market index returns are subject to 

discrete changes in regimes, including periods in which the dynamic pattern of the series 

differs markedly, a nonlinear model should exploit the time path of the observed series to 

draw inferences about a set of discrete latent states [14]. Different market regimes thus should 

be characterized by different means and standard deviation values or—using the terminology 

of portfolio theory framework—by different risk–return profiles. During a financial crisis, the 

stock market experiences a strong negative mean return, and the standard deviation, used as a 

proxy of risk, is large. During more stable phases, stock returns fluctuate around a constant 

mean, and the standard deviation of the index value is lower. Different regimes in different 

time periods imply the ability to cluster time observations, according to the similarity in the 

dynamics of the index value and the volatility of that index [11]. Time periods with more 

(less) similar index dynamics have a higher (lower) probability of being allocated to the same 

cluster. Moreover, empirical analyses clearly show stock returns are characterized by 

asymmetry and larger kurtosis than the Gaussian distribution [10], which invalidates 

inferences. By modelling regime changes using a mixture of normal distributions, LMM 

provides an effective solution to these issues [8]. 

The LMM applied in this study classifies different observations into a limited set of 

regimes, on the basis of stock market price index dynamics. For example, a week 

                                                                                                                                                         
agree with the concerns about a uncritical use of these indicators. However, we believe that they can contribute 
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characterized by a strong decline in the stock market price index may be allocated to the large 

value decrease market regime, whereas weeks defined by small changes likely appear in the 

stable market regime. Switches between regimes are modelled as a Markov process. Using 

equations previously introduced by Paas et al. [19], we also can employ the LMM to predict 

future stock market dynamic patterns. These one-step ahead forecasts, based on latent 

transition probabilities, reveal which regimes the stock market is likely to experience in the 

next week.  

4. Empirical analysis using the latent Markov model 

In this section, the proposed model is applied to the U.S. stock market index S&P 500. First, 

data description is provided. Next, empirical results and applications of the estimated model 

are discussed. Finally, the estimated model forecasting performance is evaluated. 

4.1. Data description 

Our analysis is based on weekly returns for the U.S. stock market price index S&P 500, 

calculated as the percentage achieved in the relative variation in index prices, tp : 

100
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tt
t p

pp
z . The data set covers the period from January 5, 1990, to January 1, 2010, 

which includes T = 1044 time points. As Figure 1 shows, our data set includes at least three 

periods with high volatility, which reflect stronger fluctuations and rapid changes from 

positive to negative peaks: prior to 1991, from 1997 to 2003, and after 2008. Our data also 

contain several stable periods, such as those from 1992 to 1997 and from mid-2003 to the end 

of 2007. According to NBER-defined business cycles,2 the total study period contains three 

crisis periods: the “savings and loan” crisis (July 1990–March 1991), the Internet bubble burst 

and September 11 attacks (March 2001–November 2001), and the credit crisis (starting in 

                                                                                                                                                         
to current procedures, for which the choice of latent states is somewhat arbitrary.  
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December 2007). A pressing question during such periods is when the economic situation 

might improve. Therefore, we apply the LMM to discriminate endogenously the stable from 

the crisis periods and recognize the end of a crisis, according to the mean returns of the stock 

market price index. The LMM also enables us to predict what will happen during the 

subsequent week in a period of crisis and which market-regime is most likely.  

INSERT FIGURE 1 ABOUT HERE 

Table 1 contains the different values of the mean returns and standard deviations for 

the entire time sample and five subperiods, which can be associated with low or high 

volatility market phases: According to the standard deviation values, the five subperiods are 

characterized by different levels of variability. In particular, the levels differ greatly for 

periods II and IV and periods I, III, and V, as well as across the three high-volatility phases. 

The latter finding implies that each financial crisis creates its own peculiarities.  

The Jarque-Bera normality test results are significant for the entire data set, implying a 

significant difference between the observed and a normal distribution. We also can reject the 

normality assumption for subperiods III and V, according to the Jarque-Bera test. Therefore, 

the LMM may be a desirable alternative to traditional financial econometric models, because 

it accounts for both asymmetry and more kurtosis than a normal distribution. 

INSERT TABLE 1 ABOUT HERE 

4.2. Model estimation and class profiling 

We estimate the LMM for 1 to 8 latent states (S = 1, …, 8) and provide, in Table 2, the 

maximum log-likelihood function, number of estimated parameters, and AIC values. 

According to the AIC criterion, the LMM with seven latent states provides the best fit to the 

                                                                                                                                                         
2 Source: http://www.nber.org/cycles.html. 
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data. In our framework, these latent states represent seven different stock market regimes. 

According to the return means in each state, the S&P 500 index reveals three negative and 

four positive regimes; in Table 3, we label the profiles of the seven market regimes using the 

return means. For example, latent state 1 has an average return of -13.45% and constitutes 

0.31% of the T = 1044 analyzed weeks. 

INSERT TABLE 2 AND 3 ABOUT HERE 

As Table 3 shows, the LMM can define different regimes of the stock market. The 

return means differ significantly across latent states, according to both the Wald test (W = 

817.02, df = 6, p-value < 0.001) and ANOVA (F = 358.24, df = 6; 1037, p-value < 0.001), so 

we reject the null hypothesis of equality between conditional means. Furthermore, the 

dispersion within each latent state is relatively low, according to the similar standard 

deviation values in Table 3, with the exception of latent state 1, which represents the biggest 

stock market drops. 

Figure 2 displays the weekly return time-series of the S&P 500 index and that 

obtained through the seven-state LMM. The estimated series is plotted using the latent state 

return means. The LMM approximates the observed time series of the S&P 500 index quite 

accurately. Moreover, it detects two stable periods, corresponding to latent state 4, as 

represented by the straight lines from March 1, 1991–March 14, 1997, and from May 23, 

2003–July 20, 2007 (Figure 2). The LMM results also show that the three periods, 

characterized by high volatility, include frequent switches between regimes with positive and 

negative conditional means. These three periods correspond to the three crises and recessions 

we noted previously, though the 2001 crisis was preceded by a period of turmoil that started 

in 1997, which may indicate a spillover of the Asian crisis to the U.S. stock market [24].  

INSERT FIGURE 2 ABOUT HERE 
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4.3. Latent transition analysis 

In the transition probability matrix estimated by the LMM in Table 4, the transition 

probabilities define the stock market regime-switching. The values on the diagonal represent 

state persistence, that is, the probabilities of remaining in a particular market regime. The 

modal latent state 4 has high persistence (p44 = 0.995) and represents the stable market 

regime. As Figure 2 reveals, this result indicates that the U.S. stock market tended to remain 

in that regime (T =   2171 1
44  p  weeks). The off-diagonal pjk values indicate the 

probabilities of market regime-switching. It is quite likely that the S&P 500 index switches 

from a very negative phase to a period of fast growth (p16 = 0.9606), whereas the opposite 

switch is unlikely (p61 = 0.0005). 

The probabilities in Table 4 thus underline some important features of market regime-

switching. First, for latent states 2 to 5, the transition probabilities pjj are relatively high, 

whereas for latent states 1 and 7, persistance is unlikely (p66 and p77 < 0.01), and state 6 has a 

persistance probability of 0.10. Second, when the S&P 500 declines (states 1 or 2) at time t, at 

time t + 1, the market may continue in a negative phase (p21 = 0.069 and p22 = 0.427) or 

switch to a positive regime (p16 = 0.961, p25 = 0.168, p26 = 0.126, and p27 = 0.203). The other 

states rarely occur after state 1 or 2.  

Overall, 31 of the 49 transition probabilities are less than 0.05 in the transition matrix, 

which indicates most regime switches are very unlikely for the S&P 500 index. Accordingly, 

our results offers interesting insights for future market phase predictions. 

INSERT TABLE 4 ABOUT HERE 
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4.4. Recognition of the stable market phase 

The model also can predict a stable period, after a previous stable period or after a period in 

which the market was not categorized in the stable latent phase 4. The latent state 

characterized by a moderate positive mean return is most common and has a persistence 

probability of close to 1. These features denote a stable market regime, as mentioned in 

Section 4.2. In these periods, which correspond to subperiods II and IV in Table 1, the stock 

price index value does not experience large and frequent changes. The ranges between the 

minimum and the maximum returns of the S&P 500 index in periods II and IV are 8.44 and 

7.95, respectively, and the standard deviations are 1.375 and 1.435. In contrast, periods I, III, 

and V are characterized by ranges of 10.37, 19.38, and 30.23 and standard deviations of 

2.333, 2.789, and 3.893, respectively (see Table 1). Therefore, the time points classified into 

latent state 4 can be interpreted as belonging to a low-volatility period of market stability, 

whereas the other six latent states refer to the high-volatility periods I, III, and V, 

characterized by frequent switches between high- and low-return regimes. 

In Figure 3, the estimated posterior probabilities for latent state 4, )|4(ˆ
tt zyf  , 

underlie the high level of confidence with which the LMM determines the two stable periods 

characterized by low level of volatility: Of the 536 observations classified into latent state 4, 

only 38 have a posterior probability less than 0.90. In other words, the probability of 

remaining in latent state 4 across time points is quite high, as correctly predicted by the 

model. 

INSERT FIGURE 3 ABOUT HERE 

To evaluate the model’s capability to detect a stable period after a period of crisis, we 

estimate the LMM with 7 latent states for shorter time series. The beginning of the second 

stable regime (period IV in Table 1) provided by the LMM, when applied to the entire time 
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series, starts on May 23, 2003. We use the crisis before May 2003 to evaluate the model’s 

capacity to detect a stable period, because period II (Table 1) is preceded by a very short 

unstable period in our data set, and the crisis that started in 2001 had not ended. We assess 

how many weeks of stability are required to detect the end of the financial crisis, which the 

LMM estimates as May 23, 2003. Therefore, we first estimate the model using data from 

January 5, 1990–May 23, 2003, and then from January 5, 1990–May 30, 2003, and so on. A 

stable period emerges when multiple weeks, latest in time, are allocated to the stable latent 

state 4.  

Our analysis reveals that LMM can detect the stable market phase within 13 weeks of 

May 23, 2003. That is, a period containing only stable regimes after May 23, 2003, appears 

when we use the data set with stock index returns from January 5, 1990–August 22, 2003. In 

the analysis in which we included fewer than 13 weeks, the last few observations are not 

allocated to the stable latent state 4. This feature of LMM is potentially useful for detecting 

when the financial crisis that started in 2007 will end. That is, by the time we concluded our 

analysis (January 1, 2010), there were not 13 consecutive weeks allocated to the stable latent 

state 4; the crisis had not ended by January 1, 2010. However, Figure 3 shows that the 

posterior probability for latent state 4 increased in the most recent observations in our sample, 

reaching 34.0)|4(ˆ
2010/1/12010/1/1  zyf , though still not representing the modal state.  

Of course, great care should be taken in interpreting the results of this application of 

the LMM. Each crisis has idiosyncratic characteristics, which implies that different periods of 

stability may be required to detect different crises. This topic remains for further study.  

Other model characteristics also emerge from the analysis for predicting the end of the 

crisis that occured prior to May 2003. Figures 4 and 5 compare the original time-series with 

respect to the LMM estimate derived from the whole data set and the estimate of a LMM with 

7 latent states applied to the data from January 5, 1990–August 22, 2003. The return means of 
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the LMM estimate, based on the shorter time series, differ slightly from the means of the 

overall LMM estimated time series. Nevertheless, latent state memberships derived from the 

shorter time series are almost the same as the LMM estimates achieved with the entire data 

set. In particular, the observations from March 1, 1991–March 14, 1997, can be allocated to 

the stable regime (latent state 4, Table 3) in both data sets, in support of the robustness of the 

LMM classification procedure and its power to detect low-volatility stable periods without 

referring directly to the analysis of any volatility measure. However, after only five weeks, 

the LMM can identify the beginning of a “potential” stable period; it classifies the previous 

12 weekly return observations into latent state 5. Despite a low transition probability (p54 = 

0.0116 in Table 4), this latent state is the regime that the stock market experiences just before 

switching to the stable latent state 4.3  

This feature underlines an interesting behaviour of the S&P 500, which tends to 

stabilize and consolidate after a positive regime. Our analysis instead shows that once the 

stable market phase ends, instability occurs for a quite long period in the three crises in our 

data set. For instance, the high-volatility period III in Table 1 has approximately the same 

length of the stable period II. This feature can be generalized to other crises. 

INSERT FIGURES 4 AND 5 ABOUT HERE 

4.5. Predictive power of LMM 

In Section 4.3, we reported on the latent transition matrix for the S&P 500 (Table 4). In this 

section, we exploit the information provided by the transition probabilities to evaluate the 

forecasting accuracy of the LMM. In particular, we investigate the power of the model to 

predict the next discrete latent state, using a one-step ahead dynamic forecast. More formally, 

we evaluate 1|ˆ  hThTy , the out-of-sample forecast of observation T + h, given the LMM 

                                                 
3 However, p54 is the highest transition probability with respect to the other transition probabilities pj4 for 4j  
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estimate prior to time T + h – 1. The ex-ante estimate refers to the transition probabilities in 

matrix P. If the observation at time T has been classified into latent state k by the model, the 

observation at time T + 1 will be classified into latent state j with a specific probability jkp̂ . 

After collecting the observation for time T + 1 and reestimating the model, as a proxy of 

forecast error, we compare ex-post the prediction based on the highest pjks with the actual 

classification of the observation jyT 1 . We first must prevent transition probabilities from 

changing over time [21] and require that the latent Markov chain be homogenous [29]. We 

thus show that the LMM can forecast the next week’s market regime accurately. 

As Table 4 shows, some regime switching can be predicted quite accurately, because 

of the high transition probabilities. The persistence of the stable regime is highly predictable, 

as is the switching from latent state 1 to state 6. However, for some latent states, at least three 

transition probabilities are greater than 0.10, which complicates our prediction. For example, 

latent state 2 has four transition probabilities higher than 0.10.  

 The LMM, developed on the weekly price index of the S&P 500 from January 5, 

1990–January 1, 2010, applies to predict weekly index regimes during the period from 

January 1, 2010–April 2, 2010, with the forecasting results summarized in Table 5. We report 

the one-step ahead forecasts for the out-of-sample observations, starting from the last 

observation of the time series (January 1, 2010), which we denote as T, to observation T + 13, 

which corresponds to April 2, 2010. The second column of Table 5 reports the actual return 

observations hTz   of the S&P 500 index from January 1, 2010 to April 2, 2010, for h = 0, 1, 

…, 13. The third colomn of Table 5 shows the latent state jy hT ˆ  obtained by estimating 

the LMM up to observation T + h, for j = 1, …, 7; in the fourth column, we provide the 

relative conditional mean )|(ˆ jyz hThT  . Finally, the pjk column shows the transition 

                                                                                                                                                         
(see Table 4), and latent state 5 is the last visited regime before the switch to latent state 4 in both cases in the 
analyzed data set. 
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probability of that particular switch, )|(ˆ
1 kyjyf hThT   . Therefore, all the switches are 

predicted according to the most probable pjk in latent transition matrix P, except for 

observation T + 5, for which p35 is the second highest transition probability for latent state 3. 

INSERT TABLE 5 ABOUT HERE 

We can assess the forecasting accuracy of the LMM by referring to the in-sample one-

step ahead predictions. In Table 6, we report the number of times the LMM predicted the next 

week market regime correctly for the sample period, according to the four highest latent 

transition probabilities for each state. Column 1 indicates the number of times the LMM 

predicts the next market regime by referring to the most probable jkp̂  in the latent transition 

matrix, column 2 contains the count of times the LMM forecasts correctly, according to the 

second modal transition probability, and so on. For example, the December 25, 2009, 

observation was classified into latent state 5, whereas the January 1, 2010, observation was in 

state 3. The transition probability of switching from state 5 to state 3 is p53 = 0.377, the 

second highest probability for latent state 3, following p55, as in column 2 of Table 6. The last 

column of Table 6 shows the number of times the model was unable to predict the next 

week’s regime by referring to the four most probable latent transition probabilities. The 

percentage of column “-,” or the proportion of times that LMM failed for any reason to 

predict the week market regime, is consistently low: 0.29%. The percentages in column 1 are 

higher, and the model prediction accuracy (columns 1 and 2) exceeds 95%.  

INSERT TABLE 6 ABOUT HERE 

5. Discussion and conclusions 

We have investigated the dynamic patterns of stock markets by exploiting the potential of the 

LMM for defining different market regimes and providing transition probabilities for regime-

switching. On the basis of the AIC, we find empirical evidence for a LMM with seven latent 
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states for the U.S. S&P 500 index. The regimes, represented by the seven latent states, are 

clearly defined and characterized by different return means. Therefore, we show that stock 

markets can be analyzed by referring to a simple and flexible model specification with a 

specific focus on conditional means that differ significantly and substantially across latent 

states. Our approach represents an efficient alternative to the more sophisticated but much less 

flexible Markov-switching models that attempt to evaluate the conditional variance without 

estimating more than four latent states [23] and without consideration of conditional means 

[2].  

The LMM endogenously detects crises, including the 1990–91 U.S. recession, the 

turmoil of 1997–99 and 2000–01, and the crisis that started in late 2007. It also detects two 

long, stable periods between these crises. A stable market regime is defined by a particular 

latent state, characterized by a moderate positive return mean and a high state persistence 

probability, comparable to the low-volatility regime achieved in volatility-based Markov-

switching models. Furthermore, the model distinguishes relatively moderate fluctuations in 

stable periods from stronger fluctuations during periods of crisis. With respect to volatility, 

our approach describes the fluctuations during high-volatility periods with six latent states and 

therefore enhances understanding of crises, in terms of switching between regimes with low 

and high (conditional) mean returns. That is, the LMM provides straightforward insights into 

high-volatility regimes, which cannot be achieved by Markov-switching volatility approaches 

that are useful for defining periods characterized by a high conditional variance value but 

cannot investigate fluctuations within these periods. 

 With regime characterization and latent transition probabilities, we can achieve two 

additional important goals. First, with LMM, we recognize the beginning of stable periods 

within 13 weeks. This feature may provide a highly pertinent opportunity to detect the end of 

the current financial crisis that started in 2007. Despite some preceding positive weeks, the 
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crisis had not ended by January 2010 or April 2010 (according to the out-of-sample forecast 

in Section 4.5). It also enables us to recognize the beginning a crisis promptly, based on a 

switch from the stable market phase represented in our analysis by latent state 4 to one of the 

other six latent states. Unstable periods last for many weeks before “bouncing back” to a new 

stable phase. Second, with LMM, we can predict which regime the stock market is going to 

experience the following week. Additional studies should apply this methodology to other 

periods and countries as well to determine if the latent states we have found, as well as our 

other findings, hold in different circumstances.  
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Table 1: Mean, standard deviation, minimum, maximum, skewness, kurtosis, and Jarque-Bera 

test of S&P 500 index in different periods  

Period 
Mean 
Return 

Standard 
Deviation 

Min Max Skewness Kurtosis 
Jarque-

Bera Test 

Entire data set (1990/01/05–
2010/01/01, T = 1044) 

0,1381 2,3571 -18,20 12,03 -0,4873 6,0027 1608,7**

Period I (high volatility) 
(1990/01/01–1991/02/15, T = 

59) 
0,1000 2,3330 -4,98 5,39 0,1090 -0,6003 1,003

Period II (low volatility) 
(1991/02/22–1997/03/21, T = 

318) 
0,2465 1,3754 -3,42 5,02 0,0753 0,1637 0,655

Period III (high volatility) 
(1997/03/28–2003/05/16, T = 

321) 
0,0970 2,7890 -11,60 7,78 -0,2653 1,2159 23,54**

Period IV (low volatility) 
(2003/05/23–2007/07/20, T = 

218) 
0,2328 1,4353 -4,41 3,54 -0,2761 0,2753 3,458

Period V (high volatility) 
(2007/07/27–2010/01/01, T = 

128) 
-0,1724 3,8928 -18,20 12,03 -0,3969 3,6494 74,39**

**Significant at 1%. 
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Table 2: Log-likelihood function, number of parameters, and AIC criterion of the LMM from 
1 to 8 latent states for S&P 500  

Number of Latent 

States 
LL NPar AIC 

1 -2375.96 2 4755.91 

2 -2329.37 6 4570.99 

3 -2279.50 12 4527.28 

4 -2253.64 20 4487.63 

5 -2228.81 30 4456.48 

6 -2207.24 42 4441.23 

7 -2192.62 56 4435.94 

8 -2181.97 72 4570.99 
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Table 3: Sizes, return means, standard deviations, and Jarque-Bera tests of 7 latent states for 
S&P 500 index  

Latent State Size Return Mean (standard 
error) Standard Deviation 

1 .0031 
-13.454 

(0.844) 
4.151 

2 .0147 
-6.349 

(0.493) 
1.599 

3 .1983 
-1.913 

(0.217) 
1.352 

4 .5001 
0.246 

(0.064) 
1.398 

5 .2328 
1.169 

(0.240) 
1.196 

6 .0477 
4.604 

(0.381) 
1.169 

7 .0032 
11.072 

(0.838) 
0.833 

Entire data set 1.000 0.138 2.357 

*Significant at 5%. 

** Significant at 1%. 
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Table 4: Latent transition matrix for S&P 500 index 

j \ k 1 2 3 4 5 6 7 

1 .0067 .0065 .0065 .0065 .0065 .9606 .0066 

2 .0687 .4270 .0051 .0016 .1684 .1261 .2033 

3 .0001 .0149 .4457 .0002 .3581 .1809 .0001 

4 .0000 .0000 .0044 .9951 .0003 .0001 .0000 

5 .0084 .0018 .3774 .0116 .5921 .0086 .0001 

6 .0005 .0850 .3656 .0016 .4446 .1023 .0004 

7 .0065 .2882 .6633 .0065 .0145 .0145 .0065 
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Table 5. One-step ahead forecast for S&P 500 index, January 1, 2010–April 2, 2010 (out-of-
sample) 

Obs. Date Observed 

Index Return 

Estimated 

Latent State 

Conditional 

Mean 

jkp̂  

T 01/01/10 -1.01 3 -1.913 - 

T + 1 01/08/10 -0.78 3 -1.913 .4457 

T + 2 01/15/10 -3.90 3 -1.913 .4457 

T + 3 01/22/10 -1.64 3 -1.913 .4457 

T + 4 01/29/10 -0.72 3 -1.913 .4457 

T + 5 02/05/10 0.87 5 1.169 .3581 

T + 6 02/12/10 3.13 5 1.169 .5921 

T + 7 02/19/10 -0.42 5 1.169 .5921 

T + 8 02/26/10 3.10 5 1.169 .5921 

T + 9 03/05/10 0.99 5 1.169 .5921 

T + 10 03/12/10 0.86 5 1.169 .5921 

T + 11 03/19/10 0.58 5 1.169 .5921 

T + 12 03/26/10 0.99 5 1.169 .5921 

T + 13 04/02/10 1.38 5 1.169 .5921 
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Table 6: Number and percentages of correct LMM predictions of next latent state according to 
the four highest transition probabilities (in-sample forecast) 

 1 2 3 4 - Total 

# 806 186 42 6 3 1043 

% 77.28 17.83 4.03 0.58 0.29 100 
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Figure 1: S&P 500 weekly return distributions from January 5, 1990–January 1, 2010 
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Figure 2: S&P 500 and LMM estimated time series  

-15

-10

-5

0

5

10

Ja
n-

90

Ja
n-

91

Ja
n-

92

Ja
n-

93

Ja
n-

94

Ja
n-

95

Ja
n-

96

Ja
n-

97

Ja
n-

98

Ja
n-

99

Ja
n-

00

Ja
n-

01

Ja
n-

02

Ja
n-

03

Ja
n-

04

Ja
n-

05

Ja
n-

06

Ja
n-

07

Ja
n-

08

Ja
n-

09

W
e

e
k

ly
 r

e
tu

rn

 



 29

Figure 3: Estimated posterior probabilities for latent state 4 
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Figure 4: S&P 500 index return distribution, overall LMM estimates, and LMM estimates for 
the stable regime (LMM stable) 
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Figure 5: Close-up of S&P 500 index return distribution, overall LMM estimates, and LMM 
estimates for the stable regime (LMM stable) 
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