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Abstract

This paper proposes a testing strategy for the null hypothesis that a multivariate linear

rational expectations (LRE) model has a unique stable solution (determinacy) against the

alternative of multiple stable solutions (indeterminacy). Under a proper set of identifica-

tion restrictions, determinacy is investigated by a misspecification-type approach in which

the result of the overidentifying restrictions test obtained from the estimation of the LRE

model through a version of generalized method of moments is combined with the result of

a likelihood-based test for the cross-equation restrictions that the LRE places on its finite

order reduced form under determinacy. This approach (i) circumvents the nonstandard in-

ferential problem that a purely likelihood-based approach implies because of the presence

of nuisance parameters that appear under the alternative but not under the null, (ii) does

not involve inequality parametric restrictions and nonstandard asymptotic distributions, and

(iii) gives rise to a joint test which is consistent against indeterminacy almost everywhere

in the space of nuisance parameters, i.e. except for a point of zero measure which gives rise

to minimum state variable solutions, and is also consistent against the dynamic misspecifi-

cation of the LRE model. Monte Carlo simulations show that the testing strategy delivers

reasonable size coverage and power in finite samples. An empirical illustration focuses on

the determinacy/indeterminacy of a New Keynesian monetary business cycle model for the

US.
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1 Introduction

It is well known that linear rational expectations (LRE) models can have multiple equilibria,

a situation referred as indeterminacy. Determinacy, on the other hand, denotes a situation

in which a LRE model has a unique stable (asymptotically stationary) solution. The time

series representation of an indeterminate LRE model may differs substantially from that of a

determinate one since a set of nuisance parameters and non-fundamental stochastic disturbances,

often referred to as sunspot shocks and usually ascribed to self-fulfilling beliefs of economic

agents,1 can influence the dynamics of the former.

In dynamic general equilibrium macroeconomic models there are many mechanisms that can

generate multiple equilibria such as, among others, strong income effects, incomplete market

participation, external increasing returns and monopolistic competition. While many econo-

mists interpret indeterminacy as a reflection of reality and a possible explanation of a wide

range of economic phenomena (e.g. Benhabib, Farmer, 1999), others argue that it signals coor-

dination problems and affects what could be called the ‘predictability’ of the system (Guesnerie,

1993). Various selection criteria have been suggested for choosing one among the many possible

equilibria, see Driskill (2006) for a recent review.

Recently, macroeconomists have become increasingly interested in evaluating the determi-

nacy/indeterminacy of a particular class of linear(ized) LRE models of the New-Keynesian tra-

dition through which the essential aspects of the business cycle and monetary policy are inves-

tigated. Indeed, the equilibrium implied by these models may not be unique if the central bank

does not raise sufficiently the nominal interest rate in response to inflation, see e.g. Lubik and

Schorfheide (2004), Boivin and Giannoni (2006) and Benati and Surico (2009). This topic, which

is currently framed in the debate on the ‘Great moderation’ has renewed the general interest

on the empirical assessment of determinacy/indeterminacy in models involving forward-looking

behaviour.

On the econometric side, the non-uniqueness problem in the econometrics of LRE models

has traditionally been associated with a particular type of ‘explosive indeterminacy’ that may

arise in models for financial asset markets and foreign exchange markets, or in the Cagan’s

monetary model of hyperinflation, usually called rational bubbles, see, inter alia, Flood and

Garber (1980), Hamilton and Whiteman (1985), West (1987), Casella (1989), Evans (1991),

Imrohoroğlu (1993) and Engsted and Nielsen (2010). Aside from rational bubbles, however,

only a few of studies, reviewed in detail in Section 3, have dealt with the problem of testing

determinacy/indeterminacy in stable LRE models.

In this paper, we address the problem of testing the hypothesis of determinacy in a family

1These disturbances are also denoted ‘rational bubbles’ when their occurence give rise to explosive roots.
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of multivariate LRE models which covers many of the models currently used in finance and

macroeconomics. In this class of models, if a unique stable solution exists, it can be represented,

under a proper set of identifying restrictions, as a vector autoregression (VAR) with finite lag

order, whose coefficients are subject to nonlinear cross-equation restrictions (CER), see Hansen

and Sargent (1980, 1981) and Binder and Pesaran (1995, 1997). Conversely, if multiple stable

solutions occur, these can be represented as vector autoregressive moving average (VARMA)-

type processes with coefficients subject to (highly) nonlinear CER. These VARMA-type solutions

are characterized by two independent sources of indeterminacy which complicate the dynamics

and volatility of the system: the former is due by a set of auxiliary parameters that are not related

to the structural parameters and enter the MA part of the solution, and, more importantly, are

not identifiable under the null of determinacy; the latter is due to the possible presence of

sunspot shocks.

Since the VARMA-type solutions obtained under indeterminacy present a richer dynamic

structure compared to the VAR solutions obtained under determinacy, the time series properties

of the data may lead one to confuse the possible dynamic misspecification of the LRE model

(i.e. the omission of lags/leads or variables) with the hypothesis of indeterminacy. According to

Lubik and Shorfheide (2004), all system-based approaches to evaluation of indeterminacies are

affected by this weakness.

In the current literature, the only formalized model comparison of the hypotheses of deter-

minacy and indeterminacy has been proposed by Lubik and Shorfheide (2004) in the Bayesian

framework; other contributions in this area are reviewed in Section 3 which clarifies that no

formal test of determinacy is currently available in the classical framework. We attempt to fill

this gap by proposing a testing strategy for the null that a multivariate LRE model has a unique

stable solution against the alternative of multiple stable solutions which:

(i) does not require prior distributions with the advantage, compared to Lubik and Schorfheide’s

(2004) approach, that the researcher is exempted from the specification of prior distribu-

tions for the arbitrary auxiliary parameters that index the VARMA-type solutions;

(ii) circumvents the nonstandard inferential problem implied by the direct comparison of the

likelihood of an highly constrained VARMA(p,0) process (determinate solution) with the

likelihood of an highly constrained VARMA(p+1,0+1) process (indeterminate solution);2

2The specific case in which an univariate ARMA(0,0) process is tested against an ARMA(1,1) process is covered

by Hannan (1982) and Andrews and Ploberger (1996), and is generalized to the case of higher-order univariate

ARMA models in Veres (1987). Unfortunately, it is difficult to adapt the general solution, discussed in Andrews

and Ploberger (1994), to the multivariate framework because of the difficulty in identifying a priori the number of

nuisance parameters that index the model solution under indeterminacy, see e.g. Lubik and Schorfheide (2004).
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(iii) is not based on the inequality parametric restrictions that identify the determinacy/indeterminacy

region of the parameter space, with the advantage that the inference does not require the

use of nonstandard asymptotic distributions (Silvapulle and Sen, 2005);

(iv) controls by construction for the possible dynamic misspecification of the LRE model, where

the term ‘dynamic misspecification’ is here used to denote a model that omits relevant

lags/leads and/or variables with respect to the data generating process (DGP);

(v) is computationally straightforward and can be implemented with any existing econometric

package.

The suggested testing strategy is based on a simple intuition: in a correctly specified LRE

model, a test for the hypothesis of determinacy can be formulated as a likelihood-based test

for the validity of the CER that the LRE model places on its finite order VAR representation

as originally suggested in Hansen and Sargent (1980, 1981); under the maintained assumption

of correct specification, the rejection of the CER can be automatically associated with the

hypothesis of indeterminacy. This simple argument fails, however, when the correct specification

of the LRE model can not be taken for granted; in that case, the rejection of the CER can also

be associated with the misspecification of the LRE model.

The idea is to combine in a joint test the outcome of the overidentifying restrictions test

applied to the LRE model (Hansen’s J-test), with the outcome of a Lagrange multiplier (LM)

test for the CER obtained under determinacy. The J-test is used to assess the validity or

dynamic misspecification of the LRE model and is obtained from the estimation of the structural

parameters by a version of generalized instrumental variables (GIV) (Hansen and Singleton,

1982) based on a finite set of instruments which is directly selected from the reduced form

solutions of the model and a parametric estimate of the weighting matrix which accounts for

the VMA structure of the LRE model disturbances, see Cumby et al. (1983) and West (1997).

Conditional upon the non rejection of the LRE model by the J-test, the LM test for the CER

is obtained from the likelihood-based estimation of the constrained unique stable reduced form

representation of the LRE model and is used to test its data adequacy. If the CER are not

rejected by the LM test the hypothesis of determinacy is accepted and indeterminacy otherwise.

The suggested testing strategy (or joint test), hereafter denoted the ‘J →LM’ procedure,
exploits the merits of both ‘limited-’ and ‘full-information’ estimation techniques available for

LREmodels (Wallis, 1980; Wickens, 1982; West, 1986) and is built upon the following arguments:

(a) if in locally identified LRE models ‘limited-information’ methods are used by applying the

same structural identification analysis which is typical of the ‘full-information’ approach, a finite

number of valid over-identifying instruments can be selected in a correctly specified models, and
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generalized method of moments (GMM) (likewise GIV) methods provide consistent estimates of

the structural parameters irrespective of whether model solution is determinate or indeterminate;

(b) recent research (Mavroeidis, 2005; Jondeau and Le Bihan, 2008) shows that for suitable

choices of the weighting matrix, the overidentifying restrictions test resulting from GMM (GIV)

estimation has finite sample power against the dynamic misspecification (omission of lags/leads)

of the LRE model; (c) since a locally identified and ‘correctly specified’ LRE model has a finite

order VAR representation under determinacy with coefficients subject to a set of nonlinear CER,

in a determinate DGP these CER should not be rejected when confronted with the data.

By construction, the asymptotic properties of the joint test inherits, to large extent, the

asymptotic properties of the overidentification restrictions and LM tests. It is shown that the

overall nominal size can be easily bounded and that in practice one can treat the two tests

in the ‘J →LM’ procedure as if they were independent. More importantly, under a set of

standard regularity conditions, the ‘J →LM’ procedure is consistent against the hypothesis of
indeterminacy almost everywhere in the space of nuisance parameters, i.e. for all values of the

nuisance parameters except a zero measure point that generates minimum state variable (MSV)

solutions (McCallum, 1983, 2003, 2004) characterized by the same dynamic structure as the

determinate reduced form. This property is shared with the Bayesian test proposed by Lubik

and Schorfheide (2004) (see their footnote 4). Notably, the joint test is also consistent against

the dynamic misspecification of the LRE model and this is a completely novel feature.

Monte Carlo simulations show that the finite sample size coverage of the joint test is satis-

factory also for values of the structural parameters which are close to the indeterminacy region

of the parameter space. The finite sample power of the joint test is satisfactory for values of

the nuisance parameters that are relatively far from the point that generate MSV solutions and,

as expected, drops as long as the relative distance of the nuisance parameters from that point

decreases.

The implementation of the suggested testing strategy is straightforward and any existing

econometric packages with features GMM estimation and/or constrained optimization can be

used.

To show the usefulness of the proposed approach, we present an empirical illustration based

on a New Keynesian monetary business cycle model of the US economy using the same data

set as in Lubik and Schorfheide (2004), who address the same issue by applying their Bayesian

approach.

The paper is organized as follows. Section 2 provides a brief account of the concepts of

determinacy/indeterminacy by focusing on a simple univariate LRE model and illustrates the

intuition behind the suggested testing strategy. Section 3 reviews the econometric literature
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on determinacy/indeterminacy in stable LRE models. Section 4 introduces the multivariate

LRE model and derives its reduced forms solutions in the subsections 4.1 and 4.2, respectively.

Section 5 summarizes the suggested testing procedure and discusses it asymptotic properties.

Section 6 reports some Monte Carlo evidence on the finite sample performance on the testing

procedure and Section 7 provides an empirical illustration based on US data. Section 8 contains

some concluding remarks. Proofs are in the Appendix A. Many technical details concerning this

paper are summarized in the Appendix B.

2 Intuitions for the testing strategy

To fix main ideas, in this section we discuss the determinacy/indeterminacy issue in a simple

univariate LRE model, with the objective of providing the intuition underlying the suggested

testing strategy. The analysis is extended to the multivariate framework from Section 4 onwards.

Consider the univariate LRE model

Xt = γfEtXt+1 + γbXt−1 + ωt (1)

in which Xt is a scalar, EtXt+1 := E(Xt+1 | It) is the conditional expectation of Xt+1 upon

information It, and the fundamental structural disturbance ωt is assumed to obey a martingale

difference sequence (MDS) with respect to It (Etωt+1 = 0), and has variance 1. 0 < γf < 1 and

0 ≤ γb < 1 are the structural parameters.

To simplify the discussion, and without loss of generality, assume that the parameter γb is

known by the econometrician and fixed at γb := γ̆b. A solution to the LRE model is any process

{Xt}∞t=0 which, for fixed initial condition(s), satisfies Eq. (1). We focus on the class of linear
asymptotically stable ARMA-type solutions (Evans and Honkapohja, 1986). Although this class

does not cover all possible solutions associated with the LRE model (1), it represents a useful

parameterization which is widely used in econometric analysis and for which estimation and

testing methods are available.

To rule out the case of explosive solutions, it is conventionally assumed that if γb := γ̆b =

(1 − γf ) (which implies a unit root in the autoregressive representation of the solution), it

holds the restriction γf < 1/2; indeed, with γ̆b = (1 − γf ) the LRE model in Eq. (1) can be

reparameterized in the form

∆Xt =
γf

1− γf
Et∆Xt+1 +

µ
1

1− γf

¶
ωt

where ∆ := (1− L), L is the lag operator (LjXt := Xt−j), and the condition γf < 1/2 ensures

that the transformed model has a unique stable solution (see below). With this convention,

solutions embodying unit roots can be treated likewise the case of determinacy.
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We maintain, except where explicitly indicated, that the assumption of correct specification

holds, i.e. that the DGP belongs to one of the asymptotically stable reduced form solutions

associated with Eq. (1).

Given a sample of observations X1,..., XT , the null and alternative hypotheses we are inter-

ested in are:

H0: X1, ...,XT is generated from the LRE model in Eq. (1) under determinacy (2)

H1: X1, ...,XT is generated from the LRE model in Eq. (1) under indeterminacy. (3)

Before discussing possible ways of testing H0 against H1, we briefly review the form of the

solutions associated with this simple LRE model.

By defining the rational expectations error ηt := Xt−E(Xt | It−1) and using the lag operator,
the family of linear solutions to Eq. (1) can be represented in the form

(γf − L+ γ̆bL
2)Xt = γfηt − Lωt. (4)

By construction, the forecast error ηt is a MDS with respect to It and since ωt is also a MDS
with respect to It, a linear solution can be also obtained by replacing ηt with the expression

ηt := κωt + st (5)

where κ is an arbitrary parameter that can take any value in R and st is an extraneous (to the

model) variable, often referred to as sunspot shock, such that: (i) St := σ(st, st−1, ..., s1) ⊂ It,
(ii) st is a MDS with respect to It with variance σ2s. By using Eq. (5) in Eq. (4) and re-arranging
terms, yields

(γf − L+ γ̆bL
2)Xt = (γfκ− L)ωt + γfst; (6)

it can be easily proved that if Eq. (4) is a solution of model (1), also Eq. (6) is a solution.

Consider for simplicity the case st := 0 a.s. ∀t. In this case Eq. (4) collapses to the

ARMA(2,1) model

(γf − L+ γ̆bL
2)Xt = (γfκ− L)ωt (7)

which involves the unknown parameters γf and κ. As is known, solution properties of Eq. (7)

are governed by the roots φc,1 and φc,2 of the characteristic equation

γfφ
2 − φ+ γ̆b = 0. (8)

The subscript ‘c’ for φc,1 and φc,2 is used to stress that the roots of Eq (8) are ‘constrained’, i.e.

depend on γf . In general, for γ̆b 6= 0 φc,1 and φc,2 are linked to the structural parameters by

the mapping

φc,1 + φc,2 =
1

γf
, φc,1φc,2 =

γ̆b
γf

(9)
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which shows that the sign and magnitude of φc,1 and φc,2 depend on the sign and relative

magnitude of γf and γ̆b.

According to the values assumed by γf and γ̆b, the ARMA process in Eq. (7) admits

(I) multiple stable asymptotically stationary solutions (indeterminacy), (II) a unique stable

solution (determinacy), (III) unstable solutions (explosive indeterminacy). This paper deals

with solutions of type (I) and type (II); it is instructive, however, to briefly the features of

solutions of type (III). To simplify the analysis it is conventionally assumed that φc,1 and φc,2

are real (otherwise φc,2 would be the complex conjugate of φc,1) such that φc,1 < φc,2.

Multiple stable solutions If φc,1 < 1 and φc,2 ≤ 1, the ARMA(2,1) model in Eq. (7) defines
a stationary process for any value assumed by the auxiliary parameter κ. The solution is

indeterminate. Using Eq. (9), these solutions can be written as

Xt = π1Xt−1 − π2Xt−2 +
κ

1− φc,1γf
ωt −

φc,2
1− φc,1γf

ωt−1 (10)

where π1 := (φc,1 + φc,2) =
1
γf
, π2 := φc,1φc,2 =

γ̆b
γf
or, equivalently, in the form

(1− φc,2L)(1− φc,1L)Xt =
1

1− φc,1γf
(κ− φc,2L)ωt. (11)

The restrictions

γf + γ̆b > 1 , 1/2 < γf < 1

are sufficient for indeterminacy.

II. Unique stable solution. When φc,1 ≤ 1 and φc,2 > 1, the unstable root φc,2 can be

factored out from the model so that the auxiliary parameter κ can be uniquely determined

from the structural parameters of the LRE model. The indeterminacy stemming from κ

disappears and a unique stable (or determinate) solution obtains. To see this, focus on

the representation in Eq. (11) and impose the condition that φc,2 is also a root of the MA

polynomial associated with Eq. (7), i.e. that κ := 1. If φc,1 < 1 this yields the stable AR

process

Xt = φc,1Xt−1 +

µ
1

1− γfφc,1

¶
ωt; (12)

if φc,1 := 1 the ‘stable’ solution is written as

∆Xt =

µ
1

1− γf

¶
ωt.

The condition γf + γ̆b ≤ 1 is sufficient for determinacy.3

3This restriction can be obtained by imposing the condition that the quadratic polynominal in Eq (8) is positive

at φ := 0 and negative at φ := 1.
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III. Explosive solutions. If φc,1 > 1 and φc,2 > 1, one can at most impose that one among

φc,1 and φc,2 factors out from the model but the other unstable root remains in the autore-

gressive part of the model. In this case the LRE model in Eq. (1) has no asymptotically

stationary solution and the non-uniqueness of solutions corresponds to a form of ‘explosive’

indeterminacy. Inspection of Eq. (9) reveals that the parametric restrictions

γf + γ̆b > 1 , 0 < γf < 1/2

are sufficient for explosiveness. In this paper we do not consider solutions of this type.

Several remarks are in order.

Remark 1 Economists often attribute multiple equilibria to the effect of sunspots shocks alone.

Actually, the example above shows that the non-uniqueness phenomenon does not neces-

sarily stem from sunspot shocks; this point is clear from Evans and Honkapohja (1986),

Salemi (1986), Pesaran (1987), Broze et al. (1991, 1995), Salemi and Song (1992), Lubik

and Schorfheide (2004). The arbitrariness of κ and thus of the MA polynomial associated

with Eq. (10) is sufficient to generate a multiplicity of solutions. The size (multiplicity)

of the solution set is further amplified by the presence of sunspots. Broze and Szafarz

(1991) deem the indeterminacy implied by κ as ‘parametric indeterminacy’ and Lubik and

Schorfheide (2004, p. 205) as ‘indeterminacy without sunspots’. It is seen from Eq. (10)

that both γf and κ can potentially be estimated from the data.4

Remark 2 Relax temporarily the assumption that γb is known to the econometrician. It turns

out that γf , γb and κ are identified in Eq. (10) (indeterminacy), whereas γb and κ are not

identifiable from Eq. (12) (determinacy). The fact that γb and κ can not be estimated

consistently under the null of determinacy leads to a well understood nonstandard inferen-

tial problem. To make this point clear, consider the simplified DGP based on γb := γ̆b := 0

and γf > 0; here the only (stable) characteristic root of Eq. (8) is φ := φc,1 := γ−1f so that

for γf ≥ 1 the solution is indeterminate and takes the form

Xt = φc,1Xt−1 + κωt − φc,1ωt−1, (13)

while for 0 < γf < 1 the solution is determinate and given by

Xt = ωt (14)

4This means that when indeterminacy occurs, a ‘natural’ ex-post criterion to select a particular indeterminate

equilibrium is provided by the data, in the sense that one can potentially choose the value κ̂ which maximizes the

likelihood of the observations, as originally argued by Chow (1983).
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hence it is observationally equivalent to the (unique) minimum state variable (MSV) so-

lution resulting from Eq. (13) when κ := 1. If the goal of econometric analysis were

pure testing determinacy versus indeterminacy, one should compare the likelihood of the

ARMA(0,0) process in Eq. (14) with the likelihood of the ARMA(1,1) process in Eq. (13).

Since κ is unknown, this likelihood comparison is formally equivalent to a test for

H0 : φ12 := 0 against H1 : φ12 6= 0

in the ARMA(1,1) model

Xt = (φ11 + φ12)Xt−1 + vt − φ11vt−1 , | φ11 + φ12 |< 1. (15)

In this kind of situation, the likelihood ratio (LR) or LM statistic for H0 should be treated

as a function of the nuisance parameters and the test based on the supremum of this func-

tion, see e.g. Hannan (1982) and Andrews and Ploberger (1994, 1996). The extension of

Andrews and Ploberger’s (1994) approach to the multivariate setup is complicated by the

difficulty of estimating VARMA processes with highly restricted parametric constraints,

in which the dimension of the vector κ is not known a priori, see the next sections. The

Bayesian solution requires a prior distribution for γf and κ; for this specific example Lu-

bik and Schorfheide (2004) suggest using the parameterization κ := 1 + κ∗ and centering

the marginal distribution of κ∗ around zero, namely on the MSV solution of Eq. (14).

Given the prior p(γf , κ
∗) = pγ(γf )pκ(κ

∗) and the observations X1, ...,XT , the posterior

distribution p(γf , κ
∗ | X1, ...,XT ) can be opportunely evaluated and the posterior proba-

bilities associated with the determinacy and indeterminacy regions of the parameter space

computed.

Remark 3 Let Π(L) := (1 − φc,2L)(1 − φc,1L) and Ξκ(L) :=
1

1−φc,1γf
(κ − φc,2L) be the AR

and MA polynomials associated with the ARMA(2,1) process in Eq. (11), respectively. In

principle, no restrictions on the polynomial Ξκ(L) are obtained from the LRE model since

κ is arbitrary and can take any possible real value. In the special case in which κ := 1, the

class of solutions described by Eq. (11) collapses to a reduced form which has the same

dynamic structure as the determinate reduced form in Eq. (12). As shown by Evans and

Honkapohja (1986), the solutions of the form (16) obtained by deleting common factors,

hereafter denoted MSV solutions, are the same as the higher order solutions from which

they are obtained, only if the latter satisfy appropriate initial conditions. More precisely,

for each stable root of Eq. (8), there will be a MSV solution taking a form similar to that

in Eq. (12); to see this, it is sufficient to express the indeterminate solution as

(1− φc,1L)(1− φc,2L)Xt =
1

1− φc,2γf
(κ− φc,1L)ωt
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which is obtained from Eq. (11) by exchanging φc,2 for φc,1; observe that for κ := 1

this model is the same as that in Eq. (12) but with φc,2 replacing φc,1. In this example,

there are two MSV solutions but in the multivariate context there may exist many MSV

solutions with this property (see below).5 Suppose now that the DGP belongs to Eq. (11)

and κ := 1 so that the observations are generated by one the two MSV solutions:

Xt = φc,iXt−1 +

µ
1

1− γfφc,i

¶
ωt , i = 1, 2 (16)

where φc,i, i = 1, 2 is a stable root of Eq. (8). A natural question here is: can we recover

the ‘true’ root, say φc,∗, from the data ? The answer is positive, in the sense that the

estimation of the autoregressive model in Eq. (16) allows the econometrician to pick out

the φ̂c,∗ which maximizes the likelihood of the data.
6

Remark 4 While the process in Eq (10) is causal by construction because Π(z) 6= 0 for all z ∈ R
such that |z| ≤ 1 (Brockell and Davis, 1991, pp. 83-85), the inversion of the MA poly-

nomial Ξκ(L) requires that |κ| >
¯̄
φc,2

¯̄
). Thus, the parametric indeterminacy can cause

nonfundamentalness, in the sense that for −φc,2 < |κ| < φc,2, the inverse autoregressive

representation associated with Eq. (10)

a(L)Xt = ut

can entail a two-sided polynomial a(L) := Ξκ(L)−1Π(L), i.e. involving both positive and

negative powers of L.7

Remark 5 The determinate solution in Eq. (12) is observationally equivalent to the solution

of the model

Xt = γfEtXt+1 , γf > 1 (17)

which reads as a very special case of Eq. (1) (γ̆b := 0, ωt := 0 a.s. ∀t). Indeed, Eq. (17)
has solution

Xt =
1

γf
Xt−1 + ηt (18)

5Observe that McCallum (2003) suggests considering as unique MSV solution the one that implies φc,1 := 0

when γ̃b := 0.
6This consideration suggests that if one imposes the restriction γf ≤ 1− γ̆b := (1− γfφc,1) in the estimation

of the LRE model automatically rules out the occurrence of MSV solutions from the solution set.
7There are situations in which this issue may have consequences on the selection of valid instruments when

the LRE model is estimated by GMM, see Lanne and Saikkonen (2009). However, as is known, one can always

replace Ξκ(L) with an equivalent invertible MA(1) process which has the same autocovariance structure, see e.g.

Alessi et al. (2008).
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which is indeterminate by construction because ηt := (Xt−Et−1Xt) is an arbitrary MDS.

This is one of the arguments used in Beyer and Farmer (2003, 2004) to conclude that it

is impossible to decide whether real world data is generated by a determinate or indeter-

minate LRE model, unless prior restrictions on the dynamics of the model are assumed.

Many other examples of this type can be provided. However, using the terminology in

Hansen and Sargent (1991), Eq. (17) reads as an ‘exact’ LRE model while the model

with ωt 6= 0 a.s. ∀t is an ‘inexact’ LRE model. In general, a researcher is interested in
knowing whether determinacy/indeterminacy occurs in an ‘inexact’ LRE model, and not

in comparing the reduced forms associated with different classes of structural models.

Remark 6 If γ̆b 6= 0, the consistent estimation of the parameter γf through ‘limited-information’
GMM (GIV) methods can be carried out by using e.g. the vector of instruments Zt−1 :=

(Xt−1,Xt−2)0, which other than being valid and relevant irrespective of whether the LRE

model has determinate or indeterminate solution, is over-identifying. Interestingly, Mavroei-

dis (2005) and Jondeau and Le Bihan (2008) have recently shown that if GIV estimation of

LRE models is carried out by using a limited set of instruments and selecting the weighting

matrix through West’s (1997) parametric procedure, the overidentification restrictions test

has reasonable power in samples of typical length.

Suppose we wish to construct a likelihood-based test for H0 against H1 in Eq.s (2)-(3)

(recall that γb := γ̆b is supposed to be known). By comparing Eq. (10) with Eq. (12), it

turns out that in this case a LR test for H0 against H1 requires the comparison of the likeli-

hood of an ARMA(1,0) process, L(γf , σ
2
ω), with the likelihood of an ARMA(1+1,0+1) process,

L(γf , κ, σ
2
ω). (A similar issue occurs if LM-type tests are considered.) As is known, this problem

is nonstandard and can potentially be addressed by use of the asymptotic theory in Veres (1987)

and Andrews and Ploberger (1994). This solution, however, becomes prohibitively complicated

in the multivariate framework because the estimation of highly restricted VARMA models is

cumbersome and the number of auxiliary parameters that index indeterminacy is generally not

known a priori (see Section 4). Moreover, the direct comparison of the two likelihoods maintains

that the researcher is confident that the LRE model under investigation is correctly specified.

An alternative formulation of the problem might be put forth by substituting H0 and H1 in

Eq.s (2)-(3) with the hypotheses8

H 0
0 : γf ≤ 1− γ̃b , H 0

1 : γf £ 1− γ̃.

8Actually, in order to precisely identify the restrictions that lead to indeterminacy and rule out points of

the parameter space that generate e.g. explosive solutions, the ‘true’ alternative H0
1 should be specified as the

intersection of the subsets
©
γf , γf > 1− γ̃b

ª
and

©
γf , γf < 1/2

ª
.
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Necessary condition for a test for H 0
0 against H

0
1 is the availability of an estimator of γf which

is consistent under both hypotheses. The GMM (GIV) estimator of γf is robust to determi-

nacy/indeterminacy (Remark 6) and can potentially be used, but, as is known, any test for H 0
0

against H 0
1 will have a nonstandard asymptotic distribution, see Silvapulle and Sen (2005, Ch.

4) and references therein. We discuss in Section 4 the complications that make it difficult to

extend this approach to the multivariate framework.

A ‘classical’ testing strategy which rules all problems discussed above out is the objective of

the present paper. The idea can be sketched as follows. Under the assumption that the LRE

model in Eq. (1) is correctly specified, a test of determinacy might be formulated as a test for

the data adequacy of the reduced form in Eq. (12). In principle, one can maximize the likelihood

function of this model and apply any available (residual) diagnostic test. Under the assumption

of correct specification, the statistical rejection of Eq. (12) as a model that describes the data

can automatically be associated with the hypothesis of indeterminacy. When the assumption

of correct specification can not be taken for granted, the rejection of the data adequacy of Eq.

(12) can be also due to the possible omission of lags/leads and/or relevant variables from the

specified LRE model. To account for this type of misspecification, we suggest estimating γf

by a version of GMM (GIV) along the lines suggested in Remark 6, and then computing the

overidentifying restrictions test.9 If the LRE model is not rejected, it makes sense to come back

to the analysis of the correct specification of Eq. (12), otherwise it is not possible to conclude

whether determinacy or indeterminacy is favoured by the data.

This approach is based on the sequence of two standard misspecification tests; the joint test

gives rise to a multiple hypotheses testing issue. This approach will be formalized and extended

to the multivariate setup and its properties investigated from Section 4 onwards.

3 Related literature

While there exist many contributions in the literature on LRE models on the ‘explosive inde-

terminacy’ stemming from rational bubbles, see, inter alia, Flood and Garber (1980), Hamilton

and Whiteman (1985), West (1987), Casella (1989), Evans (1991) and Engsted and Nielsen

9 In principle, the difference between the GIV and ML estimates of γf should be statistically negligible under

determinacy and statistically significant under indeterminacy (as the ML estimate of γf obtained from Eq. (12)

is biased). Therefore, under the assumption of correct specification, a ‘natural’ test for determinacy against

ideterminacy might be based on a Hausman-type test. However, our simulation results show that such an approach

poses formidable computational difficulties in finite samples, mainly related to the use of generalized inverses for

the difference of the covariance matrices of the two estimators, see Hall (2005, Section 5.5.2) for a detailed

explanation. Moreover, if the assumption of correct specifiction of the LRE model is relaxed, the rejection of the

null of determinacy by this Hausman-type test could not be ascribed to indeterminacy.
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(2010), there are a few of studies which address the econometrics of determinacy/indeterminacy

in stable LRE models.10 This section reviews the main contributions in which the econometric

issues associated with the indeterminacy of multivariate LRE models is more or less explicitly

addressed within the context of parametric models.

Jovanovic (1989) and Cooper (2002) discuss the identification and estimation problems that

characterize the econometric analysis of models with multiple equilibria from a very general

perspective, but it is difficult to relate their analysis to the context of LRE models. To our

knowledge, Salemi (1986) is the first article in which it is clearly shown that the nuisance

parameters that index the VARMA-type solutions generated by indeterminate LRE models can

be estimated consistently by likelihood methods. This point is also clear in Pesaran (1987),

Broze and Szafarz (1991) and Salemi and Song (1992), but none of these contributions results

in a formalized test for the hypothesis of determinacy.

A likelihood-based test of the hypothesis of determinacy may be found in Imrohoroğlu (1993).

This author recognizes that there exist testable parametric restrictions in LRE models which

reduce the dimensionality of the multiplicity of solutions. By focusing on a hyperinflation model,

he discusses a test for the restrictions that yield a unique (low inflation stationary) equilibrium

against the alternative of many (high inflation non-stationary) equilibria, including unstable so-

lutions. A particular feature of Imrohoroğlu’s (1993) approach, however, is that the analysis is

based on a VARMA(2,2) model which is treated as the statistical representation of the data and

starting point of the analysis. More precisely, all parametric restrictions that lead to determi-

nacy and indeterminacy are derived with respect to the parameters of this VARMA(2,2) system

and none of these leads to e.g. a restricted VARMA(1,1) model. Accordingly, the nonstandard

inferential issues that characterize the likelihood-based approach to the problem of testing de-

terminacy in multivariate LRE models are automatically circumvented in Imrohoroğlu’s (1993)

setup.

A different perspective is provided by Farmer and Guo (1995). According to these authors,

while the property of indeterminacy invalidates the ‘standard’ CER implied by LRE models

under determinacy, it gives merit to ‘limited-information’ estimation techniques which do not

require the specification of the implied reduced form. Farmer and Guo (1995) use instrumental

variable techniques to estimate the structural parameters of a small-scale business cycle model

of the US economy. By using point estimates of the structural parameters, but no inference,

they argue that the parametric inequality restrictions that are sufficient for indeterminacy are

10There exists a remarkable gap between the vast theoretical contributions on indeterminacy, which lead

Cochrane (2007, p. 5) to observe that ‘Indeterminacy, multiple equilibria, and identification in dynamic rational-

expectations models are huge literatures that I cannot possibly adequately cite, acknowledge, or review in the space

of an article’, and the papers which face the issue from the econometric point of view.
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satisfied in their estimated model.11

Binder and Pesaran (1995) discuss a solution method for LRE models in which determinacy

is associated with the stability of a quadratic matrix (it corresponds to our S matrix intro-

duced in Section 4), involving nonlinearly the structural parameters; conversely, indeterminacy

arises when S has at least one eigenvalue outside the unit circle. They present an empirical

application based on the estimation of a real business cycle model of the US economy whose

solution uniqueness is checked ex-post by verifying that the eigenvalues of Ŝ, where Ŝ is the

point estimate of S, lie inside the unit circle. Although this method for evaluating determinacy

is similar in spirit to the informal evaluation method of indeterminacy used in Farmer and Guo

(1995), Binder and Pesaran’s (1995) approach suggests that a possible solution to the problem

of assessing determinacy in LRE models may be that of testing the stability of the S matrix

(see the discussion in Section 5).12

Finally, Lubik and Schorfheide (2004) provide the Bayesian solution to the problem of as-

sessing the determinacy/indeterminacy of a LRE model. These authors address the issue in

the context of New Keynesian monetary business cycle models and put forth a formal model

comparison between the two hypotheses, given the data. In particular, using prior distributions

for all parameters, including the auxiliary parameters that index equilibria under indetermi-

nacy, they construct probability weights for the determinacy and indeterminacy regions of the

parameter space conditional on the observed data (see Remark 2). A crucial issue in Lubik and

Schorfheide (2004) analysis, is the specification of the prior distribution for the auxiliary para-

meters (e.g. the scalar κ in the LRE model of Eq. (1)): ingeniously, they recommend centering

this prior, when technically feasible, on a MSV solution. Alternatively, they center this prior

on one particular solution (the so-called ‘baseline’ or ‘continuity’ solution), which is the equi-

librium obtained upon the assumption that impulse-response functions to structural shocks do

not jump discontinuously at the boundary between the indeterminacy and determinacy regions

of the parameter space.

4 Structural model and reduced form solutions

In this section we introduce the reference multivariate LRE model and discuss its reduced form

solutions.
11The Monte Carlo experiments in Fanelli (2010) show that ‘informal’ evaluations of this kind which ignore the

uncertainty associated with point estimates may be highly misleading.
12For instance, one might apply the distance (Wald-type) test discussed in Kodde and Palm (1987). Other

possible tests will be explored in future research.
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Let Xt the n× 1 vector of observable variables at time t.We consider the structural system

Γ0Xt = ΓfEtXt+1 + ΓbXt−1 + ωt (19)

in which Γi := Γi(γs), i = 0, f, b are n × n matrices whose elements depend on the ms × 1
vector of structural parameters γs, Et· := E(· | It), It is the sigma-field representing the agents’
information set and ωt is the n× 1 fundamental structural disturbance with covariance matrix
Σω. X0 and X−1 are treated as non-stochastic at time t = 1. LRE models in which Γb := 0n×n

are denoted ‘purely forward-looking’ models.

The structural disturbances ωt obey an asymptotically stable first-order VAR process

ωt = Rωt−1 + ut (20)

in which ω0 is fixed, R is a n×n stable (possibly diagonal) matrix and ut is a MDS with respect

to It whose covariance matrix Σu fulfils Σu := Σω − RΣωR
0, Σω being the covariance matrix

of ωt. Throughout the vector of ‘truly’ structural parameters γs and the non-zero elements

of R will be collected in the m × 1 vector γ which will be denoted as the vector of structural
parameters, with ‘true’ value γ0.

The system of Euler equations described by Eq.s (19)-(20) and its equivalent representation

in Eq. (21) cover a large class of multivariate LRE models currently used in macroeconomics

and finance. More general specifications can be easily accommodated in the setup described by

Eq.s (19)-(20) by converting the system to a canonical form, see e.g. Binder and Pesaran (1995)

and Appendix B.

A solution to system (19)-(20) is any process {Xt}∞t=0 that, for given initial conditions,
satisfies the structural equations. Solution properties depend on the location of γ0 in the space

of structural parameters; a crucial issue related to solution properties is the identifiability of

γ, i.e. whether γ can uniquely be recovered from the reduced form solution(s) in both the

determinacy and indeterminacy regime.

There are situations in which LRE models like in Eq.s (19)-(20) are derived from an un-

derlying agents’ optimization problem involving a set of transversality conditions which ensure

solution uniqueness, other than stability. In general, however, transversality conditions are not

always available, and/or the underlying theory or policy framework upon which the LRE model

is derived do not provide enough restrictions on γ to rule out multiple equilibria. For instance,

the determinacy/indeterminacy of the class of New Keynesian monetary business cycle models

discussed from Section 6 onwards may depend, ceteris paribus, on the extent of the response

of the monetary policy authority to inflation and output shocks. In these situations, testing

whether the observed time series X1, ...,XT are generated from a determinate or indeterminate

solution of system (19)-(20) is a crucial issue.

17



We rewrite the LRE model in Eqs. (19)-(20) in the form

ΓR0Xt = ΓfEtXt+1 + Γ
R
b,1Xt−1 + Γ

R
b,2Xt−2 + uRt (21)

ΓR0 := (Γ0 +RΓf )

ΓRb,1 := (Γb +RΓ0)

ΓRb,2 := −RΓb

such that the ‘composite’ structural disturbance uRt := ut + RΓfηt, ηt := (Xt − Et−1Xt) is a

MDS with respect to It. If Γ0 is non-singular in Eq. (19), ΓR0 will be non-singular if the matrix
Γ−10 RΓf has eigenvalues different from -1. When R := 0n×n in Eq. (20), system (21) coincides

with system (19) and ωt ≡ ut ≡ uRt .

The following assumptions are considered.

Assumption 1 [Stationarity] Given the initial conditions, the solution {Xt}∞t=0 associated
with the LRE model in Eq.s (19)-(20) belongs to the class of covariance stationary process

with E(Xt) = 0n×1.

Assumption 2 [Parameter space] γ0 is an interior point of the compact space P ⊂ Rm and

the determinacy region of P is defined as the sub-set PD := {γ ∈ P, ξc(γ) < 0c×1}, where
ξc(γ) is a c-dimensional differentiable function.

Assumption 3 [Non-singularity] The matrices Γ0, ΓR0 and Θ := (ΓR0 − ΓfΦc,1) are non-
singular, where Φc,1 := Φc,1(γ) is a n × n matrix, defined below, whose elements depend

nonlinearly on γ.

Assumption 4 [Necessary identication condition] dim(γ) := m ≤ 2n2.

Assumption 5 [Parameter constancy (within regimes)] γ0 does not change over the sam-

ple X1, ...,XT .

Assumption 1 rules out non-stationary and explosive processes from the solution set. Unit

roots processes can be allowed on condition that system (19)-(20) is interpreted as the stationary

equilibrium correction counterpart of a multivariate LRE model involving unit roots; see Fanelli

(2010b) for an example.

Assumption 2 establishes that the determinacy region of the parameter space can be identified

through a set of c inequality constraints involving the structural parameters. It will be shown

that in the less favourable case ξc(·) corresponds to a mapping from γ to the eigenvalues of a
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matrix (see matrix S below) whose stability is sufficient for determinacy. The indeterminacy

region of the parameter space, PI , is a sub-set of P \ PD, i.e. PI ⊆ P \ PD, because principle

P might include points that generate explosive solutions, conflicting with Assumption 1.
Assumption 3 guarantees that the non-singularity of the matrix of contemporaneous rela-

tionships Γ0 is retained in the ΓR0 matrix when R 6= 0n×n; the non-singularity of the matrix Θ
is required to represent the equilibria associated with the LRE model as VAR- or VARMA-type

processes.

Assumption 4 provides a necessary identification (order) condition and requires the number

of structural parameters not to exceed the number of reduced form parameters.13

Assumption 5 is motivated by the objective of the testing strategy which is that of assessing

whether a given sample of observations is consistent with the hypothesis γ0 ∈ PD or γ0 ∈ PI ,

and not that of detecting possible breakpoints that lead to switches from γ0 ∈ PD (γ0 ∈ PI) to

γ0 ∈ PI (γ0 ∈ PD).

The solutions associated with the multivariate LRE model in Eqs. (19)-(20) are derived

in detail in Fanelli (2010b) and are summarized in the next two sub-sections. In this context,

solution properties, as well as the local identifiability of γ (Rothemberg, 1971) depend on the

location of the eigenvalues of the matrix S := S(γ) := Θ−1Γf with respect to the unit disk.

In particular, while determinacy can be associated with the stability of S, indeterminacy arises

whenever S has at least one eigenvalue outside the unit circle.

Before deriving the determinate and indeterminate reduced forms, we establish sufficient

conditions for the local identifiability of the structural parameters.

Proposition 1 [Identification] Let N (γ0) be a neighborhood of γ0 in P and let the 2n× 2n
matrix

Φ̊c := Φ̊c(γ) :=

"
Φc,1 Φc,2

In 0n×n

#
(22)

be a stable solution of the quadratic matrix equation

Γ̊f

³
Φ̊c

´2
− Γ̊0Φ̊c + Γ̊b = 02n×2n (23)

where

Γ̊0 :=

"
ΓR0 0n×n

0n×n In

#
, Γ̊f :=

"
Γf 0n×n

0n×n 0n×n

#
, Γ̊b :=

"
ΓRb,1 ΓRb,2

In 0n×n

#
13 It is worth mentioning that the LRE model introduced in the example of Section 2 does not respect Assumption

4, irrespective of whether the parameter γb is treated as known or unknown.
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and Φc,1 := Φc,1(γ) is a component of S(γ) := (ΓR0 − ΓfΦc,1)−1Γf . Given the LRE model
in Eqs. (19)-(20) and Assumptions 1-5 then (a) if the matrix S(γ) is such that

r [S(γ)] < 1 , γ ∈ N (γ0) (24)

r[·] being the spectral radius operator, the a× 1 vector φc := vec[(Φc,1 : Φc,2)], a := (2n)2,

can be uniquely expressed as function of γ in N (γ0), i.e.

φc,0 := g(γ0) (25)

where φc,0 is the ‘true’ value of φc and g(·) a twice differentiable function, and

rank[D(γ0)] = m (26)

where

D := D(γ) :=
∂g(γ)

∂γ0

is the a×m Jacobian matrix associated with g(·); (b) if the matrix S(γ) has 0 < n2 ≤ n

eigenvalues, λ2,j , j = 1, ..., n2, that lie outside the unit circle, then a sufficient condition

for Eq.s (25)-(26) to hold is that

ϕφ,h λ2,j 6= 1 , h = 1, ..., 2n , j = 1, ..., n2 (27)

where ϕφ,h, h = 1, ..., 2n, are the (stable) eigenvalues of the matrix Φ̊c.

Proof : The proof is a special case of Fanelli (2010b).

4.1 Determinate reduced form

Assume that γ0 ∈ P and let N (γ0) be a neighborhood of γ0. Under Assumptions 1-5 and the
conditions of Proposition 1, if the the LRE model in Eq.s (19)-(20) has a determinate solution,

this solution can be represented as the VAR system

Xt = Φc,1Xt−1 +Φc,2Xt−2 +Υut (28)

where X0 and X−1 are fixed, the n × n matrices Φc,1 := Φc,1(γ), Φc,2 := Φc,2(γ) are blocks

of the stable companion matrix Φ̊c := Φ̊c(γ) defined in Eq. (22) and solve Eq. (23); finally,

Υ := (In −Θ−1RΓf )−1Θ−1.14

14For Γ̊b := 02p×2p (purely forward-looking model), the unique stable solution is given by Xt = Υut unless Γ̊f

is invertible and the matrix (̊Γf )−1Γ̊0 is stable.
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Observe that while the stability of Φ̊c ensures that the solution is asymptotically stationary,

the validity of the condition in Eq. (24), i.e. the local stability of S(γ), is sufficient for uniqueness

and for the local identifiability of γ (part (a) of Proposition 1).

The uniqueness of Φc,1 and Φc,2 (and Υ) in N (γ0) suggests that a consistent estimate of γ
can be retrieved, under determinacy, from the estimation of the reduced form VAR in Eq.s (28)

subject to the restrictions in Eq. (23). These are the CER that the LRE model implies on its

determinate reduced form.15 Proposition 1 establishes that it is possible to express these CER

in explicit form (Eq. (25)), although a closed-form expression for the function g(·) is not readily
available.

4.2 Indeterminate reduced forms

Assume that γ0 ∈ P and let N (γ0) be a neighborhood of γ0. Consider now the case in which,
for γ ∈ N (γ0), the matrix S := S(γ) has 1 ≤ n2 ≤ n eigenvalues outside the unit circle. S(γ)

can be decomposed as

S(γ) := P

"
Λ1 0n1×n2

0n2×n1 Λ2

#
P−1 (29)

where P := P (γ) is n×n non-singular, Λ1 is the normal Jordan block that collects the n1 := n−n2
eigenvalues that lie inside (or on) the unit circle, and Λ2 is the normal Jordan block that collects

the eigenvalues that lie outside the unit circle. The case in which S(γ) (Λ1) has roots on the

unit circle is here treated likewise the case of , see the comment following Assumption 1 and

Section 2.

Under Assumptions 1-5, if the LRE model in Eq.s (19)-(20) has multiple stable solutions,

these can be represented as the class of VARMA-type processes

Xt = Π1Xt−1 +Π2Xt−2 +Π3Xt−3 + Ξ
κ
0ut − Ξκ1ut−1 + τ t (30)

where X0, X−1 and X−2 are given; the n×n matrices of autoregressive coefficients Πi, i = 1, 2, 3

are defined as

Π1 := (Φc,1 +NΛ),

Π2 := (Φc,2 −NΛΦc,1),

Π3 := −NΛΦc,2,

NΛ := P

"
0n1×n1 0n1×n2

0n2×n1 Λ−12

#
P−1,

15 In principle, when technically feasible, the constrained estimation of γ should also be based on the imposition

of the restriction in Eq. (24).
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where Φc,1 and Φc,2 are n × n blocks of the stable companion matrix Φ̊c := Φ̊c(γ) obtained as

solution of Eq. (23); the matrices Ξκ0 , Ξ
κ
1 of moving average coefficients are defined as

Ξκ0 := VκMκΘ
−1,

Ξκ1 := NΛM−1κ VκMκΘ
−1,

Mκ := P

"
In1 0n1×n2

0n2×n1 κ

#
P−1 , det(κ) 6= 0, Vκ := (In −MκΘ

−1
∗ RΓf )

−1

where κ is a n2 × n2 matrix containing arbitrary elements (i.e. not related to γ) that, without

loss of generality, is here assumed non-singular, and Θ := (ΓR0 − ΓfΦc,1); finally, the stochastic
term τ t is given by

τ t := [Vκ −NΛM−1κ (Vκ − In)L]ξt (31)

where ξt := (0
0
n1×1, s

0
t)
0, st is an arbitrary n2 × 1 MDS with respect to It (sunspot shock) with

arbitrary covariance matrix Σs.

For future reference, we denote by K the (open) space of nuisance parameters that index

solution multiplicity under indeterminacy, i.e. K :=
n
vec(κ) , vec(κ) ∈ R(n2)2 and det(κ) 6= 0

o
;

the non-singularity of κ allows us to simplify, without loss of generality, the representation of

the indeterminate reduced forms but is not strictly necessary; the non-singularity of κ can be

relaxed and the resulting equilibria can be represented as shown in Fanelli (2010b).

There are two types of indeterminacies that characterize the VARMA-type reduced forms

summarized in Eq.s (30)-(31). First, the presence of the nuisance (auxiliary) parameters in the

κ matrix which makes the VMA part of the solution arbitrary lead to what we call ‘parametric

indeterminacy’. The problem is that κ is not identified under determinacy, see Eq. (28). Second,

the sunspot shocks summarized in τ t represent an additional source of indeterminacy; when

st := 0 a.s. ∀t (ξt := 0 a.s. ∀t (‘indeterminacy without sunspots’), system (30)-(31) collapses to

a truly VARMA(3,1) process with highly restricted coefficients but the indeterminacy implied

by κ remains.16

Observe that without further restrictions, the matrix Φ̊c := Φ̊c(γ) which solves Eq. (23) (i.e.

the CER) and determines the autoregressive coefficients of system (30) needs not to be unique;

if, however, the eigenvalues of Φ̊c and the unstable eigenvalues of the matrix S(γ) fulfill the

condition in Eq. (27), then Φ̊c is unique in N (γ0) and, regardless of the values assumed by the
auxiliary parameters κ, the vector of structural parameters γ is locally identifiable (part (b) of

Proposition 1).

16A way to rule out sunspots explicitly is to consider only the variables which enter the econometrician’s

information set, see Hamilton and Whiteman (1985) and Evans and Honkapohja (1986).
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Assuming for presentation clarity that ξt := 0 a.s. ∀t and using simple algebra and lag
operator techniques, system (30) can be expressed as

(In −NΛL)(In − Φc,1L− Φc,2L2)Xt = (Mκ −NΛL)M−1κ VκMκΘ
−1ut (32)

and it is seen that in the special case in which κ := In2 (implying Mκ := In), the indeterminate

solutions collapses to the MSV solution

(In − Φc,1L− Φc,2L2)Xt = Υut , Υ := VκΘ
−1 := (In −Θ−1RΓf )−1Θ−1 (33)

which have the same dynamic structure as the determinate solution in Eq. (28). Thus, for each

stable solution Φ̊c := Φ̊c(γ) of Eq. (23) subject to the restrictions in Eq. (27), there will exist,

under indeterminacy, a MSV solution taking the form in Eq. (33) which is obtained for κ := In2 .

We observe that under Assumptions 1-5, systems (33) and (28) can actually be regarded as

‘almost observationally equivalent’; indeed, while in the former it holds the inequality r[S(γ)] >

1, in the latter it holds the inequality r [S(γ)] ≤ 1, and these conditions can potentially be used
to recover the model which addresses the data better.

The highly nonlinear nature of the constraints characterizing the reduced form in Eq (30)

suggests that even when ξt := 0 a.s. ∀t, the likelihood maximization with respect to γ, albeit

potentially feasible, is computationally cumbersome. Moreover, in the absence of a priori infor-

mation about the degree of multiplicity, namely on the number of eigenvalues of the S(γ) matrix

in Eq. (29) that lie outside the unit circle, the investigator needs to make a guess on n2, i.e. on

the dimension of the space K, prior to estimation.

5 Testing strategy

Given the multivariate LRE model (19)-(20) under Assumptions 1-5 and the identification con-

ditions of Proposition 1, let X1, ...,XT be a sample of T observations. We are interested in the

null hypothesis

H0: X1, ...,XT is generated from system (28) (34)

against the alternative

H1:X1, ...,XT is generated from system (30) (35)

on condition that the LRE model is not preliminary rejected by the data.

Provided a (root-T ) asymptotically Gaussian consistent estimate of γ is available from the

direct estimation of system (19)-(20) (see Fanelli, 2010), a classical test for determinacy can be

formulated by testing the stability of the matrix S(γ) along the lines of Kodde and Palm (1987)
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who propose a distance (Wald-type) test with has a nonstandard asymptotic distribution. Al-

ternatively, given the definition of the determinacy region of the parameter space in Assumption

2, one might test the c inequality restrictions

ξc(γ) < 0c×1
γ0∈PD

vs ξc(γ) ≮ 0c×1
γ0∈P\PD

. (36)

For instance, the condition ξc(γ) < 0, where ξc(γ) := ξ1(γf ) := γf + γ̆b − 1, is sufficient
for determinacy in the simple LRE model discussed in Section 2. The (root-T ) consistent

estimate of γ can potentially be used to test the null in Eq. (36), formalizing Guo and Farmer’s

(1995) intuition. However, any statistical test for the inequalities in Eq. (36) has nonstandard

asymptotic distributions, see e.g. Kodde and Palm (1986), Wolak (1989, 1991) and Silvapulle

and Sen (2005). Moreover, aside from simple multivariate LRE models, it is generally difficult

to uniquely map the determinacy condition r[S(γ)] < 1 into a closed form expression for the

elements of the function ξc(γ), see e.g. Section 6. Also the approach based on testing the validity

of the inequality restrictions in Eq. (36) maintains that the LRE model under investigation is

correctly specified.

In this paper we follow a route that shares with the approaches based on testing the stability

of the matrix S(γ) or the inequalities of Eq. (36), the idea of circumventing the direct estimation

of the indeterminate reduced forms and the nuisance parameters that index solution multiplicity;

the advantages of our method, however, are that the knowledge of the function ξc(γ) and the

use of nonstandard asymptotic theory are not needed, and, notably, the assumption of correct

specification of the LRE model is not taken for granted.

The method is based on the sequential application of two standard tests that we briefly

review separately before discussing the joint testing strategy.

Test 1

Let JT be the overidentifying restrictions test statistic resulting from the GMM (GIV) esti-

mation of γ based on the following ingredients:

Orthogonality conditions

E [et(γ)⊗ Zt−1] = 0nr×1 , t = 1, ..., T

where et(γ) := (ΓR0Xt − ΓfXt+1 − ΓRb,1Xt−1 − ΓRb,2Xt−2) := uRt − Γfηt+1 is the n × 1
disturbance associated with the representation in Eq. (21) of the LRE model;

Instruments The r × 1 (r := 2n) vector Zt−1 := (X 0
t−1,X

0
t−2)

0 containing a set of over-

identifying (Assumption 4) instruments regardless of whether model solution is deter-

minate or indeterminate;
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Criterion

min
γ

Ã
1

T

TX
t=1

bt(γ)

!0
WT

Ã
1

T

TX
t=1

bt(γ)

!
(37)

where bt(γ) := (et(γ)⊗Zt−1), WT is a nr×nr symmetric positive semidefinite ‘weighting’

matrix that converges in probability to a symmetric positive definite matrix W ;

Choice of weighting matrix Given the VMA(1) structure of et(γ) and of bt := bt(γ), (under

fairly general regularity conditions), the ‘optimal’ choice of W corresponds to the inverse

of

Ω := V0 + (V1 + V 01) , Vi := E(btb
0
t−i) , i = 0, 1

see e.g. Cumby et al. (1983) or West (1997).

The JT test assesses the correct specification of the LRE model and under Assumptions 1-5

and the hypothesis of correct specification of the LRE model is asymptotically χ2(c1), c1 :=

nr−m; conversely, JT is Op(T ) if the LRE model omits some lags or leads, see e.g. West (1986)

and Hall (2005), Mavroeidis (2005) and Jondeau and Le Bihan (2008).17

Test 2

Let LMCER
T be the LM test statistic for the CER in Eq. (23) obtained from the ML

estimation of γ from the reduced form VAR solution in Eq.s (28)-(23). As implied by Proposition

1, the (local) stability of the S(γ) matrix is sufficient for estimating γ consistently by the

maximization of the constrained VAR likelihood, see Appendix B for details. Given the nonlinear

nature of the restrictions, under Assumptions 1-5, LMCER
T is χ2(c2) with c2 := 2n

2 −m if the

CER hold, and is Op(T ) if the CER do not hold, see e.g. Godfrey (1988).

Joint test

The testing strategy for H0 (Eq. (34)) against H1 (Eq. (35)) is based on the following

sequence:

17 It is well known that, in finite samples, the power of the JT test may be affected by the type of Heteroscedas-

ticity Autocorrelation Covariance (HAC) estimator used for W in Eq. (37) to account for serial correlation and

possible heteroscedasticity in the GMM (GIV) residuals. Different HAC estimators, albeit asymptotically equiv-

alent, can differ substantially in finite samples, thus imparting substantial distortions to GMM-based inference

(Hall and Inoue, 2003; Hall, 2005). Focusing on LRE models, Mavroeidis (2005) finds that the common practice

of using a very large number of instruments, and unnecessarily general corrections for serial correlation, virtually

annihilates the power of JT to detect omitted lags in finite samples of order less than 1000; the power of JT can

be increased substantially by using fewer instruments and a different weighting matrix which explicitly accounts

for the MA structure of disturbances, as outlined above. Similar results are obtained in Jondeau and Le Bihan

(2008).
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Step 1 Compute the JT test. For fixed 0 < α < 1, if JT ≥ χ21−α
2
(c1) , the LRE model is rejected

and it does not make sense to investigate its determinacy/indeterminacy; if JT < χ21−α
2
(c1)

consider the next step.

Step 2 Compute the LMCER
T test. If LMCER

T < χ21−α
2
(c2) accept determinacy, otherwise inde-

terminacy.

Some remarks are in order.

Remark 7 The LMCER
T test can be replaced in the ‘J→LM’ procedure with an alternative,

computationally simpler, LM test. Indeed, if the LRE model is correctly specified, the

disturbances of the VAR system (28) are uncorrelated under H0 and serially correlated

under H1. Therefore, one may estimate the VAR in Eq. (28) and apply Breush-Godfrey

LM vector test for the absence of residual autocorrelation (AC) against the alternative

of residual AC correlation up to order l ≥ 1 (Hosking, 1981; Brüggemann et al. 2006).
Notably, this test can be computed from the estimation of the unrestricted counterpart

of the VAR in Eq. (28), i.e. without imposing the CER.18 We denote the corresponding

test statistic with LMAC
T , and this statistic is asymptotically χ2(c3), c3 := ln2, under H0.

The simulation experiments of Section 6 investigate the finite sample performance of the

‘J →LM’ procedure using both LMCER
T and LMAC

T in Step 2.

Remak 8 The ‘J →LM’ procedure is computationally straightforward. In practice, fixed the
significance level α and obtained the JT test, a practitioner will reject the LRE model if the

resulting p-value is less than α/2 (or α∗/2, see Remark 11 below), otherwise will estimate

the reduced form VAR by ML and compute the LMCER
T (LMAC

T ) test. If the p-value

associated with the LMCER
T (LMAC

T ) test is greater (less) than α/2 (α∗/2), the hypothesis

of determinacy (indeterminacy) is accepted. The JT test has become a standard diagnostic

for models estimated by GMM and is routinely calculated in most computer packages;

likewise, the LMAC
T test is a standard diagnostic for VAR system and is calculated in

many computer packages, while the LMCER
T test can be implemented with any econometric

package that features (nonlinear) constrained estimation.

Remark 9 The LMCER
T test can be replaced in the Step 2 of the ‘J →LM’ procedure with a

LR test obtained by comparing the unrestricted and constrained likelihoods of the VAR

system in Eq. (28). Monte Carlo experiments suggests that in LRE models LR tests can

18From the computational viewpoint, the key difference between LMCER
T and LMAC

T is that the latter can

be computed from the VAR in Eq. (28) with or without imposing the CER, whereas the former is based on

constrained ML estimation.
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be very poorly sized compared to LM tests, see Bekaert and Hodrick (2001).19 Likewise,

the LMAC
T test can potentially be replaced with any vector test for residual AC but

recent simulations results show that for relatively small systems and moderately large

samples, Breush-Godfrey LM test has a reasonable performance also in systems with highly

persistent variables, especially if only low order AC is tested, see Brüggemann et al. (2006).

5.1 Properties

This sub-section derives the asymptotic size coverage and power of the ‘J →LM’ procedure.
Let Eα/2

J := {JT , JT ≥ crc1(α/2)} and E
α/2
LM :=

©
LMCER

T , LMCER
T ≥ crc2(α/2)

ª
be the

rejection (critical) regions of the two tests comprising the ‘J →LM’ procedure, where crci(α/2)
is the 100(1− α

2 ) percentile of the χ
2(ci) distribution, i = 1, 2. Ē

α/2
(·) denotes the corresponding

acceptance region. It turns out that

Pr {reject H0 |HDGP } := Pr
n
(E

α/2
LM | Ēα/2

J ) ∪Eα/2
J | HDGP

o
(38)

is the probability of incorrectly rejecting the null of determinacy under a given GDP, conven-

tionally denoted with HDGP . In our setup, HDGP will be H0 in Eq. (34), or H1 in Eq. (35),

or will denote a model with respect to which system (19)-(20) is (non-locally) misspecified, see

below.

The appealing feature of the probability in Eq. (38) is that (Eα/2
LM | Ēα/2

J ) and E
α/2
J can

be treated as disjoint events. Thus, while Pr
n
E
α/2
J | HDGP

o
depends on the asymptotic be-

haviour of the JT test under HDGP , the probability that the LM test rejects the CER con-

ditional upon the non-rejection of the LRE model by the overidentification restriction test,

Pr
n
(E

α/2
LM | Ēα/2

J ) | HDGP

o
, can easily be related to the marginal probabilities Pr

n
E
α/2
LM | HDGP

o
and Pr

n
E
α/2
J | HDGP

o
. As a consequence, the derivation of the size coverage and power of the

joint test can be tied to the size and power properties of its two test statistics.

Proposition 2 deals with the asymptotic size.

Proposition 2 [Overall Significance Level] Given the LRE model in Eq.s (19)-(20), As-

sumptions 1-5 and the hypotheses H0 and H1 in Eq.s (34)-(35), the ‘J →LM’ procedure
is such that when HDGP := H0,

Pr {reject H0 |H0 } ≤ α∗ , T →∞ (39)

where α∗ := α+ (α/2)2

1−α/2 .

19That for nonlinear restrictions LR ≥ LM holds in finite samples is a well known result (Godfrey, 1988, Ch.

2).
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Proof: Appendix A.

Fixed α (hence α∗, Proposition 2) and setting HDGP := H1,

Pr {reject H0 |H1} := Pr
n
(E

α/2
LM | Ēα/2

J ) ∪Eα/2
J | H1

o
(40)

captures the power of the joint test against indeterminacy. In the special case in which the

auxiliary parameters that index the VARMA-type solutions take value κ := In2 , system (30)

collapses to the MSV solution of Eq. (33) and the hypotheses H0 and H1 become indistinguish-

able for the ‘J →LM’ procedure. Proposition 3 shows that the joint test is consistent against
H1 almost everywhere in the space of auxiliary parameters K.

Proposition 3 [Consistency against indeterminacy] Given the LRE model in Eq.s (19)-

(20), Assumptions 1-5 and the hypotheses H0 and H1 in Eq.s (34)-(35), when HDGP := H1

(a) the ‘J →LM’ procedure is such that

Pr {reject H0 |H1 }→ 1 , T →∞

if κ ∈ K\{vec(In2)}; (b) the ‘J →LM’ procedure is such that

Pr {reject H0 |H1 }→ α∗ , T →∞

if κ := In2 .

Proof: Appendix A.

Finally, in order to evaluate the performance of the ‘J→LM’ procedure against the possibility
that the LRE model omits important propagation mechanisms, we consider the case in which

the DGP belongs to a solution of the model

ΓR0Xt = ΓfEtXt+1 +

k2X
h=2

Γf,hEtXt+h + Γ
R
b,1Xt−1 + Γ

R
b,2Xt−2 +

k1X
j=3

Γb,jXt−j + uRt (41)

which includes, with respect to the specification of Eqs. (19)-(20), (k1 − 2) additional lags of
Xt associated with the matrices Γb,j 6= 0n×n, j = 3, .., k1, (k1 ≥ 3), and (k2 − 1) additional
expectations terms associated with the matrices Γf,h 6= 0n×n, h = 2, .., k2, (k2 ≥ 2). The LRE
model in Eq. (21) is non-locally misspecified with respect to the ‘true’ DGP if at least one

among the matrices Γb,j , j = 3, .., k1 and Γf,h, h = 2, .., k2 in Eq. (41) is non-zero.

Let HDGP := HDM (where ‘DM’ stands for ‘dynamic misspecification’) denote the DGP

given by one of the possible solutions of the LRE model in Eq. (41); assume further that under

HDM , Assumptions 1-5 of Section 4 refer to he LRE model in Eq. (41). Fixed α (α∗, Proposition

2)

Pr {reject H0 |HDM } = Pr
n
(E

α/2
LM | Ēα/2

J ) ∪Eα/2
J | HDM

o
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captures the overall probability of rejecting the null of determinacy under the dynamic misspec-

ification of the LRE model. Proposition 4 shows that the ‘J→LM’ strategy is consistent against
HDM .

Proposition 4 [Consistency against dynamic misspecification] If X1, ...,XT is gener-

ated by a solution of the LRE model in Eq. (41) and the ‘J →LM’ procedure is computed
with respect to the LRE model in Eq.s (19)-(20), then Pr

n
E
α/2
LM |HDM

o
→ 1 as T →∞

and

Pr {reject H0 |HDM }→ 1 as T →∞.

Proof: Appendix A.

Remark 10 According to Proposition 2, fixed a value for α∗, the critical values χ21−α
2
(c1) and

χ21−α
2
(c2) associated with the JT and LMCER

T tests can be determined by selecting α as

the stable solution to the quadratic equation

α+
(α/2)2

1− α/2
= α∗.

For instance, with α∗ = 0.05 one has α := 0.049 whereas with α := 0.05 one has α∗ =

0.05064, suggesting that in practical applications the quantity (α/2)2

1−α/2 can be ignored with

the consequence that α can be treated as the overall significance level of the joint test.

Remark 11 According to Proposition 3, the ‘J →LM’ procedure is consistent against indeter-
minacy ‘almost everywhere’ in K, i.e. except for a closed set (a point) in K of zero measure.
It turns out that the finite sample power of the ‘J →LM’ procedure will be influenced by
the extent of the ‘distance’ of κ from the point In2 as shown by the simulation results of

Section 6.

Remark 12 The trivial result of part (a) of Proposition 4 suggests that any test for the existence

of a unique stable solution against multiplicity of solutions should be computed on a LRE

model that fully captures the dynamics of the data, otherwise the probability of incorrectly

selecting the hypothesis of indeterminacy approaches one in the limit.

Remark 13 The asymptotic properties of the ‘J →LM’ procedure hold irrespective of whether
in system (30)-(31) τ t := 0 a.s. ∀t (‘indeterminacy without sunspots’), or τ t 6= 0 a.s. ∀t
(‘indeterminacy with sunspots’).
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6 Monte Carlo study

This section reports the results of some Monte Carlo simulations designed to investigate the

finite sample properties of the ‘J →LM’ procedure summarized in Section 5.
Our Monte Carlo experiments are based on a LRE model which is widely used in the macro-

economic literature, i.e. a New Keynesian business cycle monetary model based on the following

three equations

yt = 'fEtyt+1 + (1−'f )yt−1 − δ(it −Etπt+1) + ωy,t (42)

πt = γfEtπt+1 + γbπt−1 + (yt + ωπ,t (43)

it = λrit−1 + (1− λr)[λππt + λyyt] + ωi,t. (44)

yt, πt and it are the output gap, inflation, and the nominal interest rate, respectively; Eq. (42)

is an intertemporal IS curve, Eq. (43) is a Phillips curve and Eq. (44) is a policy rule. The

vector of structural disturbances ωt := (ωy,t, ωπ,t, ωi,t)0 is assumed to obey a VAR processes of

the form

ωt = ρI3ωt−1 + ut , − 1 < ρ < 1 , ut ∼ N(0, I3). (45)

We refer to Benati and Surico (2009) (and references therein) for details about the derivations

of these three equations and their interpretation.20

The attractive feature of the LRE model in Eq.s (42)-(45) is that versions of this system

have been estimated (typically by Bayesian methods) to investigate whether US monetary policy

has lead to determinacy/indeterminacy over certain historical periods, see Section 7. Another

aspect is that the ‘standard’ or ‘generalized Taylor principle’ (Woodford, 2003) do not hold

in system (42)-(45), unless a proper restrictions on the lag structure and/or the parameters

(, δ,'f , γf , γb, λr, λy, λπ and ρ is imposed. More precisely, if for instance one considers the

specification obtained from system (42)-(45) by setting 'f := 1, γf := β, γb := 0, λr := 0

and ρ := 0 which entail a ‘purely forward-looking’ model (Φc,1 := 03×3), it turns out that the

vector of ‘free’ structural parameters is γc := ((, δ, β, λy, λπ), and the stability of the matrix

S(γc) := (Γ0−ΓfΦc,1)−1Γf = Γ0−1Γf , i.e. equilibrium determinacy, can be uniquely associated

with the inequality restriction

ξc(γc) := ξ1(γc) := max

½
(1− 1− β

(
)λy, 0

¾
− λπ < 0. (46)

20Note that the full correspondence with the three-equations model used in Benati and Surico (2009) is obtained

by setting δ−1 := σ in the intertemporal IS Eq. (42), σ being the elasticity of intertemporal substitution in

consumption, and γf := β/(1 + κβ) and γb := κ/(1 + κβ), in the NKPC Eq. (43), β being the agents’ discount
factor and κ a measure of price setters’ extent to past inflation.
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Eq. (46) can potentially be used to test determinacy along the lines discussed in Section 5.21

However, in the absence of the above set of restrictions, it is not generally possible to derive a

counterpart of the inequality in Eq. (46) which can profitably be exploited for inference.

Using the notation in Eq.s (19)-(20) and the restriction γb := (1 − γf ), the matrices of

structural parameters associated with system (42)-(45) (n := 3) are given by

Γ0 :=

⎡⎢⎢⎣
1 0 δ

−( 1 0

−(1− λr)λy −(1− λr)λπ 1

⎤⎥⎥⎦ , Γf :=

⎡⎢⎢⎣
'f δ 0

0 γf 0

0 0 0

⎤⎥⎥⎦ , Γb :=

⎡⎢⎢⎣
1−'f 0 0

0 γb 0

0 0 λr

⎤⎥⎥⎦ .
In the next two sub-sections we investigate the finite sample performance (empirical overall

size and power) of the ‘J→LM’ procedure using system (42)-(45) as the data generating process.
In all experiments ut is generated from the Gaussian distribution N(03×1, I3) and samples of

length T = 150 are considered, except where indicated, to mimic situations often encountered

in practice.

6.1 Size

We consider two DGPs based on two different specifications of the structural parameters γ0,

reported in Table 1 and Table 2, respectively. In the former (Table 1), the data are generated

from the determinate VAR solution in Eq.s (28)-(24) by considering a setup in which the ‘true’

vector γ0 ∈ PD is relatively far from the boundary that separates the determinacy from the

indeterminacy region of the parameter space; the metric we use to measure this distance is

the spectral radius of the S(γ0) matrix which in this case is equal to r[S(γ0)] := 0.91. In the

latter (Table 2), the data are generated by setting γ0 ∈ PD relatively close to PI ; in this case

r[S(γ0)] := 0.99, and the DGP is obtained from the previous one by simply changing the value

of the parameter λπ in Eq. (44) from 1.5 to 1.03.

We generated M = 1000 samples of length T = 150 from the determinate solution (28)-(23)

and applied the ‘J→LM’ procedure to each replication, computing both the LMCER
T and LMAC

T

test in Step 2. The upper panels of Table 1 and Table 2 report the averages of ML and GIV

estimates of γ across simulations, along with Monte Carlo standard errors. The lower panels

of Table1 and Table 2 report the (marginal) rejection frequencies of the two tests considered

separately, and the overall empirical rejection frequency of the joint test; α (α∗, see Proposition

1 and Remark 10) is fixed at 0.05.

21The condition λπ > 1 + 1−β
(
λy resulting from Eq. (46) when (1 − 1−β

(
)λy > 0, is oftern used to argue that

when λπ < 1, i.e. monetary policy responds less than proportionality to inflation changes, the ‘Taylor principle’

is violated.
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The empirical rejection frequencies obtained for the (marginal) LM test for the CER confirm

that under the correct specification of the LRE model, a test for the data adequacy of the

determinate solution amounts to an implicit test for the null of determinacy. More importantly,

results show that in both experiments the ‘J →LM’ strategy provides a slightly conservative
control of the null of determinacy regardless of the relative distance of γ from the indeterminacy

region of the parameter space.

6.2 Power against indeterminacy

To keep the experiment as simple as possible, the DGP of this section is based on a specification

of system (42)-(45) in which γ0 ∈ PI , sunspot shocks are absent from the solution set described

by Eq.s (30)-(31), i.e. τ t := 0 a.s. ∀t (‘indeterminacy without sunspots’) and, finally, the matrix
S(γ0) has only one eigenvalue outside the unit circle (n2 := 1). In this design, the space of

nuisance parameters K corresponds to R and the matrix κ collapses to a single scalar which

governs solutions multiplicity.

The true values of γ and κ that characterize this DGP, γ0 and κ0, respectively, are reported

in the upper panel of Table 3; notice that with respect to the DGPs investigated in Table 1 and

Table 2, we only changed the values of the policy parameters λy and λπ. The S(γ0) matrix can

be decomposed as

S(γ0) := P (γ0)

⎡⎢⎢⎣
0 0 0

0 0.286 0

0 0 1.059

⎤⎥⎥⎦P−1(γ0)
hence, in light of Eq. (29), Λ2 := 1.059 =: r[S(γ0)]. This experiment depicts a situation in

which γ0 is relatively close to the determinacy region of the parameter space.

The results in Table 3 have been obtained by fixing the nuisance parameter to κ0 := −0.5;
the upper panel of Table 3 reports the averages of ML and GIV estimates of γ across simulations

along with Monte Carlo standard errors, while the lower panel summarizes the marginal and joint

empirical rejection frequencies associated with the ‘J →LM’ procedure. It can be observed that
the ML estimates of λy and λπ, which are obtained under the hypothesis of solution determinacy,

are biased reflecting the fact that the data have been generated by changing the values of λy

and λπ from the determinate DGPs of Sub-section 6.1. It turns out that in this specific DGP

the ‘J →LM’ procedure is powerful against the hypothesis of indeterminacy.
Table 4 investigates the sensitivity of the joint test to the nuisance parameter for fixed γ0;

samples of length T = 150 and T = 70 are considered. The range of values chosen for κ,

{±0.5,±0.8, 0.99,±15}, covers both the case in which κ is relatively close to the point (κ0 := 1)
that generates MSV solutions of the type in Eq. (33), and cases in which κ0 is relatively far from
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that point. In the chosen DGPs, large values of κ0 (in absolute value) have the consequence tend

to make the magnitude of the elements of the Ξκ1 matrix of Eq. (30) comparatively negligible

with respect to the magnitude of the parameters in Π∗,i, i = 1, 2, 3.

The results in Table 4 remark that, as expected, the finite sample power of the ‘J →LM’
procedure is satisfactorily for values of the nuisance parameters that are relatively far from the

point that generates MSV solutions and tends to decline when κ0 is close to one. Moreover,

the finite sample power of the version of the joint test based on the LMCER
T test statistic

is considerably more robust than the version based on the LMAC
T statistic to changes in κ0.

Overall, the results in Table 3 and Table 4 suggest that the ‘J →LM’ procedure has reasonable
finite sample power against the hypothesis of indeterminacy in correctly specified LRE models.

To sum up, the results of this and the previous sub-section confirm that if the LRE model is

correctly specified, a test for determinacy against indeterminacy can be formulated as a test for

the validity of the CER that the LRE model entails under determinacy. To fully appreciate the

role of the JT test in Step 1, we next consider the power of the joint test against the hypothesis

of dynamic misspecification of the system.

6.3 Power against omitted dynamics

In order to investigate the power of the ‘J→LM’ procedure against the dynamic misspecification
of the LRE model, we consider a DGP in which system (42)-(45) is augmented with an additional

lag of Xt and an additional structural parameter. More precisely, we generated the data from

a version of system (41) in which the matrices Γ0, Γf and Γb are the same as those specified

in Table 1, and where Γf,h := 03×3 for h ≥ 2 and k1 := 3, Γb,3 := μI3; the ‘additional’ scalar

parameter μ captures the extend of the (non-local) misspecification. The vector of structural

parameters is now given by γ∗ := (γ0, μ)0.

Results are summarized in Table 5. The sub-vector γ0 used in all five DGPs of Table 5 is

the same as that in Table 1, while the values chosen for μ0 are reported in the first column of

Table 5. In all five experiments, the multivariate LRE model has a unique stable solution.

Table 5 emphasizes that the finite sample power of the ‘J →LM’ procedure against the
omission of lags in the LRE model depends, as expected, on the magnitude of μ0, i.e. on the

extent of the misspecification. In line with the recent results in Mavroeidis (2005) and Jondeau

and Le Bihan (2008), the overidentifying restriction test appears well designed to capture the

dynamic misspecification of LRE models if the instruments and weighting matrix are chosen as

detailed in Section 5.

One important message from Table 5 is that if the LMCER
T (LMAC

T ) test in Step 2 would

have been computed by disregarding the outcome of the JT test in Step 1, the misspecification
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of the LRE model would have been systematically and erroneously confused with the hypothesis

indeterminacy.

7 Empirical illustration: a New Keynesian monetary business

cycle model

A vast empirical literature has focused on New Keynesian monetary business cycle models similar

to that specified in Eq.s (42)-(44) to investigate possible source(s) of the ‘US Great Moderation’22

in attempt to disentangle the relative contributions of two main explanations: ‘good policy’ and

‘good luck’, see, inter alia, Clarida et al. (2000), Lubik and Schorfheide (2004), Boivin and

Giannoni (2006), Benati and Surico (2009) and Mavroeidis (2010).

A detailed investigation of the ‘good policy’ and ‘good luck’ hypotheses goes well beyond the

purposes of the present illustration, whose ultimate objective is to show the empirical usefulness

of the ‘J→LM’ procedure. We use the same data as in Lubik and Schorfheide (2004) who focus
on the determinacy/indeterminacy of a model similar to that specified in Eq.s (42)-(44), using

a Bayesian approach. Data are quarterly and cover the period 1960.q1-1997.q4 and refer to

the log real per capita GDP detrended with the Hodrik Prescott filter (yt),23 the inflation rate

computed as the annualized percentage change of the CPI-U (πt), and the (annualized) Federal

Funds rate in percent (it). We split the sample into two sub-samples: the 1960.q1-1979.q2

‘Pre-Volcker’ period (hereafter Period 1), and the 1979.q3-1997.q4 ‘Volcker-Greenspan’ period

(hereafter Period 2).

The estimated version of the New Keynesian monetary business cycle model is based on a

version of system (42)-(44) in which γf := β/(1+κβ) and γb := κ/(1+κβ), where the discount
factor β is set at 0.99 (recall that the parameter κ captures price setters’ extent to past inflation);
moreover, the structural parameters δ and κ have been fixed at the values of column 4 of Table

1 in Benati and Surico (2009), i.e. δ := (2)−1 and κ := 0.05, respectively. Finally, we assume

that in Eq. (45) the autoregressive coefficients of the three disturbances differ across equations.

The unknown parameters are collected in the 8× 1 vector γ := ('f ,κ, λi, λy, λπ, ρi, ρy, ρπ)0.
The upper panel of Table 6 summarizes the GIV and ML estimates of the unknown structural

parameters obtained over the two sub-periods and the whole sample.24 According to the GIV

22The dramatic changes in US inflation and output growth volatility observed since the end of the seventies is

a phenomenon known in macroeconomics as the ‘Great Moderation’.
23Results based on a linearly detrended version of the output gap do not change substantially and are available

upon request.
24From Section 4 it turns out that if the data were generated by system (42)-(45) under determinacy, the

reduced form representation of the variables should be consistent with a VAR of lag order two. Appendix B
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estimates, the differences between point estimates in the two sub-periods are not striking and

seem to involve the autoregressive coefficients of structural disturbances, suggesting a possible

change in the persistence of the data. On the other hand, the differences between GIV and ML

estimates are marked over each sub-period (as well as over the whole sample), are particularly

pronounced for the structural parameter κ (γf ),25 and seem in line with a situation in which

prevails either indeterminacy or the dynamic misspecification of the system.

The middle panel of Table 6 reports the JT test obtained from GIV estimation and the LMT

test for the CER obtained under determinacy. It turns out that for a fixed overall significance

level of 5%, the joint test leads to the hypothesis of indeterminacy in Period 1 (the p-value

associated with the JT test is well above α/2 := 0.025, while the p-value associated with the

LMT test is well below α/2).26 Overall, the results obtained for Period 1 support those in Lubik

and Schorfheide (2004) obtained through a Bayesian approach; they also confirm the findings

in Clarida et al. (2000) and Boivin and Giannoni (2006) which have been achieved without the

use of any formal test.

Focusing on Period 2, the ‘J →LM’ procedure rejects the estimated New Keynesian model
(the p-value associated with the JT test is well below α/2), signaling the possible omission

of propagation mechanisms. According to our testing strategy, it is impossible to establish

unambiguously whether determinacy or indeterminacy prevailed after 1979. If one ignores the

result of the JT test (Step 1) and runs the LMT test for the CER obtained under determinacy

(Step 2), then the hypothesis of indeterminacy is (erroneously) selected.27

Overall, the result of our test for Period 2 is in contrast with Lubik and Schorfheide (2004),

Clarida et al. (2000) and Boivin and Giannoni (2006) who find evidence in favour of determinacy.

Interestingly, our analysis is not completely at odds with the results in Mavroeidis (2010). This

author argues that the policy rule coefficients (a counterpart of our policy rule in Eq. (44))

are not sufficiently accurately estimable after 1979 to rule out the possibility of indeterminacy;

in brief, using a uni-equational approach and identification-robust methods, Mavroeidis (2010)

reports some prima facie evidence based on the estimation of demeaned VARs of lag orders two and three for

Xt := (yt, πt, it)
0 on both sub-periods. Results shows that for both sub-periods, especially for Period 2, two lags

are not sufficient to explain the reduced form dynamics of Xt; in particular, while a VAR with three lags seems

to fit the data satisfactorily in Period 1, more than three lags seems to be required in Period 2.
25Jondeau and Le Bihan (2008) discuss in detail the differences between GMM and ML estimates in this class

of models.
26 If the GIV point estimates obtained in Period 1 are treated as ‘true’ parameter values, the estimated spectral

radius of the S(γ) matrix turns out to be less then one, i.e. r[S(γ̂)]:=0.97; the Monte Carlo results in Appendix

B suggest that outcomes like this are perfectly consistent with the hypothesis indeterminacy.
27Furthermore, if the GIV point estimates are treated as ‘true’ parameter values, the spectral radius of the

estimated S(γ) matrix turns out to be slightly above one, i.e. r[S(γ̂)]:=1.003; the Monte Carlo results in Appendix

B show that a result like this has to be expected in misspecified LRE models.
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documents the weak identification of the reaction function in Period 2 and provides three possible

explanations for this evidence. We can re-interpret Mavroeidis’s (2010) result as a consequence

of the dynamic misspecification of the whole system (42)-(45) in Period 2.

To conclude this section, we test whether a ‘breakpoint’ occurred in the structural parameters

in 1979q3. We use GIV methods, and following Hall and Sen (1999) consider two possible

sources of instability of the structural coefficients: one in which the instability is confined in

the parameters alone, and the other in which the instability affects other aspects of the model

captured by the over-identification restrictions. The two tests, denoted with DT (which is a LR-

type test) and OT , respectively, are reported in the lower panel of Table 6. They indicate that,

as expected, the suspected breakpoint does not involve the structural parameters but rather the

validity of the overidentifying restrictions alone. This evidence supports the view that a break

occurred in 1979q3 that changed the overall dynamic structure of the economy, not only the

policy parameters as is commonly argued, strengthening the results obtained by the ‘J →LM’
procedure.

8 Concluding remarks

To our knowledge, no classical (frequentist) test of the hypothesis of determinacy has been

proposed to date for multivariate LRE models. The only formalized contribution may be found

in Lubik and Schorfheide (2004) and is based on a Bayesian approach.

In this paper we attempt to fill this gap by introducing a testing strategy for the hypothesis

of determinacy based on the sequential combination of two standard ‘diagnostic’ tests. The

former is the overidentification restrictions test obtained from the estimation of the system

of Euler equations comprising the LRE model by a GIV estimator based on a ‘minimal’ set

of over-identifying instruments, which are directly selected from the reduced form solutions,

and a parametric estimates of the weighting matrix which accounts for the VMA structure of

model disturbances. The latter is a LM test for the CER that the LRE model places on its

determinate reduced form, and is obtained from the constrained ML estimation of the finite

order VAR representation of the model. If the overidentifying restrictions test does not reject

the LRE model, the non rejection of the CER by the LM test is evidence in favor of determinacy,

while their rejection can be associated with indeterminacy. Conversely, if the overidentifying

restrictions test rejects the LRE model, it is impossible to decide whether the data are favour

determinacy or indeterminacy.

The joint test involves a multiple hypothesis testing issue but the typical nonstandard inferen-

tial issues that characterize the problem of testing determinacy in LRE models are circumvented.
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Irrespective of whether sunspot shocks are included or not in the indeterminate solutions, the

joint test is consistent against indeterminacy almost everywhere in the space of nuisance parame-

ters that index solutions multiplicity; moreover, the joint test is consistent against the dynamic

misspecification of the LRE model.

Our Monte Carlo experiments show that in samples of typical length, the joint test provides

a substantial control of the overall significance level under determinacy, and delivers good finite

sample power against indeterminacy if the auxiliary parameters are sufficiently far from the point

that generates MSV solutions. Moreover, the risk of confounding the dynamic misspecification

of the LRE model with indeterminacy (or indeterminacy) is under control in finite samples.

We present an empirical illustration in which the hypothesis of determinacy is tested in a

prototype New Keynesian monetary business cycle LRE model of the US economy. Our results

support the shared view that policy prior the Volcker-Greenspan period had been passive and had

opened up the possibility of sunspot fluctuations induced by self-fulfilling expectations. However,

the analysis stresses that the estimated LRE model is likely to omit important propagation

mechanisms when the Volcker-Greenspan period is considered. It is then impossible to establish

unambiguously whether determinacy or indeterminacy prevailed after 1979, unless suitable prior

information on the structural parameters is used, or versions of the model that fully address the

data are specified.

Appendix

Appendix A: Proofs

Proof of Proposition 2
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Ē
α/2
J |H0

o +Pr
n
E
α/2
J | H0

o
→ α/2

1− α/2
+

α

2
=

α

2
+

α

2
(

1

1− α/2
)

=
α

2
+

α

2

∞X
i=0

³α
2

´i
=

α

2
+

∞X
h=1

³α
2

´h
=

α

2
+

α

2
+

∞X
h=2

³α
2

´h
= α+

(α/2)2

1− α/2
.

37



This completes the proof ¥.

Proof of Proposition 3

(a) Under the Assumptions 1-5 and withHDGP := H1, Pr
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α/2
J ) |H1

o
Pr
n
Ē
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where use has been made of the Boole condition. We have thus established that for T →∞

Pr {reject H0 |H1 } ≥ 1

and the result follows accordingly. (b) When κ := In2 , system (30) collapses to system (28)

hence H1 ≡ H0 and the result follows from Proposition 2. This completes the proof ¥.

Proof of Proposition 4

HDGP := HDM . The LRE model which respect to which the LMCER
T test is applied is

dynamically misspecified hence the CER do not hold and Pr
n
E
α/2
LM | HDM

o
→ 1 as T → ∞

(Godfrey, 1988). Since Pr
n
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o
→ 1 as T → ∞ (Hall, 2005, ch. 4), one has that for
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and the result follows accordingly. This completes the proof ¥.

Appendix B: Technical supplement

This technical supplement is divided into three sub-sections. Sub-section B1 deals with estima-

tion issues. Sub-section B2 integrates the Monte Carlo experiments of Section 6 with further

results related to the practice of selecting determinacy/indeterminacy on the basis of point es-

timates that ignore any uncertainty or inference. Finally, Sub-section B3 integrates the results

of Section 7 with some additional empirical evidence.
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.1 Estimation issues

As is known, LRE models can be estimated either by ‘full-’ or ‘limited-information’ methods

(Wallis, 1980; Wickens, 1982; West, 1986). With ‘full-information’ methods, if the LRE model

is correctly specified, efficient estimates of the structural parameters are retrieved from the CER

that the LRE model places on the implied reduced form(s), hence it is of crucial importance

to know whether the solution is determinate or indeterminate. Thus, if a LRE model has an

indeterminate (VARMA-type) solution and the researcher mistakenly assumes that the solution

is determinate (VAR-type), the estimate of the structural parameters retrieved from the CER

will be inconsistent.

With ‘limited-information’ methods, which amount to GMM (GIV) techniques, estimation

involves directly the structural Euler equations of the system. These can be estimated consis-

tently separately or jointly, and only apparently the knowledge of the implied reduced forms is

not required, see West (1986), Pesaran (1987), Mavroeidis (2005) and Fuckas and Pagan (2009).

In general, limited-information estimates are asymptotically less efficient than the correspond-

ing full-information estimates derived from the ‘correct’ reduced form but have the merit to be

robust to determinacy/indeterminacy. The indiscriminate application of GIV methods in LRE

models does not necessarily guarantee that the necessary conditions for identification are met,

see Pesaran (1987) and Mavroeidis (2005). However, if limited-information methods are used

by applying the same structural identification analysis which is typical of the full-information

approach, a finite number of valid over-identifying instruments can be selected in a correctly

specified LRE model irrespective of whether it has a determinate or indeterminate solution (see

Proposition 3 below for details). In general, the overidentifying restrictions test resulting from

GMM (GIV) estimation has power against misspecified models (Hall and Inoue, 2003; Hall 2005;

ch. 4).

GIV estimation
In addition to the details provided in Section 5, we show that the vector Zt−1 is relevant if

the LRE model in Eq.s (19)-(20) is correctly specified irrespective of whether it has a unique or

multiple stable solutions.

To see this, we first re-write, after proper normalization, the i-th equation of system (1) as

Xi,t = U 0i,tς i(γ
∗
i ) + ei,t

where Ui,t := (X
∗0
i,t,X

∗0
i,t+1,X

∗0
i,t−1,X

∗0
i,t−2)

0 is the ci × 1 vector of observable right-hand variables
included in the i-th equation, ςi(·) is a continuous ci × 1 differentiable vector function whose
argument is the is the mi×1 (mi ≤ ci) vector γ∗i containing the unrestricted structural parame-

ters entering he i-th equation (including the non-zero elements of the i-th row of R). Secondly,
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we show that for i = 1, ..., n, the r × ci matrix

ΣZW,i := E(Zt−1U
0
i,t) := E

"Ã
Xt−1

Xt−2

!
(X∗0

i,t,X
∗0
i,t+1,X

∗0
i,t−1,X

∗0
i,t−2)

#
(47)

has full-column rank ci irrespective of whether the LRE model has a determinate or indetermi-

nate solution.

Define X∗
i,t := C0iXt, X∗

i,t+1 := Cf
i Xt+1, X∗

i,t−1 := Cb1
i Xt−1 and X∗

i,t−2 := Cb2
i Xt−1, where

C0i , C
f
i , C

b1
i and Cb2

i are selection matrices each containing n columns and whose rows, c0i , c
f
i ,

cb1i and cb2i , respectively, are subject to the constraint ci := c0i + cfi + cb1i + cb2i . ΣZW,i can be

represented as

ΣZW,i :=

"
Q(1) Q(2) Q(0) Q(1)
Q(2) Q(3) Q(1) Q(0)

#
r×4n

⎡⎢⎢⎢⎢⎢⎣
C00i

Cf 0
i

Cb10
i

Cb20
i

⎤⎥⎥⎥⎥⎥⎦
4n×ci

(48)

where each Q(j) := E(Xt−jX 0
t) := Q(−j)0 is symmetric and positive definite. Since the last

matrix on the right-hand side of Eq. (48) has column rank ci, it is sufficient to show that the

first matrix on the right-hand side of Eq. (48) has row rank r := 2n. Inspection of the structure

of the first matrix on the right-hand side of Eq. (48) shows that irrespective of whether each

Q(j) is computed from system (28) or system (30) (Lütkepohl, 2006), the first block of n rows

can not be expressed as linear combinations of the second block of n rows and vice versa. Clearly,

this argument holds for each equation i = 1, ..., n of the system.

ML estimation under determinacy
In addition to Assumptions 1-5 of Section 4, the ML estimation of γ is based upon

Assumption 6 [Gaussian disturbances] The MDS ut in Eq.s (19)-(20) has a multivariate

Gaussian distribution, ut ∼ N(0,Σu).

When the data do not comply with Assumption 6, the ML estimator discussed below will

be a quasi-maximum likelihood (QML) estimator, and can potentially be asymptotically less

efficient than the GMM (GIV) estimator.

The VAR in Eq. (28) can be written as

Xt = Φ(γ)Zt + εt (49)

where Φ(γ) := [Φc,1 : Φc,2], εt := Υ(γ)ut ∼ N(0,Σε), Σε := Υ(γ)ΣuΥ(γ)0 and Υ(γ) =: Υ,

Φc,i(γ) =: Φc,i, i = 1, 2. The notation used in Eq. (49) remarks explicitly the dependence of the
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constrained VAR coefficients on the structural parameters. Observe that Φ(γ) := HΦ̊c(γ). Let

logL(φ) be the concentrated log-likelihood function of a VAR of order two corresponding to the

unrestricted counterpart of system (49). Under Assumption 6, the concentrated log-likelihood

of the constrained VAR is given by

logL(φc) = C − T

2
log

"
det

Ã
TX
t=1

(Xt − Φ(γ)Zt)(Xt − Φ(γ)Zt)
0
!#

(50)

where C := −nT
2 (log(2π) + 1) and φc := ve[Φ(γ)] is the vector of VAR coefficients subject to

the restrictions in Eq. (25).

The maximization of the log-likelihood function in Eq. (50) with respect to γ can be based

on a numerical approximation of the quadratic matrix equation (23). The suggested algorithm

can be combined with Quasi-Newton methods as in Fanelli (2010a). Observe that the stability

constraint r[S(γ)] < 1 which ensures determinacy is not imposed in estimation, leaving room to

the occurrence of MSV solutions. Thus, for values of γ0 ∈ PD close to the indeterminacy region

of the parameter space, the estimated matrix Ŝ := S(γ̂)matrix might display eigenvalues outside

(or on) the unit circle in relatively small sample sizes. In principle, a number of conditions are

known which can be used to give operational content to the restriction r[S(γ)] < 1 without the

actual computation of the eigenvalues of this matrix, see e.g. Schoonbeek (1989) and references

therein; however, whether these conditions give rise to manageable inequality restrictions that

can be easily dealt with in estimation is an issue that has to be determined on a case by case

basis. The estimation (and testing) results obtained in Section 6 and Section 7 have been

obtained without imposing these constraints.

Given the ML estimate of γ̂, define φ̂c := vec(Φ̂c), and let X and Z be the T × 1 and T × 2n
matrices of observations of system (49) relative to Xt and Zt, respectively. The efficient score

(LM) statistic for the CER can be written as

LMT := q(φ̂c)
0
h
Σ̂ε ⊗ (Z 0Z)

i
q(φ̂c) (51)

where

q(φ̂c) := vec

µ
∂ logL(φ)

∂φ0

¯̄̄
φ:=φ̂c

¶
= vec

½
[Z 0X − (Z 0Z)Φ̂0c]

³
Σ̂ε

´−1¾
is the score of the VAR evaluated at the constrained reduced form estimates φ̂c. Likewise, the

LR statistic for the CER is given by

LRT := −2(logL(φ̂c)− logL(φ̂)) (52)

where φ̂ := vec(Φ̂u) and Φ̂u := [Φ̂u,1 : Φ̂u,2] is the unrestricted ML estimate of the VAR

coefficients. Since the CER amount to nonlinear parametric constraints, under the null that the
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CER hold, both LMT and LRT are asymptotically distributed as χ2(2n2−m) and are Op(T ) if

the CER do not hold, see e.g. Godfrey (1988). The finite sample performance of the LMT test

in Eq. (51) is investigated in Section 6.

.2 Further Monte Carlo results

As shown in Section 4, the stability of the matrix S(γ) is sufficient for determinacy in correctly

specified LRE models. Moreover, there are cases in which the stability of S(γ) can be uniquely

associated with as a set of parametric inequality restrictions of the form ξc(γ) < 0c×1. This fact

may tempt one to use the ‘robust’ point (GIV) estimate of γ, γ̂, to evaluate determinacy by

simply inspecting whether the eigenvalues of S(γ̂) lie inside the unit circle, or whether ξc(γ̂) <

0c×1 (see e.g. Farmer and Guo, 1995).

Evaluations of this type can be highly misleading because of the omission of the uncertainty

associated with parameter estimates. In this section we use some Monte Carlo experiments to

quantify the risk of incurring in wrong conclusions. We consider some of the DGPs already used

in Section 6, and summarize the number of times in which the spectral radius of the estimated

matrix S(γ) obtained by replacing γ with its GIV point estimate γ̂ is found to be greater than

one. Overall results are summarized in Table 7.

The first two rows of Table 7 refer to two determinate DGPs whose only difference is the

‘distance’ of the ‘true’ γ0 from the boundary that separates the determinacy from the indeter-

minacy regions of the parameter space. Results remark that in ‘borderline’ situations (second

row), the probability of observing point estimates of the eigenvalues of S(γ̂) that lie outside the

unit circle is almost 60%, hence the risk of incorrectly selecting indeterminacy is high.

The third row of Table 7 refers to an indeterminate DGP in which the ‘true’ value of the nui-

sance parameter κ is very close to the point (κ0:=1) that generates MSV solutions. Surprisingly,

in this case the probability of incorrectly selecting determinacy is quite high, i.e. 37%.

The last two rows of Table 7 refer to two DGPs with respect to which the estimated LRE

model omits a lag of Xt. The magnitude of the parameter μ0 quantifies the extent of the

misspecification: it turns out that from 50% to 75% of cases a researcher who ignores the mis-

specification of the LRE model will wrongly select indeterminacy on the basis of the inspection

of the point estimates of the eigenvalues of S(γ̂).

.3 Preliminary empirical evidence

This section complements the empirical illustration sketched in Section 7 of the paper. Table

8 reports some prima facie evidence based on the estimation of a demeaned VAR for Xt :=

(yt, πt, it)
0 with 2 and 3 lags, considering the two periods, respectively.
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The results in Table 8 seem to suggest that for both periods, especially for Period 2, two lags

are not sufficient to explain the dynamics of Xt. However, while a VAR with three lags seems

to fit the data rather well in Period 1, more than 3 lags are needed to fit the data optimally

in Period 2. While these reduced form results seems in line with the idea that indeterminacy

might have prevailed in Period 1 (indeed a VAR with three lags might represent the statistical

finite-sample approximation of a VARMA-type solution), they are not consistent, as they stand,

with the hypothesis that determinacy prevailed in Period 2. Overall, the results in Table 8 can

be interpreted by observing that a change might have occurred in the reduced form system for

Xt from Period 1 to Period 2.
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Table I. Size of the ‘J→LM’ testing strategy when the data are generated by the LRE model in Eq.s
(42)-(45) under determinacy.

DGP: structural param. γ0:

r[S(γ0)] :=0.91 ( δ 'f γf λi λy λα ρ

0.05 0.50 0.25 0.57 0.75 0.15 1.5 0.25

T = 150

ML estimates 0.052 0.513 0.243 0.572 0.751 0.200 1.432 0.238

(0.011) (0.071) (0.043) (0.033) (0.040) (0.125) (0.345) (0.060)

GIV estimates 0.055 0.491 0.256 0.565 0.749 0.158 1.524 0.247

(0.012) (0.068) (0.040) (0.070) (0.041) (0.138) (0.379) (0.085)

Marginal rej. freq. (5% nom.) Rej(LMCER
T )=0.050 , Rej(LMAC

T )=0.055

Rej(JT )=0.01

Overall rej. freq. (5% nom.) Rej(JT →LMCER
T )=0.030

Rej(JT →LMAC
T )=0.033

NOTES: Results are obtained using Monte Carlo simulations of M=1000 samples of size T=150.

Each simulated sample is initiated with 100 additional observations to get a stochastic initial state and

these are then discarted. UPPER PANEL: ML and GIV estimates of the structural parameters γ. ML

estimates are obtained from the VAR in Eq. (28) subject to the CER in Eq. (23), see Fanelli (2010a).

GIV estimates have been computed using Zt−1 := (X 0
t−1,X

0
t−2)

0 as instruments and a parametric

estimate of the weighting matrix to account for the MA(1) disturbances. The MA(1) disturbances in

each equation have been approximated by finite order AR processes truncated at lag T/6. Both ML

and GIV estimates are obtained by imposing λy > 0, λπ > 0. Estimates and Monte Carlo standard

errors, reported in parentheses, are averages across simulations. LOWER PANEL: Empirical rejection

frequencies of the ‘J→LM’ procedure. JT is the overididentification restrictions test resulting from GIV

estimation, LMCER
T is the LM test for the CER that the LRE model entails under determinacy and

LMAC
T is the LM vector test for the absence of residual AC against the alternative of correlations up to

order one computed from the unrestricted determimate reduced form solution. Rej(·) stands for ‘rejection
frequency obtained at the 5% nominal significance level’; 5% is used for both the marginal tests and the

joint test.
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Tables

Table II. Size of the ‘J→LM’ testing strategy when the data are generated by the LRE model in Eq.s
(42)-(45) under determinacy.

DGP: structural param. γ0:

r[S(γ0)] :=0.99 ( δ 'f γf λi λy λπ ρ

0.05 0.50 0.25 0.57 0.75 0.15 1.03 0.25

T = 150

ML estimates 0.052 0.508 0.246 0.574 0.742 0.208 0.896 0.241

(0.009) (0.059) (0.036) (0.030) (0.038) (0.120) (0.331) (0.059)

GIV estimates 0.055 0.493 0.255 0.567 0.744 0.201 0.921 0.245

(0.010) (0.057) (0.034) (0.066) (0.037) (0.111) (0.315) (0.080)

Marginal rej. freq. 5% nom. Rej(LMCER
T )=0.086 , Rej(LMAC

T )=0.052

Rej(JT )=0.01

Overall rej. freq. 5% nom. Rej(JT →LMCER
T )=0.049

Rej(JT →LMAC
T )=0.033

NOTES: Results are obtained using Monte Carlo simulations of M=1000 samples of size T=150. Each

simulated sample is initiated with 100 additional observations to get a stochastic initial state and these

are then discarted. Estimates and Monte Carlo standard errors, reported in parentheses, are averages

across simulations. UPPER & LOWER PANEL: see caption of Table 1.
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Table III. Power of the ‘J→LM’ testing strategy when the data are generated by the LRE model in
Eq.s (42)-(45) under indeterminacy.

DGP: structural param. γ0:

γ0 ( δ 'f γf λi λy λπ ρ

r[S(γ0)] :=1.0509 0.05 0.50 0.25 0.57 0.75 0.10 0.80 0.25

nuisance param. κ0 :=-0.5

T = 150

ML estimates
(under determinacy)

0.050 0.477 0.245 0.556 0.786 0.264 0.639 0.484

(0.010) (0.058) (0.030) (0.030) (0.061) (0.238) (0.328) (0.109)

GIV estimates 0.052 0.489 0.256 0.584 0.746 0.127 0.738 0.274

(0.014) (0.052) (0.029) (0.057) (0.037) (0.074) (0.147) (0.088)

Marginal rej. freq. (5% nom.) Rej(LMCER
T )=0.94 , Rej(LMAC

T )=1 , Rej(JT )=0.051

Overall rej. freq. (5% nom.) Rej(JT →LMCER
T )=0.920

Rej(JT →LMAC
T )=0.999

NOTES: Results are obtained using Monte Carlo simulations of M=1000 samples of size T=150.

Each simulated sample is initiated with 100 additional observations to get a stochastic initial state and

these are then discarted. UPPER & LOWER PANEL: see caption of Table 1.
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Table IV. Power of the ‘J→LM’ testing strategy when the data are generated by the LRE model in
Eq.s (42)-(45) under indeterminacy (H1).

DGP: γ0 and S(γ0) as in Table III

Rej(LMCER
T ) Rej(LMAC

T ) Rej(JT →LMCER
T ) Rej(JT →LMAC

T )

T = 150

κ0 := −0.5 0.94 1 0.920 0.999

κ0 := 0.5 0.858 0.384 0.817 0.267

κ0 := −0.8 0.954 1 0.944 1

κ0 := 0.8 0.861 0.583 0.804 0.458

κ0 := 0.99 0.139 0.055 0.106 0.03

κ0 := −15 0.975 0.367 0.971 0.257

κ0 := 15 0.970 0.122 0.969 0.065

T = 70

κ0 := −0.5 0.777 0.852 0.719 0.788

κ0 := 0.5 0.677 0.150 0.602 0.083

κ0 := −0.8 0.861 0.947 0.820 0.916

κ0 := 0.8 0.452 0.236 0.337 0.139

κ0 := 0.99

κ0 := −15 0.931 0.157 0.912 0.085

κ0 := 15 0.934 0.066 0.909 0.031
NOTES: Results are obtained using Monte Carlo simulations of M=1000 samples of size T=150 and

T=70, respectively. Each simulated sample is initiated with 100 additional observations to get a stochastic

initial state and these are then discarted. GIV and ML estimates have been obtained as detailed in the

caption of Table 1. Rej(·) stands for ‘rejection frequency obtained at the 5% nominal significance level’.

Rej(·) stands for ‘rejection frequency obtained at the 5% nominal significance level’; 5% is used for both

the marginal tests and the joint test. For κ0 := 15 and T = 1500 we obtain Rej(JT →LMAC
T ):=0.918.
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Table V. Power of the ‘J→LM’ testing strategy when the data are generated from the LRE model

in Eq. (41) (dynamic misspecification, HDM).

DGP: system (41) with Γb,3 := μI3 and γ0 fixed as in Table 1

Misspecification parameter μ :

Rej(JT ) Rej(LMCER
T ) Rej(JT →LMCER

T ) Rej(JT →LMAC
T )

T = 150

μ0 := −0.5 1 1 1 1

μ0 := −0.4 0.990 1 0.994 0.983

μ0 := −0.3 0.789 1 0.962 0.723

μ0 := −0.20 0.260 0.762 0.621 0.200

μ0 := −0.10 0.07 0.122 0.092 0.053

T = 70

μ0 := −0.5 0.970 1 0.989 0.954

μ0 := −0.4 0.786 0.988 0.739 0.710

μ0 := −0.3 0.414 0.857 0.590 0.326

μ0 := −0.20 0.147 0.367 0.226 0.109

μ0 := −0.10 0.058 0.110 0.078 0.044
NOTES: Results are obtained using Monte Carlo simulations of M=1000 samples of size T=150

and T=70, respectively. Each simulated sample is initiated with 100 additional observations to get a

stochastic initial state and these are then discarted. Data are generated by a version of system (42)-(45)

nested in in Eq. (41) with Γf,h := 03×3 for h ≥ 2 and k1 := 3, Γb,3 := μI3; all values of μ reported

in the first column of Table 5 are such that the system has a determinate equilibrium. GIV and ML

estimates have been obtained as detailed in the caption of Table 1. Rej(·) stands for ‘rejection frequency
obtained at the 5% nominal significance level’. Rej(·) stands for ‘rejection frequency obtained at the 5%
nominal significance level’; 5% is used for both the marginal tests and the joint test.
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Table VI. GIV and ML estimates of a small-scale DSGE model of the US economy and JT -LMT test.

1960q1-1979q2 (T=76) 1979q3-1997q4 (T=74) 1960q1-1997q4 (T=150)

GIV ML GIV ML GIV ML

'f 0.761
(0.138)

0.629
(0.264)

0.631
(0.153)

0.805
(0.147)

0.694
(0.126)

0.508
(0.182)

κ 0.954
(0.374)

-0.270
(0.177)

1.145
(0.498)

-0.092
(0.271)

0.887
(0.330)

-0.109
(0.231)

λi 0.795
(0.077)

0.831
(0.082)

0.899
(0.029)

0.931
(0.059)

0.879
(0.041)

0.906
(0.049)

λy 1.504
(0.473)

1.838
(0.807)

1.545
(0.565)

1.388
(1.01)

1.778
(0.522)

1.711
(0.813)

λπ 0.619
(0.329)

0.498
(0.288)

0.960
(0.315)

0.491
(0.497)

0.737
(0.386)

0.00
(0.334)

ρy 0.888
(0.105)

0.892
(0.146)

0.997
(0.061)

0.974
(0.083)

0.965
(0.073)

0.874
(0.083)

ρπ 0.494
(0.216)

0.931
(0.171)

0.520
(0.334)

0.585
(0.148)

0.424
(0.205)

0.833
(0.175)

ρi 0.178
(0.136)

0.102
(0.139)

-0.047
(0.067)

-0.115
(0.077)

0.052
(0.095)

-0.077
(0.086)

JT = 12.59
[0.182]

JT = 60.58
[0.000]

JT = 40.27
[0.000]

LMT = 30.60
[0.000]

LMT = 39.70
[0.000]

LMT = 63.73
[0.000]

r[S(γ̂)] =0.973 r[S(γ̂)] =1.003

Break at 1979.q2: DT = 5.75
[0.76]

, OT =34.52
[0.01]

NOTES: Data are the same as in Lubik and Shorfheide (2004) and refer to the US economy. The

parameter κ is related to γf and γb by γf := β/(1 + κβ) and γb := κ/(1 + κβ), where the discount
factor β is set at 0.99. GIV and ML estimates have been obtained as detailed in the caption of Table

1. r[·] is the spectral radius operator. Standard errors in parentheses; p-values in brackets. DT is the
‘D statistic’ for a structural break in 1979q3 which affects the structural parameters alone (Hall, 2005,

Ch.5). OT is Hall and Sen’s (1999) test for a structural break in 1979q3 which affects the overidentifying

restrictions alone.
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Table VII. Further Monte Carlo results

Frequency Fr[r[S(γ̂)] > 1]

DGPs:

Table 1 of paper: 0.11

Table 2 of paper: 0.59

Table 4 of paper with κ0 := 0.99: 0.63

Table 5 of paper with μ0 := −0.5 0.74

Table 5 of paper with μ0 := −0.1 0.51

NOTES: Results are obtained using Monte Carlo simulations of M=1000 samples of size T=150. Each

simulated sample is initiated with 100 additional observations to get a stochastic initial state and these

are then discarted. Fr[·] measures the number of times out ot M in which the spectral radious of the

S(γ̂) matrix is found to be greater than one, γ̂ being the roboust point GIV estimator of the structural

parameters.

Table VIII. Reduced form evidence on US data.

Pre-Volcker (Period 1) Volcker-Greenspan (Period 2)

lags 2 3 2 3

AIC 7.97 7.77* 8.58 8.35*

HQ 8.23 8.14* 8.84 8.73*

SC 8.62* 8.70 9.24* 9.31

dg(Σ̂ε)’ (0.87,1.21, 0.66) (0.86,1.16, 0.60) (0.61,1.67, 1.07) (0.58,1.48, 1.01)

Autocor. 1.61 [0.02] 1.04 [0.43] 1.96 [0.00] 1.96 [0.00]

Normality 14.24 [0.03] 13.26 [0.04] 25.00 [0.00] 25.82 [0.00]

largest root 0.91 0.91 0.86 0.88

LR: 3 to 2 lags 33.49 [0.00] 30.32 [0.00]

NOTES: The VARs for Xt:= (yt, πt, it)
0 are estimated on the same data as Lubik and Shorfheide

(2004). Estimation on each sub-period is carried out by considering within-periods initial values. AIC=Akaike;

HQ=Hannan-Quinn; SC=Schwarz; ‘dg(Σ̂ε)’ denotes the diagonal elements of the estimated VAR covari-

ance matrix; ‘Autocor’ is a LM vector test for residual autocorrelation up to 5 lags; ‘Normality’ is a LM

vector test for residual normality; ‘largest root’ is the estimated spectral radius of the VAR companion

matrix; p-values in squared brackets.

40


