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ABSTRACT. Topological Persistence has proven to be a promising framework fordealing with problems con-
cerning shape analysis and comparison. In this contexts, it was originallyintroduced by taking into account
1-dimensional properties of shapes, modeled by real-valued functions. More recently, Topological Persistence
has been generalized to consider multidimensional properties of shapes, coded by vector-valued functions. This
extension has led to introduce suitable shape descriptors, named themultidimensional persistence Betti numbers
functions, and a distance to compare them, the so-calledmultidimensional matching distance.

In this paper we propose a new computational framework to deal with the multidimensional matching dis-
tance. We start by proving some new theoretical results, and then we usethem to formulate an algorithm for
computing such a distance up to an arbitrary threshold error.
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INTRODUCTION

In this paper, we present a computational framework for applying some tools coming frommultidimen-
sional persistenceto shape analysis and comparison. Indeed, interpreting and comparing shapes are probably
two of the most challenging issues in the fields of Computer Vision, Computer Graphics and Pattern Recog-
nition. Nowadays, shape models convey a great amount of visual, semanticand digital information, and
therefore finding suitable methods allowing for capturing, processing andrepresenting such an information
in a convenient way is definitely a desirable target [37, 38].

Persistence for shape analysis and comparison.In this context, methods deriving from Topological
Persistence have recently gained a growing appeal. They focus on a topological exploration of a shape under
study, with respect to some geometrical properties considered relevant for capturing the salient features of
the shape itself [4, 8, 24, 29]. The assumption here is that the most importantpiece of information enclosed
in geometrical data is usually the one that is “persistent” with respect to the defining parameters. More
formally, the key idea is to model a shape as a spaceX, together with a real-valued functionϕ : X → R,
called filtering function. The functionϕ plays the role of a descriptor for a shape property we consider
relevant for the comparison or the analysis problem at hand. By studyingthe sublevel sets induced onX
by ϕ, we can perform a topological exploration of the shape under study, focusing on the occurrence of
meaningful topological events (e.g. the birth, or the merging, of connectedcomponents, holes, tunnels, voids
and so on). Such an information can then be encoded in a parameterized version of the Betti numbers,
known in the literature aspersistent Betti numbers[25], a rank invariant[11], and, for the0th homology, a
size function[27, 30, 40]. The main point is that these shape descriptors can be represented in a very simple
and compact way, by means of the so-calledpersistent diagrams. Moreover, they are stable with respect to
a suitable distance, i.e. thebottleneck distanceor matching distance. Thus, the tools offered by Topological
Persistence nicely fit for dealing with shape analysis and comparison problems. Actually, in the last twenty
years methods based on the previous guidelines have been successfullyused in quite a lot of applications
concerning shape analysis and comparison, see e.g. [5, 12, 14, 17, 22, 36, 39].

Motivations and prior works. A common scenario in applications is when two or more properties con-
cur to define the shape of an object. Moreover, sometime it is desirable to study properties of a shape that are
intrinsically multidimensional, such as the coordinate of a point in the 3-dimensional space, or the represen-
tation of color in the RGB model. Such considerations drove the attention to the so-calledmultidimensional
Topological Persistence[8, 23, 29]. Here the term multidimensional, or equivalentlyn-dimensional, refers
to the fact that the considered filtering functions take values inR

n. This leads to consider the multidimen-
sional extension of persistent Betti numbers, namely then-dimensional persistent Betti numbers, hereafter
n-dimensional PBNs.

Multidimensional persistence was firstly investigated in [28] as regards homotopy groups, and in [10] as
regards homology modules. Another approach to the multidimensional setting is the one proposed in [2],
based on the so-calledfoliation method. Focusing on the concept ofn-dimensional 0th PBNs, the authors
proved that, whenn > 1, a foliation in half-planes can be given, such that the restriction ofn-dimensional
0th PBNs to these half planes turns out to be1-dimensional. This allowed the definition of a proven stable
matching distance betweenn-dimensional PBNs, namely then-dimensional matching distance. Such a
result has been partially extended in [6], i.e. for any homology degree but restricted to the case ofmax-tame
filtering functions, and then further refined in [13] for continuous filtering functions.

From the point of view of applications, the main problem in multidimensional persistence is that acom-
plete, discrete and stabledescriptor seems not to be available in the multidimensional setting, differently
from what happens in the1-dimensional situation [10]. Until now, the arising computational difficulties have
been faced according to different strategies [3, 9, 19], but the workis still in progress.

In particular, in [3] the authors take a finite number of half-planes from thefoliation proposed in [2] to
obtain a computable approximation of then-dimensional matching distance between 0th PBNs. They per-
form some experiments on the comparison of surfaces and volumetric objectsin the2- and3-dimensional
settings. Unfortunately, that work does not make clear how many and whichhalf-planes one has to choose to
get a reasonable approximation of the matching distance, which could require a huge number of calculations.
A solution for this problem in the 2-dimensional setting is proposed in [1], in which a systematical proce-
dure for half-planes selection is presented, giving rise to an algorithm for approximating the 2-dimensional
matching distance between 0th PBNs up to an arbitrary threshold error.
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Contribution of the paper. Following [1], this paper aims to solve the problem of obtaining good ap-
proximations for then-dimensional matching distance betweenkth PBNs, for any dimensionn and any
homology degreek. More specifically, the main contributions of the present work are:
•New theoretical results (Theorem 2.3 and Theorem 2.4) concerning the matching distance corresponding

to the leaves of the half-planes foliation. We show that, moving from one leaveto the other, the change of
the matching distance associated to these half-planes is bounded by a linear function of the distance between
the considered leaves. This result extends to any dimensionn the one obtained in [1] for the 2-dimensional
setting of 0th PBNs. This is possible via the introduction of a suitable distance (Definition 2.1) on the space
of parameters defining the half-planes foliation.
• As a by-product, we provide an algorithm to obtain an approximation of then-dimensional matching

distance up to an arbitrary threshold error, representing the maximum error we are disposed to accept in the
computation. Our algorithm guarantees a systematical selection of the half-planes in the foliation. Moreover,
the threshold allows us to module the computational costs, in order to find a goodcompromise between
quality of results and running time.

The reminder of the paper is organized as follows. In Section 1 we review the standard facts about (mul-
tidimensional) persistence, with particular reference to PBNs and matching distance. Section 2 is devoted to
present our approximation results. In Section 3 we introduce the algorithm for computing approximations
of the multidimensional matching distance. Some discussions in Section 4 precedethe final remarks and
comments of Section 5.

1. PBNS: DEFINITIONS AND FIRST PROPERTIES

In this section, we review the background on Persistent Homology and Topology. Recent surveys on
this topic are [4, 23, 24, 29, 41]. However, we warn the reader that, differently for what happens in other
papers about persistence, we shall assume that the considering filteringfunctions arecontinuousinstead of
tame, and we shall work witȟCech homology instead of singular or simplicial homology. The reasons of
considering continuous filtering functions is essentially that 1-dimensional reduction of multidimensional
persistence is not possible in the setting of tame functions, as it was already observed in [6], but it luckily
does in the wider setting of continuous functions. The choice of working withČech homology is motivated
by the fact that, having the continuity axiom, it allows us to prove the Representation Theorem 1.6, stating
that the PBNs of a scalar-valued filtering function can be completely described by a persistence diagram.
Even assuming tameness, this result would not hold for singular and simplicialtheories, which guarantee a
complete description of one-dimensional PBNs only outside a set of vanishing measure. In the framework
of persistence,̌Cech homology has already been considered in [34, 35]. Moreover, the Čech approach to
homology theory is currently being investigated for computational purposes[32].

Throughout the paper, the following relations� and≺ are defined inRn: for ~u = (u1, . . . , un) and
~v = (v1, . . . , vn), we say~u � ~v (resp. ~u ≺ ~v) if and only if ui ≤ vi (resp. ui < vi) for every index
i = 1, . . . , n. Moreover,Rn is endowed with the usualmax-norm:‖(u1, u2, . . . , un)‖∞ = max1≤i≤n |ui|.

We shall use the following notations:∆+ will be the open set{(~u,~v) ∈ R
n × R

n : ~u ≺ ~v}. For every
n-tuple~u = (u1, . . . , un) ∈ R

n, we shall setu∗ = mini ui and, for every function~ϕ : X → R
n, we shall

denote byX〈~ϕ � ~u 〉 the set{x ∈ X : ϕi(x) ≤ ui, i = 1, . . . , n}.
The next definition extends the concept of persistent homology group to amultidimensional setting.

Definition 1.1 (Persistent homology group). Let k ∈ Z. Let X be a topological space, and~ϕ : X → R
n

a continuous function. Letπ(~u,~v)
k : Ȟk(X〈~ϕ � ~u〉) → Ȟk(X〈~ϕ � ~v〉) be the homomorphism induced by

the inclusion mapπ(~u,~v) : X〈~ϕ � ~u〉 →֒ X〈~ϕ � ~v〉 with ~u � ~v, whereȞk denotes thekth Čech homology

group. If~u ≺ ~v, the image ofπ(~u,~v)
k is called themultidimensionalkth persistent homology group of(X, ~ϕ)

at (~u,~v), and is denoted by̌H(~u,~v)
k (X, ~ϕ).

In other words, the group̌H(~u,~v)
k (X, ~ϕ) contains all and only the homology classes of cycles born before

or at~u and still alive at~v. For details abouťCech homology, the reader can refer to [26, Ch. IX].
In what follows, we shall work with coefficients in a fieldK, so that homology groups are vector spaces.

Therefore, they can be completely described by their dimension, leading to the following definition (cf.
[11, 25]).
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Definition 1.2 (Persistent Betti Numbers Function). The functionβ~ϕ : ∆+ → N ∪ {∞} defined by

β~ϕ(~u,~v) = dim imπ
(~u,~v)
k = dim Ȟ

(~u,~v)
k (X, ~ϕ)

will be called thepersistent Betti numbers functionof ~ϕ, briefly PBNs.

Obviously, for eachk ∈ Z, we have different PBNsβ~ϕ of ~ϕ (which should be denotedβ~ϕ,k, say) but, for
the sake of notational simplicity, we omit adding any reference tok. This will also apply to the notations
used for other concepts in this paper, such as multiplicities and persistence diagrams.

It is possible to prove that, ifX is a compact and locally contractible subspace ofR
m, the functionβ~ϕ

never attains the value∞ [7]. However, in order to stick as much as possible to the existing literature about
persistence, in the present paper we shall confine ourselves to the weaker assumption thatX is triangulable.

1.1. 1-dimensional PBNs.Now we confine ourselves to the casen = 1. Indeed, our approach to the
multidimensional setting of PBNs is based on a reduction to the1-dimensional situation.

For the sake of simplicity, the symbols~ϕ, ~u,~v will be replaced byϕ, u, v, respectively. We remark that
∆+ reduces to be the set{(u, v) ∈ R

2 : u < v}. Moreover, we use the following notations:∆ = ∂∆+,
∆∗ = ∆+ ∪ {(u,∞) : u ∈ R}, and∆̄∗ = ∆∗ ∪∆.

Persistent diagrams and Representation Theorem.One of the main properties of 1-dimensional PBNs
is that they admit a very simple and compact representation. More precisely,under the present assumption
onX andϕ, and making use of̌Cech homology, it is possible to prove that each1-dimensional PBNs can
be compactly described by a multiset of points, proper and at infinity, of the real plane. Due to the lack of a
well-established terminology, we call themproper cornerpointsandcornerpoints at infinity (or cornerlines),
respectively.

Definition 1.3 (Proper cornerpoint). For every pointp = (u, v) ∈ ∆+, we define the numberµ(p) as the
minimum over all the positive real numbersε, with u+ ε < v − ε, of

βϕ(u+ ε, v − ε)− βϕ(u− ε, v − ε)− βϕ(u+ ε, v + ε) + βϕ(u− ε, v + ε).

The numberµ will be called themultiplicity of p for βϕ. Moreover, we shall call aproper cornerpoint for
βϕ any pointp ∈ ∆+ such that the numberµ(p) is strictly positive.

Definition 1.4 (Cornerpoint at infinity). For every vertical liner, with equationu = ū, ū ∈ R, we identify
r with (ū,∞) ∈ ∆∗, and define the numberµ(r) as the minimum over all the positive real numbersε, with
ū+ ε < 1/ε, of

βϕ (ū+ ε, 1/ε)− βϕ (ū− ε, 1/ε) .

The numberµ(r) will be called themultiplicity of r for βϕ. When this finite number is strictly positive, we
call r acornerpoint at infinity forβϕ.

The concept of cornerpoint allows us to introduce a representation of the PBNs, based on the following
definition [13, 18].

Definition 1.5 (Persistence diagram). Thepersistence diagramDϕ ⊂ ∆̄∗ is the multiset of all cornerpoints
(both proper and at infinity) forβϕ, counted with their multiplicity, union the points of∆, counted with
infinite multiplicity.

The fundamental role of persistent diagrams is explicitly shown in the followingRepresentation Theo-
rem 1.6 [13, 18], claiming that they uniquely determine1-dimensional PBNs (the converse also holds by
definition of persistence diagram).

Theorem 1.6(Representation Theorem). For every(ū, v̄) ∈ ∆+, we have

βϕ(ū, v̄) =
∑

(u,v)∈∆∗

u≤ū, v>v̄

µ((u, v)).

Roughly speaking, the Representation Theorem 1.6 claims that the value assumed byβϕ at a point(ū, v̄) ∈
∆+ equals the number of cornerpoints lying above and on the left of(ū, v̄). By means of this theorem we
are able to compactly represent1-dimensional PBNs as multisets of cornerpoints and cornerpoints at infinity,
i.e. as persistent diagrams.
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Stability of 1-dimensional PBNs. As a consequence of the Representation Theorem 1.6 any distance
between persistence diagrams induces a distance between 1-dimensional PBNs. This justifies the following
definition [13, 18, 21].

Definition 1.7 (Matching distance). LetX be a triangulable space endowed with continuous functionsϕ, ς :
X → R. Thematching distancedmatch betweenβϕ andβς is defined as

dmatch (βϕ, βς) = min
γ

max
p∈Dϕ

‖p− γ(p)‖∞̃,(1.1)

whereγ ranges over all multi-bijections (i.e. bijections between multisets) betweenDϕ andDς , and for
everyp = (u, v), q = (u′, v′) in ∆∗,

‖p− q‖∞̃ = min
{

max
{

|u− u′|, |v − v′|
}

,max
{

(v − u)/2, (v′ − u′)/2
}}

,

with the convention about points at infinity that∞− y = y−∞ =∞ wheny 6=∞,∞−∞ = 0, ∞
2 =∞,

|∞| =∞, min{c,∞} = c andmax{c,∞} =∞.

In plain words,‖ · ‖∞̃ measures the pseudo-distance between two pointsp andq as the minimum between
the cost of moving one point onto the other and the cost of moving both points onto the diagonal, with
respect to the max-norm and under the assumption that any two points of the diagonal have vanishing pseudo-
distance (we recall that a pseudo-distanced is just a distance missing the conditiond(X,Y ) = 0⇒ X = Y ,
i.e. two distinct elements may have vanishing distance with respect tod). When the number of cornerpoints
is finite, the matching of persistence diagrams is related to the bottleneck transportation problem, and the
matching distance reduces to the bottleneck distance [18]. However, this is not always the case when working
with continuous filtering functions. Indeed, such an assumption implies that thenumber of cornerpoints may
be countably infinite. We remark that the matching distance is stable with respectto perturbations of the
filtering functions, as the following Matching Stability Theorem states:

Theorem 1.8 (One-Dimensional Stability Theorem). Assume thatX is a triangulable space, andϕ, ς :
X → R are two continuous functions. Then it holds thatdmatch(βϕ, βς) ≤ ‖ϕ− ς‖∞.

For a proof of the previous theorem and more details about the matching distance the reader is referred to
[13, 21] (see also [16, 18] for the bottleneck distance).

1.2. The Foliation Method. We now review the so calledfoliation method, leading to the definition of a
stable distance for multidimensional PBNs [2, 6]. The key idea is that a foliationin half-planes of∆+ can
be given, such that the restriction of the multidimensional PBNs function to these half-planes turns out to be
a one-dimensional PBNs function in two scalar variables. This approach implies that the comparison of two
multidimensional PBNs functions can be performed leaf by leaf by measuring the distance of appropriate
one-dimensional PBNs functions. Therefore, the stability of multidimensionalPBNs is a consequence of the
one-dimensional PBNs’ stability.

We start by recalling that the following parameterized family of half-planes inR
n × R

n is a foliation of
∆+ (cf. [2, Prop. 1] and [15]).

Definition 1.9 (linearly admissible pairs). For every vector~µ = (µ1, . . . , µn) of Rn such thatµi > 0 for
i = 1, . . . , n, and

∑n
i=1 µi = 1, and for every vector~ν = (ν1, . . . , νn) of Rn such that

∑n
i=1 νi = 0, we

shall say that the pair(~µ, ~ν) is linearly admissible. We shall denote the set of all linearly admissible pairs in
R
n ×R

n byLadmn. Given a linearly admissible pair(~µ, ~ν), we define the half-planeπ(~µ,~ν) of Rn ×R
n by

the following parametric equations:
{

~u = s~µ+ ~ν
~v = t~µ+ ~ν

for s, t ∈ R, with s < t.

Since these half-planesπ(~l,~b) constitute a foliation of∆+, for each(~u,~v) ∈ ∆+ there exists one and only

one(~µ, ~ν) ∈ Ladmn such that(~u,~v) ∈ π(~µ,~ν). Observe that~µ and~ν only depend on(~u,~v).
A first property of this foliation is that the restriction ofβ~ϕ to each leaf can be seen as a particular one-

dimensional PBNs function. Intuitively, on each half planeπ(~µ,~ν) one can find the PBNs corresponding to
the filtration ofX obtained by sweeping the line through~u and~v parameterized byγ(~µ,~ν) : R → R

n, with
γ(~µ,~ν)(τ) = τ~µ+ ~ν.
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A second property is that this filtration corresponds to the one given by thelower level sets of a certain
scalar-valued continuous function. Both these properties are stated in thenext theorem, analogous to [6,
Thm. 2], and are intuitively shown in Figure 1.

Theorem 1.10(Reduction Theorem). For every(~u,~v) ∈ ∆+, let (~µ, ~ν) be the only linear admissible pair
such that(~u,~v) = (s~µ + ~ν, t~µ + ~ν) ∈ π(~µ,~ν). Settingµ∗ = mini µi, let moreoverϕ(~µ,~ν) : X → R be the
continuous filtering function defined by setting

ϕ(~µ,~ν)(x) = µ∗ ·max
i

ϕi(x)− νi
µi

.

Then it holds that
β~ϕ(~u,~v) = βϕ(~µ,~ν)

µ∗

(s, t) .

~u
~v~µ

~ν

s

t

(~µ, ~ν)

ν1 + ν2 = 0
ϕ1

ϕ2

π(~µ,~ν)

γ(~µ,~ν)

FIGURE 1. One-dimensional reduction of two-dimensional PBNs. Left: a one-dimensional
filtration is constructed sweeping the line through~u and~v. A unit vector~µ and a point~ν are
used to parameterize this line asγ(~µ,~ν)(τ) = τ~µ+ ~ν. Right: the persistence diagram of this
filtration can be found on the leafπ(~µ,~ν) of the foliation.

As a consequence of the Reduction Theorem 1.10, it is possible to obtain ananalogue of the distance
dmatch for the multidimensional case, denoted byDmatch, having a particularly simple form, yet yielding
the desired stability properties [2, 13].

Definition 1.11(Multidimensional matching distance). LetX be a triangulable space, and let~ϕ, ~ς : X → R
n

be continuous functions. For every(~µ, ~ν) ∈ Ladmn, setd(~µ,~ν)
(

β~ϕ, β~ς
)

= dmatch

(

βϕ(~µ,~ν)
, βς(~µ , ~ν)

)

. The

multidimensional matching distanceDmatch betweenβ~ϕ andβ~ς is then defined as

Dmatch

(

β~ϕ, β~ς
)

= sup
(~µ,~ν)∈Ladmn

d(~µ,~ν)
(

β~ϕ, β~ς
)

.

2. NEW APPROXIMATION RESULTS

In this section we introduce some new theoretical results leading to the formulation of our algorithm for
approximatingDmatch. All such results are formally proved in Appendix A.

In what follows, we shall assume thatn ≥ 2, and fixc = max {maxx∈X ‖~ϕ(x)‖∞ ,maxx∈X ‖~ς(x)‖∞}.
For every~µ = (µ1, . . . , µn) ∈ R

n, the symbolµ∗ is used to denotemini=1,...,n µi.
We start by defining the following mapd on the setLadmn × Ladmn.

Definition 2.1. We define the applicationd : Ladmn × Ladmn → R
+ such that

d
(

(~µ, ~ν) ,
(

~µ′, ~ν ′
))

= max

{

max
i=1,...,n

∣

∣

∣

∣

µ∗

µi
−

µ′
∗

µ′
i

∣

∣

∣

∣

,
∥

∥~ν − ~ν ′
∥

∥

∞

}

.

We can prove the following proposition.

Proposition 2.2. d is a distance onLadmn.

Proof. See Appendix A. �

Before going on, let us analyze how open balls induced onLadmn by d look like. Forr > 0, the usual
notationBr(p) denotes the open ball centered at the pointp with radiusr.

First of all, observe that we can identify the setLadmn with the space productMn × Nn, beingMn =
{~µ ∈ R

n :
∑n

i=1 µi = 1, with µi > 0, i = 1, . . . n} andNn = {~ν ∈ R
n :

∑n
i=1 νi = 0}. From the
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definition ofd, we can induce two different distances onMn andNn, saydM anddN respectively. More

precisely,dM takes each pair(~µ, ~µ′) ∈ Mn ×Mn to maxi=1,...,n

∣

∣

∣

µ∗

µi
− µ′

∗

µi

∣

∣

∣
. The distancedN is simply the

L∞ distance, i.e. the one taking each pair(~ν, ~ν ′) ∈ Nn × Nn to ‖ν − ν ′‖∞. As a consequence, an open
ball of Ladmn induced byd, sayBr((~µ, ~ν)), can be identified as the productBr(~µ) × Br(~ν), with Br(~µ)
an open ball ofMn induced bydM , andBr(~ν) an open ball ofNn induced bydN .

The next result arises from the observation that, at least in a wide subset of Ladmn, the functionsϕ(~µ,~ν)

andς(~µ,~ν) do not depend on all the components of~ϕ and~ς, respectively. Indeed, given two indexesı̄, ̄ ∈
{1, . . . , n}, with ı̄ 6= ̄, it is quite easy to choose a linear admissible pair(~µ, ~ν) ∈ Ladmn such thatϕı̄(x)−
µı̄ ≤ 0 andϕ̄(x) − µ̄ ≥ 0 for everyx ∈ X, thus implying thatϕ(~µ,~ν) = µ∗ ·maxi 6=ı̄

ϕi−νi
µi

. The simplest
example is whenn = 2: In such a case, the elements ofLadm2 are given by(~µ, ~ν) = ((a, 1− a), (b,−b)),
with 0 < a < 1 andb ∈ R. It is easy to check that, wheneverb ≥ c (respectivelyb ≤ −c) it holds that
ϕ(~µ,~ν)(x) = µ∗ ·

ϕ2(x)+b
1−a

(resp.ϕ(~µ,~ν)(x) = µ∗ ·
ϕ1(x)−b

a
) for everyx ∈ X. Similar arguments hold forς(~µ,~ν).

As a consequence, we can write

d(~µ,~ν)(β~ϕ, β~ς) =

{ µ∗

a
· dmatch(βϕ1 , βς1), if b ≤ −c;

µ∗

1−a
· dmatch(βϕ2 , βς2), if b ≥ c,(2.1)

the equality in (2.1) coming from the properties of the matching distancedmatch (see also [15, Prop 2.3]).
Based on the previous reasonings, the next result states how and whenwe can reduce the computation of
d(~µ,~ν)

(

β~ϕ, β~ς
)

to a (n − 1)-dimensional situation. SetLadm+
n = {(~µ, ~ν) ∈ Ladmn : ‖~ν‖∞ ≥ (n− 1)c}.

Moreover, for every indexi ∈ {1, . . . , n}, we denote by~ϕ i (respectively~ς i ) theR
n−1-valued function

obtained from~ϕ (resp.~ς ) by removing itsi-th component. Similarly, the symbol~µ i (resp.~ν i ) will be used
for the vector ofRn−1 obtained from~µ (resp.~ν ) by removing itsi-th component.

Theorem 2.3. Assume that(~µ, ~ν) ∈ Ladm+
n . Then an index̄ı ∈ {1, . . . , n} exists such that

d(~µ,~ν)
(

β~ϕ, β~ς
)

=
µ∗

mini 6=ı̄ µi
· d(~η,~ω)

(

β~ϕ ı̄ , β~ς ı̄

)

,(2.2)

with (~η, ~ω) ∈ Ladmn−1 given by~η = ~µ ı̄ /(1− µı̄) and~ω = ~ν ı̄ + ~η · νı̄.

Proof. See Appendix A. �

We will show later how Theorem 2.3 can be used to sensibly decrease the computational costs in approx-
imatingDmatch.

We proceed introducing a result which gives insights on how to bound the variation ofd(~µ,~ν)
(

β~ϕ, β~ς
)

when moving from one leaf to another inLadmn \ Ladm
+
n .

Theorem 2.4. Let (~µ, ~ν) ∈ Ladmn \ Ladm
+
n and(~µ′, ~ν ′) ∈ Ladmn, with d ((~µ, ~ν) , (~µ′, ~ν ′)) ≤ δ. Then

∣

∣d(~µ,~ν)
(

β~ϕ, β~ς
)

− d(~µ′,~ν′)

(

β~ϕ, β~ς
)
∣

∣ ≤ 2δ(nc+ 1).

Proof. See Appendix A. �

Remark2.5. We observe thatd(~µ,~ν) (βϕ, βς) ≤ 2c for every(~µ, ~ν) ∈ Ladmn (this is a trivial consequence of
Theorem 1.8); thus we have

∣

∣d(~µ,~ν) (βϕ, βς) − d(~µ′,~ν′) (βϕ, βς)
∣

∣ ≤ 2c. Now, if δ ≥ 1
n

then2c ≤ 2δ (nc+ 1).
Consequently, the inequality claimed by Theorem 2.4 is trivial whenδ ≥ 1

n
.

3. ALGORITHM

In this section we show how the results proved in Theorem 2.3 and Theorem2.4 can be exploited to
develop an algorithm for approximating the multidimensional matching distanceDmatch

(

β~ϕ, β~ς
)

. We start
by laying the general philosophy. Next we follow up by describing the details of the algorithm, first for the
casen = 2 and then for any dimension greater than 2.

General approach. Definition 1.11 implies that, in general, a direct computation ofDmatch

(

β~ϕ, β~ς
)

is
not possible, since we should calculate the valued(~µ,~ν)

(

β~ϕ, β~ς
)

for an infinite number of pairs(~µ, ~ν). On
the other hand, if we choose a non-empty and finite subsetAn ⊆ Ladmn, and substitutesup(~µ,~ν)∈Ladmn

with max(~µ,~ν)∈An
in Definition 1.11, we get a computable pseudo-distance, sayDmatch

(

β~ϕ, β~ς
)

, that can
be effectively used in concrete applications.
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Thinking ofDmatch

(

β~ϕ, β~ς
)

as an approximation ofDmatch

(

β~ϕ, β~ς
)

, we can argue that the larger the
setAn ⊆ Ladmn, the smaller the difference between the two values. On the other hand, the smaller the
setAn, the faster the computation ofDmatch

(

β~ϕ, β~ς
)

. In this perspective, our goal is to find a setAn that
is a compromise between these two situations. Additionally, given an arbitrary real valueε > 0 as an error
threshold, we wantAn depending onǫ in a way that the outputDmatch

(

β~ϕ, β~ς
)

satisfies the inequality
∣

∣Dmatch

(

β~ϕ, β~ς
)

−Dmatch

(

β~ϕ, β~ς
)
∣

∣ ≤ ε. This is actually what our algorithm is developed for, taking as
input the error thresholdε and giving as outputDmatch

(

β~ϕ, β~ς
)

.
The 2-dimensional case.We start by providing a detailed treatment of the casen = 2, since our approach

for higher dimensions is based on a reduction to the 2-dimensional situation. For a previous version of the
algorithm in the casen = 2, the reader is referred to [1].

Let us fix a threshold errorε. By rescaling opportunely both~ϕ and~ς (and consequentlyε), we can assume
without loss of generality thatc = 1. Before going on, for everyδ > 0 we introduce the concept ofδ-grid on
L ⊆ Ladm2, i.e. a collection of points{p = (~µ, ~ν) ∈ Ladm2} such that(i) Bδ(p) ∩ Bδ(p

′) = ∅ for every
p, p′ ∈ G, p 6= p′ and(ii) L ⊆ ∪p∈GB̄δ(p), with B̄δ(p) the closure ofBδ(p). We say that aδ-grid is finite if
it consists in a finite collection of points.

We need to fixδ. Remark 2.5 allows us to takeδ smaller than12 . Let us setδ = 1
4 . We shall motivate

our choice in a while. We also define a finite14 -grid G onLadm2 \ Ladm
+
2 , see Figure 2. To display the

grid, we use the fact thatLadm2 can be identified with the product spaceM2 × N2, with M2 = {~µ =
(a, 1 − a), 0 < a < 1} andN2 = {~ν = (b,−b), ν ∈ R}. Therefore we can representLadm2 as the
subset of the real plane given byI × R, I the open interval{a ∈ R : 0 < a < 1}. In this perspective,
Ladm2 \ Ladm

+
2 = {(~µ, ~ν) : ‖~ν‖∞ < 1} is displayed asI × {b ∈ R : |b| < 1}. We shall describe later

how to obtainG in quite a simple way.
We recall that our goal is to compute the largest value ford(~µ,~ν)(β~ϕ, β~ς) on a suitable finite subset of

Ladm2. Equality (2.1) allows us to sensibly reduce the computation ofd(~µ,~ν)(β~ϕ, β~ς) onLadm+
2 . Indeed,

it implies thatd(~µ,~ν)(β~ϕ, β~ς) ≤ dmatch(βϕ1 , βς1) if ~ν = (b,−b) is such thatb ≤ −c, while d(~µ,~ν)(β~ϕ, β~ς) ≤
dmatch(βϕ2 , βς2) if b ≥ c. Moreover, in the first case the valuedmatch(βϕ1 , βς1) is achieved when~µ =
(a, 1 − a) is such thata ≤ 1

2 , while in the second case the valuedmatch(βϕ2 , βς2) is achieved whena ≥ 1
2 .

Thus, it is sufficient to consider the maximum betweendmatch(βϕ1 , βς1) anddmatch(βϕ2 , βς2) in order to
know the valuemaxLadm+

2
d(~µ,~ν)(β~ϕ, β~ς). We denote such a maximum byDext.

COMPUTEDEXT(X, ~ϕ = (ϕ1, ϕ2), ~ς = (ς1, ς2))
for i = 1 to 2

computeβϕi
; computeβςi ; computedmatch (βϕi

, βςi);
endfor
Dext = max{dmatch (βϕ1 , βς1) , dmatch (βϕ2 , βς2)};
return Dext.

Theorem 2.4 allows us to control the variation ofd(~µ,~ν)(β~ϕ, β~ς) in each set(Ladm2 \Ladm
+
2 )∩ B̄δ(pj),

and hence inLadm2 \ Ladm
+
2 . For everyp = (~µ, ~ν) ∈ G, we compute the valued(~µ,~ν)(β~ϕ, β~ς), setting

Dint = maxp∈G d(~µ,~ν)(β~ϕ, β~ς).

COMPUTEDINT(X, ~ϕ = (ϕ1, ϕ2), ~ς = (ς1, ς2),G)
Dint = 0;
foreach p = (~µ, ~ν) in G

computeβϕ(~µ,~ν)
; computeβς(~µ,~ν) ; computed(~µ,~ν)(β~ϕ, β~ς);

endfor
Dint = maxp∈G d(~µ,~ν)(β~ϕ, β~ς);
return Dint.

The numberDtot = max{Dext,Dint} is then a first approximation ofDmatch(βϕ, β~ς). The next function
COMPUTEDTOT shows how to refine the valueDtot to obtain an approximation ofDmatch(β~ϕ, β~ς) up to the
error thresholdε. First we briefly describe it.

If the inequality2δ · (2c + 1) ≤ ε holds, by Definition 1.11 and by applying Theorem 2.4 it follows that
|Dmatch(β~ϕ, β~ς)−Dtot| ≤ ε. Therefore COMPUTEDTOT ends, giving as outputDmatch(β~ϕ, β~ς) = Dtot.
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Otherwise, COMPUTEDTOT deletes each pointp ∈ G such thatDtot − d(~µ,~ν)(β~ϕ, β~ς) > 2δ · (2c +
1). Indeed, Theorem 2.4 ensures thatDtot will not be achieved (or exceeded) by computing the values
d(~µ,~ν)(β~ϕ, β~ς) over the sets̄Bδ(p). Moreover, the gridG is refined as follows: Eachp still in G is replaced by
four suitable pointsp1, . . . , p4, such that{pj , j = 1, . . . , 4} is a δ

2 -grid onBδ(p). This refinement procedure,
which will be described later, is performed by the function REFINE recalled in COMPUTEDTOT. Finally,
Dint andDtot are updated according to the new gridG, δ is replaced byδ2 , and the algorithm restarts by
checking if the inequality2δ · (2c+ 1) ≤ ε holds.

COMPUTEDTOT(δ,G, Dext, Dint)
tresh = 2δ(2c+ 1); Dtot = max{Dext,Dint};
while tresh ≥ ε
foreach p = (~µ, ~ν) in G
G ← G \ p;
if Dtot − d(~µj ,~νj)(β~ϕ, β~ς) ≤ tresh

G ← G ∪ REFINE(p, δ);
endif

endfor
Dint = COMPUTEDINT(X, ~ϕ = (ϕ1, ϕ2), ~ς = (ς1, ς2),G);
Dtot = max{Dext,Dint}; δ ← δ

2 ; tresh← 2δ(2c+ 1);
endwhile
return Dtot.

To conclude, we describe how to construct a1
2h

-grid onLadm2 \ Ladm
+
2 , with h ≥ 0 integer number.

Besides using it to construct the14 -grid G required at the beginning of our algorithm (and thus justifying our
initial choice forδ), such a procedure is preparatory to explain how function REFINE works.

Whenh = 0, we can simply take the pointp0 = (~µ0, ~ν0), with ~µ0 = (12 ,
1
2) and~ν0 = (0, 0). The set

{p0} is actually a1-grid onLadm2 \ Ladm
+
2 . Indeed, settingB1(p0) = B1(~µ0) × B1(~ν0), we have that

Ladm2 \ Ladm
+
2 = B1(p0).

Whenh > 0, our 1
2h

-grid consists in a collection of4h points, say{pij = (~µi, ~νj) : i, j = 1, . . . , 2h},
with ~µi = (ai, 1− ai) and~νj = (bj ,−bj). From the definition ofd we can deduce the following relations to
determine the pointspij :

(I)

{

ai
1−ai

= 2i−1
2h

, i = 1, . . . , 2h−1,
1−ai
ai

= 2h+1−2i+1
2h

, i = 2h−1 + 1, . . . , 2h,
(II) bj =

2j−2h−1
2h

, j = 1, . . . , 2h.

We observe thatai < 1
2 for everyi = 1, . . . , 2h−1, while ai > 1

2 wheni = 2h−1 + 1, . . . , 2h. Some
examples of1

2h
-grid obtained by using equations(I) and(II) are displayed in Figure 2.

1/2 a

b b b

a a

-1

1

1/2

-1/2

1/52/3

3/4

1/4

-1/4

-3/4

3/7 4/7 4/51/3

FIGURE 2. 1
2h

-grids onLadm2 \ Ladm
+
2 for h = 0 (left), h = 1 (center), andh = 2 (right).

Equations(I) and (II) also lay the basis to build the function REFINE recalled in COMPUTEDTOT.
Suppose thatp = (~µ, ~ν) ∈ Ladm2 is a point of a 1

2h
-grid, with ~µ = (a, 1− a) and~ν = (b,−b). If recalled,

function REFINE replacesp with a 1
2h+1 -grid of B 1

2h
(p), i.e. four pointsp′ij = (~µ′

i, ~ν
′
j) for i, j = 1, 2, with



MULTIDIMENSIONAL MATCHING DISTANCE 9

~µ′
i = (a′i, 1− a′i), ~ν

′
j = (b′j ,−b

′
j) and such that







a′i
1−a′i

= a
1−a

+ (−1)i

2h+1 if a < 1
2 ,

1−a′i
a′i

= 1−a
a

+ (−1)i

2h+1 if a > 1
2 ,

b′j = b+
(−1)j

2h+1
.(3.1)

Observe that, by applying function REFINE to each pointp of a 1
2h

-grid of Ladm2 \ Ladm
+
2 , we have a

1
2h+1 -grid of Ladm2 \ Ladm

+
2 . Indeed, by replacingh with h + 1, we could obtain the solutions of (3.1)

directly from(I) and(II). On the other hand, equations (3.1) allow us to replace justp, without computing
other useless points.

The n-dimensional case.We now generalize our algorithm to then-dimensional setting, withn > 2.
Such an extension is partially based on a reduction to the2-dimensional situation.

Similarly to the casen = 2, we aim at computing the largest value ford(~µ,~ν)(β~ϕ, β~ς) over a suitable finite
subset ofLadmn. We fix a threshold errorε. By opportunely rescaling both~ϕ and~ς (and consequentlyε),
we can assume without loss of generality thatc = 1, so thatLadm+

n = {(~µ, ~ν) ∈ Ladmn : ‖~ν‖∞ ≥ n−1}.
In Ladm+

n , Theorem 2.3 allows us to reduce the computation ofd(~µ,~ν)(β~ϕ, β~ς) to a (n − 1)-dimensional
situation. Indeed, it implies that, for every(~µ, ~ν) ∈ Ladm+

n , there exists(~η, ~ω) ∈ Ladmn−1 such that
d(~µ,~ν)

(

β~ϕ, β~ς
)

≤ d(~η,~ω)
(

β~ϕ ı̄ , β~ς ı̄

)

for a suitable index̄ı ∈ {1, . . . , n}. On the other hand, it is possible to
prove that, for everȳı ∈ {1, . . . , n} and every(~η, ~ω) ∈ Ladmn−1, there always exists(~µ, ~ν) ∈ Ladm+

n

such thatd(~µ,~ν)
(

β~ϕ, β~ς
)

= d(~η,~ω)
(

β~ϕ ı̄ , β~ς ı̄

)

. As a consequence, the computation ofd(~µ,~ν)
(

β~ϕ, β~ς
)

over the
setLadm+

n can be reduced to the one of the(n− 1)-dimensional matching distancesDmatch

(

β~ϕi , β~ςi
)

, for
i = 1, . . . , n.

Obviously, we can recursively repeat the same reasonings to progressively decrease the dimensionality of
the problem. It turns out that computing the largest value ford(~µ,~ν)(β~ϕ, β~ς) on Ladm+

n can be reduced to
the2-dimensional case, by considering the

(

n
2

)

2-dimensional matching distancesDmatch

(

β~ϕij
, β~ςij

)

, with
~ϕij = (ϕi, ϕj) and~ςij = (ςi, ςj) for everyi 6= j.

Similarly to what happens in the 2-dimensional case, Theorem 2.4 allows us to control the variation of
d(~µ,~ν)(β~ϕ, β~ς) on the setLadmn \ Ladm

+
n . After fixing δ = 1

2m
, with m = min{m ∈ N : 2m > n}

(see Remark 2.5), we can define aδ-grid G onLadmn \Ladm
+
n by extending equations(I) and(II) to the

n-dimensional situation (actually, relations(II) should be additionally adapted to deal with the open interval
(−n+ 1, n− 1) instead of(−1, 1)).

It turns out that for then-dimensional case we only need to use functions COMPUTEDEXT, COMPUTE-
DINT and COMPUTEDTOT without any modification. Concerning function REFINE, it can be generalized to
then-dimensional situation starting from (3.1) to replace, when necessary, anelement ofG with 2n points.

3.1. Computational costs. Let us fix a threshold errorε > 0 and observe that, for everyn ≥ 2, we can
write ε = nεn, for a suitable real valueεn. Whenn = 2, approximatingDmatch(β~ϕ, β~ς) needs the compu-
tation of the1-dimensional PBNsβϕi

, βςi for i = 1, 2, βϕ(~µ,~ν)
and the associated1-dimensional matching

distancedmatch(βϕi
, βςi) andd(~µ,~ν)(β~ϕ, β~ς), for each(~µ, ~ν) ∈ G along with all its refinements. The run-

ning time for computing a 1-dimensional PBNs is cubic in the size of input data (e.g., number of simplices,
nodes of a graph or voxels of a 3D image) in the worst case [24]. Computing the 1-dimensional matching
distance between two 1-dimensional PBNs takesO

(

q2.5
)

, beingq the total number of cornerpoints of the
two descriptors [4]. It turns out that the overall computational cost depends on the previous complexities,
multiplied by the number of points inG along with all its refinements. The worst case cardinality for such
a set is when there is no points cancellation. If so, at thehth iteration of the algorithm the cardinality ofG
corresponds to coverI × (−c, c) with open balls (w.r.t. the distanced) of radiusδ = 1/2h, i.e. O(4h). In
particular, since the algorithm ends as soon as2δ (2c+ 1) < ε, at the last iteration we obtainO(1/ε2). This
implies that the worst case complexity is at most proportional to1/ε2. Additionally, we can estimate that the
number of iterations of the algorithm islog2

2c+1
2ε .

When n > 2, we apply
(

n
2

)

times the 2-dimensional framework to obtain the maximum value for
d(~µ,~ν)(β~ϕ, β~ς) on Ladm+

n , thus giving a computational cost proportional to(n/ε)2 = 1/ε2n. Moreover,
we also need to computed(~µ,~ν)(β~ϕ, β~ς) for each(~µ, ~ν) ∈ G along with all its refinements. Following similar
considerations to the2-dimensional situation, we get a running time that is proportional to(n/ε)n = (1/εn)

n

in the worst case.
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4. DISCUSSIONS

As can be seen, the total running time of our algorithm is exponential inn in the worst case. On the other
hand, it is worth noting that a number of strategies can be used to keep downthe computational costs.
• From the Matching Stability Theorem 1.8 and from the definition ofϕ(~µ,~ν) andς(~µ,~ν) (cf. Theorem 1.10),

we have thatd(~µ,~ν)
(

β~ϕ, β~ς
)

≤ maxx∈X ‖~ϕ(x) − ~ς(x)‖∞ and hence
∣

∣d(~µ,~ν)
(

β~ϕ, β~ς
)

− d(~µ′,~ν′)

(

β~ϕ, β~ς
)
∣

∣ ≤
maxx∈X ‖~ϕ(x)−~ς(x)‖∞, for every(~µ, ~ν), (~µ′, ~ν ′) ∈ Ladmn. It follows that, ifmaxx∈X ‖~ϕ(x)−~ς(x)‖∞ ≤
ε, we incur in the worst case. Whenever this happens, we simply prevent torun our algorithm, setting
Dmatch

(

β~ϕ, β~ς
)

= maxx∈X ‖~ϕ(x)− ~ς(x)‖∞.
• Instead of fixing a threshold errorε, we could decide to fix the number of(~µ, ~ν) ∈ Ladmn \Ladn

+
n we

are disposed to consider during the computation ofDmatch

(

β~ϕ, β~ς
)

. We recall that, even considering just
one of these points, we would have a pseudo-distance betweenβϕ andβ~ς that can be effectively evaluated.
Further, even working with a small number of points inLadmn \ Ladn

+
n gave encouraging results in shape

comparison applications [2, 3]. Nevertheless, the theoretical results underlying our algorithm provide a
systematic procedure to select the points(~µ, ~ν), differently from what happened in previous works.
• Our computational approach perfectly fits in the general structure ofbranch and bound algorithms.

Branch and bound is a general algorithm for finding optimal solutions of various optimization problems,
especially in discrete and combinatorial optimization, see [31] for details. A number of techniques are
available in literature, such as thedepth-first search[20] or thebest-first search[33], improving the efficiency
of branch and bound algorithms in exploring the set of candidate solutions.In our case, applying one of these
strategies, or a combination of them, would contribute in containing the computational costs.

Let us conclude by observing that a previous version of the algorithm has been tested in [1], to compare
2-dimensional 0th PBNs associated to 3D objects represented by surfacemodels. Experiments show that,
in practical cases, the algorithm is able to decimate the number of half-planes required to reach the desired
approximation for the 2-dimensional matching distance. In particular, in the considered cases the algorithm
cuts away from 55% to 96% of the total number of half-planes that should beconsiderd without the cancel-
lation strategy. These results make us confident for future applications ofthen-dimensional framework in
shape comparison.

5. CONCLUSIONS

In this paper we present a novel theoretical and computational framework to get approximations of the
matching distance between multidimensional PBNs. More precisely, starting from the so-called foliation
method, we obtain new results to bound the matching distance associated to the leaves of a foliation defined
on the domain ofn-dimensional PBNs. These results follow the ones obtained in [1] for the 2-dimensional
setting of 0th PBNs. Such an extension has been possible via the introductionof a suitable distance on the
space of parameters identifying the leaves of the foliation. Moreover, we provide an algorithm to obtain
approximations of then-dimensional matching distance up to an arbitrary error threshold, representing the
maximum error we are disposed to accept in the computation. We also investigatesome possible directions
to keep down the computational costs. Previous examples developed in [1] for the 2-dimensional matching
distance show how such a framework could be used in Computer Vision, Computer Graphics and Pattern
Recognition, to compare properties of shapes that can be modeled by vector-valued continuous functions.
This is actually what we are planning to do, in order to test the feasibility of the proposed framework even
in higher dimensions.
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A. A PPENDIX

This appendix is devoted to formally prove the results presented in Section 2.

Proof of Proposition 2.2.We will show thatd has actually all the properties of a distance.

(i): d ≥ 0 by definition;
(ii): Let us prove thatd ((~µ, ~ν) , (~µ′, ~ν ′)) = 0⇔ (~µ, ~ν) = (~µ′, ~ν ′). Obviously, if(~µ, ~ν) = (~µ′, ~ν ′) then

d ((~µ, ~ν) , (~µ′, ~ν ′)) = 0. Conversely, suppose thatd ((~µ, ~ν) , (~µ′, ~ν ′)) = 0. Then~ν = ~ν ′. Moreover,
µ∗

µi
= µ′

∗

µi
for everyi = 1, . . . , n, and henceµ∗

µ′

∗

= µi

µ′

i
= k for everyi = 1, . . . , n. By contradiction,

suppose thatk 6= 1. Sinceµi = kµ′
i for everyi = 1, . . . , n, and given that

∑n
i=1 µ

′
i = 1 we would

have
∑n

i=1 µi =
∑n

i=1 kµ
′
i = k 6= 1, against the definition ofLadmn. Thereforek = 1, implying

that~µ = ~µ′;
(iii): Symmetry is again by definition;
(iv): Let us prove the triangle inequality. For every(~µ, ~ν) , (~µ′, ~ν ′) , (~µ′′, ~ν ′′) ∈ Ladmn, it holds that

d
(

(~µ, ~ν) ,
(

~µ′, ~ν ′
))

= max

{

max
i=1,...,n

∣

∣

∣

∣

µ∗

µi
−

µ′
∗

µ′
i

∣

∣

∣

∣

,
∥

∥~ν − ~ν ′
∥

∥

∞

}

= max

{

max
i=1,...,n

∣

∣

∣

∣

µ∗

µi
−

µ′′
∗

µ′′
i

+
µ′′
∗

µ′′
i

−
µ′
∗

µ′
i

∣

∣

∣

∣

,
∥

∥~ν − ~ν ′′ + ~ν ′′ − ~ν ′
∥

∥

∞

}

≤ max

{

max
i=1,...,n

∣

∣

∣

∣

µ∗

µi
−

µ′′
∗

µ′′
i

∣

∣

∣

∣

+ max
i=1,...,n

∣

∣

∣

∣

µ′′
∗

µ′′
i

−
µ′
∗

µ′
i

∣

∣

∣

∣

,
∥

∥~ν − ~ν ′′
∥

∥

∞
+

∥

∥~ν ′′ − ~ν ′
∥

∥

∞

}

≤ max

{

max
i=1,...,n

∣

∣

∣

∣

µ∗

µi
−

µ′′
∗

µ′′
i

∣

∣

∣

∣

,
∥

∥~ν − ~ν ′′
∥

∥

∞

}

+max

{

max
i=1,...,n

∣

∣

∣

∣

µ′′
∗

µ′′
i

−
µ′
∗

µ′
i

∣

∣

∣

∣

,
∥

∥~ν ′′ − ~ν ′
∥

∥

∞

}

= d
(

(~µ, ~ν) ,
(

~µ′′, ~ν ′′
))

+ d
((

~µ′′, ~ν ′′
)

,
(

~µ′, ~ν ′
))

.

�

Proof of Theorem 2.3.If ‖~ν‖∞ ≥ (n− 1)c it follows that an index̄ı ∈ {1, . . . , n} exists, such thatϕ(~µ,~ν) =

µ∗ ·maxi 6=ı̄
ϕi−νi
µi

andς(~µ,~ν) = µ∗ ·maxi 6=ı̄
ςi−νi
µi

. Indeed, let us suppose that‖~ν‖∞ = νı̄ ≥ (n− 1)c. Then
∑

i 6=ı̄ νi = −νı̄ ≤ −(n−1)c, implying that an index̄ 6= ı̄ exists, such thatν̄ ≤ −c. Thereforeϕ̄(x)−ν̄ ≥

0 for everyx ∈ X (respectivelyς̄(x) − ν̄ ≥ 0 for everyx ∈ X) while ϕı̄(x) − νı̄ ≤ 0 for everyx ∈ X

(resp.ςı̄(x)−νı̄ ≤ 0 for everyx ∈ X), so thatϕ(~µ,~ν) = µ∗ ·maxi 6=ı̄
ϕi−νi
µi

(resp.ς(~µ,~ν) = µ∗ ·maxi 6=ı̄
ςi−νi
µi

).
In a similar way it is possible to show that, if‖~ν‖∞ = −ν̄ ≥ (n− 1)c, i.e. ν̄ ≤ −(n− 1)c, then an index
ı̄ 6= ̄ exists, such thatϕ(~µ,~ν) = µ∗ ·maxi 6=ı̄

ϕi−νi
µi

(resp.ς(~µ,~ν) = µ∗ ·maxi 6=ı̄
ςi−νi
µi

).
By virtue of the previous reasonings, let us fix an indexı̄ ∈ {1, . . . , n} such thatϕ(~µ,~ν) = µ∗·maxi 6=ı̄

ϕi−νi
µi

and ς(~µ,~ν) = µ∗ · maxi 6=ı̄
ςi−νi
µi

. Without loss of generality, we can assumeı̄ = n, so thatϕ(~µ,~ν) = µ∗ ·

maxi 6=n
ϕi−νi
µi

andς(~µ,~ν) = µ∗ ·maxi 6=n
ςi−νi
µi

. Now setηi =
µi

1−µn
, ωi = νi + ηiνn for everyi = 1, . . . , n−

1. Since
∑n−1

i=1 ηi = 1 and
∑n−1

i=1 ωi = 0, it follows that ((η1, . . . , ηn−1) , (ω1, . . . , ωn−1)) = (~η, ~ω) ∈
Ladmn−1. Moreover,

ϕ(~µ,~ν) = µ∗ ·max
i 6=n

ϕi − νi
µi

= µ∗ ·max
i 6=n

ϕi − ωi + ηiνn
(1− µn)ηi

=
µ∗

1− µn
·max

i 6=n

ϕi − ωi

ηi
+

µ∗

1− µn
· νn

=
µ∗

1− µn
·
η∗
η∗
·max

i 6=n

ϕi − ωi

ηi
+

µ∗

1− µn
· νn

=
µ∗

mini 6=n µi
· η∗ ·max

i 6=n

ϕi − ωi

ηi
+

µ∗

1− µn
· νn =

µ∗

mini 6=n µi
· ϕn

(~η,~ω) +
µ∗

1− µn
· νn,
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with ϕn
(~η,~ω) = η∗ ·maxi 6=n

ϕi−ωi

ηi
. Analogously, settingςn(~η,~ω) = maxi 6=n

ςi−ωi

ηi
, it is possible to show that

ς(~µ,~ν) =
µ∗

mini 6=n µi
· ςn(~η,~ω) +

µ∗

1− µn
· νn.

Therefore we can write

d(~µ,~ν)
(

β~ϕ, β~ς
)

=
µ∗

mini 6=n µi
· d(~η,~ω)

(

β~ϕn , β~ς n

)

,(A.1)

with the equality in (A.1) coming from the properties of the matching distancedmatch (see also [15,
Prop 2.3]). Analogous considerations hold even assumingı̄ 6= n. �

Proof of Theorem 2.4.
∣

∣d(~µ,~ν)
(

β~ϕ, β~ς
)

− d(~µ′,~ν′)

(

β~ϕ, β~ς
)
∣

∣ =
∣

∣

∣
dmatch

(

βϕ(~µ,~ν)
, βς(~µ,~ν)

)

− dmatch

(

βϕ(~µ′,~ν′)
, βς(~µ′,~ν′)

)∣

∣

∣

≤ dmatch

(

βϕ(~µ,~ν)
, βϕ(~µ′,~ν′)

)

+ dmatch

(

βς(~µ,~ν) , βς(~µ′,~ν′)

)

≤ max
x∈X

∣

∣ϕ(~µ,~ν)(x)− ϕ(~µ′,~ν′)(x)
∣

∣+max
x∈X

∣

∣ς(~µ,~ν)(x)− ς(~µ′,~ν′)(x)
∣

∣

≤ max
x∈X

max
i=1,...,n

∣

∣

∣

∣

µ∗

µi
· (ϕi(x)− νi)−

µ′
∗

µ′
i

· (ϕi(x)− ν ′i)

∣

∣

∣

∣

+(A.2)

+ max
x∈X

max
i=1,...,n

∣

∣

∣

∣

µ∗

µi
· (ςi(x)− νi)−

µ′
∗

µ′
i

· (ςi(x)− ν ′i)

∣

∣

∣

∣

,(A.3)

with the first inequality coming from a trivial extension of the triangular inequality to the case of four
elements, the second one from the Matching Stability Theorem 1.8 and the third one from the inequality
|maxi=1,...,n ui −maxi=1,...,n vi| ≤ maxi=1,...,n |ui − vi|, for everyu1, . . . , un, v1, . . . , vn ∈ R. Moreover,
for everyi = 1, . . . , n we have

∣

∣

∣

∣

µ∗

µi
· (ϕi(x)− νi)−

µ′
∗

µ′
i

· (ϕi(x)− ν ′i)

∣

∣

∣

∣

=

∣

∣

∣

∣

µ∗

µi
· (ϕi(x)− νi)−

µ′
∗

µ′
i

· (ϕi(x)− νi)+(A.4)

+
µ′
∗

µ′
i

· (ϕi(x)− νi)−
µ′
∗

µ′
i

· (ϕi(x)− ν ′i)

∣

∣

∣

∣

≤

∣

∣

∣

∣

µ∗

µi
· (ϕi(x)− νi)−

µ′
∗

µ′
i

· (ϕi(x)− νi)

∣

∣

∣

∣

+

+

∣

∣

∣

∣

µ′
∗

µ′
i

· (ϕi(x)− νi)−
µ′
∗

µ′
i

· (ϕi(x)− ν ′i)

∣

∣

∣

∣

≤ |ϕi(x)− νi| ·

∣

∣

∣

∣

µ∗

µi
−

µ′
∗

µ′
i

∣

∣

∣

∣

+
µ′
∗

µ′
i

·
∣

∣νi − ν ′i
∣

∣ ≤ δ(nc+ 1),

with the last inequality following from the following ones:

max
x∈X
‖~ϕ(x)‖∞ ≤ c, ‖~ν‖∞ ≤ (n− 1)c,

∣

∣

∣

∣

µ∗

µi
−

µ′
∗

µ′
i

∣

∣

∣

∣

≤ δ,
µ′
∗

µ′
i

≤ 1, ‖~ν − ~ν ′‖∞ ≤ δ.

Similarly, we can prove that, for everyi = 1, . . . , n,
∣

∣

∣

∣

µ∗

µi
· (ςi(x)− νi)−

µ′
∗

µ′
i

· (ςi(x)− ν ′i)

∣

∣

∣

∣

≤ δ(nc+ 1),(A.5)

and hence, substituting (A.2) and (A.3) respectively by (A.4) and (A.5) we have that
∣

∣d(~µ,~ν)
(

β~ϕ, β~ς
)

− d(~µ′,~ν′)

(

β~ϕ, β~ς
)
∣

∣ ≤ 2δ(nc+ 1).

�
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ARCES, UNIVERSITÀ DI BOLOGNA, VIA TOFFANO2/2, I-40135 BOLOGNA, ITALIA
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