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ABSTRACT. Topological Persistence has proven to be a promising framewodefing with problems con-
cerning shape analysis and comparison. In this contexts, it was originathguced by taking into account
1-dimensional properties of shapes, modeled by real-valued fusctidare recently, Topological Persistence
has been generalized to consider multidimensional properties of sttaples! by vector-valued functions. This
extension has led to introduce suitable shape descriptors, namediitidimensional persistence Betti numbers
functions and a distance to compare them, the so-cafiettidimensional matching distance

In this paper we propose a new computational framework to deal with thiédimensional matching dis-
tance. We start by proving some new theoretical results, and then wiberseto formulate an algorithm for
computing such a distance up to an arbitrary threshold error.
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INTRODUCTION

In this paper, we present a computational framework for applying sonte ¢coming frommultidimen-
sional persistenct® shape analysis and comparison. Indeed, interpreting and compaajessire probably
two of the most challenging issues in the fields of Computer Vision, Comput@hisaand Pattern Recog-
nition. Nowadays, shape models convey a great amount of visual, seraadtidigital information, and
therefore finding suitable methods allowing for capturing, processingeprdsenting such an information
in a convenient way is definitely a desirable target [37, 38].

Persistence for shape analysis and comparisorin this context, methods deriving from Topological
Persistence have recently gained a growing appeal. They focus oolagimal exploration of a shape under
study, with respect to some geometrical properties considered relevazagdturing the salient features of
the shape itself [4, 8, 24, 29]. The assumption here is that the most imppi¢artof information enclosed
in geometrical data is usually the one that is “persistent” with respect to theirdgfparameters. More
formally, the key idea is to model a shape as a spacéogether with a real-valued functign: X — R,
calledfiltering function The functiony plays the role of a descriptor for a shape property we consider
relevant for the comparison or the analysis problem at hand. By studyingublevel sets induced on
by ¢, we can perform a topological exploration of the shape under studysiiag on the occurrence of
meaningful topological events (e.g. the birth, or the merging, of connecrgonents, holes, tunnels, voids
and so on). Such an information can then be encoded in a parameterizazhvaf the Betti numbers,
known in the literature agersistent Betti numbef&5], arank invariant[11], and, for thedth homology, a
size functiorf27, 30, 40]. The main point is that these shape descriptors can lesesped in a very simple
and compact way, by means of the so-cajpedsistent diagramsMoreover, they are stable with respect to
a suitable distance, i.e. tiettleneck distancer matching distanceThus, the tools offered by Topological
Persistence nicely fit for dealing with shape analysis and comparisoteprebActually, in the last twenty
years methods based on the previous guidelines have been succasstdllyn quite a lot of applications
concerning shape analysis and comparison, see e.g. [5, 12, 12, BB, 39].

Motivations and prior works. A common scenario in applications is when two or more properties con-
cur to define the shape of an object. Moreover, sometime it is desirable yostyskrties of a shape that are
intrinsically multidimensional, such as the coordinate of a point in the 3-dimersipaee, or the represen-
tation of color in the RGB model. Such considerations drove the attention to-ttedledmultidimensional
Topological Persistencgd, 23, 29]. Here the term multidimensional, or equivalentigdimensional, refers
to the fact that the considered filtering functions take valué®"in This leads to consider the multidimen-
sional extension of persistent Betti numbers, namelyittttmensional persistent Betti numbghereafter
n-dimensional PBNs.

Multidimensional persistence was firstly investigated in [28] as regards tepmgroups, and in [10] as
regards homology modules. Another approach to the multidimensional setting asm¢hproposed in [2],
based on the so-callddliation method Focusing on the concept afdimensional Oth PBNs, the authors
proved that, whem > 1, a foliation in half-planes can be given, such that the restrictiom-dimensional
Oth PBNs to these half planes turns out tolbdimensional. This allowed the definition of a proven stable
matching distance betweendimensional PBNs, namely the-dimensional matching distanceSuch a
result has been partially extended in [6], i.e. for any homology degreebiicted to the case afiax-tame
filtering functions, and then further refined in [13] for continuous filtgrfianctions.

From the point of view of applications, the main problem in multidimensional gersie is that @om-
plete, discrete and stabldescriptor seems not to be available in the multidimensional setting, differently
from what happens in the-dimensional situation [10]. Until now, the arising computational difficultiegsha
been faced according to different strategies [3, 9, 19], but the isa@till in progress.

In particular, in [3] the authors take a finite number of half-planes fronfdhation proposed in [2] to
obtain a computable approximation of thedimensional matching distance between Oth PBNs. They per-
form some experiments on the comparison of surfaces and volumetric oipjebes2- and 3-dimensional
settings. Unfortunately, that work does not make clear how many and Wwhl&planes one has to choose to
get a reasonable approximation of the matching distance, which couldeeduige number of calculations.
A solution for this problem in the 2-dimensional setting is proposed in [1], iichvh systematical proce-
dure for half-planes selection is presented, giving rise to an algorithegpijoroximating the 2-dimensional
matching distance between Oth PBNs up to an arbitrary threshold error.
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Contribution of the paper. Following [1], this paper aims to solve the problem of obtaining good ap-
proximations for ther-dimensional matching distance betwelgh PBNs, for any dimension and any
homology degreé&. More specifically, the main contributions of the present work are:

o New theoretical results (Theorem 2.3 and Theorem 2.4) concerning tohintadistance corresponding
to the leaves of the half-planes foliation. We show that, moving from one keatve other, the change of
the matching distance associated to these half-planes is bounded by almeimT of the distance between
the considered leaves. This result extends to any dimemsiba one obtained in [1] for the 2-dimensional
setting of Oth PBNs. This is possible via the introduction of a suitable distarefan{fion 2.1) on the space
of parameters defining the half-planes foliation.

e As a by-product, we provide an algorithm to obtain an approximation ofitdamensional matching
distance up to an arbitrary threshold error, representing the maximumaerrare disposed to accept in the
computation. Our algorithm guarantees a systematical selection of the hadfspethe foliation. Moreover,
the threshold allows us to module the computational costs, in order to find acgomgkromise between
quality of results and running time.

The reminder of the paper is organized as follows. In Section 1 we reviestéimdard facts about (mul-
tidimensional) persistence, with particular reference to PBNs and matchiagais Section 2 is devoted to
present our approximation results. In Section 3 we introduce the algorghgomputing approximations
of the multidimensional matching distance. Some discussions in Section 4 pithecfigal remarks and
comments of Section 5.

1. PBNs: DEFINITIONS AND FIRST PROPERTIES

In this section, we review the background on Persistent Homology andid@mp Recent surveys on
this topic are [4, 23, 24, 29, 41]. However, we warn the reader thdgreiftly for what happens in other
papers about persistence, we shall assume that the considering fifteratigns arecontinuousinstead of
tame, and we shall work witltech homology instead of singular or simplicial homology. The reasons of
considering continuous filtering functions is essentially that 1-dimensi@ukiction of multidimensional
persistence is not possible in the setting of tame functions, as it was alrbaeled in [6], but it luckily
does in the wider setting of continuous functions. The choice of working @&th homology is motivated
by the fact that, having the continuity axiom, it allows us to prove the Repiesem Theorem 1.6, stating
that the PBNs of a scalar-valued filtering function can be completely deschip a persistence diagram.
Even assuming tameness, this result would not hold for singular and simfie@ies, which guarantee a
complete description of one-dimensional PBNs only outside a set of vagisteasure. In the framework
of persistenceCech homology has already been considered in [34, 35]. Moreowe€dhh approach to
homology theory is currently being investigated for computational pur88é¢s

Throughout the paper, the following relatioasand < are defined irR™: for @ = (uy,...,u,) and
U= (v1,...,0,), We sayid =< ¥ (resp. @ < ¥) if and only if u; < wv; (resp. u; < v;) for every index
i =1,...,n. MoreoverR" is endowed with the usuabax-norm: ||(u1, ua, ..., un)||, = Maxi<i<n |u;.

We shall use the following notationgx* will be the open sef(u, v) € R" x R™ : @ < ¢}. For every
n-tupled = (uy,...,u,) € R", we shall sets, = min; u; and for every functiorp : X — R"™, we shall
denote byX (7 < u) the set{x € X : pi(z) <w;, i =1,.

The next definition extends the concept of perS|stent homology grouptdtadimensional setting.

Definition 1.1 (Persistent homology grouplet k£ € Z. Let X be a topological space, agdl: X — R”

a continuous function. Let(“ R c Hy(X(@ < @) — Hp(X(F < 7)) be the homomorphism induced by
the inclusion mapr (@9 : <<P < @) < X(@ = ¥) with @ < @, whereH,, denotes thé:th Cech homology
group. Ifé < ¥, the image Oﬁr,(f’a) is called themultidimensionakth persistent homology group @K, &)

at (i, ), and is denoted bﬁ,ﬁﬁ’m (X, 3).

In other words, the grouH(“ ”)(X, ) contains all and only the homology classes of cycles born before
or at# and still alive at/. For details abouCech homology, the reader can refer to [26, Ch. 1X].

In what follows, we shall work with coefficients in a field, so that homology groups are vector spaces.
Therefore, they can be completely described by their dimension, leading timltbwing definition (cf.
[11, 25]).
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Definition 1.2 (Persistent Betti Numbers Functionhe function3s : AT — N U {co} defined by
B(@i, ¥) = dimim ™" = dim A" (X, @)
will be called thepersistent Betti numbers functio 3, briefly PBNSs.

Obviously, for eactk € Z, we have different PBNS; of ¢ (which should be denotegl; i, say) but, for
the sake of notational simplicity, we omit adding any referenck.t@his will also apply to the notations
used for other concepts in this paper, such as multiplicities and persistegcards.

It is possible to prove that, iX is a compact and locally contractible subspac@®df, the functions
never attains the valus [7]. However, in order to stick as much as possible to the existing literatunat ab
persistence, in the present paper we shall confine ourselves to tkenasaumption thaX is triangulable.

1.1. 1-dimensional PBNs.Now we confine ourselves to the case= 1. Indeed, our approach to the
multidimensional setting of PBNs is based on a reduction td tdenensional situation.

For the sake of simplicity, the symbal$ i, v will be replaced byp, u, v, respectively. We remark that
AT reduces to be the séfu,v) € R? : u < v}. Moreover, we use the following notation& = 9A™,
A* = AT U{(u,0) : u € R}, andA* = A*UA.

Persistent diagrams and Representation TheorenOne of the main properties of 1-dimensional PBNs
is that they admit a very simple and compact representation. More preciselyy the present assumption
on X andy, and making use aCech homology, it is possible to prove that edetimensional PBNs can
be compactly described by a multiset of points, proper and at infinity, ofetllepfane. Due to the lack of a
well-established terminology, we call thgroper cornerpointandcornerpoints at infinity (or cornerlines)
respectively.

Definition 1.3 (Proper cornerpoint)For every pointp = (u,v) € A™*, we define the number(p) as the
minimum over all the positive real numberswith u + ¢ < v — ¢, of

Bolute,v—c)=Bp(u—e,v—¢) = Bplute,vte)+ By(u—cv+e).

The numben will be called themultiplicity of p for 3,. Moreover, we shall call @aroper cornerpoint for
B, any pointp € A™ such that the number(p) is strictly positive.

Definition 1.4 (Cornerpoint at infinity) For every vertical line, with equationu = @, u € R, we identify
r with (@, 00) € A*, and define the number(r) as the minimum over all the positive real numbersvith
u+e<1/e, of

5¢(ﬂ+571/5) _ﬁtp(ﬂ_571/5)'
The numben:(r) will be called themultiplicity of r for 5,. When this finite number is strictly positive, we
call » acornerpoint at infinity for3,,.

The concept of cornerpoint allows us to introduce a representatiore d??BiNs, based on the following
definition [13, 18].

Definition 1.5 (Persistence diagramYhe persistence diagramv,, C A* is the multiset of all cornerpoints
(both proper and at infinity) fop,, counted with their multiplicity, union the points @, counted with
infinite multiplicity.

The fundamental role of persistent diagrams is explicitly shown in the folloRiegresentation Theo-
rem 1.6 [13, 18], claiming that they uniquely determineimensional PBNs (the converse also holds by
definition of persistence diagram).

Theorem 1.6(Representation Theoremfor every(u, v) € AT, we have

ﬁ@(ﬂv@) = Z p((u, v)).
(u,v)EA*
u<u,v>0
Roughly speaking, the Representation Theorem 1.6 claims that the valmesassy3,, at a point(a, v) €
AT equals the number of cornerpoints lying above and on the I€ft.af). By means of this theorem we
are able to compactly represdntimensional PBNs as multisets of cornerpoints and cornerpoints at infinity,
i.e. as persistent diagrams.
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Stability of 1-dimensional PBNs. As a consequence of the Representation Theorem 1.6 any distance
between persistence diagrams induces a distance between 1-dimenBiNsallfis justifies the following
definition [13, 18, 21].

Definition 1.7 (Matching distance)Let X be a triangulable space endowed with continuous functiggs
X — R. Thematching distancd,, ..., betweens, andg; is defined as

(1.1) dmaten (Bes Be) = mgn;g%ﬁ P = (Pl

where~ ranges over all multi-bijections (i.e. bijections between multisets) betwigeand D, and for
everyp = (u,v),q = (u/,v") in A*,

Ip = gllss = min {max {Ju — /|, Jo —v'|} ,max { (v —w) /2, (v =) /2} },
with the convention about points at infinity that — y = y — oo = co wheny # oo, 0o — 00 = 0, & = oo,
|oo| = 00, min{c, 0o} = ¢ andmax{c, oo} = 0.

In plain words,|| - || s measures the pseudo-distance between two ppeutslg as the minimum between
the cost of moving one point onto the other and the cost of moving both paimtstioe diagonal, with
respect to the max-norm and under the assumption that any two points ¢dgie@dl have vanishing pseudo-
distance (we recall that a pseudo-distadic®just a distance missing the conditiefX,Y) = 0= X =Y,
i.e. two distinct elements may have vanishing distance with respégt ¥When the number of cornerpoints
is finite, the matching of persistence diagrams is related to the bottleneck tratispoproblem, and the
matching distance reduces to the bottleneck distance [18]. However, thisabvays the case when working
with continuous filtering functions. Indeed, such an assumption implies thatithber of cornerpoints may
be countably infinite. We remark that the matching distance is stable with raspeetturbations of the
filtering functions, as the following Matching Stability Theorem states:

Theorem 1.8 (One-Dimensional Stability Theoremfssume thatX is a triangulable space, ang, :
X — R are two continuous functions. Then it holds thal,c, By, B) < |l — slloo-

For a proof of the previous theorem and more details about the matchingadistee reader is referred to
[13, 21] (see also [16, 18] for the bottleneck distance).

1.2. The Foliation Method. We now review the so callefbliation method leading to the definition of a
stable distance for multidimensional PBNs [2, 6]. The key idea is that a foliatibalf-planes ofA™ can
be given, such that the restriction of the multidimensional PBNs function te teé-planes turns out to be
a one-dimensional PBNs function in two scalar variables. This approadiesibat the comparison of two
multidimensional PBNs functions can be performed leaf by leaf by measurindistance of appropriate
one-dimensional PBNs functions. Therefore, the stability of multidimensPBAls is a consequence of the

one-dimensional PBNs’ stability.
We start by recalling that the following parameterized family of half-plané®"in< R™ is a foliation of

AT (cf. [2, Prop. 1] and [15]).

Definition 1.9 (linearly admissible pairs)For every vectofi = (u1, ..., ty) Of R™ such thatu; > 0 for
i=1,...,n,and) ;" , u; = 1, and for every vector = (vy,...,v,) of R"” such thaty";" , v; = 0, we
shall say that the paiiii, 7) is linearly admissible We shalll denote the set of all linearly admissible pairs in
R™ x R™ by Ladm,,. Given a linearly admissible paffi, /), we define the half-plane; ; of R” x R" by

the following parametric equations:

U=sii+v
v=ti+v

for s,t € R, with s < ¢.

Since these haIf—pIanes(fb constitute a foliation oA ™, for each(w, ) € A™ there exists one and only

one(fi, ) € Ladm,, such tha(u, v) € ;. Observe thafi andi only depend orfu, o).

A first property of this foliation is that tI?1e restriction gf; to each leaf can be seen as a particular one-
dimensional PBNs function. Intuitively, on each half plang ;) one can find the PBNs corresponding to
the filtration of X' obtained by sweeping the line througtand v parameterized by; 5 : R — R", with

’y(mg)(T) = Tﬁ-i- v.
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A second property is that this filtration corresponds to the one given bipwrer level sets of a certain
scalar-valued continuous function. Both these properties are stated irexh¢heorem, analogous to [6,
Thm. 2], and are intuitively shown in Figure 1.

Theorem 1.10(Reduction Theorem)For every(u, ) € A™, let (i, 7) be the only linear admissible pair
such thal(i, v)) = (sji + ¥V, tji + V) € ;). Settingu, = min; y;, let moreoverp(; 5 : X — R be the
continuous filtering function defined by setting

i(r) — v
P (T) = p - max pile) v

? i

Then it holds that

P2

s
s

N
N

K4
v

FIGURE 1. One-dimensional reduction of two-dimensional PBNs. Left: a one-difopal
filtration is constructed sweeping the line througlandv. A unit vectori and a point’ are
used to parameterize this line g 5 (1) = 7/i + ¥. Right: the persistence diagram of this
filtration can be found on the leaf; 5 of the foliation.

As a consequence of the Reduction Theorem 1.10, it is possible to obtaimatogue of the distance
dmaten TOr the multidimensional case, denoted by,.:.», having a particularly simple form, yet yielding
the desired stability properties [2, 13].

Definition 1.11 (Multidimensional matching distancelet X be a triangulable space, andfg’: X — R”
be continuous functions. For evety,7) € Ladmy, setd(;z (83 6z) = dmatch (Bwﬁ’ﬁ),ﬁg(ﬁvu_)). The
multidimensional matching distand®,, .., between3z and3- is then defined as

Dinaten (Bg: B2) = sup  dizg (Bg Bs) -
(@,7)€Ladmy,

2. NEW APPROXIMATION RESULTS

In this section we introduce some new theoretical results leading to the fornmuditour algorithm for
approximatingD,,,.¢c»- All such results are formally proved in Appendix A.

In what follows, we shall assume that> 2, and fixc = max {max,cx ||@(z)||,, , maxzex [|S{2)]| o }-
For everyi = (u1, ..., n) € R, the symbolu, is used to denotenin;—; __,, 1.

We start by defining the following mapon the setLadm,, x Ladm,,.

Definition 2.1. We define the applicatio# : Ladm,, x Ladm, — R such that

/
d((ﬁ,ﬁ),([i’,ﬁ’)):max{max P _ s 1717'”00}.
Proposition 2.2. d is a distance oL.adm,,.

=l |y
Proof. See Appendix A. O

Hi
Before going on, let us analyze how open balls induced.aim,, by d look like. Forr > 0, the usual
notationB, (p) denotes the open ball centered at the ppiwith radiusr.
First of all, observe that we can identify the detdm,, with the space produad/,, x N,,, beingM,, =
{geR: >0 =1 withy, >0,i=1,...n}andN, = {¥ € R" : > v, = 0}. From the

)

We can prove the following proposition.
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definition of d, we can induce two different distances bf), and N,,, sayd;; anddy respectively. More

precisely,ds takes each palifii, ji') € M,, x M, to max;—; ‘Z . The distancely is simply the

Lo, distance, i.e. the one taking each pairi’) € N,, x N to v — V'Iloo As a consequence, an open
ball of Ladm,, induced byd, say B, (({, V)), can be identified as the produBt (ii) x B,.(¥), with B,.({)
an open ball of\/,, induced byd,/, andBT(ﬁ) an open ball ofV,, induced byd .

The next result arises from the observation that, at least in a widetsefbSedm.,, the functionsp; )
andg( » do not depend on all the componentsgandc, respectively. Indeed, given two indexeg €
{1,...,n}, withz # 7, it is quite easy to choose a linear admissible paitv) € Ladm,, such thatp;(x) —

Lz g O andyp;(r) — py > 0 for everyz € X, thus implying thatp ; ;) = ji. - max;4; “’1#_”1 The simplest
example is whem = 2: In such a case, the elementslafdm, are given by(ji, v) = ((a,1 — a), (b, —b)),

with 0 < a < 1 andb € R. Itis easy to check that, whenevier> ¢ (respectivelyp < —c) it holds that

Q(5) (L) = - “’2(‘” *b (resp.o(zm) () = fix - %) for everyz € X. Similar arguments hold fay; ;).

As a consequence we can erte

£ d (Bers Bs), 1f b < —c;
2.1 o — q ~ Omatch\Ppr; P ), 1T 0=
( ) M 7) (B% Bg) { 1#* . dmatch(ﬁkpzﬁ ﬂQ), if b > c,

—a

the equality in (2.1) coming from the properties of the matching distapge., (see also [15, Prop 2.3]).
Based on the previous reasonings, the next result states how andwehean reduce the computation of
d(z. (B2 Bz) to a(n — 1)-dimensional situation. Sdtadm,; = {(ji,7) € Ladm,, : |||, > (n —1)c}.
Moreover, for every index € {1,...,n}, we denote by3: (respectivelyci) the R*~!-valued function
obtained fromg (resp.<’) by removing itsi-th component. Similarly, the symbgk (resp.7:) will be used
for the vector ofR"~! obtained fromyi (resp.7) by removing itsi-th component.

Theorem 2.3. Assume thatji, 7) € Ladm;". Then anindex € {1,...,n} exists such that

(2.2) dii) (B, B) = —— - ) (Baw, Ber)

MING£7 Mg
with (77, &) € Ladm,,—1 given byij = it /(1 — ;) andd = v7 + 17 - 14
Proof. See Appendix A. O

We will show later how Theorem 2.3 can be used to sensibly decreasertipaitadional costs in approx-
imating D,,,qtch -

We proceed introducing a result which gives insights on how to boundahation ofdj; ;) (@p,ﬁg)
when moving from one leaf to another Imudm,, \ Ladm;\.

Theorem 2.4. Let (i, ) € Ladm,, \ Ladm;” and (@', 7') € Ladm,, withd ((@,7) , (@', 7)) < . Then
|di0) (B, Bc) — dininy (Bg, Bc)| < 26(ne +1).

Proof. See Appendix A. O
Remark2.5. We observe thal ; ) (8, 5;) < 2c for every(ji, V) € Ladm,, (thisis a trivial consequence of
Theorem 1.8); thus we ha\\/é ) (Bes Bs) — diar 7y (Bys Be)| < 2c. Now, if § > L then2e < 26 (nc + 1).

Consequently, the inequality clalmed by Theorem 2.4 is trivial whgn%.

3. ALGORITHM

In this section we show how the results proved in Theorem 2.3 and Thedreiran be exploited to
develop an algorithm for approximating the multidimensional matching distBngg.;, (65, B;). We start
by laying the general philosophy. Next we follow up by describing theildetéthe algorithm, first for the
casen = 2 and then for any dimension greater than 2.

General approach. Definition 1.11 implies that, in general, a direct computatiorDgf,;.» (55, 6;) is
not possible, since we should calculate the valyg; (@5, B;) for an infinite number of pairéii, 7). On
the other hand, if we choose a non-empty and finite sudseC Ladm,,, and substituteup ; e r.adm.,

with max; e, in Definition 1.11, we get a computable pseudo-distance I5ay;.n, (ﬁw, Bg) that can
be effectively used in concrete applications.
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Thinking of Dyaten (B3, B7) as an approximation ab,,q.cn (83, B), we can argue that the larger the
setA, C Ladm,, the smaller the difference between the two values. On the other hand, therdhma
set A, the faster the computation @1,,,,:.n (@5, 5;). In this perspective, our goal is to find a s&f that
is a compromise between these two situations. Additionally, given an arbigakyalue= > 0 as an error
threshold, we want4,, depending ore in a way that the outpuD,,,q;ch (ﬂ@ﬂ;) satisfies the inequality
| Dinaten (B B2) — Pmater (Bz, Be)| < e. This is actually what our algorithm is developed for, taking as
input the error threshold and giving as outpub,,,;ch, (B , Be )

The 2-dimensional caseWe start by providing a detalled treatment of the case 2, since our approach
for higher dimensions is based on a reduction to the 2-dimensional situatom grevious version of the
algorithm in the case = 2, the reader is referred to [1].

Let us fix a threshold errar. By rescaling opportunely both and¢’ (and consequently), we can assume
without loss of generality that= 1. Before going on, for every > 0 we introduce the concept é6fgrid on
L C Ladmg, i.e. a collection of point§p = (fi, 7) € Ladms} such thai(i) Bs(p) N Bs(p") = 0 for every
p,p' € G,p#p and(ii) L C UpegBs(p), with Bs(p) the closure of3s(p). We say that a@-grid is finite if
it consists in a finite collection of points.

We need to fixJ. Remark 2.5 allows us to takesmaller thanj. Let us sety = ;. We shall motivate
our choice in a while. We also define a fin&egrid G on Ladms \ Ladmy, see Figure 2. To display the
grid, we use the fact thatadms can be identified with the product spadé, x N, with My = {i =
(a,1 —a),0 < a < 1} andNy = {7 = (b,-b), v € R}. Therefore we can represehtidms as the
subset of the real plane given Byx R, I the open intervala € R : 0 < a < 1}. In this perspective,
Ladms \ Ladmj = {(ji,7) : ||[¥]lec < 1} is displayed ad x {b € R : |b| < 1}. We shall describe later
how to obtaing in quite a simple way.

We recall that our goal is to compute the largest valuedfgr; (83, 57) on a suitable finite subset of
Ladms. Equality (2.1) allows us to sensibly reduce the computatioaiy,g)ﬁ) Bz, Bz) on Ladm3 . Indeed,
itimplies thatd(; 7 (8g, 82) < dmatcn(Bepy» Bey) if 7 = (b, —b) is such thab < —c, while d(; (83, Bs) <
dmateh(ﬁw,ﬂQ) |f b > c. Moreover, in the first case the valdg,.icn (5., b, ) is achleved wheni =
(a,1 — a) is such thats < % while in the second case the vallgatch (5y,, B, ) is achieved when > %
Thus, it is sufficient to consider the maximum betwegn,:cx,(5y, , Sc;) anddpmatch (B, Be,) N Order to
know the valuemax; ..+ d(z,7 (P Oz). We denote such a maximum 8.

COMPUTEDEXT(X, @ = (¢1,%2),5= (s1,52))
for i=1to2

computes,, ; computes,,; computed,,ascn (By; s B;);
endf or

Dyt = max{dmatch (/8901 > Bq) match (Btpg ) Bcg)}
return Dey.

Theorem 2.4 allows us to control the variationdpf (83, 8¢) in each sefLadms \ Ladm3) N Bs(p;),
and hence inLadms \ Ladmy . For everyp = (ji,7) € G, we compute the valué ; 5 (8, B), setting
Dint = maXpeg d (&,7) (Bipa Bg)

COMPUTEDINT(X, & = (¢1,¢2),$= (1,%2),9)
Dint =0;
f oreach p—(ﬁ,_') ing
compute,, . . ; computes; . . ; computed ; ) (B3, Be);
endf or
Dint = maxpeg d(z.5) (Bz, Be);
return D;,.

The numbeD;,; = max{Dey:, Dint } iS then a first approximation db,,q¢ch (54, Bz). The next function
ComPUTEDTOT shows how to refine the valu@;,; to obtain an approximation b, ;. (5, 5z) up to the
error threshold. First we briefly describe it.

If the inequality2¢ - (2¢ + 1) < ¢ holds, by Definition 1.11 and by applying Theorem 2.4 it follows that
| Dinaten(Bgs Be) — Diot| < €. Therefore ©MPUTEDTOT ends, giving as outp®,,,4ick (8, Bz) = Diot-
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Otherwise, @MPUTEDTOT deletes each point € G such thatDyo; — d(;;. (85, 8:) > 20 - (2¢ +
1). Indeed, Theorem 2.4 ensures tf3t, will not be achieved (or exceeded) by computing the values
d (.5 (Bg, B) over the set$3s(p). Moreover, the grid; is refined as follows: Eacpstill in G is replaced by
four suitable pointg;, ..., ps, suchthafp;,j =1,...,4} is ag-grid onB;(p). This refinement procedure,
which will be described later, is performed by the functioeARNE recalled in @MPUTEDTOT. Finally,
D;n: and Dy, are updated according to the new géidé is replaced by2, and the algorithm restarts by
checking if the inequalits - (2¢ + 1) < ¢ holds.

COMPUTEDTOT(3, G, Dext, Dint)
tresh = 20(2¢ + 1); Diot = max{Dext, Dint };
whi |l e tresh > ¢
foreach p=(g,7) in G
G+ G\p
if Dtot — d(ﬁj,gj)(ﬂ@ B;) < tresh
G + G UREFINE(p, d);
endi f
endf or
Dint = COMPUTEDINT (X, & = (01, 92),$ = (61,%2),9);
Diot = max{Deyt, Dint}; § g; tresh < 26(2c + 1);
endwhi | e
return Dyy.

To conclude, we describe how to construcﬁagrid on Ladms \ Ladm;, with 4 > 0 integer number.

Besides using it to construct tljegrid G required at the beginning of our algorithm (and thus justifying our
initial choice ford), such a procedure is preparatory to explain how functiarRe works.

Whenh = 0, we can simply take the poimk = (fio, %), With ip = (3, 3) andijy = (0,0). The set
{po} is actually al-grid on Ladms \ Ladmj . Indeed, setting3;(po) = Bi(jio) x Bi(i%), we have that
Ladms \ Ladm3 = B1(po).

Whenh > 0, our 5;-grid consists in a collection of* points, say{p;; = (fi;, 7)) : i,j = 1,...,2"},
with fi; = (a;, 1 — a;) and; = (bj, —b;). From the definition ofl we can deduce the following relations to
determine the points;;:

1ai — 2@'2;1 i=1.... . 92h-1 o oh 1 ,

I —a Dy L ’ II) bj=2—2—" j=1,... 2"

( ) lgiai _ 2h+12_h21_;'_17 i = 2h71 + 1’ N .72h7 ( ) J R y J ) )

We observe that; < 3 for everyi = 1,...,2""! whilea; > § wheni = 2"=1 +1,... 2" Some

examples of;T-grid obtained by using equatioiis) and(/1) are displayed in Figure 2.

e b b4 — :
: 1 3 Yl e | |le e
: w2l o | e - ; ] |
: j j 174 - ---|o el e
V) a 173 2/3 a 5 |37 |47 45 |2
1 ! : 14| @ - |0 O
Al o | @ - : L :
| ‘ il e-|lelel e
-1 ‘ ‘ ‘ ‘

FIGURE 2. ﬁ-grids onLadmg \ Ladmj for h = 0 (left), h = 1 (center), andy = 2 (right).

Equations(I) and (/1) also lay the basis to build the functionERNE recalled in @MPUTEDTOT.
Suppose that = (fi, ) € Ladms is a point of a2ih-grid, with i = (a,1 — a) andv = (b, —b). If recalled,

=2

function REFINE replaces with a#-grid OfBih(p), i.e. four pointsp;j = (i@, 7;) for i, j = 1,2, with
2
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fi; = (aj, 1 — a;), v; = (b, —b;) and such that
L= o O ifa< L
1—

1
; .

1 —1)* H 1
= +h7+)1 Ifa>§,

oo~

(3.1)

@Q

NN

a

SN

Observe that, by applying functioneRINE to each poinp of a 5 L -grid of Ladms \ Ladm2 , we have a
2h+1 -grid of Ladms \ Ladmy . Indeed, by replacing with h + 1 we could obtain the solutions of (3.1)

directly from () and(Z7). On the other hand, equations (3.1) allow us to replacepjustthout computing
other useless points.

The n-dimensional case.We now generalize our algorithm to thkedimensional setting, withh > 2.
Such an extension is partially based on a reduction t@tlienensional situation.

Similarly to the case = 2, we aim at computing the largest value &y, 7 (33, 3c) over a suitable finite
subset ofLadm,,. We fix a threshold errar. By opportunely rescaling botj and<’ (and consequently),
we can assume without loss of generality that 1, so thatLadm, = {(ji,7) € Ladmy, : ||7|cc > n—1}.

In Ladm.”, Theorem 2.3 allows us to reduce the computatlod @) (B3, Bc) to a(n — 1)-dimensional
situation. Indeed it implies that, for eve(yi, ) € Ladm,!, there existy7j,d) € Ladm,_; such that
(i) (Bg: Be) < de) (Bge, Ber) for asuitable index e {1,....n}. On the other hand, it is possible to
prove that, for every € {1 .,n} and every(i],d) € Ladm,,_1, there always exist§ii, 7) € Ladm,’
such thatl(; 7 (8g, 8z) = d(7.) (@p , B). As a consequence, the computationlgf 7 (5, 5z) over the
setLadm;r can be reduced to the one of the— 1)-dimensional matching distancés,, ;.. (ﬁﬁi, Ba'), for
1=1,...,n.

Obviously, we can recursively repeat the same reasonings to psogiggecrease the dimensionality of
the problem. It turns out that computing the largest valueifgr;) (33, 57) on Ladm,} can be reduced to
the 2-dimensional case, by considering tfig 2-dimensional matching distancés,q., (83, 8z, ), with
Gij = (i, ) andg; = (g, ;) for everyi # j.

Similarly to what happens in the 2-dimensional case, Theorem 2.4 allows ostimicthe variation of
(1.7 (Bg: B) on the setLadm,, \ Ladm. After fixing 6 = 5, with m = min{m € N : 2™ > n}
(see Remark 2.5), we can definé-grid G on Ladm,, \ Ladm, by extending equationd) and(I) to the
n-dimensional situation (actually, relatiof&l ) should be additionally adapted to deal with the open interval
(—n +1,n — 1) instead of(—1, 1)).

It turns out that for the:-dimensional case we only need to use functiomsw€UTEDEXT, COMPUTE-
DINT and GmpPUTEDTOT without any modification. Concerning functioreRNE, it can be generalized to
then-dimensional situation starting from (3.1) to replace, when necessagjearent ol with 2" points.

3.1. Computational costs. Let us fix a threshold errar > 0 and observe that, for every > 2, we can
write € = ney, for a suitable real value,. Whenn = 2, approximatingD, ..., (8, 5z) needs the compu-
tation of thel-dimensional PBNS,,,, 5, for i = 1,2, B, . ., and the associatettdimensional matching
distanced,,atch By, Bs;) andd ;) (Bg, Bz), for each(ji, 7) € G along with all its refinements. The run-
ning time for computing a 1-dimensional PBNs is cubic in the size of input data (eugber of simplices,
nodes of a graph or voxels of a 3D image) in the worst case [24]. Congptiten1-dimensional matching
distance between two 1-dimensional PBNs taikeg”°), beingg the total number of cornerpoints of the
two descriptors [4]. It turns out that the overall computational coseddg on the previous complexities,
multiplied by the number of points i@ along with all its refinements. The worst case cardinality for such
a set is when there is no points cancellation. If so, atiiheiteration of the algorithm the cardinality ¢f
corresponds to cover x (—c, ¢) with open balls (w.r.t. the distaned of radiuss = 1/2", i.e. O(4"). In
particular, since the algorithm ends as sooB8®&&c + 1) < ¢, at the last iteration we obtaifi(1/¢%). This
implies that the worst case complexity is at most proportiona)/t3. Additionally, we can estimate that the
number of iterations of the algorithmlisg, 251

Whenn > 2, we apply (;) times the 2-dimensional framework to obtain the maximum value for

7.7 (B3 Bz) on Ladmf, thus giving a computational cost proportional(to/c)*> = 1/¢2. Moreover,

We also need to computg;; (B3, Bc) for each(ji, v) € G along with all its refinements. Following similar
considerations to thz-dimensional situation, we get a running time that is proportionatfe)™ = (1/¢,,)"
in the worst case.
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4. DISCUSSIONS

As can be seen, the total running time of our algorithm is exponentialrrthe worst case. On the other
hand, it is worth noting that a number of strategies can be used to keeptdewamputational costs.
e From the Matching Stability Theorem 1.8 and from the definitiop@f;) ands; ) (cf. Theorem 1.10),

we have thatl; » (8, 8z) < maxzex [|F(z) — (#)] o and henced ;. » (Bg: B) — di i) (Ba Be)| <
maxgcx [|F(x) =)o, forevery(ii, v), (i', V') € Ladm,,. Itfollows that, ifmax,cx ||F(x) — () ||co <
g, we incur in the worst case. Whenever this happens, we simply preveohtour algorithm, setting
Donaten (B ) = maxeex [|3(x) — (@) oo-

e Instead of fixing a threshold errer we could decide to fix the number ¢f, /) € Ladm,, \ Ladn;; we
are disposed to consider during the computatio®gf,;.» (B@ ,85). We recall that, even considering just
one of these points, we would have a pseudo-distance betsyeand 5= that can be effectively evaluated.
Further, even working with a small number of pointdiadm,, \ Ladn; gave encouraging results in shape
comparison applications [2, 3]. Nevertheless, the theoretical resultrlyimg) our algorithm provide a
systematic procedure to select the poiptsy), differently from what happened in previous works.

e Our computational approach perfectly fits in the general structuterasfch and bound algorithms
Branch and bound is a general algorithm for finding optimal solutions wbws optimization problems,
especially in discrete and combinatorial optimization, see [31] for details. mAbeu of techniques are
available in literature, such as tbepth-first searcf20] or thebest-first searcl33], improving the efficiency
of branch and bound algorithms in exploring the set of candidate solutionsar case, applying one of these
strategies, or a combination of them, would contribute in containing the compuatiatiosts.

Let us conclude by observing that a previous version of the algorittsbéean tested in [1], to compare
2-dimensional Oth PBNs associated to 3D objects represented by sorfatsds. Experiments show that,
in practical cases, the algorithm is able to decimate the number of half-pkeqésad to reach the desired
approximation for the 2-dimensional matching distance. In particular, in theidered cases the algorithm
cuts away from 55% to 96% of the total number of half-planes that shoutdisderd without the cancel-
lation strategy. These results make us confident for future applicatiathe efdimensional framework in
shape comparison.

5. CONCLUSIONS

In this paper we present a novel theoretical and computational frarkgwget approximations of the
matching distance between multidimensional PBNs. More precisely, startimgth® so-called foliation
method, we obtain new results to bound the matching distance associated to#iseolea foliation defined
on the domain ofi-dimensional PBNs. These results follow the ones obtained in [1] for tien2nsional
setting of Oth PBNs. Such an extension has been possible via the introdoctiguitable distance on the
space of parameters identifying the leaves of the foliation. Moreover,raxgde an algorithm to obtain
approximations of the-dimensional matching distance up to an arbitrary error threshold, repiregéhe
maximum error we are disposed to accept in the computation. We also investgatepossible directions
to keep down the computational costs. Previous examples developed ar f{higf2-dimensional matching
distance show how such a framework could be used in Computer Vision, @em@raphics and Pattern
Recognition, to compare properties of shapes that can be modeled byvacted continuous functions.
This is actually what we are planning to do, in order to test the feasibility of thpegsed framework even
in higher dimensions.
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A. APPENDIX
This appendix is devoted to formally prove the results presented in Section 2.

Proof of Proposition 2.2 We will show thatd has actually all the properties of a distance.
(): d > 0 by definition;
(ii): Letus prove thatl ((iZ,7), (@', 7)) =0 < (i, 7)
d((#, “) (@', 7)) = 0. Conversely, suppose that(

V), (i',7)) = 0. Thenv = /. Moreover,
’;*, = “* for every: = 1,...,n, and hencéL “—/ k for every: = 1,...,n. By contradiction,

suppose that # 1. SlnceuZ = ki, for everyz = 1 ,n, and given thad_"" | 1, = 1 we would
have " | u; = > i ku, = k # 1, against the deflnltion of.adm,,. Thereforek = 1, implying
thati = f';

(ii): Symmetry is again by definition;

(iv): Let us prove the triangle inequality. For evépy, ) , (i, V), (i”,7") € Ladm,, it holds that

(i@, 7). Obviously, if (ji, 7) = (ﬁ’ ) then

7:1

/
— = =/ = o & _ & = _ —f
A7), (7)) = o { s [ = 2. 77|
/
= max{max He _ Hs e +M%‘, &,‘ , ﬁ—ﬂ”’—rﬂw—ﬁ/Hm}
:1,...,71 /‘I’Z lu’z /‘I"L /‘1’7,
" " /
< macf o 22 54 |12 - ) )
=L...,n| g W; i=1,...,n H; H;
" " /
< max { o |5 2l 179} s { o |15 - )
i=1,..,n | Ui H; =1,...,n oy H;
:d((ﬁ’ﬁ)j(ﬁ//7ﬁ//))_i_d((—»/l —»//) (ﬁ/7ﬁ/))-
(]
Proof of Theorem 2.3If [|7]| , > (n — 1)cit follows that anindex € {1,...,n} exists, such thap; 7 =
s - MaXjg F20 ANAG 7 7) = fla - MAX 47 7. Indeed, let us suppose tHb:tH =1v; > (n—1)c. Then

doigVi = —z/, g —(n— 1) implying that an indey # 7 exists, such that; < —c. Thereforep;(z) —v; >
0 for everyz € X (respectively;(x) — v; > 0 for everyz € X) while gp,( ) — vy < 0foreveryxr € X
(resp.g;(z) —v; < 0 foreveryz € X), S0 thatp(; ) = pix - max;z; 25 (€SP.S(g,5) = fx - MAX;47 %)
In a similar way it is possible to show that,|if/|| = —v; > (n — 1)c l.e.v; < —(n — 1)c, then an index
7 # jexists, such thap; ) = p« - max; 4 “"MJ (resp.s(gz,p) = Hs - Max;x; ,-VZ)'

By virtue of the previous reasonings, letus fix anindex{1, ..., n} suchthaty; ) = p.-max;4 BiVi
andq(z ) = s - MaX;; 9 Yi - Without loss of generality, we can assume- n, so thaty; ;) = ,u* .
T M ywi = v+ v, foreveryi=1,...,n—

1. SinceX " 'n; = 1and Y 'w; = 0, it follows that (11, .., 7-1), (W1, ... Wn1)) = (n, @) €
Ladm,,—1. Moreover,

Vz

max;£y, % andgz, g) = u* max,?gn % Now setr); =

. Yi —V;
P(as) = p M
oy £
T (L= )i
s Yi — Wi Hx

= - max + -V,

1—pp i#En L—pn
= ,LL* Emaxspl—wl_i_ 'LL* 'Vn

1—pn ms i#n Ui 1 — pn

Hx i — Wi o Lo n Lo

:7n*max + ) :‘7.80444_ 'V,

ming 2, fi; i#n o n L= " minggnp 9 T g, "
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with Plrz) = M+ - MAXizty % Analogously, settinggm) = maX;y, C;W it is possible to show that
— M n P
D im0 T T,

Therefore we can write

(A1) diz.5) Bz, Be) = e ~diiz (Bgn, Ben) s

MING£p Mg

with the equality in (A.1) coming from the properties of the matching distafhigg.; (see also [15,
Prop 2.3]). Analogous considerations hold even assumiAg. O

Proof of Theorem 2.4.
’d(ﬁ,ﬁ) (5@') 55) - d(ﬁ’,ﬂ’) (ﬁ@" ﬁf)} = ‘dmatch (ﬁw(ﬁ,ﬁ) ) 5((@;)) - dmatch (BSO(EI’D'I) ) BC(ﬁ/,;/)) ‘
< dmatch (ﬁ@(ﬁyg) ) /Bcp(ﬁ/ﬂj/)) + dmatch (/B§(ﬁ,g) y ﬁq(ﬁ’,ﬁ’))

< max |0z (@) = ) (2)] + max s (@) = o ()]
(A2) < max max |“2 . (pie) - m) — 2= - (i) — D) +
T ozeX i=l..n | Uy ,u,; ¢
(A.3) + max max |2 (Gi(x) — 1) — e (si(x) — V)
reX i=1,...,n | lU; ,U,; v

with the first inequality coming from a trivial extension of the triangular indit(p#o the case of four
elements, the second one from the Matching Stability Theorem 1.8 and the tigirfifaon the inequality

| maxj—1__nu; —max;—1,pnv;| < max—1,__n|u; —v;|, foreveryuy, ..., u,,v1,...,v, € R. Moreover,
foreveryi = 1,...,n we have
/ /
(A4) | (pi(z) —vi) = = - (wilz) = )| = |— - (pi(z) —v5) = — - (i) — i) +
i i i M
/ /
M* /’L*
+ u (pi(z) —vi) — o (pi(x) — 1))
/
< |2 o) = ) = 5 (i) - )| +
Hi My
14 14
+ =5 (i) —vi) = =5 - (wilz) — ;)
M i
/ /
Hox Mo Hox /
< i) =il = 2 2] < 1),
' R VTV T s =]

with the last inequality following from the following ones:

P 145
max || F(x <e, |Pec <(n—1)c, |=—-221<6, 2E<1, |- <6
eGS0 [l < (=D |52 =B < Bcn -7 <
Similarly, we can prove that, for eveiy=1, ..., n,
(A5) B (qla) - v3) — 25 (qla) — )| < Bne+ 1)
. o G\ v; lu/' G\ v; ~ nc 5
K3

and hence, substituting (A.2) and (A.3) respectively by (A.4) and (A&have that
|0 (B Be) — dir ) (B, Be) | < 26(ne +1).
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