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Abstract

It is known that the identifiability of the structural parameters of the class
of Linear(ized) Rational Expectations (LRE) models currently used in mone-
tary policy and business cycle analysis may change dramatically across differ-
ent regions of the theoretically admissible parameter space. This paper derives
novel necessary and sufficient conditions for local identifiability which hold
irrespective of whether the LRE model as a determinate (unique stable) re-
duced form solution or indeterminate (multiple stable) reduced form solutions.
These conditions can be interpreted as prerequisite for the likelihood-based
(classical or Bayesian) empirical investigation of determinacy/indeterminacy
in stationary LRE models and are particular useful for the joint estimation
of the Euler equations comprising the LRE model by ‘limited-information’
methods because checking their validity does not require the knowledge of the
full set of reduced form solutions.

1 Introduction

As is known, Linear Rational Expectations (LRE) models may have a unique sta-
ble solution (determinacy), multiple stable solutions (indeterminacy), or multiple
explosive solutions (commonly referred to as ‘rational’ bubbles). While there ex-
ists a large literature on testing rational bubbles,1 the investigation of determi-
nacy/indeterminacy in LRE models with stable (asymptotically stationary) reduced
form solutions has only recently received attention in the econometric literature be-
cause of its connection with the analysis of the ‘U.S. Great Moderation’, see e.g.
Lubik and Schorfheide (2004) and Benati and Surico (2009) and references therein.

1See, among many others, Flood and Garber (1980), Hamilton and Whiteman (1985), West
(1987), Evans (1991) and Imrohoroğlu (1993).
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A related crucial issue is whether the structural parameters of a LRE model can
be estimated consistently from the data, i.e. their identifiability. Since Pesaran
(1981, 1987), the tight connection between solution properties and identification is-
sues in LRE models is a well documented fact. In particular, it is known that the
identifiability of the structural parameters may change quite dramatically across
different regions of the parameter space. Notably, this phenomenon is independent
on the occurrence of the arbitrary auxiliary parameters that appear under indeter-
minacy and index solution multiplicity (Whiteman, 1983; Pesaran, 1987; Broze and
Szafarz, 1991).
It is usually argued that one of the advantages of estimating LRE models by

‘limited-information’ techniques (instrumental variables, generalized method of mo-
ments), is that these methods are robust to determinacy/indeterminacy (Wickens,
1982). Actually, such a strategy is prone to incorrect inference if one disregards
solution properties and their identifiability (Pesaran, 1987). Unfortunately, in the
recent literature on local identification in (linearized) dynamic stochastic general
equilibrium models, the common practice is to focus on the identifiability of the
system under determinacy and the fact that in many cases the space of theoretically
admissible values of the structural parameters contains also points that lead to inde-
terminacy is ignored in practice, see e.g. Canova and Sala (2009) and Iskerev (2010a,
2010b).2 Thus one runs the risk of dealing with ‘partially identified’ (Phillips, 1989)
LRE models.
This paper derives necessary and sufficient conditions for the local identifiabil-

ity (Rothemberg, 1971) of the structural parameters of a class of multivariate LRE
models typically used in monetary policy and business cycle analysis, which hold
irrespective of whether the system has a determinate or indeterminate reduced form
representation. These ‘robust’ identifying conditions, which are new in the litera-
ture, can be interpreted as prerequisite for testing determinacy vs indeterminacy in
stable LRE models and, more generally, for the joint estimation of the structural
parameters by ‘full-’ (maximum likelihood) as well as ‘limited-information’ (gener-
alized method of moments) methods. However, they are particular useful when one
estimates the Euler equations of the system jointly by ‘limited-information’ methods
because all that is needed to apply these conditions is solving a quadratic matrix
equation.
It is worth stressing that the robust conditions for local identification derived

in this paper reflect the understanding of identifiability of an econometric model
as a population, not a finite sample issue, see e.g. Rothemberg (1971) and Hsiao
(1983). This means that the necessary and sufficient conditions can be checked
prior to confront the LRE model with the data. This concept of identification is
also referred to as ‘mathematical’ identification, Johansen (2010, p. 262).
To obtain our necessary and sufficient conditions for identification, we derive

the full set of stable finite order reduced form solutions associated with the class of

2Cochrane (2007) is a remarkable exception. Cochrane’s (2007) analysis, however, is mainly
focused on showing that in New Keynesian models the parameters of the Taylor rule relating interest
rates to inflation and other variables are not identified at all without unrealistic assumptions.
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multivariate LRE models of interest. Special cases such as ‘purely forward-looking’
LRE models and Minimum State Variable (MSV) (McCallum, 1983) reduced form
solutions are discussed. Albeit there are many solution methods available in the
literature and some of them explicitly account for the time series representation
of equilibria under indeterminacy (e.g. Binder and Pesaran, 1995, Broze et al.
1995, and Lubik and Schorfheide, 2003), none of them provides a reduced form
characterization of multiplicity similar to ours. Several examples drawn from the
recent literature on macroeconomic dynamic modelling are discussed.
The paper is organized as follows. Section 2 introduces the problem by present-

ing some examples of stable LRE model which are identifiable under one regime
(determinacy) but not in the other (indeterminacy). Section 3 summarizes the as-
sumptions upon which the results of the paper are based and derives the reduced
form solutions associated with the class of LRE models under study. Section 4 re-
ports the main result on identification and Section 5 shows how the robust necessary
and sufficient conditions for identification can be applied in practice. All profs are
contained in the Appendix.
Throughout the paper we use the following notation and conventions. Mp,p ⊆

Rp×p is the space of all p× p real matrices. Given M ∈Mp,p,
sr[M ] := {λ, λ ∈ C is an eigenvalue of M} denotes the spectrum of M , r[M ] :=
max {|λ| , λ ∈ sr(M)} its spectral radius and rmin[M ] := min {|λ| , λ ∈ sr(M)} its
lowest eigenvalue in absolute value. A stable matrix is defined as a matrixM ∈Mp,p

such that r[M ] < 1. The rank of M is denoted by rank(M). If the elements of the
matrix M ∈Mp,p depend nonlinearly on the elements of the vector v ∈ Rr, r ≤ p2,
we write M := M(v). Given the set C and the vector v, card(C) denotes the
cardinality of C and dim(v) the dimension of v. ‘vec’ is the usual column-stacking
operator, ‘⊗’ is the Kronecker product, diag(M) collects the diagonal elements ofM
in the a p× 1 vector and the symbol ‘≺’ denotes vector inequality. L is the lag/lead
operator, LhXt := Xt−h.

2 Problem

Let Xt be a n-dimensional vector of observable time series and consider the multi-
variate Linear Rational Expectations (LRE) model

Γ0Xt = ΓfEtXt+1 + ΓbXt−1 + ωt (1)

ωt = Rωt−1 + ut , ut ∼WN(0,Σu) (2)

where Γ0, Γf and Γb are n×n matrices containing the structural parameters, Et· :=
E(· | Ft) is the conditional expectations operator, Ft is a nondecreasing information
set containing the sigma-field σ(Xt, Xt−1, ..., X1), ωt is the n×1 vector of structural
disturbances which is assumed to obey a vector autoregressive (VAR) process of
order one, R is a n× n stable matrix and ut is a n-dimensional white noise process
with positive definite covariance matrix Σu. The unrestricted parameters in the
matrices Γ0, Γf , Γb and R are collected in the m × 1 vector θ whose ‘true’ value
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is θ0 and lies in the ‘theoretically admissible’ parameter space P ⊂ Rm. Further
lags and/or leads of Xt can be included in the system by considering a ‘canonical’
(state-space) representation of the model, see Eq. (12) below.
The structural form (1)-(2), or system of Euler equations, covers a class of (lin-

earized) models currently used in monetary policy and business cycle analysis, known
as small-scale dynamic stochastic general equilibrium models.
Before proceeding we distinguish, inspired by Broze and Szafarz (1991), the

concept of solution of a LRE model from that of reduced form solution and then
define the identifiability of θ in ‘broad’ sense.

Definition 1 [Solutions] A solution to the LRE model (1)-(2) is any stochastic
process {X∗

t }
∞
t=1 such that E(X

∗
t+1 | Ft) exists and, for conventionally fixed

initial conditions, if Xt := X∗
t is substituted into the structural equations, the

model is verified for each t.

Definition 2 [Reduced form solution] Given the set of all solutions of the LRE
model (1)-(2) consistent with Definition 1, a linear reduced form solution is an
exhaustive time series representation of the solution set obtained by express-
ing, provided it is possible, any Xt := X∗

t in terms of lags of Xt, lags (and
leads) of ut and, possibly, other arbitrary ‘external’ (to the model) stochastic
disturbances independent on ut.

Definition 3 [Identifiability in ‘broad’ sense] The vector of structural para-
meters θ is identifiable in ‘broad’ sense if all of its elements can be estimated
consistently from the observations X1, ...,XT generated from a reduced form
solution of the LRE model.

The definition of identifiability of θ will be specialized technically in the Defini-
tion 3’ of Section 4.
The two examples that follow present LRE models in which θ is identifiable in

the sense of Definition 3 under indeterminacy but not under determinacy.

Example 1 [Scalar LRE model] Consider the LRE model

Xt = γfEtXt+1 + γbXt−1 + ωt (3)

where Xt is a scalar (n := 1), ωt is a scalar white noise process with variance
1, and where the parameters γf and γb belong to the space
P :=

©
γf , γb, 0<γf<1, 0<γb<1

ª
⊂ R2. Using the notation of system (1)-(2),

Γ0 := 1, Γf =: γf , Γb := γb, R := 0 and θ := (γf , γb)
0. If γf + γb < 1, the

reduced form solution of the LRE model (3) takes the form

[1− φ1(θ)L]Xt =
ωt

1− γfφ1(θ)
(4)

where φ1(θ) is a real stable (-1<φ1(θ)<1) root of the quadratic polynomial

γfφ
2 − φ+ γb = 0. (5)
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If γf+γb > 1 and 1/2 < γf < 1,
3 the reduced form solutions can be represented

as
[1− φ2(θ)L][1− φ1(θ)L]Xt =

1

1− φ1(θ)γf
[κ− φ2(θ)L]ωt + st (6)

where φ1(θ) and φ2(θ) are two stable real roots of the polynomial (5) that
satisfy

φ1(θ) + φ2(θ) = γ−1f , φ1(θ)φ2(θ) = γ−1f γb,

κ ∈ R is and arbitrary auxiliary parameter unrelated to θ, and st is a mar-
tingale difference sequence (MDS) with respect to It (E(st+1 | It) = 0) in-
dependent on ωt, usually referred to as ‘sunspot shock’, see e.g. Evans and
Honkapohja (1986) and Pesaran (1987). It can be noticed that while θ, other
than the auxiliary parameter κ, is identifiable in the sense of Definition 3 (it
can potentially be recovered from the estimation of Eq. (6)), the parameter
γb (other than κ) is not identifiable from Eq. (4).

Example 2 [Unidentifiability under determinacy] Consider the following two-
equation (n := 2) LRE model taken from Lubik and Surico (2010, Section 2.2)
and here reported with a slight change of notation:

zt = αEtzt+1 + βEtyt+1 + ωz,t (7)

yt = ψzt + ωy,t (8)

where ωt := (ωz,t, ωy,t)
0 is a white noise process with covariance matrix Σω :=

dg(σ2z, σ
2
y), θ := (α, β, ψ)

0, Xt := (zt, yt)
0 and

Γ0 :=

∙
1 0
−ψ 1

¸
, Γf :=

∙
α β
0 0

¸
, Γb := 02×2 =: R.

It is further assumed that the admissible parameter space is given by P :=n
θ, 0<α<1, 0<β<1, ψ ∈ R+\

n
1−α
β

oo
⊂ R3.4 If 0 < ψ < 1−α

β
, the reduced

form solution is determinate and can be represented as

Xt :=

∙
1 0
ψ 1

¸
ωt; (9)

if ψ > 1−α
β
, the reduced form solution is indeterminate and can be represented

as the VARMA(1,1)-type process

Xt :=

∙ 1
α+βψ

0
1

α+βψ
0

¸
Xt−1+

∙
κ 0
ψκ 1

¸
ωt−

"
1

α+βψ
0

ψ
α+βψ

0

#
ωt−1+

∙
0 1
ψ ψ

¸µ
0
1
ψ
st

¶
(10)

3The case γf + γb = 1 implies a unit root in Eq. (5) and is potentially consistent with both
determinacy and indeterminacy, depending on whether γf < 1/2 or γf ≮ 1/2 .We rule out these
situations from the analysis, see Assumption 1 below.

4We deliberately exclude the point ψ := 1−α
β from P to rule out the occurrence of unit roots

in the reduced form representations of Xt := (zt, yt)
0 that would contrast with the assumptions in

Section 3.
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where κ is an arbitrary auxiliary parameter unrelated to θ and st is an arbi-
trary MDS with respect to It independent on ωt. In this example, θ is not
identifiable under determinacy in the sense of Definition 3 because α and β
are not recoverable from Eq. (9). Conversely, θ is identifiable (along κ) under
indeterminacy in the sense of Defintion 3.

The two examples above clarify that the identification issues we deal with in
this paper are not related to the presence/absence of the auxiliary parameters κ
that are unidentifiable under determinacy and govern solution multiplicity under
indeterminacy; in general, the parameters in κ are identifiable under indeterminacy if
θ is identifiable (Broze and Szafarz, 1991). Rather, our objective is to find conditions
that ensure that θ is identifiable irrespective of whether its true value lies in the
determinacy or indeterminacy region of the parameter space.

3 Assumptions and reduced form solutions

Given the multivariate LREmodel (1)-(2), let P ⊂ Rm,m := dim(θ), the open space
of all theoretically admissible values of θ. We consider the following assumptions:

Assumption 1 θ0 is an interior point of P and for each θ ∈ P and X0, X−1 and
X−2 given, any reduced form of interest of system (1)-(2) belongs to the class of
covariance stationary processes with E(Xt) = 0 and whose distribution depends on
all or part of the elements of θ.

Assumption 2 The elements of the matrix Γ := [Γ0 : Γf : Γb : R] ∈Mn,4n depend
on θ through the function vec(Γ) = q(θ), where q(·) is such that the 4n2×m Jacobian
Q(θ) := ∂q(θ)

∂θ0 matrix has full column rank m.

Assumption 3 For θ ∈ P , the matrices Γ0, ΓR0 := (Γ0 + RΓf), Θ := Θ(θ) :=
(ΓR0 − ΓfΦ1) and Υ := Υ(θ) := (Θ−RΓf) := (Γ0 − ΓfΦ1) are non-singular, where
Φ1 := Φ1(θ) ∈Mn,n is defined below.

Assumptions 1 provides a regularity condition and rules out reduced form so-
lutions that embody unit or explosive roots as well as deterministic components;
moreover, the space P contains only points that generate stationary reduced form
solutions. Assumption 2 is an auxiliary necessary identification condition. The non-
singularity of Γ0 and ΓR0 in Assumption 3 does not imply any loss of generality,
while, as shown in Example 3 below, the class of small-scale LRE models used in
the monetary and business cycle literature are usually based on a non-singular Θ
matrix.
A further assumption will be used from Section 4 onwards to rule out the occur-

rence of ‘purely forward-looking’ models from the class of LRE models with respect
to which we derive robust identification conditions.
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Assumption 4 Given the LRE model (1)-(2), either Γb 6= 0n×n or R 6= 0n×n, or
Γb 6= 0n×n and R 6= 0n×n.

To discuss the identifiability of θ, we preliminarily derive the reduced form solu-
tions associated with the LRE model (1)-(2) and then discuss the implied likelihood
functions.
We write system (1)-(2) in the form

ΓR0Xt = ΓfEtXt+1 + ΓRb,1Xt−1 + ΓRb,2Xt−2 + uRt (11)

ΓRb,1 := (Γb +RΓ0) , ΓRb,2 := −RΓb

where ΓR0 is defined in Assumption 3, ηt := (Xt−Et−1Xt) and uRt := ut+RΓfηt are
MDS with respect to It. Next we express system (11) in canonical form

Γ̊0X̊t = Γ̊fEtX̊t+1 + Γ̊bX̊t−1 + ůt (12)

where X̊t := (X
0
t,X

0
t−1)

0, ůt := (u0t, 0
0
n×1)

0 and

Γ̊0 :=

∙
ΓR0 0n×n
0n×n In

¸
, Γ̊f :=

∙
Γf 0n×n
0n×n 0n×n

¸
, Γ̊b :=

∙
ΓRb,1 ΓRb,2
In 0n×n

¸
.

Observe that if in Eq. (2)R := 0n×n, the canonical form based on X̊t := Xt, ůt := ut,
Γ̊0 := Γ0, Γ̊f := Γf and Γ̊b := Γb collapses to system (1).
Using Assumption 3,

X̊t = Γ̊−10 Γ̊fEtX̊t+1 + Γ̊−10 Γ̊bX̊t−1 + Γ̊−10 ůt (13)

and for given initial conditions X̊0 := (X
0
0,X

0
−1)

0, any solution
n
X̊t

o∞
t=1

to Eq. (13)

is linked to the solutions {Xt}∞t=1 of system (12) (or (1)-(2)) by the relationship
Xt := WX̊t, where W := [In : 0n×n] is a selection matrix. Finding a reduced form
solution to system (13) is equivalent to finding a reduced form solution to system
(12) (or (1)-(2)).
Following Binder and Pesaran (1995, 1997), we impose that any X̊t that solves

Eq. (13) be uncoupled as

X̊t := X̊B,t + X̊F,t , X̊B,t := Φ̊X̊t−1 (14)

where the process
n
X̊B,t

o∞
t=1

can be interpreted as the ‘backward’ part of the solu-

tion, the process
n
X̊F,t

o∞
t=1
as its ‘forward’ part and Φ̊ ∈M2n×2n is defined implicitly

as the solution to the quadratic matrix equation

Γ̊f Φ̊
2 − Γ̊0Φ̊+ Γ̊b = 02n×2n. (15)
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Define the matrix Θ̊ := (̊Γ0 − Γ̊f Φ̊) which is non-singular under Assumption 3 and
the set

F :=
n
Φ̊, Φ̊ solves Eq. (15), r[Φ̊] < 1, det(Θ̊) 6= 0

o
≡
n
Φ̊, Φ̊ = (̊Γ0 − Γ̊f Φ̊)

−1Γ̊b, r[Φ̊] < 1,
o
⊂M2n×2n;

as is known, the elements of F are intimately related to the solution to a generalized
eigenvalue/eigenvector problem, see Binder and Pesaran (1995), Binder and Pesaran
(1997, Proposition 1) and Uhlig (1999). However, differently from what happens
when n := 1, when n ≥ 2, necessary and sufficient conditions for card(F) = 1 or,
alternatively, sufficient conditions for card(F) = 0 or card(F) =∞ are not available
unless the matrices Γ̊f , Γ̊0 and Γ̊b fulfill constraints that hardly can be justified on
theoretical grounds, see e.g. Higham and King (2000). If card(F) 6= 0, the non-zero
(and different from 1) elements of Φ̊ depend nonlinearly on θ, Φ̊ := Φ̊(θ); moreover,
by construction the block structure of Φ̊ is given by

Φ̊ :=

∙
Φ1 Φ2
In 0n×n

¸
(16)

where Φ1 := Φ1(θ) is the n×nmatrix which enters the definition of Θ in Assumption
3, and Φ2 := Φ2(θ). If R := 0n×n in Eq. (1) the matrix Φ̊ collapses to Φ̊ := Φ1.
From Eq. (14) it turns out that

EtX̊F,t+1 = EtX̊t+1 − Φ̊X̊t (17)

hence by using Eq.s (14) and (17) in Eq. (13) the solution becomes

X̊B,t + X̊F,t = Γ̊−10 Γ̊f [EtX̊F,t+1 + Φ̊X̊t] + Γ̊−10 Γ̊bX̊t−1 + Γ̊−10 ůt

and by imposing the restrictions in Eq. (15) and using Assumption 3, this system
can be re-arranged in the form

X̊F,t = G̊EtX̊F,t+1 + Θ̊−1ůt (18)

where G̊ := (̊Γ0− Γ̊f Φ̊)−1Γ̊f := Θ̊−1Γ̊f . The LRE model (18) is known as the ‘Cagan
multivariate model’ (Broze and Szafarz, 1991); inspection of the G̊ matrix in Eq.
(18) reveals that

G̊ := G̊(θ) :=

∙
S 0n×n
0n×n 0n×n

¸
(19)

where S := S(θ) := (ΓR0 − ΓfΦ1)
−1Γf := Θ−1Γf , hence S and G̊ have identical

non-zero eigenvalues. Given the block structure of G̊, Θ̊ and ůt, system (18) has the
block structure

X̊F,t =

∙
S 0n×n
0n×n 0n×n

¸
EtX̊F,t+1 +

∙
Θ−1 Θ−1ΓfΦ2
0n×n In

¸µ
uRt
0n×1

¶
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hence the solution properties of the Cagan multivariate model depend on the solution
properties of its upper sub-system

XS
F,t = SEtX

S
F,t+1 +Θ−1uRt (20)

where X̊F,t := (X
S0
F,t, 01×n)

0.
In light of Eq. (14), if card(F) 6= 0, a solution to the LRE model is obtained as

the sum, for each t, of the solution to Eq. (20) and X̊B,t := Φ̊X̊t−1; it turns out that
the elements of the n× 2n sub-matrix Φ := [Φ1 : Φ2] of Φ̊ play the role of reduced
form coefficients subject to the implicit set of nonlinear (cross-equation) restrictions
stemming from Eq. (15). The stability/instability of the matrix S(θ) plays a crucial
role in determining solution properties. Consider the Jordan normal form of S(θ) :

S(θ) := P (θ)

∙
Λ1 0n1×n2

0n2×n1 Λ2

¸
P−1(θ) (21)

where P (θ) ∈Mn,n is non-singular, Λ1 ∈Mn1,n1 is the Jordan block containing the
n1 eigenvalues of S(θ) that lie inside the unit disk and Λ2 ∈Mn2,n2 is the Jordan
block containing the n2 := n − n1 eigenvalues that lie outside the unit disk; by
construction rank(Λ2) = n2. If r[S(θ)] < 1, the decomposition in Eq. (21) collapses
to S(θ) := P (θ)Λ1P

−1(θ), n = n1 and r[S(θ)] :=diag(Λ1); conversely, if r[S(θ)] > 1,
diag(Λ2) ∈ sr[S(θ)] are the eigenvalues of S(θ) that lie outside the unit disk.
The next proposition establishes that the dynamic structure of the solutions to

the LRE model (1)-(2) depends on the location of the eigenvalues of the matrix S(θ)
in the unit disk.

Proposition 1 [Reduced form solutions] Consider the LRE model (1)-(2) with
initial conditions X0, X−1 and X−2 fixed, and suppose that, under Assump-
tions 1-3, card(F) 6= 0.
(a) If r[S(θ)] < 1, the reduced form solution can be represented, if it exists, in
the form

[In − Φ1(θ)L− Φ2(θ)L
2]Xt = Υ(θ)−1ut (22)

where Φ1(θ) and Φ2(θ) are the sub-matrices of Φ̊ defined in Eq. (16).

(b) If r[S(θ)] > 1 and dim(diag(Λ2)):=n2, 1 ≤ n2 ≤ n, the reduced form
solutions can be represented, if they exist, in the form

[In −Π(θ)L][In − Φ1(θ)L− Φ2(θ)L
2]Xt = [M(θ, κ)−Π(θ)L]Ψ(θ, κ)ut

+ [M(θ, κ)−Π(θ)L]Θ−1RΓfV (θ, κ)τ t + τ t (23)

where

Π(θ) := P (θ)

∙
Λ1 0n1×n2

0n2×n1 Λ−12

¸
P−1(θ),

M(θ, κ) := P (θ)

∙
In1 0n1×n2
0n2×n1 κ

¸
P−1(θ),
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Ψ(θ, κ) := [In+Θ
−1RΓfV (θ, κ)M(θ, κ)]Θ

−1 , V (θ, κ) := [In−M(θ, κ)Θ−1RΓf ]−1

τ t := P (θ)ζt

and n1 := n − n2, κ is a n2 × n2 matrix containing arbitrary elements not
related to θ and such that vec(κ) ∈ K ⊆ Rn2, and ζt is a n × 1 MDS with
respect to It , called ‘sunspot shock’, which is independent on ut and whose
components are given by ζt := (0

0
n1×1, s

0
t)
0 := (0, ...0, s1,t, .., sn2,t)

0.

Proof: Appendix.

Some remarks are in order.

Remark 1 Proposition 1 covers the full set of reduced form equilibria consistent
with Assumptions 1-3. It is shown that these solutions have a finite order vec-
tor autoregressive moving average (VARMA)-type representation: while the
time series representation in Eq. (22) belongs to the class of parametrically
constrained VAR models, the time series representation in Eq. (23) is ob-
tained as the sum of a parametrically constrained VARMA model and a MVA
term involving n2 arbitrary MDS processes (when R 6= 0n×n), where n2 is the
number of eigenvalues of the matrix S(θ) that lie outside the unit disk. The
model in Eq. (22) involves only the state variables and parameters of the LRE
model and reads as the determinate reduced form solution of the LRE model.
System (23) shows that there exist two sources of indeterminacy: the pres-
ence of the (n2)2 arbitrary auxiliary parameters κ (parametric indeterminacy)
and the presence of the n2 arbitrary sunspot shocks embodies in the vector τ t
(stochastic indeterminacy) that may alter the dynamics and volatility of the
system generated by the ‘fundamental’ disturbance ut. According to Propo-
sition 1, when r[S(θ)] > 1 the system is indeterminate even if st := 0 a.s. ∀
t, implying τ t := 0 a.s. ∀ t, a situation referred to as ‘indeterminacy without
sunspots’ (Lubik and Schorfheide, 2004).

Remark 2 It is easily seen that if the eigenvalues of the matrix κΛ2 lie outside the
unit disk the VMA polynomial of system (23) is invertible and the indetermi-
nate reduced form can be represented as a linear process and potentially used
for estimation.5

Remark 3 Let PD be the determinacy region of the theoretically admissible para-
meter space, i.e. the subspace of P containing points that lead to a unique

5Indeed one has

det[M(θ, κ)−Π(θ)z] = det
½∙

In1 0n1×n2
0n2×n1 κ

¸
−
∙

Λ1 0n1×n2
0n2×n1 Λ−12

¸
z

¾

= det

½∙
In1 − Λ1z 0n1×n2
0n2×n1 κ− Λ−12 z

¸¾
= det(In1 − Λ1z) det(κ.− Λ−12 z).
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stable reduced form solution. In principle, a possible characterization of PD is
PD := {θ ∈ P, h(θ) ≺ 0c}, where h(·) is a c-dimensional differentiable func-
tion. Manageable closed-form expressions for h(·) are generally not available
unless the elements of θ are highly restricted. Proposition 1 suggests that a
‘natural’ choice of h(·) is given by the scalar function h(θ) := r[S(θ)]− 1 and
the condition h(θ) := r[S(θ)] − 1 < 0 is sufficient for determinacy. Under
Assumptions 1-3, the set P\PD corresponds to the indeterminacy region of
the parameter space.

Before deriving our main results, it is instructive to focus on two interesting
classes of reduced form solutions nested in the set derived in Proposition 1. The
former is obtained from Eq. (23) when κ := In2 ; in this case, which is treated in
detail in Corollary 1, there are common (‘cancelling’) roots in the autoregressive
and moving average polynomials characterizing the reduced form solutions. The
latter refers to the reduced form solutions obtained when Γ̊b := 0 (i.e. when both
R := 0n×n and Γb := 0n×n in the structural equations (1)-(2)); Corollary 2 derives
the reduced form solutions of the ‘purely forward-looking’ counterpart of system
(1)-(2) and paves the way to a first simple result on identification.

Corollary 1 [MSV reduced form solutions] Consider the LRE model (1)-(2)
with initial conditions X0, X−1 and X−2 fixed, and suppose that, under As-
sumptions 1-3, card(F) 6= 0. If r[S(θ)] > 1 and κ := In2, the reduced form
solutions take the form

[In−Φ1(θ)L−Φ2(θ)L2]Xt = Υ(θ)−1ut+[Ṽ (θ, κ)−In]τ t+[In−Π(θ)L]−1τ t (24)

where Φ1(θ), Φ2(θ), Π(θ) and τ t are defined as in Proposition 1 and Ṽ (θ, κ) :=
[In −Θ−1RΓf ]

−1.

Proof: Appendix.

Corollary 2 [Purely forward-looking model] Consider the LRE model (1)-(2)
with initial conditions X0, X−1 and X−2 fixed, and suppose that, in addition
to Assumptions 1-3, it holds Γ̊b := 0 (meaning that both R := 0n×n and
Γb := 0n×n) and one of the following conditions: (c1) Γf is singular; (c2)
r[ΓfΓ

−1
0 ] > 1. (a) If r[S(θ)] < 1, the determinate reduced form solution

collapses to
Xt = Γ−10 ut.

(b) If r[S(θ)] > 1 the indeterminate reduced form solutions collapse to

[In −Π(θ)L]Xt = [M(θ, κ)−Π(θ)L]Ψ∗(θ, κ)ut

+ [M(θ, κ)−Π(θ)L]Θ∗−1RΓfV
∗(θ, κ)τ t + τ t

where Π(θ), M(θ, κ) and τ t are defined as in Proposition 1, Ψ∗(θ, κ) :=
[In + Θ∗−1RΓfV

∗(θ, κ)M(θ, κ)]Θ∗−1, V ∗(θ, κ) := [In − M(θ, κ)Θ∗−1RΓf ]
−1

and Θ∗ := (Γ0 +RΓf).
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Proof: Appendix.

Remark 4 Corollary 1 shows that is necessary to impose the absence of sunspot
shocks in Eq. (24) (τ t := 0 a.s. ∀ t) to obtain a an indeterminate reduced
form solution that has the same dynamic representation as the determinate
reduced form in Eq. (22). The reduced form solution in Eq. (24) is obtained,
however, in correspondence of a point of zero-Lebesque measure in the space
K.

Remark 5 A direct consequence of Corollary 2 is that in ‘purely forward-looking’
models, which are largely used to discuss monetary policy stabilization (Wood-
ford, 2003, Ch. 4), θ is generally unidentifiable under determinacy.6 More
precisely, all elements of θ that enter the matrix Γf but not the matrix Γ0
are not identifiable in the sense of Definition 3 (hene it is now clear why θ is
not identifiable in the LRE model of Example 2 under determinacy). It may
happen that once a subset of the elements of θ has been fixed, then the other el-
ements are identifiable; whether subset of θ are identifiable under determinacy
in ‘purely forward-looking’ LRE models is an issue that must be addressed
on a case by case basis. Conversely, θ and κ are generally identifiable under
indeterminacy.

Remark 6 Corollary 2 suggests that in order to derive ‘robust’ identification con-
ditions for the LRE model (1)-(2), i.e. conditions that hold irrespective of
whether the reduced form solution belongs to the class of models defined in
Eq. (22) or in Eq. (23), it is necessary to avoid that 02n×2n ∈ F . This ob-
jective will be achieved by considering the class of LRE models (1)-(2) under
Assumption 4.

4 Main results

Consider the multivariate LRE model (1)-(2) under Assumptions 1-4 and the point
of view of an econometrician whose ultimate objective is the estimation of θ.
Define the a2 × 1 vector φ := vec[Φ̊], where hereafter a := n if R := 0n×n in

Eq. (2) (which implies Φ̊ := Φ1), and a := 2n otherwise. Partition the Φ̊ matrix
as Φ̊0 :=

£
Φ0 : Π00,1

¤
, where Φ := [Φ1 : Φ2] and Π0,1 is the block that contains zeros

and ones (obviously when R := 0n×n, Φ := Φ1 and there exists no Π0,1 sub-matrix);
then denote by φ̃ := vec[Φ] the sub-vector of φ that does not contain zeros and ones
and d := dim(φ̃); one has d < a2 when R 6= 0n×n, and φ := φ̃ and d := a2 when
R := 0n×n. The relationship between φ̃ and φ can be formalized as

φ := H

µ
φ̃
π0,1

¶
:= H1φ̃+H2π0,1 (25)

6Observe that a LRE model based on a non-singular Γf matrix would be highly restrictive from
the economic viewpoint.
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whereH is a a2× a2 permutation matrix (that will correspond to the identity matrix
when φ := φ̃), H1 and H2 are a2 × d and a2 × (a2 − d) sub-matrices of H where H1

has full column rank d, and π0,1 := vec(Π0,1).
If one of the reduced form solutions derived in Proposition 1 exists, then φ̃

depends on θ, i.e. φ̃ = g(θ), where g(·) is a nonlinear function. Intuitively, the
identifiability of θ requires that the mapping φ̃ = g(θ) be unique in a neighborhood
O(θ0) ⊂ P of θ0. More precisely, Proposition 1 suggests that given the observations
X1,..., XT and a distribution for ut and st, the (concentrated) log-likelihood function
of any reduced form solution to the LRE model (1)-(2) can be written as

cT (θ, vec(κ)) := cD,T (g(θ))× I(r[S(θ)] < 1)

+ cI,T (g(θ), vec(κ))× I(r[S(θ)] > 1)
(26)

where I(·) is the indicator function and cD,T (φ̃) and cI,T (φ̃, vec(κ)) are the log-
likelihoods associated with the unrestricted counterparts of systems (22) and (23),
respectively. The parameters of the LRE model are unidentifiable if for fixed θ̆1, θ̆2 ∈
P, θ̆1 6= θ̆2, φ̃ = g(θ̆1) = g(θ̆2) leading, for any fixed κ, to cT (g(θ̆1), vec(κ)) =
cT (g(θ̆2), vec(κ)).
We are now in the position to refine the Definition 3 of identifiability of θ intro-

duced in Section 2 with the concept of local identifiability taken from Rothemberg
(1971, Theorem 1, Theorem 2).

Definition 3’ [Local identifiability] The vector of structural parameters θ is lo-
cally identifiable if the information matrix associated with the log-likelihood
cT (θ, vec(κ)) in Eq. (26) is non-singular in a neighborhood O(θ0) ⊂ P of θ0.

Under standard regularity conditions,7 the information matrix associated with
the unrestricted counterpart of the reduced form solution in Eq. (22) is given by

ID,T (φ̃u) := E

"(
∂cD,T (φ̃u)

∂φ̃
0
u

)(
∂cD,T (φ̃u)

∂φ̃
0
u

)0#
(27)

where the symbol φ̃u denotes the unrestricted VAR coefficients. The d × d matrix
ID,T (φ̃u) has full rank. Defined φ̃

∗
u := (φ̃

0
u, vec(κ)

0)0, under standard regularity con-
ditions the information matrix associated with the unrestricted counterpart of the
reduced form solutions in Eq. (23) is given by

II,T (φ̃
∗
u) :=

∙
I11 I12
I 012 I22

¸
d× d d× (n2)2

(n2)
2 × d (n2)

2 × (n2)2
(28)

where dimensions of blocks have been reported alongside matrices and

I11 := I11(φ̃
∗
u) := E

"(
∂cI,T (φ̃

∗
u)

∂φ̃
0
u

)(
∂cI,T (φ̃

∗
u)

∂φ̃
0
u

)0#
,

7See e.g. Assumptions 1-5 in Rothemberg (1971).
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I12 := I12(φ̃
∗
u) := E

"(
∂cI,T (φ̃

∗
u)

∂φ̃
0
u

)(
∂cI,T (φ̃

∗
u)

∂vec(κ)0

)0#
,

I22 := I22(φ̃
∗
u) := E

"(
∂cI,T (φ̃

∗
u)

∂vec(κ)0

)(
∂cI,T (φ̃

∗
u)

∂vec(κ)0

)0#
.

Also the information matrix II,T (φ̃
∗
u) has full rank if the unconstrained counterpart

of the VARMA-type system in Eq. (23) is identified. It follows that the information
matrix associated with the reduced form solutions of the LRE model can be written
as

IT (θ, vec(κ)) := B(θ)0I∗D,TB(θ)× I(r[S(θ)] < 1)

+

∙
B(θ)0I∗11B(θ) B(θ)0I∗12
I∗012B(θ) I∗22

¸
× I(r[S(θ)] > 1) (29)

where B(θ) := ∂g(θ)
∂θ0 is a d × m Jacobian matrix, I∗D,T := ID,T (g(θ)) and I∗ij :=

Iij(g(θ), vec(κ)0), i, j = 1, 2.
From Eq. (29), necessary and sufficient conditions for θ to be identifiable is

that the Jacobian matrix B(θ) has full-column rank m in a neighborhood of θ0.
Proposition 2 shows how this condition specializes in practice.

Proposition 2 [Necessary and sufficient conditions] Given the LREmodel (1)-
(2), Assumptions 1-4, and the set of stable reduced form solutions derived in
Proposition 1, let O(θ0) ⊂ P be a neighborhood of θ0 and L(φ0) ⊂ Ra a
neighborhood of φ0, where φ0 is the ‘true’ φ.

(a) θ is locally identifiable iff

rank
h
Ia2 − N̊(θ)

i
= a2 , θ ∈ O(θ0) (30)

where N̊(θ) := [Φ̊(θ)0 ⊗ G̊(θ)], Φ̊(θ) ∈ F is unique (i.e. card(F)=1) for θ ∈
O(θ0), the matrix G̊(θ) is defined in Eq. (19) and a := dim(φ).

(b) Necessary order condition is m ≤ a2.

Proof: Appendix.

Proposition 2 clarifies that the vector θ is not identifiable in Example 1 of Section
2 under determinacy because of the failure of the necessary order condition (b).
An immediate consequence of Proposition 2 is stated in the next Corollary.

Corollary 3 [Identifiability under determinacy] LetPD := {θ, r[S(θ)] < 1} ⊂
P be the determinacy region of the theoretically admissible parameter space.
If for θ̆ ∈ PD the reduced form solution in Eq. (22) exists θ̆ is locally identifi-
able.

Proof: Appendix.
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Some remarks are in order.

Remark 7 The necessary and sufficient conditions for identification derived in
Proposition 2 are ‘robust’ to determinacy/indeterminacy in the sense that
they hold for the entire class of reduced form solution derived in Proposi-
tion 1 provided Assumption 4 is added to rule out the occurrence of ‘purely
forward-looking’ models.

Remark 8 Given the definition of G̊(θ) in Eq. (19), the non zero elements of
sr[N̊(θ)] are the same as the non-zero elements of sr[Φ̊(θ)0 ⊗ S(θ)]. Thus the
crucial ingredients of the rank condition in Eq. (30) are the two matrices
Φ̊(θ) and S(θ). The former is the stable matrix that solves the cross-equation
restrictions implied by the quadratic matrix equation (15) while the eigenvalues
of the latter matrix, whose elements are function of the elements of the sub-
matrixΦ1(θ) of Φ̊(θ), govern the determinacy/indeterminacy of the LREmodel
(Proposition 1). There are situations in which the quadratic matrix equation
(15) can be solved analytically (e.g. Example 1 above and Example 3’ below)
and others in which it is either necessary to apply generalized eigenvalues
techniques or to resort to numerical (iterative) solutions (e.g. Example 4
below) along the lines discussed by Higham and King (2000).

Remark 9 The main advantage of the result derived in Proposition 2 is that in
order to check the validity of the necessary and sufficient identification con-
dition in Eq. (30) all that is needed is solving the quadratic matrix equation
(15). This result is particularly useful if one wishes to estimate jointly the
Euler equations comprising the LRE model by ‘limited-information’ methods
because it is not necessary to know in detail the form of the reduced form
solutions associated with the LRE model to check the identifiability of the
system, see Section ?? and Section 5.

5 Identification check

If the conditions (a) and (b) of Proposition 2 are fulfilled, one can recover consistent
estimates of the parameters of the multivariate LRE model. One possibility is to
apply ‘limited-information’ techniques directly to the Euler equations of system
(11) by using r ≥ m instruments selected from Xt−1, Xt−2, .... For instance, under
Assumptions 1-4 and other standard regularity conditions (including the maintained
of correct specification of the LRE model), the generalized method of moments
estimator of θ is root-T consistent for θ0 if instruments are properly selected and is
robust to determinacy/indeterminacy, see Fanelli (2010).
Alternatively, one can maximize either cD,T (g(θ)) or cI,T (g(θ), vec(κ)) in Eq.

(26) and obtain a maximum likelihood estimator of θ. The maximum likelihood
estimator will be consistent and fully efficient under Assumptions 1-4 (and other
regularity conditions) if the likelihood is maximized under the ‘correct’ regime and
will be inconsistent if determinacy is erroneously assumed.
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The next example shows how the necessary and sufficient conditions in Eq. (30)
can be applied to study the identifiability of a multivariate LRE model typically
used in monetary policy analysis.

Example 3 [New-Keynesian monetary policy model] We consider a three-equation
New Keynesian business cycle monetary model which takes the form (1)-(2)
and is obtained by slightly modifying the notation of system (1)-(3) in Benati
and Surico (2009). The LRE model is based on the following matrices

Γ0 :=

⎡⎣ 1 0 δ
−( 1 0

−(1− ρ)ϕỹ −(1− ρ)ϕπ 1

⎤⎦ , Γf :=

⎡⎣ γ δ 0
0 λf 0
0 0 0

⎤⎦
Γb :=

⎡⎣ 1− γ 0 0
0 λb 0
0 0 ρ

⎤⎦ , R :=

⎡⎣ ξỹ 0 0
0 ξπ 0
0 0 ξR

⎤⎦ , Σu :=

⎡⎣ σ2ỹ 0 0
0 σ2π 0
0 0 σ2R

⎤⎦
where Xt = (ỹt, πt, Rt)

0 and ỹt, πt, and Rt are the output gap, inflation,
and the nominal interest rate. The interpretation of the structural para-
meters θ := ((, δ, γ, λf , λb, ρ, ϕỹ, ϕπ, ξỹ, ξπ, ξR)

0 may be found in Benati and
Surico (2009). In this case, n := 3 and R 6= 03×3, hence a := 2n = 6
and the necessary identification order condition (b) of Proposition 2 is met
as m := dim(θ) := 11. Assume first that the data are generated in cor-
respondence of the structural parameters θ̄0:=(0.044, (8.062)−1, 0.744, 0.57,
0.048, 0.595, 0.527, 0.821, 0.796, 0.418, 0.404) (plus σ2ỹ:=0.055, σ

2
π:=0.391,

σ2R:=0.492). This point corresponds to the median of the 90 percent coverage
percentiles of the Bayesian estimates reported in Table 1 of Benati and Surico
(2009) for the period before October 1979. Assumptions 1-4 are in this case sat-
isfied, in particular det[Θ(θ̄0)] = 0.799 and the solution Φ̊(θ̄0) to the quadratic
matrix equation (15) is such that r[Φ̊(θ̄0)]:=0.796.8 Moreover, r[S(θ̄0)]:=1.013
and we know from Proposition 1 that the reduced form solution is indetermi-
nate with a single arbitrary parameter governing indeterminacy and, possibly,
a single MDS independent on ut. It is seen that rank

h
I36 − N̊(θ̄0)

i
=36=a2

(in particular det
h
I36 − N̊(θ̄0)

i
:=0.00094 and rmin

h
I36 − N̊(θ̄0)

i
:=0.19) hence

by condition (a) of Proposition 2 the point θ̄0 is locally identifiable. Next con-
sider the point θ̆0:=(0.044, (8.062)−1, 0.744, 0.57, 0.048, 0.834, 1.146, 1.749,
0.796, 0.418, 0.404) (σ2ỹ, σ

2
π and σ2R are as before) that corresponds to the

median of the 90 percent coverage percentiles of the Bayesian estimates re-
ported in Table 1 of Benati and Surico (2009) for the period after the Volcker
stabilization. Also in this case Assumptions 1-4 are satisfied, det[Θ(θ̆0)] =
0.85, r[Φ̊(θ̆0)]=0.796 and r[S(θ̆0)]:=0.793 hence we know from Proposition 1
that the reduced form solution is determinate and takes the form of a con-
strained VAR system with two lags; moreover, rank

h
I36 − N̊(θ̆0)

i
=36 (in

8In this case the stable solution of the quadratic matrix equation (15) has been obtained nu-
merically along the lines of Higham and King (2000).
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particular det
h
I36 − N̊(θ̆0)

i
:=0.00068 and rmin

h
I36 − N̊(θ̆0)

i
:=0.225) hence

also θ̆0 is locally identifiable. In principle, it is possible to consider many
theoretically admissible values of θ and check the validity of the condition in
Eq. (30) prior to estimation.

Another use of the result in Proposition 2 is when a reduced form representation
of the LRE model does not exist in correspondence of a point θ that is erroneously
assumed to belong to the theoretically admissible parameter space. In these cases
θ is (trivially) unidentifiable hence the rank condition in Eq. (30) does not hold. A
situation of this type is investigated in detail in the next example.

Example 4 [No reduced form solutions] Consider the following two-equation
(n := 2) LRE model

zt = αEtzt+1 +Etyt+1 + ωz,t (31)

yt = ψyt−1 + ωy,t (32)

where ωt := (ωz,t, ωy,t)
0 is a MDS with covariance matrix Σω := dg(σ2z, σ

2
y),

θ := (α,ψ)0, α>0, 0<ψ<1, Xt := (zt, yt)
0 and

Γ0 := I2, Γf :=

∙
α β
0 0

¸
, Γb :=

∙
0 0
0 ψ

¸
, R := 02×2.

Suppose that the space of theoretically admissible values of θ is given by P :=
{(α, ψ)0, α>0, 0<ψ<1} ⊂ R2. In this case, a:=n :=2 and dim(θ):=2 hence
the necessary identification order condition (b) of Proposition 2 is met. The
unique stable solution to the quadratic matrix equation (15) can be determined
analytically and is given by

Φ̊(θ) ≡ Φ(θ) :=

"
0 − ψ2

αψ−1
0 ψ

#
(33)

and it easily seen that this matrix is stable. Moreover,

G̊(θ) ≡ S(θ) := Θ−1Γf :=

∙
α 1
0 0

¸
so that by Proposition 1 a unique stable reduced form solution is obtained if
0<α<1 and multiple stable reduced form solutions if α>1.9 Moreover,

det
h
I4 − N̊(θ)

i
= det

⎡⎢⎢⎣
1 0 α ψ2

αψ−1
ψ2

αψ−1
0 1 0 0
0 0 −αψ + 1 −ψ
0 0 0 1

⎤⎥⎥⎦ = 1− αψ

9We deliberately rule out the point α := 1 from the set of theoretically admissible values P for
the same reason as in footnote 4.
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hence one is reasonably tempted to claim that all θs that lie in the deter-
minacy region PD := {(α,ψ)0, 0<α<1, 0<ψ<1} ⊂ P are locally identifi-
able, while all zero-Lebesque measure points θ that lie in the region P∗ :=
{(α, ψ)0, α>1, 0<ψ<1} and fulfill the restriction αψ := 1 are unidentifiable.
Actually, while this is true, the structure of the matrix Φ(θ) in Eq. (33) and
the form of the indeterminate solutions derived in Eq. (23) (Proposition 1)
reveal that in correspondence of the points θ ∈ P∗ such that αψ := 1 a re-
duced form solution does not exist for the LRE model hence θ is trivially
unidentifiable. It turns out that PI := {(α, ψ)0, α>1, 0<ψ<1, αψ 6= 1} ⊂ P
is the indeterminacy region of the parameter space and all θ ∈ PI are locally
identifiable.

Example 3 and Example 4 suggest that one may potentially use the same method
proposed in Amisano and Giannini (1997) for checking the identifiability of struc-
tural VARs. Indeed, it is in principle possible to assess the validity of the rank
condition in Eq. (30) at many randomly drawn points from the theoretically admis-
sible space P, or from a suitably chosen subset Z of P, prior to estimation. Such
an approach generalizes the identification analysis procedure advocated by Iskerev
(2010) who discusses the identifiability of dynamic stochastic geneal equilibrium
models only for the case of determinacy. It may involve considerable computation
costs.
On the inferential side, it would be natural to think of using a root-T consistent

asymptotically Gaussian estimator θ̂T and existing techniques for testing the rank of
the matrix Ia2 − N̊(θ), see e.g. Cragg and Donald (1997), Robin and Smith (2000),
Kleiberger and Paap (2006) and references therein. The drawback in this case is
that all methods for inferring the rank of a matrix are based on the null hypothesis
that rank

h
Ia2 − N̊(θ)

i
:=h against the alternative rank

h
Ia2 − N̊(θ)

i
≥ h, where or

h < a2 , and T 1/2(θ̂T − θ0) is no longer asymptotically Gaussian under this type of
null.

Appendix: Proofs

Proof of Proposition 1. (a) Since r[S(θ)] < 1, S(θ) is absolutely summable. Us-
ing this property and Assumptions 3, system (20) can be solved as

XS
F,t =

∞X
j=0

[S(θ)]jEtΘ
−1uRt+j = Θ−1uRt . (34)

By combining Eq. (34) with X̊B,t := Φ̊X̊t−1 yieldsµ
Xt

Xt−1

¶
=

∙
Φ1 Φ2
In 0n×n

¸µ
Xt−1
Xt−2

¶
+

µ
XS

F,t

0n×1

¶
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=

∙
Φ1 Φ2
In 0n×n

¸µ
Xt−1
Xt−2

¶
+

µ
Θ−1uRt
0n×1

¶
hence the first block of n equations reads as

Xt = Φ1Xt−1 + Φ2Xt−1 +Θ−1uRt .

Since ηt := Xt−Et−1Xt = (Xt−Φ1Xt−1−Φ2Xt−2), from the expression ηt =
Θ−1uRt and the definition uRt := ut +RΓfηt it follows that (I −Θ−1RΓf)ηt =
Θ−1ut which becomes, under Assumption 3, ηt := (Θ − RΓf)

−1ut = Υ−1ut.
Thus the solution is given by Eq. (22).

(b) Using the Jordan decomposition in Eq. (21), system (20) can be written
as

XS
F,t = PΛP−1EtX

S
F,t+1 +Θ−1uRt ,

transformed into

P−1XS
F,t = ΛP−1EtX

S
F,t+1 + P−1Θ−1uRt

and finally partitioned as

n1 × 1
n2 × 1

µ
XS1

F,t

XS2
F,t

¶
=

∙
Λ1 0n1×n2

0n2×n1 Λ2

¸
Et

µ
XS1

F,t+1

XS2
F,t+1

¶
+

µ
ϑS1t
ϑS2t

¶
(35)

where µ
XS1

F,t

XS2
F,t

¶
:= P−1XS

F,t ,
µ

ϑS1t
ϑS2t

¶
:= P−1Θ−1uRt .

The first sub-system in Eq. (35)

XS1
F,t = Λ1EtX

S1
F,t+1 + ϑS1t (36)

can be regarded as a multivariate LRE model based on Γ∗0 := In1,Γ
∗
f := Λ1

and Γ∗b := 0n1×n1. By part (a) of Proposition 1 its reduced form solution is
given by

XS1
F,t = ϑS1t . (37)

The second sub-system in Eq. (35)

XS2
F,t = Λ2EtX

S2
F,t+1 + ϑS2t (38)

can be written as

EtX
S2
F,t+1 = (Λ2)

−1XS2
F,t − (Λ2)

−1 ϑS2t

or, equivalently, in the form

XS2
F,t+1 = (Λ2)

−1XS2
F,t − (Λ2)

−1 ϑS2t + ηS2t+1 (39)
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where ηS2t+1 := XS2
F,t+1 − EtX

S2
F,t+1 is an arbitrary n2 × 1 MDS with respect to

It. Consider the following representation of ηS2t+1:

ηS2t+1 := κϑS2t+1 + st+1 (40)

where κ is a n2×n2 matrix whose elements are arbitrary and not related to θ,
and st+1 := (s1,t+1,s2,t+1, ..., sn2,t+1,) ∈ It+1 is a n2 × 1 ‘extraneous’ MDS with
respect to It independent on ϑS2t+1. If Eq. (39) is a linear solution to Eq. (38),
also the sub-system

XS2
F,t+1 = (Λ2)

−1XS2
F,t + κ ϑS2t+1 − (Λ2)

−1 ϑS2t + st+1 (41)

obtained by using Eq. (40) in Eq. (39) will be a linear solution of Eq. (38).By
coupling Eq. (37) with Eq. (41) expressed at time t, we obtainµ

XS1
F,t

XS2
F,t

¶
=

∙
0n1×n1 0n1×n2
0n2×n1 Λ−12

¸µ
XS1

F,t−1
XS2

F,t−1

¶
+

∙
In1 0n1×n2
0n2×n1 κ

¸µ
ϑS1t
ϑS2t

¶

−
∙
0n1×n1 0n1×n2
0n2×n1 Λ−12

¸µ
ϑS1t−1
ϑS2t−1

¶
+

µ
0n1×1
st

¶
which is equivalent to

XS
F,t = P

∙
0n1×n1 0n1×n2
0n2×n1 Λ−12

¸
P−1XS

F,t−1 + P

∙
In1 0n1×n2
0n2×n1 κ

¸
P−1Θ−1uRt

− P

∙
0n1×n1 0n1×n2
0n2×n1 Λ−12

¸
P−1Θ−1uRt−1 + Pζt (42)

where ζt := (0
0
n1×1, s

0
t)
0. Eq. (42) can be simplified in the expression

XS
F,t = Π(θ) XS

F,t−1 +M(θ, κ)Θ−1uRt −Π(θ)Θ−1uRt−1 + P (θ)ζt (43)

where the matrices Π(θ) and M(θ, κ) are defined as

Π(θ) := P

∙
0n1×n1 0n1×n2
0n2×n1 Λ−12

¸
P−1 (44)

M(θ, κ) := P

∙
In1 0n1×n2
0n2×n1 κ

¸
P−1. (45)

In terms of X̊F,t = (X
S0
F,t, 0

0
n×1)

0 and ůt := (uR0t , 00n×1)
0, the solutions in Eq. (43)

become µ
XS

F,t

0

¶
=

∙
Π(θ) 0n×n
0n×n 0n×n

¸µ
XS

F,t−1
0

¶
+

∙
M(θ, κ)Θ−1 0n×n

0n×n 0n×n

¸µ
uRt
0n×1

¶
−
∙
Π(θ)Θ−1 0n×n
0n×n 0n×n

¸µ
uRt−1
0n×1

¶
+

µ
τ t
0n×1

¶
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and for τ t := P (θ)ζt can be compacted in the expression

X̊F,t = Π̊X̊F,t−1 + M̊Ξ̊ůt − Π̊Ξ̊ůt−1 + ξ̊t (46)

where ξ̊t := (τ
0
t, 0

0
n×1)

0 and

Π̊ :=

∙
Π(θ) 0n×n
0n×n 0n×n

¸
, M̊ :=

∙
M(θ, κ) 0n×n
0n×n 0n×n

¸
, Ξ̊ :=

∙
Θ−1(θ) 0n×n
0n×n 0n×n

¸
.

By combining Eq. (46) with X̊B,t := Φ̊X̊t−1 one obtains

X̊t = (Π̊+ Φ̊)X̊t−1 − Π̊ Φ̊X̊t−2 + M̊ Ξ̊ ůt − Π̊Ξ̊ ůt−1 + ξ̊t (47)

and this system reads, using the lag operator, as

(I2n − Π̊L)(I2n − Φ̊L)X̊t = (M̊ − Π̊L)Ξ̊ ůt + ξ̊t. (48)

The first block of n equations of system (48) is given by

[In−Π(θ)L][In−Φ1(θ)L−Φ2(θ)L
2]Xt = [M(θ, κ)−Π(θ)L]Θ−1uRt + τ t. (49)

Since ηt := Xt−Et−1Xt :=M(θ, κ)Θ−1uRt + τ t; from the definition uRt := ut+
RΓfηt it follow that [In −M(θ, κ)Θ−1RΓf ]ηt =M(θ, κ)Θ−1ut + τ t; therefore,
using Assumption 3 it holds the relationship

ηt := V (θ, κ)[M(θ, κ)Θ−1ut + τ t] ≡M(θ, κ)Θ−1uRt + τ t (50)

where
V (θ, κ) := [In −M(θ, κ)Θ−1RΓf ]

−1. (51)

Write the right-hand side of system (49) as

MAt := [M(θ, κ)−Π(θ)L]Θ−1[ut +RΓfηt] + τ t

and use Eq. (50) obtaining

MAt := [M(θ, κ)−Π(θ)L]Θ−1[ut +RΓf
©
V (θ, κ)[M(θ, κ)Θ−1ut + τ t]

ª
] + τ t;

now, rearranging terms and using some algebra

MAt := [M(θ, κ)−Π(θ)L][Θ−1ut+Θ−1RΓfV (θ, κ)M(θ, κ)Θ−1ut+Θ−1RΓfV (θ, κ)τ t]+τ t

= [M(θ, κ)−Π(θ)L][In+Θ−1RΓfV (θ, κ)M(θ, κ)]Θ−1ut+[M(θ, κ)−Π(θ)L][Θ−1RΓfV (θ, κ)τ t]+τ t
= [M(θ, κ)−Π(θ)L]Ψ(θ, κ)ut + [M(θ, κ)−Π(θ)L][Θ−1RΓfV (θ, κ)τ t] + τ t.

By substituting the right-hand-side of system (49) with this expression for
MAt, Eq. (23) in the text is obtained. This completes the proof ¥.
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Proof of Corollary 1. If κ := In, from the definitions in Proposition 1,M(θ, κ) :=
In and Ṽ (θ, κ) := [In−Θ−1RΓf ]

−1. Given system (49), the relationship in Eq.

(50) collapses to
Ṽ (θ, κ)[Θ−1ut + τ t] ≡ Θ−1uRt + τ t

hence Θ−1uRt = Ṽ (θ, κ)Θ−1ut + [Ṽ (θ, κ)− In]τ t. By using the last expression,
system (49) can be written

[In −Π(θ)L][In − Φ1(θ)L− Φ2(θ)L
2]Xt = [In −Π(θ)L]Ṽ (θ, κ)Θ−1ut

+[In −Π(θ)L][Ṽ (θ, κ)− In]τ t + τ t

and since the polynomial [In−Π(θ)L] is invertible by construction, the model
can be represented as

[In−Φ1(θ)L−Φ2(θ)L2]Xt = Ṽ (θ, κ)Θ−1ut+[Ṽ (θ, κ)−In]τ t+[In−Π(θ)L]−1τ t.

Finally, Ṽ (θ, κ)Θ−1 := [In −Θ−1RΓf ]
−1Θ−1 := [Θ− RΓf ]

−1 := Υ−1(θ). This
completes the proof. ¥.

Proof of Corollary 2. (a) Since Γb := 0n×n, Φ̊ := 02n×2n ∈ F . Moreover, card(F) =
1 if c1 or c2 or both hold. Φ̊ := 02n×2n implies Φ1 := 0n×n =: Φ2, hence the
autoregressive polynomial of the reduced form collapses to In, and Θ(θ) :=
ΓR0 := (Γ0 +RΓf) := Θ∗ and Υ(θ) := (Θ∗ −RΓf) := (Γ0 +RΓf −RΓf) = Γ0,
respectively. By substituting these expressions into Eq. (22) the result is ob-
tained. (b) The result is obtained by replacing Θ with Θ∗ in the definition of
Ψ(θ, κ) and V (θ, κ) of Proposition 1. This completes the proof ¥.

Proof of Proposition 2. (a) By applying the vec operator to both sides of Eq.
(15) one gets

f(φ̃, θ) := vec(̊Γf Φ̊
2 − Γ̊0Φ̊+ Γ̊b) = 0a2×1 (52)

where the vector function f(·, ·) : A → Ra2 is defined in an open set A in

Ra2+m. We next define the function

f̃(φ̃, θ) := Kf(φ̃, θ)

where K is a d × a2 full row rank matrix which selects the sub-set of rela-
tionships that do not involve trivial identities from f(φ̃, θ). Observe that:
(i) f̃(φ̃0, θ0) = 0d×1; (ii) f̃(·, ·) is differentiable at (φ̃0, θ0); (iii) Assumption 4
ensures that φ̃ := 0d×1 is not consistent with Eq. (52); (iv) using Eq. (25),

J(φ̃, θ) :=
∂f̃(φ̃, θ)

∂φ̃
0 := K

∂f(φ̃, θ)

∂φ0
H1

= K
h
(Ia ⊗ Γ̊f)[(Φ̊

0 ⊗ Ia) + (Ia ⊗ Φ̊)]− (Ia ⊗ Γ̊0)
i
H1
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= K
h
(Ia ⊗ Γ̊f Φ̊)− (Ia ⊗ Γ̊0) + (Φ̊

0 ⊗ Γ̊f) = −[Ia ⊗ (̊Γ0 − Γ̊f Φ̊)] + (Φ̊
0 ⊗ Γ̊f)

i
H1

= −K[Ia ⊗ (̊Γ0 − Γ̊f Φ̊)]
n
Ia2 − [Ia ⊗ (̊Γ0 − Γ̊f Φ̊)]

−1(Φ̊0 ⊗ Γ̊f)
o
H1

= −K[Ia ⊗ Θ̊]
h
Ia2 − N̊

i
H1. (53)

We first prove that the condition in Eq. (30) is sufficient for local identifiability.

By the implicit function theorem, if the a2 × a2 matrix [Ia ⊗ Θ̊]
h
Ia2 − N̊

i
is

non-singular at (φ̃0, θ0), it is possible to derive from f̃(φ̃0, θ0) = 0d×1 the unique
mapping

φ̃ = g(θ) (54)

which holds for θ ∈ O(θ0) and φ̃ ∈ L(φ̃0), and such that rank[B(θ)] = m

for θ ∈ O(θ0), where B(θ) := ∂g(θ)
∂θ0 . Since the matrix [Ia ⊗ Θ̊] is non-singular

by Assumption 3, the validity of the rank condition in Eq. (30) is sufficient
for det J(φ̃0, θ0) 6= 0. To prove that the rank condition in Eq. (30) is also
necessary for identification, observe that if it exists a unique mapping between
reduced form and structural parameters in Eq. (54), then by the implicit
function theorem

B(θ)
d×m

:=
h
J(φ̃, θ)

i−1
d×d

× ∂f̃(φ̃, θ)

∂θ0
d×m

must have full column rank m. Therefore, if ∂f̃(φ̃,θ)
∂θ0 is proved to have full

column rank m, the result is obtained. Using the chain rule we have that

∂f̃(φ̃, θ)

∂θ0
:= K

∂f(φ̃, θ)

∂θ0
:= K

d×a2
× C1(φ̃)

a2×12n2
× C2

3a2×a2
× C3(θ)

a2×a2
× Q(θ)

a2×m

where

C1(φ̃) :=
∂f(φ, θ)

∂vec(̊Γ0 : Γ̊f : Γ̊b)0
, C2 :=

∂vec(̊Γ0 : Γ̊f : Γ̊b)

∂vec(ΓR0 : Γf : Γ
R
b,1 : Γ

R
b,2)

0

C3(θ) :=
∂vec(ΓR0 : Γf : Γ

R
b,1 : Γ

R
b,2)

∂vec(Γ)0
,

and by using standard derivative rules

C1(φ̃) :=
h
(Φ̊0)2 ⊗ I2n : −Φ̊0 ⊗ I2n : I2n

i
, C2 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In 0n×n 0n×n 0n×n
0n×n 0n×n 0n×n 0n×n
0n×n 0n×n 0n×n 0n×n
0n×n 0n×n 0n×n 0n×n
0n×n In 0n×n 0n×n
0n×n 0n×n 0n×n 0n×n
0n×n 0n×n 0n×n 0n×n
0n×n 0n×n 0n×n 0n×n
0n×n 0n×n In 0n×n
0n×n 0n×n 0n×n 0n×n
0n×n 0n×n 0n×n In

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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C3(θ) :=

⎡⎢⎢⎣
In2 (In ⊗R) 0n2×n2 0n2×n2
0n2×n2 In2 0n2×n2 0n2×n2
0n2×n2 (In ⊗R) In2 (Γ0f ⊗ In)
0n2×n2 0n2×n2 −(In ⊗R) −(Γ0b ⊗ In)

⎤⎥⎥⎦ .
It is evident that C1(φ̃0) and C3(θ0) have full row rank while C2 has full column
rank. It follows that the matrix ∂f̃(φ̃,θ)

∂θ0 has full-column rank m at (φ̃0, θ0). (b)
In the absence of the order condition m ≤ a2 the reduced form coefficients
could not be expressed as function of θ and the implicit function theorem
could not be applied. This completes the proof ¥.

Proof of Corollary 3. If θ̆ ∈ PD, r[S(θ̆)]<1 and, accordingly, r[G̊(θ̆)]<1 so that
r[Φ̊(θ̆) ⊗ G̊(θ̆)]<1 and then the rank condition in Eq. (30) is satisfied. This
completes the proof ¥.
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