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Abstract

We prove a Carleson type estimate, in Lipschitz type domains, for non-negative
solutions to a class of second order degenerate differential operators of Kol-
mogorov type of the form

L =
m∑

i,j=1

ai,j(z)∂xixj +
m∑
i=1

ai(z)∂xi +
N∑

i,j=1

bi,jxi∂xj − ∂t,

where z = (x, t) ∈ RN+1, 1 ≤ m ≤ N . Our estimate is scale-invariant and
generalizes previous results valid for second order uniformly parabolic equations
to the class of operators considered.
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1 Introduction

In this paper we prove a Carleson type estimate for non-negative solutions to a general
class of hypoelliptic ultraparabolic operators. Specifically, we consider Kolmogorov
operators of the form

L =
m∑

i,j=1

ai,j(z)∂xixj +
m∑
i=1

ai(z)∂xi +
N∑

i,j=1

bi,jxi∂xj − ∂t, (1.1)

where z = (x, t) ∈ RN × R, 1 ≤ m ≤ N , the coefficients ai,j and ai are bounded
continuous functions and B = (bi,j)i,j=1,...,N is a matrix of real constants. The main
motivation for our research is our long-term goal to establish a regularity theory for
the free boundaries occurring in the obstacle problem{

max
{
L u, ϕ− u

}
= 0, in RN× ]0, T [,

u(x, 0) = ϕ(x, 0), for any x ∈ RN ,

considered by Di Francesco, Pascucci and Polidoro in [10]. In [21] and [32] Frentz,
Nyström, Pascucci and Polidoro proved optimal regularity properties of the solution
to the obstacle problem, for smooth as well as non-smooth obstacles. Up to date, the
only known results about boundary regularity for non-negative solutions to Kolmogorov
operators have been proved by the authors in [6], see also [7].

Our long-term goal is to establish a boundary regularity theory for Kolmogorov
operators. Estimates concerning boundary behaviour are of obvious independent in-
terest from the theoretical point of view. Furthermore, the regularity properties of the
Kolmogorov equations on RN+1 depend strongly on a geometric Lie group structure.
The extension of the methods used in the Euclidean setting to the Lie group geom-
etry related to Kolmogorov equations is far from trivial. For results concerning the
boundary behaviour of non-negative solutions and obstacle problems in different, but
still subelliptic settings, we refer to the works by Frentz, Garofalo, Götmark, Munive
and Nyström [20], Capogna, Garofalo and Nhieu [4], [5], Franchi and Ferrari [19], [18],
Danielli, Garofalo and Salsa [9], Danielli, Garofalo and Petrosyan [8].

We next list our structural assumptions on the operator L defined in (1.1).

[H.1] The matrix A0(z) = (ai,j(z))i,j=1,...,m is symmetric and uniformly positive defi-
nite in Rm: there exists a positive constant λ such that

λ−1|ξ|2 ≤
m∑

i,j=1

ai,j(z)ξiξj ≤ λ|ξ|2, ∀ ξ ∈ Rm, z ∈ RN+1.

The matrix B = (bi,j)i,j=1,...,N has real constant entries.
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[H.2] The constant coefficients operator

K =
m∑

i,j=1

ai,j∂xixj +
N∑

i,j=1

bi,jxi∂xj − ∂t (1.2)

is hypoelliptic, i.e. every distributional solution of K u = f is a smooth classi-
cal solution, whenever f is smooth. Here A0 = (ai,j)i,j=1,...,m is any constant,
symmetric and strictly positive matrix.

[H.3] The coefficients ai,j(z) and ai(z) are bounded functions belonging to the Hölder
space C0,α

K (RN+1), α ∈ ]0, 1], defined in (2.6) below.

Note that we can choose A0 in [H.2] as the m×m identity matrix. In our setting, K
plays the same role as the heat operator does in the framework of uniformly parabolic
pdes. We also note that the operator K can be written as

K =
m∑
i=1

X2
i + Y,

where

Xi =
m∑
j=1

āi,j∂xj , i = 1, . . . ,m, Y = 〈x,B∇〉 − ∂t, (1.3)

and where āi,j’s are the entries of the unique positive matrix Ā0 such that A0 = Ā2
0.

Recall that the hypothesis [H.2] is equivalent to the Hörmander condition [24],

rank Lie (X1, . . . , Xm, Y ) (z) = N + 1, ∀ z ∈ RN+1. (1.4)

It is well-known that the natural framework to study operators satisfying a Hörmander
condition is the analysis on Lie groups. The relevant Lie group related to the operator
K in (1.2) is defined using the group law

(x, t) ◦ (ξ, τ) = (ξ + exp(−τBT )x, t+ τ), (x, t), (ξ, τ) ∈ RN+1. (1.5)

In particular, the vector fields X1, . . . , Xm and Y are left-invariant, with respect to the
group law (1.5), in the sense that

Xj (u(ζ ◦ · )) = (Xju) (ζ ◦ · ), j = 1, . . . ,m, Y (u(ζ ◦ · )) = (Y u) (ζ ◦ · ), (1.6)

for every ζ ∈ RN+1 (hence K (u(ζ ◦ · )) = (K u) (ζ ◦ · )). It is also known that [H.2]
is equivalent to the following structural assumption on B [28]: there exists a basis for
RN such that the matrix B has the form

∗ B1 0 · · · 0
∗ ∗ B2 · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · Bκ

∗ ∗ ∗ · · · ∗

 (1.7)
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where Bj is a mj−1 ×mj matrix of rank mj for j ∈ {1, . . . , κ}, 1 ≤ mκ ≤ . . . ≤ m1 ≤
m0 = m and m+m1+. . .+mκ = N , while ∗ represents arbitrary matrices with constant
entries. Based on (1.7), we introduce the family of dilations (δr)r>0 on RN+1 defined
by

δr = (Dr, r
2) = diag(rIm, r

3Im1 , . . . , r
2κ+1Imκ , r

2), (1.8)

where Ik, k ∈ N, is the k-dimensional unit matrix. To simplify our presentation, we
will also assume the following technical condition.

[H.4] The operator K in (1.2) is δr-homogeneous of degree two, i.e.

K ◦ δr = r2(δr◦K ), ∀ r > 0.

We explicitly remark that [H.4] is satisfied if (and only if) all the blocks denoted by ∗
in (1.7) are null (see [28]). Moreover we set

q = m+ 3m1 + . . .+ (2κ+ 1)mκ,

and we say that q + 2 is the homogeneous dimension of RN+1 with respect to the
dilations group (δr)r>0.

Consider the boundary value problem{
L u = 0 in Ω,

u = ϕ in ∂Ω,
(1.9)

where Ω is any open subset of RN+1 and ϕ ∈ C(∂Ω). Using the Perron-Wiener-Brelot
method, the existence of a solution to this problem can be established. However, it is
well known that the boundary value ϕ is not necessarily attained at every point of ∂Ω.
In the sequel, uϕ will denote the solution to (1.9), and we set

∂KΩ =
{
z ∈ ∂Ω | lim

w→z
uϕ(w) = ϕ(z) for any ϕ ∈ C(∂Ω)

}
. (1.10)

We refer to ∂KΩ as the regular boundary of Ω with respect to the operator L . We recall
that Manfredini in [30, Proposition 6.1] gives sufficient conditions for the regularity of
the boundary points. Recall that a vector ν ∈ RN+1 is an outer normal to Ω at z ∈ ∂Ω
if there exists a positive r such that B(z + rν, r) ∩ Ω = ∅. Here B(z + rν, r) denotes
the Euclidean ball in RN+1 with center at z + rν and radius r. Then, in consistency
with Fichera’s classification, sufficient conditions for the regularity are expressed in
geometric terms, and read as follows. If z ∈ ∂Ω and ν = (ν1, ..., νN+1) is an outer
normal to Ω at z, then the following holds.

(a) If (ν1, . . . , νm) 6= 0, then z ∈ ∂KΩ,

(b) if (ν1, . . . , νm) = 0 and 〈Y (z), ν〉 > 0, then z ∈ ∂KΩ,

(c) if (ν1, . . . , νm) = 0 and 〈Y (z), ν〉 < 0, then z 6∈ ∂KΩ,

(1.11)
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where Y is the vector field defined in (1.3). As an example, we consider the simplest
Kolmogorov operator ∂2

x1
+ x1∂x2 − ∂t in the set Ω =] − 1, 1[×] − 1, 1[×] − 1, 0[⊂ R3.

Then Y (x, t) = (0, x1,−1), and it is easy to see that

(a) is satisfied by all the points of the set {−1, 1}×]− 1, 1[×]− 1, 0[,

(b) is satisfied by all the points of the set ]− 1, 1[×]− 1, 1[×{−1} ∪
∪ ]0, 1[×{1}×]− 1, 0[ ∪ ]− 1, 0[×{−1}×]− 1, 0[,

(c) is satisfied by all the points of the set ]− 1, 1[×]− 1, 1[×{0} ∪
∪ ]0, 1[×{−1}×]− 1, 0[ ∪ ]− 1, 0[×{1}×]− 1, 0[.

Condition (a) can be equivalently expressed in terms of the vector fields Xj’s as follows:
〈Xj(z), ν〉 6= 0 for some j = 1, . . . ,m. If this condition holds, in the literature z is often
referred to as a non characteristic point for the operator L . A more refined sufficient
condition for the regularity of the boundary points of ∂Ω is given in [30, Theorem
6.3] in terms of an exterior cone condition and that condition will be used here (see
Definition 4.1 below).

In [6, Theorem 1.2] we proved a Carleson type estimate for non-negative solutions
u to L u = 0 assuming that u vanishes continuously on some open subset Σ of ∂Ω.
Furthermore, in [6, Proposition 1.4] we gave an application of [6, Theorem 1.2], assum-
ing that Σ is a N -dimensional C1-manifold satisfying either condition (a) or condition
(b) in (1.11). The purpose of this paper is to improve on these results by relaxing the
regularity assumptions on Σ. Specifically, in this paper we assume that Σ is locally a
LipK surface, where LipK is a notion of Lipschitz regularity suitably defined in terms
of the dilations (1.8) and introduced in the bulk of the paper. We also improve on
[6, Theorem 1.2] since our main result, which is stated below, is scale invariant in the
sense that (x̃, t̃), C and c do not depend on r ∈ ]0, r0]. In the following we refer to
Definition 2.1 for the meaning of LipK surfaces, and to (2.9), (2.10) for the definition
of the cube QM,r(x0, t0).

The main result proved in this paper reads as follows.

Theorem 1.1 Let Ω be an open subset of RN+1, and let Σ ⊂ ∂Ω be a compact LipK
surface with constants M and r0. Then there exist two positive constants C, c, depend-
ing only on L and M , such that

sup
QM,cr(x0,t0)∩Ω

u(x, t) ≤ C u
(
A+
r (x0, t0)

)
, A+

r (x0, t0) = (x0, t0) ◦ δr(x̃, t̃),

for any (x0, t0) ∈ Σ, for every non-negative solution u to L u = 0 in Ω vanishing
continuously on QM,r(x0, t0)∩ ∂Ω, and for every r ∈ ]0, r0]. Here (x̃, t̃) ∈ RN+1 is such
that

‖(x̃, t̃)‖K ≤ C, dK
(
A+
r (x0, t0), ∂Ω

)
≥ cr,

for every r ∈ ]0, r0[.
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To put Theorem 1.1 in the context of the existing literature devoted to boundary
estimates for second order elliptic and parabolic operators, we here briefly discuss
previous results valid for uniformly parabolic operators of the form

L =
N∑

i,j=1

aij(x, t)∂xixj − ∂t, (x, t) ∈ RN+1, (1.12)

where the matrix (ai,j(x, t)) satisfies [H.1] with m = N . The study of the boundary be-
havior of non-negative solutions to non-divergence form uniformly parabolic equations
Lu = 0, as well as the associated L-parabolic measure, has a long history. We quote
the papers by Fabes and Kenig [14], Fabes and Stroock [17], Garofalo [22], Krylov and
Safonov [27], leading up to the results of Fabes, Safonov and Yuan in [16] and [33].
The corresponding developments for second order parabolic operators in divergence
form are treated by Fabes, Garofalo and Salsa [13], Fabes and Safonov [15], Nyström
[31]. We refer to Bauman [1], Caffarelli, Fabes, Mortola and Salsa [2], Fabes, Garo-
falo, Marin-Malave and Salsa [12], and Jerison and Kenig [25] for both divergence and
non-divergence form elliptic operators. Finally, we also note that second order elliptic
and parabolic operators in divergence form with singular lower order terms have been
studied by Kenig and Pipher [26] and by Hofmann and Lewis [23]. Today the bound-
ary regularity theory in the setting of uniformly elliptic and parabolic operators has
reached a quite advanced level.

A natural geometrical setting for the uniformly parabolic operators in (1.12) is that
of Lip(1, 1/2) domains which we next introduce. We fix a j ∈

{
1, . . . , N

}
, we let

x′ = xj and we let x′′ denote the remaining N − 1 coordinates of any x ∈ RN . We
also let e′ be the j-th vector of the canonical basis of RN , and we say that a function
f : RN−1× R→ R is Lip(1, 1/2), with respect to xj, if

|f(x′′, t)− f(ξ′′, τ)| ≤M
(
|x′′ − ξ′′|+ |t− τ |

1
2

)
, (1.13)

for any (x′′, t), (ξ′′, τ) ∈ RN−1 ×R, and for some positive constant M . For any (x, t) ∈
RN+1 and r > 0 we set Cr(x, t) = B(x, r)× ]t−r2, t+r2[. Let T be a positive number, let
Ω ⊂ RN+1 be a bounded domain. Let ΩT = Ω∩ (RN× [0, T ]), ST = ∂Ω∩ (RN× ]0, T [),
and ∆(x, t, r) = ST ∩ Cr(x, t). Let z = (x′, x′′, t) ∈ ST , with x′ = xj for some j ∈
{1, . . . , N}. If there exist rz > 0 and a Lip(1,1/2) function f with constant Mz, such
that

ΩT ∩ Crz(z) =
{

(ξ, τ) ∈ RN× [0, T ] | ξ′ > f(ξ′′, τ)
}
∩ Crz(z),

ST ∩ Crz(z) =
{

(ξ, τ) ∈ RN× [0, T ] | ξ′ = f(ξ′′, τ)
}
∩ Crz(z),

(1.14)

then we say that ST ∩Crz(z) is Lip(1,1/2) surface, with constant Mz. If ST is covered
by a finite set of cylinders

{
Crzi (zi)

}
, with zi ∈ ST , rzi > 0, we set M = maxiMzi and

r0 = mini rzi , and we say that ΩT is a Lip(1,1/2) domain with constants M and r0.
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Let ΩT be a Lip(1,1/2) domain with constants M and r0, let (x0, t0) be any point
on ST . For every r ∈ ]0, r0[ with t0 + r2 < T , let A+

r (x0, t0) = (x0 + 2Mre′, t0 + r2) ∈ Ω.
Then

M−1r ≤ dP
(
A+
r (x0, t0), ST

)
, and dP

(
A+
r (x0, t0), (x0, t0)

)
< r,

where dP denotes the standard parabolic distance function, dP ((x, t), (y, s)) = |x−y|+
|t− s| 12 for any (x, t), (y, s) ∈ RN+1.

The following theorem is essentially due to Salsa, see [34, Theorem 3.1].

Let ΩT ⊂ RN+1 be a Lip(1,1/2) domain with constants M and r0, let (x0, t0) ∈ ST and
assume that r < min{r0/2,

√
(T − t0)/4,

√
t0/4}. Let u be a non-negative solution to

Lu = 0 in ΩT ∩ C2r(x0, t0) and assume that u vanishes continuously on ∆(x0, t0, 2r).
Then there exists a constant c = c(L,M, r0), 1 ≤ c <∞, such that

u(x, t) ≤ c u(A+
r (x0, t0))

whenever (x, t) ∈ ΩT ∩ Cr/c(x0, t0).

While Salsa proved this theorem in the setting of time-independent Lipschitz cylin-
ders, the proof goes through essentially unchanged in the more general setting of
Lip(1,1/2) domains. This estimate is often referred to as a Carleson-type estimate,
since this type of estimate first occurs in a paper by Carleson [3] on Fatou-type theo-
rems for harmonic functions. Note that Theorem 1.1 is a generalization of this theorem.
Indeed, in the Euclidean case we have (x0, t0) ◦ δr(x̃, t̃) = (x0 + rx̃, t0 + r2t̃), and we
can choose (x̃, t̃) = (2Me′, 1) to recover the statement above. Furthermore, in the
Euclidean case the notion of LipK surfaces introduced in Definition 2.1 below coincides
with the notion of Lip(1, 1/2) surfaces.

Returning to operators of Kolmogorov type L , we note that if Σ is a smooth sub-
set of ∂Ω which is non-characteristic with respect to L according to (a) in Fichera’s
classification (1.11), then Σ is LipK . If we require less regularity on Σ, we may con-
sider a surface Σ ⊂ ∂Ω which locally agrees with the graph {xj = f(x′′, t)} for some
Lip(1, 1/2) function f . In Proposition 2.2 below we prove that in this case Σ is also a
LipK surface. Hence Proposition 2.2 provides us with a simple sufficient condition for
the LipK regularity. We also note that since L may be strongly degenerate, it is pos-
sible that a wide part Σ of the boundary of a given open set Ω is characteristic and in
this case (b) in (1.11) is of interest. Indeed, when (b) is satisfied in some neighborhood
W ∩Σ of a point z0 ∈ ∂Ω, then W ∩Σ can be characterized as t = g(x), where g does
not depend on (x1, . . . , xm). In this case, we in Proposition 2.4 below give a statement
analogous to Theorem 1.1. Note that, in the case of uniformly parabolic operators, it
turns out that (b) is satisfied only by the lower basis of a cylinder.

The rest of the paper is organized as follows. Section 2 contains the definitions of
LipK functions and LipK surfaces, and the statement of the key propositions established
in order to prove our main result, Theorem 1.1. Section 3 is of preliminary nature and
we here collect some notions and we state a few results concerning the interior Harnack
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inequality. In Section 4 we prove a few basic boundary estimates for non-negative
solutions to L u = 0 near LipK surfaces. Section 5 is devoted to the proof of Theorem
1.1, and to the proof of the propositions stated in Section 2.

Acknowledgment We thank E. Lanconelli, F. Ferrari and S. Salsa for their interest
in our work.

2 LipK surfaces and statement of key propositions

In the sequel we will write the dilation (1.8) in the following form

δr = diag(rα1 , . . . , rαN , r2) (2.1)

where we set α1 = . . . = αm= 1, and αm+m1+···+mj−1+1 = . . . = αm+m1+···+mj+1 = 2j+1
for j = 1, . . . , κ. According to (1.8), we split the coordinate x ∈ RN as

x =
(
x(0), x(1), . . . , x(κ)

)
, x(0)∈ Rm, x(j)∈ Rmj , j ∈ {1, . . . , κ}, (2.2)

and we define

|x|K =
κ∑
j=0

∣∣x(j)
∣∣ 1

2j+1 , ‖(x, t)‖K = |x|K+ |t|
1
2 .

Note that ‖δrz‖K = r‖z‖K for every r > 0 and z ∈ RN+1. We recall the following
pseudo-triangular inequality: there exists a positive constant c such that

‖z−1‖K ≤ c‖z‖K , ‖z ◦ ζ‖K ≤ c(‖z‖K + ‖ζ‖K), z, ζ ∈ RN+1. (2.3)

We also define the quasi-distance dK by setting

dK(z, ζ) := ‖ζ−1 ◦ z‖K , z, ζ ∈ RN+1, (2.4)

and the ball
BK(z0, r) := {z ∈ RN+1 | dK(z, z0) < r}. (2.5)

Note that from (2.3) it directly follows

dK(z, ζ) ≤ c(dK(z, w) + dK(w, ζ)), z, ζ, w ∈ RN+1.

For any z ∈ RN+1 and H ⊂ RN+1, we define

dK(z,H) := inf{dK(z, ζ) | ζ ∈ H}.

We say that a function f : Ω→ R is Hölder continuous of exponent α ∈]0, 1], in short
f ∈ C0,α

K (Ω), if there exists a positive constant C such that

|f(z)− f(ζ)| ≤ C dK(z, ζ)α, for every z, ζ ∈ Ω. (2.6)
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We next define LipK functions and LipK surfaces. For any given x ∈ RN we set

x′ = x1 and x′′ = (x2, . . . , xN) . (2.7)

Moreover, using the notation in (2.2) we also let x
(0)
′ = x1 = x′, and we let x

(0)
′′ =

(x2, . . . , xm). Using this notation, we define the norm

‖(x′′, t)‖′′K =
∣∣x(0)
′′
∣∣+

κ∑
j=1

∣∣x(j)
∣∣ 1

2j+1 + |t|
1
2 (2.8)

in RN−1× R. Recalling (1.8), we let

D′′r = diag
(
rIm−1, r

3Im1 , . . . , r
2κ+1Imκ

)
,

so that D′′rx
′′ = (Drx)′′, while (Drx)′ = rx′. Note that ‖(D′′rx′′, r2t)‖′′K = r‖(x′′, t)‖′′K

for every r > 0 and (x′′, t) ∈ RN−1× R. Using the notation in (2.1) we set, for any
positive r1, r2, r3,

Qr1,r2,r3 = {(x, t) ∈ RN+1 | |x′| ≤ r1, |xi| ≤ rαi2 for any i = 2, . . . , N, |t| ≤ r2
3},

Q′′r2,r3 = {(x′′, t) ∈ RN−1× R | |xi| ≤ rαi2 for any i = 2, . . . , N, |t| ≤ r2
3},

(2.9)

and, for any positive M and r and any arbitrary point z0 ∈ RN+1, we define

QM,r = Q4Mr,r,
√

2r, Q′′r = Q′′
r,
√

2r
, QM,r(z0) = z0 ◦QM,r. (2.10)

Note that QM,r = δrQM,1 and Q′′r = D′′rQ
′′
1 for every r > 0. Moreover, the continuity

of the group law (1.5) implies that there exists ε = ε(L ,M) ∈ ]0, 1[ such that

(x, t) ◦ (ξ, τ) ∈ QM,r ∀ (ξ, τ) ∈ QM,εr, ∀ (x, t) ∈ QM, r
2
. (2.11)

Furthermore, for every positive M , there exist two positive constants c′M , c
′′
M such that

BK(z0, c
′
Mr) ⊆ QM,r(z0) ⊆ BK(z0, c

′′
Mr), (2.12)

for every z0 ∈ RN+1 and r > 0.
Let e′ ∈ Rm be such that ‖e′‖ = 1. Since the form of the matrix B in (1.7)

remains invariant under rotation in the first m variables it is not restrictive to assume
e′ = e1 = (1, 0, . . . , 0). Given any open set Ω′′ ⊂ RN−1× R, we say that f : Ω′′ → R is
a LipK function with respect to e′, if x′ = x1 and∣∣f((x+ exp(−tBT )x0

)′′
, t+ t0

)
− f(x′′0, t0)

∣∣ ≤M ‖(x′′, t)‖′′K , (2.13)

for every (x′′0, t0) ∈ Ω′′, and (x′′, t) ∈ RN−1× R such that
((
x + exp(−tBT )x0

)′′
, t +

t0
)
∈ Ω′′, x′0 = f(x′′0, t0). Note that we can assume, without loss of generality, that
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(x0, t0) = (0, 0) and f(0, 0) = 0. Indeed, if necessary, it is enough to set g(x′′, t) =
f
((
x+ exp(−tBT )x0

)′′
, t+ t0

)
− f(x′′0, t0). Equivalently, f : Ω′′ → R is LipK if∣∣f(x′′, t)− f(ξ′′, τ)
∣∣ ≤M

∥∥((x− exp((τ − t)BT )ξ
)′′
, t− τ

)∥∥′′
K
, (2.14)

for every (x′′, t), (ξ′′, τ) ∈ Ω′′, x′ = f(x′′, t), ξ′ = f(ξ′′, τ). Given f as above with
f(0, 0) = 0 and M, r > 0, we define

Ωf,r = {(x, t) ∈ QM,r | f(x′′, t) < x′}, ∆f,r = {(x, t) ∈ QM,r | f(x′′, t) = x′}. (2.15)

Note that, according to the dilations δr and D′′r , we have

Ωf,r = δrΩfr,1, ∆f,r = δr∆fr,1,

where fr(x
′′, t) = r−1f(D′′rx

′′, r2t). We point out that if f is a LipK function, then so
is fr. Indeed, as the norm ‖ · ‖′′K is (D′′r , r

2)-homogeneous, we have∣∣fr(y′′, s)− fr(x′′0, t0)
∣∣ ≤M

∥∥((y − exp((t0 − s)BT )x0

)′′
, s− t0

)∥∥′′
K
,

for every (y′′, s), (x′′0, t0) ∈ (D′′r , r
2)−1Ω′′ and r > 0. Finally, we let

Ωf,r(z0) = z0 ◦ Ωf,r, ∆f,r(z0) = z0 ◦∆f,r, z0 ∈ RN+1.

Definition 2.1 Let Ω ⊂ RN+1 be a bounded domain. We say that Σ ⊂ ∂Ω is a LipK
surface with constants M = max{M1, . . . ,Mk} and r0 = min{r1, . . . , rk} if, for any
j = 1, . . . , k, there exists a point zj ∈ Σ, and a LipK function fj : Q′′2rj → R defined
with respect to a suitable e′j ∈ Rm and with Lipschitz constant Mj, such that

Σ ⊂
k⋃
j=1

∆fj ,rj(zj), Σ ∩QMj ,2rj(zj) = ∆fj ,2rj(zj) Ω ∩QMj ,2rj(zj) = Ωfj ,2rj(zj).

Recall the definition of Lip(1, 1/2) functions given in (1.13). For the proof of the
following proposition we refer to Section 5.

Proposition 2.2 Let Ω ⊂ RN+1 be a bounded domain. If Σ ⊂ ∂Ω locally agrees with
the graph {xj = f(x′′, t)} of some Lip(1, 1/2) function f , j ∈ {1, . . . ,m}, then Σ is a
LipK surface.

The following proposition plays a key role in the proof of Theorem 1.1 and will be
proved in Section 5.

Proposition 2.3 Let Q′′r be as in (2.10) with r ∈ ]0, 1]. Let f : Q′′r → R be a LipK
function such that f(0, 0) = 0. Then there exist a point (x̃, t̃) ∈ RN+1 and two positive
constants C, c, depending only on L and M , such that

sup
Ωf,cr(x0,t0)

u(x, t) ≤ C u
(
A+
r (x0, t0)

)
, A+

r (x0, t0) = (x0, t0) ◦ δr(x̃, t̃),

for every positive solution u to L u = 0 in Ωf,r(x0, t0) vanishing continuously on
∆f,r(x0, t0).
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We next formulate two versions of Proposition 2.3 which apply to characteristic
boundary points with respect to L . In particular, Proposition 2.4 below applies to a
cylinder Ω̃g,r(z0) = z0 ◦ Ω̃g,r obtained by using the operation “◦”, while in Proposition
2.5 the operation “◦” does not appear. Note that, in the latter case, the Lipschitz
constant M of the function g depends on the cylinder. To proceed, let

Q̃r =
{(
x(1), . . . , x(κ)

)
∈ RN−m | |x(j)| ≤ r

1
2j+1 , j = 1, . . . , κ

}
. (2.16)

Let g : Q̃r → R be a Lipschitz function in the classical sense, with Lipschitz constant
M , i.e.

|g
(
x(1), . . . , x(κ)

)
− g

(
y(1), . . . , y(κ)

)
| ≤M(|x(1) − y(1)|+ ....+ |x(κ) − y(κ)|) (2.17)

whenever
(
x(1), . . . , x(κ)

)
,
(
y(1), . . . , y(κ)

)
∈ Q̃r. Furthermore, assume g(0) = 0. Then,

for positive r and z0 ∈ RN+1, we define

Ω̃g,r =
{

(x, t) ∈ Qr,r,Mr | t > g
(
x(1), . . . , x(κ)

)}
,

∆̃g,r =
{

(x, t) ∈ Qr,r,Mr | t = g
(
x(1), . . . , x(κ)

)}
,

Ω̃g,r(z0) = z0 ◦ Ω̃g,r, ∆̃g,r(z0) = z0 ◦ ∆̃g,r.

(2.18)

Proposition 2.4 Let Q̃r be as in (2.16) with r ∈ ]0, 1]. Let g : Q̃r → R be a Lipschitz
function with Lipschitz constant M such that g(0) = 0. Then there exist three positive
constants C, c and t̃, depending only on L and M , such that

sup
Ω̃g,cr(x0,t0)

u(x, t) ≤ C u
(
A+
r (x0, t0)

)
, A+

r (x0, t0) = (x0, t0) ◦ (0, r2t̃),

for every positive solution u to L u = 0 in Ω̃g,r(x0, t0) vanishing continuously on

∆̃g,r(x0, t0).

Let Q be a bounded set of RN , and let g : Q → R be a Lipschitz function, which
does not depend on x1, . . . , xm, with constant M , i.e. g(x) = g

(
x(1), . . . , x(κ)

)
. Letting

g(x0) = t0 for some x0 ∈ Q, and cQ = supx∈Q |x− x0|, we define

Ω̃g =
{

(x, t) ∈ RN+1 | x ∈ Q, g(x) < t ≤ t0 +McQ
}
,

∆̃g =
{

(x, t) ∈ RN+1 | x ∈ Q, t = g(x)
}
.

Proposition 2.5 Let x0 ∈ RN , let Q be a bounded neighborhood of x0, and let M
be a positive constant such that M supx∈Q ‖BTx‖ < 1. Let g : Q → R be a Lipschitz
function, which does not depend on x1, . . . , xm, with constant M and let t0 = g(x0).
Then there exist three positive constants C, r and t̃, only depending on L and Q, such
that

sup
Ω̃g∩BK((x0,t0),r)

u(x, t) ≤ C u
(
A+
r (x0, t0)

)
, A+

r (x0, t0) = (x0, t0) ◦ (0, r2t̃),

for every positive solution u to L u = 0 in Ω̃g vanishing continuously on ∆̃g.

The proofs of Proposition 2.4 and Proposition 2.5 are given in Section 5.
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3 Interior Harnack inequalities

We say that a path γ : [0, T ] → RN+1 is L -admissible if it is absolutely continuous
and satisfies

γ′(s) =
m∑
j=1

ωj(s)Xj(γ(s)) + λ(s)Y (γ(s)), for a.e. s ∈ [0, T ], (3.1)

where ω = (ω1, . . . , ωm) ∈ L2([0, T ],Rm), and λ is a strictly positive measurable func-
tion. We say that γ steers z0 to z if γ(0) = z0 and γ(T ) = z. Concerning the problem
of the existence of admissible paths, we recall that it is a controllability problem, and
that [H.2] is equivalent to the following Kalman condition:

rank
(
Ā BTĀ · · ·

(
BT
)N−1

Ā
)

= N. (3.2)

Here Ā is the N ×N matrix defined by(
Ā0 0
0 0

)
and Ā0 is the m × m constant matrix introduced in (1.3). We recall that (3.2) is a
sufficient condition for the global controllability of (3.1), i.e. the property that any point
z0 = (x0, t0) ∈ RN+1 can be connected to any z = (x, t) ∈ RN+1 with t < t0 by an
L -admissible path (see [29], Theorem 5, p. 81). In the sequel we let

Az0(Ω) =
{
z ∈ Ω | there exists an L -admissible γ : [0, T ]→ Ω connecting z0 to z

}
,

(3.3)
and we define Az0 = Az0(Ω) = Az0(Ω) as the closure (in RN+1) of Az0(Ω). We will
refer to the set Az0 as the attainable set.

We next recall a Harnack type inequality which is stated in terms of L -admissible
paths and attainable sets.

Theorem 3.1 (Theorem 2.4 in [6]) Let L be an operator in the form (1.1), sat-
isfying assumptions [H.1-3]. Let Ω be an open subset of RN+1 and let z0 ∈ Ω. For
every compact set H ⊆ Int(Az0), there exists a positive constant CH , only dependent
on Ω, z0, H and on the operator L , such that

sup
H
u ≤ CH u(z0),

for every non-negative solution u of L u = 0 in Ω.

The following Proposition 3.2 is a consequence of [11, Theorem 1.2] and [11, Lemma
6.2]. We give here a simple proof based on our Theorem 3.1. For any positive r, β and
(x0, t0) ∈ RN+1, according to notation (2.9) we set

Q−r = Qr,r,r ∩
{

(x, t) ∈ RN+1 | t < 0
}
, Q−r (x0, t0) = (x0, t0) ◦Q−r ,

Kβr = Qβr,βr,r ∩
{

(x, t) ∈ RN+1 | t = −r2/2
}
, Kβr(x0, t0) = (x0, t0) ◦Kβr.

(3.4)
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Proposition 3.2 Let γ be an L -admissible path satisfying γ(0) = (x0, t0). There
exist two positive constants h and C such that∫ s

0

|ω(τ)|2dτ ≤ h ⇒ u(γ(s)) ≤ C u(x0, t0),

for every non-negative solution u of L u = 0 in Q−1 (x0, t0) and s ∈ ]0, 1/2].

Proof. We first claim that there exists β ∈ ]0, 1[ such that Kβr(x0, t0) is contained in
Int
(
A(x0,t0)(Q

−
r (x0, t0))

)
. To check the above statement, it is sufficient to consider the

case (x0, t0) = (0, 0) and r = 1. We first note that, as ω1 ≡ 0, . . . , ωm ≡ 0, we have
γ(s) = (0,−s), then (0,−1/2) ∈ A(0,0)(Q

−
1 ). To prove that (0,−1/2) is an interior

point of A(0,0)(Q
−
1 ), we recall that the system

γ′(s) =
m∑
j=1

ωj(s)Xj(γ(s)) + Y (γ(s)), γ(0) = (0, 0), (3.5)

is globally controllable, by (3.2). Then, as ω varies in a neighborhood of the vector
0 ∈ L2([0, T ],Rm), the image of the map ω 7→ γ(T ) covers a neighborhood of (0,−1/2),
and γ(s) ∈ Q−1 for every s ∈ [0, T ]. This proves the claim.

Let β be as above. By Theorem 3.1, there exists a positive constant Cβ such that

sup
Kβr(x0,t0)

u ≤ Cβ u(x0, t0), (3.6)

for every non-negative solution u of L u = 0 in Q−1 (x0, t0) and for any r ∈]0, 1]. Finally,
a plain application of the Hölder inequality shows that

γ(s) ∈ Kβr(x0, t0) whenever s ∈ ]0, 1/2] satisfies

∫ s

0

|ω(τ)|2dτ ≤ h, (3.7)

for a suitable constant h. We refer to [11, Lemma 6.2] for more details. The conclusion
of the proof easily follows from (3.7) and (3.6). �

4 Basic boundary estimates

We first introduce a family of cones defined in terms of the dilation δλ and the transla-
tion “◦”. For any given z0 ∈ RN+1, x̄ ∈ RN , t̄ ∈ R+, we consider an open neighborhood
U ⊂ RN of x̄, and we denote by Z−x̄,t̄,U(z0) and Z+

x̄,t̄,U(z0) the following tusk-shaped sets

Z−x̄,t̄,U(z0) =
{
z0 ◦ δs(x,−t̄) | x ∈ U, 0 < s ≤ 1

}
,

Z+
x̄,t̄,U(z0) =

{
z0 ◦ δs(x, t̄) | x ∈ U, 0 < s ≤ 1

}
.

(4.1)

In the sequel, aiming to simplify the notations, we will often write Z±(z0) instead of
Z±x̄,t̄,U(z0) if the choice of x̄, t̄, U is clear from the context. Note that Z−(z0) and Z+(z0)

are cones with the same vertex at z0 = (x0, t0), while the basis of Z−(z0) is at the time
level t0 − t̄ < t0, and the basis of Z+(z0) is at the time level t0 + t̄ > t0.
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Definition 4.1 Let Ω be an open subset of RN+1 and let Σ ⊂ ∂Ω.

(i) We say that Σ satisfies an uniform exterior cone condition if there exist x̄ ∈
RN , t̄ > 0 and an open neighborhood U ⊆ RN of x̄ such that

Z−(z0) ∩ Ω = ∅ for every z0 ∈ Σ,

where Z−(z0) = Z−x̄,t̄,U(z0).

(ii) We say that Σ satisfies an uniform interior cone condition if there exist x̄ ∈
RN , t̄ > 0 and an open neighborhood U ⊆ RN of x̄ such that

Z+(z0) ⊂ Ω for every z0 ∈ Σ,

where Z+(z0) = Z+
x̄,t̄,U(z0).

(iii) Assume that Σ satisfies an uniform interior cone condition in the sense stated
above. We then say that the cones {Z+(z0)} = {Z+

x̄,t̄,U(z0)}, z0 ∈ Σ, satisfy a
strong Harnack connectivity condition if the function s 7→ (x0, t0) ◦ δ1−s(x̄, t̄) is
an L -admissible path.

We point out that the strong Harnack connectivity condition is more restrictive
than the Harnack connectivity condition used in our previous work [6]. Nevertheless,
we are able to prove the validity of this condition near LipK surfaces.

We next show how to find a point xΛ ∈ RN such that the path s 7→ δ1−s(xΛ, 1) is
L -admissible. To this aim, we recall notations (1.7) and (2.2).

Lemma 4.2 For any positive Λ we define the point xΛ ∈ RN as follows:

x
(0)
Λ = Λ e′, x

(j)
Λ = − 2

2j + 1
BT
j x

(j−1)
Λ , j = 1, . . . , κ. (4.2)

Here e′ is the unit vector of Rm pointing towards the x′-direction. Then, the path
[0, 1] 3 s→ γ(s) = δ1−s(xΛ, 1) is L -admissible.

Proof. We show that γ satisfies (3.1), namely

γ′(s) = Ā0 ω(s) + λ(s)
(
BTγ(s)− ∂t

)
a.e. in [0, 1], (4.3)

for a ω ∈ L2([0, 1],Rm) and a positive measurable function λ. By a direct computation,

γ(s) =

(
(1− s)x(0)

Λ ,− 2

3
(1− s)3BT

1 x
(0)
Λ , . . . ,

(−2)κ

(2κ+ 1)!!
(1− s)2κ+1BT

κ · · ·BT
1 x

(0)
Λ , (1− s)2

)
,
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so that we find

γ′(s) =
(
− x(0)

Λ , 0, . . . , 0
)

+ 2(1− s)
(
BTγ(s)− ∂t

)
, s ∈ [0, 1].

This proves (4.3) with ω = −Ā−1
0 x

(0)
Λ and λ(s) = 2(1− s). �

Our next result improves on the analogous one in [6, Proposition 3.2]. Indeed, as
noticed in [6, Remark 4.2], it fails under the weaker Harnack connectivity condition
assumed in [6].

Lemma 4.3 Let Z+
x̄,t̄,U(0, 0) be a cone satisfying the strong Harnack connectivity con-

dition (iii) in Definition 4.1. Then there exist two positive constants C1 and β, which
only depend on Z+ and on the operator L , such that

u(δs(x̄, t̄)) ≤
C1

‖δs(x̄, t̄)‖βK
u(x̄, t̄) 0 < s < 1,

for every non-negative solution u of L u = 0 in Z+.

Proof. We first show that there exist a positive constant C̃ and s0 ∈]0, 1[ such that

u(δσ(x̄, t̄)) ≤ C̃ u(x̄, t̄), for every σ ∈ [1− s0, 1[. (4.4)

To this aim, we note that there exists ρ ∈ ]0, 1] such that Q−ρ (x̄, t̄) ⊂ Z+
x̄,t̄,U(0, 0). More-

over, the path γ(s) = δ1−s(x̄, t̄) is L -admissible by the strong Harnack connectivity
condition. Since ω1, . . . , ωm ∈ L2([0, 1]), there exists s0 ∈ ]0, 1[ such that∫ s0

0

|ω(τ)|2dτ ≤ h,

where h is the positive constant appearing in Proposition 3.2. Then (4.4) directly
follows from Proposition 3.2.

We next conclude the proof by applying several times (4.4). For a given s ∈
]0, 1− s0[, we set Z̃+(0, 0) = δ(1−s0)/s

(
Z+(0, 0)

)
. Note that the function

us : Z̃+(0, 0)→ R, us = u
(
δs/(1−s0)(·)

)
is a non-negative solution to Lsus = 0, where

Ls =
m∑

i,j=1

ai,j
(
δs/(1−s0)(z)

)
∂xixj +

m∑
i=1

s

(1− s0)
ai
(
δs/(1−s0)(z)

)
∂xi +

N∑
i,j=1

bi,jxi∂xj − ∂t.

Since Ls satisfies assumptions [H.1-3], then (4.4) also applies to us. As a consequence,

u(δs(x̄, t̄)) = us(δ1−s0(x̄, t̄)) ≤ C̃ us(x̄, t̄) = C̃ u(δs/(1−s0)(x̄, t̄)). (4.5)

15



Now let n be the unique positive integer such that (1 − s0)n+1 ≤ s < (1 − s0)n. By
applying n times (4.5) we find

u(δs(x̄, t̄)) ≤ C̃n u(δr(x̄, t̄)), r = s/(1− s0)n.

On the other hand, the δr-homogeneity of the norm ‖ · ‖K yields

n =
ln
∥∥δ(1−s0)n(x̄, t̄)

∥∥
K
− ln ‖(x̄, t̄)‖K

ln(1− s0)
,

so that
C̃n = C1

∥∥δ(1−s0)n(x̄, t̄)
∥∥−β
K
, (4.6)

with C1 = exp
(
− ln C̃

ln(1−s0)
ln ‖(x̄, t̄)‖K

)
, and β = − ln C̃

ln(1−s0)
> 0. Finally, since s <

(1− s0)n and β > 0, (4.6) yields C̃n < C1

∥∥δs(x̄, t̄)∥∥−βK , so that

u
(
δs(x̄, t̄)

)
≤ C1∥∥δs(x̄, t̄)∥∥βK u(δr(x̄, t̄)).

The proof is then accomplished by using (4.4). �

We next show that if the boundary of Ω is a LipK surface, then it satisfies a strong
Harnack connectivity condition.

Lemma 4.4 Let Q′′r be as in (2.10) with r ∈ ]0, 1]. Let f : Q′′r → R be a LipK function
such that f(0, 0) = 0. Then there exists a positive Λ0, only depending on the operator
L and on M , such that the following statement is true. For any Λ ≥ Λ0, let xΛ

be as in (4.2), and set z+ = (xΛ, 1), z− = (−xΛ, 1). There exist b ∈ ]0, 1[, and two
neighborhoods U+, U− of xΛ and −xΛ respectively, such that:

(i) Z+
δbrz+,DbrU+(x, t) ⊆ Ωf,r,

(ii) Z−δbrz−,DbrU−(x, t) ∩ Ωf,r = ∅,

for every (x, t) ∈ ∆f, r
2
. Here U+, U− and b only depend on L ,Λ and M .

Proof. We first prove (i) for (x, t) = (0, 0). In that order, we consider the cone

K+
M,r =

{
(x, t) ∈ Int

(
QM,r

)
| M‖(x′′, t)‖′′K < x′

}
,

and we show that

Z+
δρz+,DρU+(0, 0) = {δsρ(x, 1) | x ∈ U+, 0 < s ≤ 1} ⊆ K+

M,r, ρ = br. (4.7)

Here Λ ≥ Λ0(L ,M), b = b(L ,M,Λ) ∈ ]0, 1[ and U+ is a neighborhood of xΛ, depend-
ing on L ,M , and Λ. As a first step, we choose Λ0 such that

x′Λ > M‖(x′′Λ, 1)‖′′K for any Λ > Λ0. (4.8)
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A direct computation shows that (xΛ)
(0)
′′ = 0, and

x
(j)
Λ =

(−2)jΛ

(2j + 1)!!

(
BT
j · · ·BT

1 e
′)(j)

, j = 1, . . . , κ.

Hence
|x(j)

Λ | ≤ ΛCj(B), j = 1, . . . , κ,

with the constants Cj(B)’s have an obvious meaning. Hence, in order to prove (4.8),
it is sufficient to prove the following inequality

Λ > M

( κ∑
j=1

(
ΛCj(B)

) 1
2j+1 + 1

)
. (4.9)

However, this inequality which is trivially satisfied whenever Λ is sufficiently large.
Next, if we choose b sufficiently small, then we have

δρ(xΛ, 1) ∈ K+
M,r, ρ = br. (4.10)

AsK+
M,r is an open set, there exists a neighborhood U+ of xΛ such that (Dρx, ρ

2) ∈ K+
M,r

for every x ∈ U+. By the (D′′r , r
2)-homogeneity of the norm ‖ · ‖′′K , we also have

δs(Dρx, ρ
2) ∈ K+

M,r for every x ∈ U+ and s ∈ ]0, 1]. This proves (4.7) and then (i),
recalling that f is a LipK function, and the definition of Ωf,r.

We next prove (i) for every (x, t) ∈ ∆f, r
2
. Let ε = ε(L ,M) ∈ ]0, 1[ be as in (2.11).

From (4.7) it follows that

Z+
δερz+,DερU+(0, 0) ⊆ K+

M,εr, ρ = br.

As a consequence, setting K+
M,εr(x, t) = (x, t) ◦K+

M,εr, we have

Z+
δερz+,DερU+(x, t) ⊆ K+

M,εr(x, t) for every (x, t) ∈ RN+1. (4.11)

We next show that

K+
M,εr(x, t) ⊆ Ωf,r, for every (x, t) ∈ ∆f, r

2
, (4.12)

and then (i) will directly follow from (4.11). Consider any (ξ, τ) ∈ K+
M,εr. By (2.11),

we have
(x, t) ◦ (ξ, τ) ∈ QM,r for every (x, t) ∈ ∆f, r

2
.

Hence, to prove (4.12) it is sufficient to show that

f
((
ξ + exp(−τBT )x

)′′
, t+ τ

)
< ξ′ + x′, (4.13)

for every (x, t) ∈ ∆f, r
2
. Note that, as x′ = f(x′′, t), (4.13) is equivalent to

f
((
ξ + exp(−τBT )x

)′′
, t+ τ

)
− f(x′′, t) < ξ′,
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which is trivially satisfied, since f is LipK , and (ξ, τ) ∈ K+
M,εr. This proves (4.13) and

then (4.12).
We next prove (ii). Consider the constant b as in (4.10). Arguing as in the proof

of (4.11), it is easy to see that

Z−δερz−,DερU−(x, t) ⊆ K−M,εr(x, t) for every (x, t) ∈ RN+1. (4.14)

Here K−M,εr(x, t) = (x, t) ◦K−M,εr and

K−M,εr =
{

(x, t) ∈ Int
(
QM,εr

)
| x′ < −M‖(x′′, t)‖′′K

}
.

Note that
K−M,εr(x, t) ∩ Ωf,r = ∅, for every (x, t) ∈ ∆f, r

2
,

and hence the proof is complete. �

Recall the definition of the ball BK(z0, r) in (2.5). As a plain consequence of Lemma
3.1 in [6] and of Lemma 4.4 -(ii), we have the following lemma.

Lemma 4.5 Let Q′′r be as in (2.10) for r ∈ ]0, 1]. Let f : Q′′r → R be a LipK function
such that f(0, 0) = 0. For every θ ∈ ]0, 1[ there exists ρθ ∈ ]0, 1] such that

sup
Ωf,r∩BK(z0,sρθ)

u ≤ θ sup
Ωf,r∩BK(z0,s)

u (4.15)

for every non-negative solution u to L u = 0 in Ωf,r such that u = 0 on ∆f, r
2
, and for

every z0 ∈ ∆f, r
2

and s > 0 such that BK(z0, s) ∩ ∂Ωf,r ⊂ ∆f, r
2
.

We end this section by proving the following lemma.

Lemma 4.6 Let Q′′r be as in (2.10) with r ∈ ]0, 1]. Let f : Q′′r → R be a LipK function
such that f(0, 0) = 0. Then there exist three constants C2 > 1, Λ1 ≥ Λ0 and ρ0 ∈ ]0, 1]
only depending on the operator L and on M , such that C2ρ0 < 1 and the following
statement is true. If z+ = (xΛ, 1) is as in Lemma 4.4 for some Λ ≥ Λ1, then, for every
ρ ∈ ]0, ρ0] and every (ξ, τ) ∈ Ωf,rρ, there exist (x, t) ∈ ∆f,C2rρ and s̃ ∈ ]0, rρ[ such that

(ξ, τ) = (x, t) ◦ δs̃ z+.

Proof. Let ρ0 ∈ ]0, 1] be a positive constant that will be chosen later. Consider the path
γ(s) = (ξ, τ) ◦ δs

(
(xΛ, 1)−1

)
for s > 0, where (ξ, τ) is any point of Ωf,rρ0 . By a direct

computation we find

(xΛ, 1)−1 =

(
− Λe′,−Λ

3
BT

1 e
′, . . . ,−

( κ∑
i=0

(−2)κ−iΛ

i!(2κ− 2i+ 1)!!

)
BT
κ · · ·BT

1 e
′,−1

)
,
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so that

γ(s) =

(
− sΛe′+ ξ(0), −s3 Λ

3
BT

1 e
′+ s2BT

1 ξ
(0)+ ξ(1), . . . ,

−s2κ+1

κ∑
i=0

(−2)κ−iΛ

i!(2κ− 2i+ 1)!!
BT
κ · · ·BT

1 e
′+

κ∑
i=1

s2i

i!
BT
κ · · ·BT

κ−i+1ξ
(κ−i)+ ξ(κ), τ − s2

)
,

for any Λ ≥ Λ0. We claim that it is possible to determine a ρ0 = ρ0(L ,M) ∈ ]0, 1] and
to choose Λ1 = Λ1(L ,M) ≥ Λ0, in order to have

γ(s) ∈ QM,r for every s ∈ ]0, rρ0], and γ(rρ0) /∈ Ωf,r, (4.16)

for any Λ ≥ Λ1. We next choose ρ0 = ρ0(L ,M) ∈ ]0, 1] satisfying the first statement
of (4.16). With this aim, it is sufficient to show that

| − sΛ + ξ′| ≤ 4Mr, |τ − s2| ≤ 2r2, |γi(s)| ≤ rαi , i = m+ 1, . . . , N, (4.17)

for every s ∈ ]0, rρ0]. Since (ξ, τ) ∈ QM,rρ0 , we have

| − sΛ + ξ′| ≤ rρ0(Λ + 4M),
∣∣τ − s2

∣∣ ≤ 3(rρ0)2, (4.18)

for every s ∈ ]0, rρ0]. Moreover,

∣∣γ(j)(s)
∣∣ ≤ Λcj+1s

2j+1+

j∑
l=1

c̃ls
2l
∣∣ξ(j−l)∣∣+∣∣ξ(j)

∣∣ ≤ (rρ0)2j+1
(

Λcj+1 +

j∑
l=1

cl+mj

)
, (4.19)

for any j = 1, . . . , κ, and for every s ∈ ]0, rρ0]. Here the cl’s are positive constants only
dependent on M and on the matrix B. Hence, condition (4.17) is satisfied by choosing

ρ0 < C−1
2 , (4.20)

where

C2 := max

{
1 +

Λ

4M
,

√
3

2
, max
j=1,...,κ

(
Λcj+1 +

j∑
l=1

cl +mj

) 1
2j+1

}
.

This proves that
γ(s) ∈ QM,C2rρ0 for every s ∈ ]0, rρ0]. (4.21)

Note that C2ρ0 < 1 yields QM,C2rρ0 ⊂ QM,r, hence the first statement of (4.16) is
proved.

It remains to prove the last part of (4.16). We will show that it is possible to choose
of Λ1 such that

γ(rρ0)′ < f
(
γ(rρ0)′′, τ − (rρ0)2

)
,
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for every Λ ≥ Λ1. To this aim, as f is LipK , it is enough to show that

M
∥∥(γ(rρ0)′′, τ − (rρ0)2

)∥∥′′
K
< rρ0Λ− ξ′. (4.22)

As in the first estimate of (4.18) we have

rρ0Λ− ξ′ ≥ rρ0(Λ− 4M), (4.23)

and since we want the right handside in (4.22) to be positive we require that Λ1 > 4M .
From (4.18) and (4.19), it follows that

∥∥(γ(rρ0)′′, τ − (rρ0)2
)∥∥′′

K
≤ rρ0

(
m− 1 +

κ∑
j=1

(
Λcj+1 +

j∑
l=1

cl +mj

) 1
2j+1

+
√

3

)
. (4.24)

Now, choosing Λ1 so large that

Λ1 > M

(
m+ 3 +

κ∑
j=1

(
Λ1cj+1 +

j∑
l=1

cl +mj

) 1
2j+1

+
√

3

)
,

we see that (4.22) follows from (4.23) and (4.24). This completes the proof of (4.16).
From the second statement of (4.16), and from (4.21), it follows that we can find

s̃ ∈ ]0, rρ0[ such that
γ(s̃) =: (x, t) ∈ ∆f,C2rρ0 ,

and the proof of the lemma is accomplished. Indeed, by (4.20), the result holds true
also for every ρ ∈ ]0, ρ0]. �

5 Proof of the main result

Proof of Proposition 2.2. As in (2.7), we set x′ = xj, for some j = 1, . . . ,m. Consider
z ∈ Σ and r > 0 such that

Σ ∩ Cr(z) =
{

(ξ, τ) ∈ Cr(z) | f(ξ′′, τ) = ξ′
}
,

where f is Lip(1, 1/2). Since Cr(z) is an open set, there exist some positive Mz and
rz satisfying QMz ,2rz(z) ⊆ Cr(z). To prove Proposition 2.2 it is enough to show that
f |Q′′2rz is a LipK function. To accomplish this we let (y′′, s), (ξ′′, τ) ∈ Q′′2rz and we prove

that there exists a positive constant C = C(Q′′2rz) satisfying

|y′′ − ξ′′|+ |s− τ |
1
2 ≤ C

∥∥((y − exp((τ − s)BT )ξ
)′′
, s− τ

)∥∥′′
K
. (5.1)

Recall the notation in (2.2) and (2.7) and note that(
y − exp((τ − s)BT )ξ

)(0)

′′ = y
(0)
′′ − ξ

(0)
′′ .
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Moreover, ∣∣y(1)− ξ(1)
∣∣ ≤ ∣∣y(1)− ξ(1)− (τ − s)BT

1 ξ
(0)
∣∣+ |s− τ |

∣∣BT
1 ξ

(0)
∣∣

≤ C
2
3
1,1

∣∣y(1)− ξ(1)− (τ − s)BT
1 ξ

(0)
∣∣ 13 + C1,2|s− τ |

1
2 ,

for two positive constants C1,1 and C2,2, depending only on the set Q′′2rz . Analogously,
for any l = 2, . . . , κ, there exist Cl,i = Cl,i(Q

′′
2rz) > 0, i = 1, 2, such that

∣∣y(l)− ξ(l)
∣∣ ≤ ∣∣∣∣y(l)− ξ(l)−

l∑
i=1

(τ − s)i

i!
BT
l · · ·BT

l−i+1ξ
(l−i)

∣∣∣∣
+ |s− τ |

∣∣∣∣BT
l ξ

(l−1)+
l∑

i=2

(τ − s)i−1

i!
BT
l · · ·BT

l−i+1ξ
(l−i)

∣∣∣∣
≤ C

2l
2l+1

l,1

∣∣∣∣y(l)− ξ(l)−
l∑

i=1

(τ − s)i

i!
BT
l · · ·BT

l−i+1ξ
(l−i)

∣∣∣∣ 1
2l+1

+ Cl,2|s− τ |
1
2 .

Recalling (2.8) we see that this proves (5.1). �

Proof of Proposition 2.3. It is not restrictive to assume (x0, t0) = (0, 0) and r = 1.
Let (x̃, t̃) = δbz

+ and U = DbU
+, where b, z+ and U+ are as in Lemma 4.4. Consider

any s̃ ∈ ]0, 1[. By Lemma 4.2, the point δs̃(x̃, t̃) belongs to an L -admissible path
starting from (x̃, t̃). Actually, the same argument used at the beginning of the proof
of Proposition 3.2 shows that δs̃(x̃, t̃) is an interior point of A(x̃,t̃)

(
Z+

x̃,t̃,U
(0, 0)

)
. Hence

there exists a positive ρ̃ such that

K̃ := BK
(
δs̃(x̃, t̃), ρ̃

)
⊂ Int

(
A(x̃,t̃)

(
Z+

x̃,t̃,U
(0, 0)

))
. (5.2)

By Theorem 3.1 there exists a positive constant CK̃ such that supK̃ u ≤ CK̃u(x̃, t̃). By

the linearity of L , it is not restrictive to assume CK̃u(x̃, t̃) = 1, and hence that

supK̃ u ≤ 1. (5.3)

Moreover, by the continuity of the function (ξ, τ) 7→ (ξ, τ) ◦ δs̃(x̃, t̃), there exists ε1 ∈
]0, 1[ such that

(ξ, τ) ◦ δs̃(x̃, t̃) ∈ K̃ for every (ξ, τ) ∈ ∆f,ε1 . (5.4)

We next follow a classical argument also used in our previous work [6]. We fix a
suitably large constant λ and we assume, by contradiction, that there exists z1 ∈ Ωf,c

satisfying u(z1) > λ. To this aim, we choose θ ∈ ]0, c−β[, where c is the constant in
(2.3), and β is as in Lemma 4.3. Then we set

ε0 < min

{
ρ0, ε1, bs̃,

c′M
4c′′Mc

}
, σ < min

{
1,

c′M
2Cc

,
c′′M
C2

}
,

λ > max

{
1, C1

(
4c

ρθc′M

)β
,
C1

θ

(
c
(
ρ−1
θ + c

)
2C2

c′Mε0

∞∑
j=1

(
c θ

1
β
)j)β}

,

(5.5)
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where c′M , c′′M are the constants in (2.12), C1 is as in Lemma 4.3, b is as in Lemma 4.4,
ρθ ∈ ]0, 1] is as in Lemma 4.5, ρ0 and C2 are as in Lemma 4.6, and ε1 is as in (5.4).
Note that the series in (5.5) is convergent since θ ∈ ]0, c−β[.

Let
c =

σε0

c′′M
, (5.6)

and let z1 ∈ Ωf,c be such that u(z1) > λ. Note that (2.12) and the choice of σ in (5.5)
imply that

z1 ∈ BK(0, σε0) ∩ Ωf,
ε0
C2

. (5.7)

We next show that there exists a sequence {zj}j such that

zj ∈ Ωf,
ε0
C2

, u(zj) > λθ1−j, (5.8)

for every j ∈ N. We will see that the properties of zj in (5.8) enable us to determine a
point wj ∈ ∆f,ε0 and a sj ∈ ]0, 1[ satisfying

zj = wj ◦ δsj(δs̃(x̃, t̃)), ρj := dK(zj, wj) ≤ C
1
β

1 λ
− 1
β θ

j−1
β , (5.9)

for every j ∈ N. As a consequence of the inequality in (5.9), we get dK(zj,∆f,ε0) ≤
dK(zj, wj) → 0 as j → ∞, then u(zj) vanishes as j → ∞. This will then contradict
the inequality in (5.8) and hence

sup
Ωf,c

u ≤ λCK̃ u(x̃, t̃).

In particular, the proof will be accomplished.
We next prove (5.8) by induction. Our choice of z1 proves the claim for j = 1.

Assume that (5.8) is satisfied for j = k. By Lemma 4.6, as ε0C
−1
2 < ρ0, there exist

wk ∈ ∆f,ε0 , sk ∈
]
0,

ε0

C2bs̃

[
,

such that zk = wk ◦ δsk(δs̃(x̃, t̃)). Note that the choice of ε0 in (5.5) implies that

sk ∈ ]0, 1[, and that wk ◦ δs̃(x̃, t̃) ∈ K̃, by (5.4). From Lemma 4.3 it follows that

λ θ1−k < u(zk) = u(wk ◦ δsk(δs̃(x̃, t̃))) ≤
C1

sβk s̃
β‖(x̃, t̃)‖βK

u(wk ◦ δs̃(x̃, t̃)). (5.10)

Hence, (5.3) gives

ρk := dK(zk, wk) ≤ C
1
β

1 λ
− 1
β θ

k−1
β . (5.11)

We next claim that

BK(wk, ρ
−1
θ ρk) ⊆ QM, 1

2
, for every k ∈ N. (5.12)
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Indeed, consider any z ∈ BK(wk, ρ
−1
θ ρk). By using (2.3), (5.11), and recalling that

∆f,ε0 ⊆ BK(0, c′′Mε0) by (2.12), we have

‖z‖K ≤ c
(
‖wk‖K + ‖w−1

k ◦ z‖K
)
≤ c(c′′Mε0 + ρ−1

θ ρk)

≤ c
(
c′′Mε0 + ρ−1

θ C
1
β

1 λ
− 1
β
)
<
c′M
2
,

thanks to the bounds of ε0 and λ in (5.5). This inequality, together with (2.12), proves
(5.12). As a consequence, we have

BK(wk, ρ
−1
θ ρk) ∩ ∂Ωf,1 ⊂ ∆f, 1

2
, for every k ∈ N.

Then, by Lemma 4.5,

λ θ1−k < u(zk) ≤ sup
Ωf,1∩BK(wk,ρk)

u ≤ θ sup
Ωf,1∩BK(wk,ρ

−1
θ ρk)

u.

Hence, there exists zk+1 ∈ Ωf,1 ∩ BK(wk, ρ
−1
θ ρk) such that

u(zk+1) > λθ−k.

This shows the second statement of (5.8) for j = k+ 1. Aiming to conclude the proof,
it is enough to check that zk+1 ∈ Ωf,

ε0
C2

. By repeatedly using the pseudo-triangular

inequality (2.3), we get

‖zk+1‖K ≤ c
(
‖z1‖K + ‖z−1

1 ◦ zk+1‖K
)
≤ c

(
‖z1‖K +

k∑
j=1

cj‖z−1
j ◦ zj+1‖K

)
. (5.13)

We also have

‖z−1
j ◦ zj+1‖K ≤ c

(
‖z−1

j ◦ wj‖K + ‖w−1
j ◦ zj+1‖K

)
≤ c(cρj + ρ−1

θ ρj) < c(c + ρ−1
θ )C

1
β

1 λ
− 1
β θ

j−1
β ,

by (5.11). By using the above inequality in (5.13), and recalling (5.7), we find

‖zk+1‖K ≤ c

(
σε0 + c(c + ρ−1

θ )C
1
β

1 (λ θ)−
1
β

∞∑
j=1

(
θ

1
β c
)j)

<
c′Mε0

C2

,

because of our choice of σ and λ in (5.5). This proves that

zk+1 ∈ BK
(

0,
c′Mε0

C2

)
∩ Ωf,1 ⊆ Ωf,

ε0
C2

,

by (2.12). The proof is accomplished. �
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Proof of Theorem 1.1. Consider any zj, for j = 1, . . . , k, and apply Proposition 2.3 to
QMj ,2rj(zj). We only need to show that the constants c and C do not depend on the
coordinate system relevant to e′j. We rely on the following elementary statement. For
every M > 0 there exists ε > 0 such that, if ∆f,2r is a LipK surface with Lipschitz
constant M and with respect to a e′ ∈ Rm, then ∆f,r is a LipK surface with Lipschitz
constant 2M and with respect to ẽ′, for every ẽ′ ∈ Rm such that ‖ẽ′‖ = 1 and ‖ẽ′−e′‖ ≤
ε. By compactness, there exists a finite set ẽ′1, . . . , ẽ

′
n of unit vectors of Rm such

that B(ẽ′1, ε), . . . , B(ẽ′n, ε) cover the unit sphere of Rm. Hence there exists ẽ′i, with
i ∈ {1, . . . , n}, such that ∆fj ,rj(zj) is a LipK surface with respect to ẽ′i and with
Lipschitz constant 2Mj. To conclude the proof of Theorem 1.1 it is sufficient to set
c = min{c1, . . . , cn} and C = max{C1, . . . , Cn}, where ci and Ci are the constants
relevant to LipK functions of Lipschitz constant 2M , with respect to ẽ′i, i = 1, . . . , n.
�

Proof of Proposition 2.4. As in the proof of Proposition 2.3, it is not restrictive to
assume (x0, t0) = (0, 0) and r = 1. Consider the point z̃ = (0, t̃) for t̃ positive and to
be chosen. Arguing as in the proof of Lemma 4.4, it is easy to see that we can choose
a sufficiently small positive b, and a suitable neighborhood of the origin Ũ , such that

Z+

δbz̃,Ũ
(x, t) ⊂ K̃+

M,1(x, t) :={
(x, t) ◦ (ξ, τ) | (ξ, τ) ∈ Q1,1,M , τ > M

(
|ξ(1)|

2
3 + · · ·+ |ξ(κ)|

2
2κ+1

)}
,

(5.14)

for every (x, t) ∈ RN+1. By the continuity of the operation “◦” and by the Lipschitz
continuity of g, it is possible to find a suitably small ε such that

K̃+
M,ε(x, t) ⊂ Ω̃g,1 for every (x, t) ∈ ∆̃g,1/2.

This proves that Z+

δbz̃,Ũ
(x, t) ⊂ Ω̃g,1, for every (x, t) ∈ ∆̃g,1/2. Analogously, we can

show that Z−
δbz̃,Ũ

(x, t) ∩ Ω̃g,1 = ∅, for every (x, t) ∈ ∆̃g,1/2. Then a conclusion similar

to Lemma 4.4 and Lemma 4.5 plainly follows. To prove an analogous statement of
Lemma 4.6 is even simpler. Indeed, since we in this case have z̃ = (0, t̃) we can simply
consider the path

γ(s) = (ξ, τ) ◦ (0,−s2t̃) =
(
exp

(
s2t̃BT

)
ξ, τ − s2t̃

)
, s > 0.

Arguing as in the proof of Lemma 4.6, it easy to find ρ0 = ρ0(L ,M) ∈ ]0, 1] such that

γ(s) ∈ Q1,1,M for every s ∈ ]0, ρ0] and γ(ρ0) /∈ Ω̃g,1. We omit further details. �

Proof of Proposition 2.5. We first explain the reason we choose a small Lipschitz
constant M . We aim to find a cone Z+

δr z̃,DrŨ
(x0, t0) contained in Ω̃g, in order to rely on

the argument used in Proposition 2.4. To show that (x0, t0) ◦ δrz̃ ∈ Ω̃g, it is sufficient
to have

t > M
∣∣exp

(
tBT

)
x0 − x0

∣∣ ≥ ∣∣g (exp
(
tBT

)
x0

)
− g(x0)

∣∣ , 0 < t ≤McQ,
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by the Lipschitz continuity of g. Since exp(tBT )x0 = x0 + t BTx0 + o(t) as t → 0,
the above requirement is satisfied for any positive t small enough, provided that the
Lipschitz constantM satisfiesM supx∈Q ‖BTx‖ < 1. Once this condition is satisfied, we

build a cone Z+

δr z̃,DrŨ
(x0, t0) contained in Ω̃g and we conclude the proof of Proposition

2.5 exactly as the one of Proposition 2.4. We omit further details. �
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Anal. Appl. 4 (1998), no. 4-5, 403–432.

[5] L. Capogna, N. Garofalo & D. M. Nhieu, Examples of uniform and NTA
domains in Carnot groups, Proceedings on Analysis and Geometry (Russian)
(Novosibirsk Akademgorodok, 1999), 103–121, Izdat. Ross. Akad. Nauk Sib. Otd.
Inst. Mat., Novosibirsk, 2000.

[6] C. Cinti, K. Nyström, and S. Polidoro, A boundary estimate for non-
negative solutions to Kolmogorov operators in non-divergence form, to appear on
Annali di Matematica Pura ed Applicata, (2010).

[7] , A note on Harnack inequalities and propagation sets for a class of hypoelliptic
operators, Potential Anal., 33 (2010), pp. 341–354.

[8] D. Danielli, N. Garofalo, and A. Petrosyan, The sub-elliptic obstacle
problem: C1,α regularity of the free boundary in Carnot groups of step two, Adv.
Math., 211 (2007), pp. 485–516.

[9] D. Danielli, N. Garofalo, and S. Salsa, Variational inequalities with lack of
ellipticity. I. Optimal interior regularity and non-degeneracy of the free boundary,
Indiana Univ. Math. J., 52 (2003), pp. 361–398.

[10] M. Di Francesco, A. Pascucci, and S. Polidoro, The obstacle problem for
a class of hypoelliptic ultraparabolic equations, Proc. R. Soc. Lond. Ser. A Math.
Phys. Eng. Sci., 464 (2008), pp. 155–176.

25



[11] M. Di Francesco and S. Polidoro, Schauder estimates, Harnack inequality
and Gaussian lower bound for Kolmogorov type operators in non-divergence form,
Advances in Differential Equations, 11 (2006), pp. 1261–1320.
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