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Abstract

The log-normal distribution is a popular model in biostatistics as in
many other fields of statistics. Bayesian inference on the mean and me-
dian of the distribution is problematic because, for many popular choices
of the prior for variance (on the log-scale) parameter, the posterior dis-
tribution has no finite moments, leading to Bayes estimators with infinite
expected loss for the most common choices of the loss function. In this
paper we propose a generalized inverse Gaussian prior for the variance
parameter, that leads to a log-generalized hyperbolic posterior, a distri-
bution for which it is easy to calculate quantiles and moments, provided
that they exist. We derive the constraints on the prior parameters that
yields finite posterior moments of order r. For the quadratic and relative
quadratic loss functions, we investigate the choice of prior parameters
leading to Bayes estimators with optimal frequentist mean square error.
For the estimation of the lognormal mean we show, using simulation, that
the Bayes estimator under quadratic loss compares favorably in terms
of frequentist mean square error to known estimators. The theory does
not apply only to the mean or median estimation but to all parameters
that may be written as the exponential of a linear combination of the
distribution’s two parameters that include the mode and all non central
moments.

Keywords: Bayes estimators, generalized hyperbolic distribution, general-
ized inverse gamma distribution, Bessel functions.

1 Introduction

Suppose that a random variable X with mean ξ and variance σ2 is normally
distributed, such that exp(X) ∼ LogN(ξ, σ2). In this paper we consider the
problem of Bayesian inference about functionals of (ξ, σ2) of the form θa,b =
exp(aξ + bσ2) with a, b ∈ ℜ based on a random sample (X1, . . . , Xn). We
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may obtain the mean, the median, the mode and various non-central moments
of the log-normal distribution for different choices of a, b. More specifically
a = 1 and b = 0 yields the median (θ1,0), a = 1 and b = −1 yields the mode
(θ1,−1) and a = 1 and b = .5 yields the mean (θ1,0.5). This estimation problem
is of practical relevance because, when analyzing positively skewed data, it is
common practice to take the log transformation and assume the normality of
the transformed data. With reference to biological sciences see, among others,
the review of Limpert et al. (2001) and Gill (2004). The problem has also a
long tradition in both the frequentist and the Bayesian literature.

With reference to the latter, an important starting point is Zellner (1971).
He considers diffuse priors of the type p(ξ, σ) ∝ σ−1 and he obtains the following
results for the log-normal median: i) p(θ1,0|σ, data) is a log-normal distribution;
and ii) p(θ1,0|data) is a log-t distribution.

Summarizing the log-t distribution is challenging using popular loss func-
tions, such as the quadratic, because moments of all orders do not exist. For
the log-normal mean Zellner (1971) shows that p(θ1,0.5|σ, data) is a log-normal
distribution. To obtain p(θ1,0.5|data) he suggests studying the joint posterior
p(log(θ1,0.5), σ|data), integrating out σ and then considering its exponential
transformation. He notes that the integral over σ can be ‘expressed in terms
of modified Bessel functions’ but that ‘it is the case that the posterior mean
of θ1,0.5 does not exists’, which creates similar problems in summarizing the
posterior distribution, (that is in obtaining ‘Bayes estimators’ of the parameter
in question and easily interpretable measures of the information loss).

Most of Zellner’s paper focuses on the inference conditional on σ. He notes
that, within the class of estimators of the form k exp(X̄) with X̄ = n−1

∑n
i=1Xi

and where k a is constant, the estimator for θ1,0.5 with minimum mean square

error (MSE) is given by θ̆1,0.5 = exp(X̄ + σ2/2 − 3σ2/2n). From a Bayesian
point of view, this estimator may be justified as the minimizer of the posterior
expected loss, provided that the relative quadratic loss function LRQ = [(θ −
θ̂)/θ]2 is adopted.

Another important reference is Rukhin (1986). Rukhin proposes the follow-
ing ’generalized’ prior:

p(ξ, σ) = p(σ) ∝ σ−2ν+n−2 exp
(

− σ2
[

γ2/2− 2
(

b− a2/n
)])

, (1)

with γ2 > 4(b − a2/n). Assuming the relative quadratic loss function LRQ, he

obtains an estimator for θa,b of the form θ̂Ru
a,b = exp(aX̄)g(Y ) that is given by

θ̂Ru
a,b = exp(aX̄)

(

β

γ

)ν
Kν(βY )

Kν(γY )
, (2)

β = γ2 − 2c, c = b − 3a2/(2n) and Kν( ) is the modified Bessel function of
the third kind (the Bessel-K function from now on). For a general introduction
to Bessel functions, see Abramowitz and Stegun (1968), chapters 9 and 10.
To obtain the values for the hyperparameters ν, γ, Rukhin (1986) chooses to

minimize the frequentist MSE of θ̂Ru
a,b . As the Kν( ) are quite difficult to handle,
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Rukhin uses a ’small arguments’ approximation to θ̂Ru
a,b to propose a value for ν

and a ’large arguments’ approximation to propose a value for γ. Rukhin does
not recognize that, with a simple change of variable, the prior he proposes may
be seen as the product of a flat prior over the real line for ξ and the following
prior on σ2

p(σ2) ∝ (σ2)−ν+n/2−3/2 exp(−σ2[ψ2/2− 2
(

b− a2/n)]) (3)

which is the limit of a generalized inverse gamma distribution, GIG(λ, δ, γ)
as δ → 0. The other parameters are given by λ = −ν + n/2 − 1/2 and
γ2 = ψ2/2 − 2(b − a2/n) (see section 2 for more details and notation). He
does not provide the posterior distribution, so his proposal is inadequate for
many inferential purposes (i.e., calculating of posterior variances or posterior
probability intervals).

In this paper, we derive the posterior distribution of θa,b assuming a proper
generalized inverse gamma prior on σ2 (and a flat prior over the real line for
ξ). We show that this posterior is a log-generalized hyperbolic distribution and
state the conditions on the hyperparameters that guarantee the existence of
posterior moments of a given order. Once these conditions are met for the first
two non-central moments, we discuss the Bayes estimators with the ordinary
quadratic loss function LQ = (θ − θ̂)2.

The main results of the paper may be summarized as follows: i) we show
that, given our choice of the prior distributions, Bayes estimators associated
with the relative quadratic loss function LRQ can be reconducted to posterior
expectations provided that b is properly modified; ii) adopting a ‘small argu-
ments’ approximation to the Bessel-K functions and a choice of hyparameters
aimed at minimizing the MSE, we show using simulation that our Bayes estima-
tor of the mean, i.e. θ1,0.5 is substantially equivalent to the estimator proposed
in Shen et al. (2006), which has been proven to be superior to many of the
alternatives previously proposed in the literature.

The paper is organized as follows. In Section 2 we briefly present the gener-
alized inverse Gaussian and generalized hyperbolic distributions. In Section 3,
posterior distributions for σ2 and θa,b are derived, and Bayes estimators under
quadratic and relative quadratic losses are introduced. Section 4 is devoted to
the choice of values to be assigned to the hyperparameters in order to obtain
Bayes estimators with the minimum frequentist MSE. In Section 5 we intro-
duce a simulation exercise and discuss the results, and Section 6 offers some
conclusions and ideas for future research.

2 The generalized inverse Gaussian and gener-

alized hyperbolic distributions

In this section we briefly introduce the generalized inverse Gaussian (GIG) and
generalized hyperbolic (GH) distributions, establish the notation and mention
some key properties that will be used later. For more details on these distri-
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butions, see Bibby and Sørensen (2003) and Eberlein and von Hammerstein
(2004) among others.

The density of the GIG distribution may be written as follows:

p(x) =
(γ

δ

)λ 1

2Kλ(δγ)
xλ−1 exp

{

− 1

2

(

δ2x−1 + γ2x
)

}

1ℜ+ (4)

If δ > 0 the permissible values for the other parameters are γ ≥ 0 if λ < 0 and
γ > 0 if λ = 0. If δ ≥ 0 then γ, λ should be strictly positive.

The moments of the GIG can be expressed as functions of the Bessel-K
functions by

E(Xj) =

(

δ

γ

)j
Kλ+j(δγ)

Kλ(δγ)
. (5)

The mode of the GIG is a simple function of the distribution’s parameters. More

specifically, Mo(X) = (γ−2)
(

λ− 1 +
√

(λ− 1)2 + δ2γ2
)

for strictly positive γ,

and Mo(X) = δ2/[2(1 − λ)] for γ = 0. We note that using theorem 1.2 from
Laforgia and Natalini (2010), and the positive skewness of the GIG distribution
(Nguyen et al., 2003), it may easily be shown that for γ > 0

(λ− 1) +
√

(λ− 1)2 + δ2γ2

γ2
≤ E(X) ≤ (λ+ 1) +

√

(λ+ 1)2 + δ2γ2

γ2
. (6)

Many important distributions may be obtained as special cases of the GIG.
For λ > 0 and γ > 0, the gamma distribution emerges as the limit when δ → 0.
The inverse-gamma is obtained when λ < 0, δ > 0 and γ → 0 and an inverse
Gaussian distribution is obtained when λ = − 1

2 .
Barndorff-Nielsen (1977) introduces the generalized hyperbolic (GH) dis-

tribution as a normal variance-mean mixture where the mixing distribution is
GIG. That is, if (X|W = w) ∼ N(µ + βw,w) and W ∼ GIG(λ, δ, γ) then
the marginal distribution of X will be GH (i.e., X ∼ GH(λ, α, β, δ, µ), where
α2 = β2 + γ2). The probability density function of the GH is given by

f(x) =

(

γ
δ

)λ

√
2πKλ(δγ)

Kλ−1/2

(

α
√

δ2 + (x− µ)2
)

(
√

δ2 + (x− µ)2/α
)1/2−λ

exp
(

β(x− µ)
)

1ℜ, (7)

where γ2 = α2 − β2. The parameter domain is defined by the following con-
ditions: i) δ ≥ 0, α > 0, α2 > β2 if λ > 0; ii) δ > 0, α > 0, α2 > β2 if
λ = 0; iii) δ > 0, α ≥ 0, α2 ≥ β2 if λ < 0. The parameter α determines
the shape, β determines the skewness (the sign of the skewness is consistent
with that of β), µ is a location parameter, δ serves for scaling and λ influences
the size of mass contained in the tails. The class of GH distributions is closed
under affine transformations i.e if X ∼ GH(λ, α, β, δ, µ) and Z = b0X + b1 then
Z ∼ GH(λ, α/|b0|, β/|b0|, |b0|δ, b0µ + b1). An essential tool in what follows is
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the moment generating function of the GH distribution:

MGH(t) = exp(µt)

(

γ2

α2 − (β + t)2

)λ/2
Kλ

(

δ
√

α2 − (β + t)2
)

Kλ(δγ)
(8)

which exists provided that |β + t| < α.

3 Bayes estimators of θa,b

3.1 Derivation of the posterior distribution for σ
2 and θa,b

The representation of the GH distribution as a normal mean-variance mixture
with the GIG as mixing distribution introduced in previous section provides the
basis for obtaining the posterior distribution of ηa,b = log(θa,b) when assuming
a GIG prior for σ2. More specifically we can prove the following result.

Theorem 3.1. Assume the following: i) p(ηa,b|σ2, X) ∼ N(ηa,b, a
2σ2/n) and

ii) p(ξ, σ2) = p(ξ)p(σ2), with p(σ2) ∼ GIG(λ, δ, γ) and p(ξ) an improper distri-
bution uniform over the real line.
It follows that

p(σ2|data) ∼ GIG(λ̄, δ̄⋆, γ), (9)

p(ηa,b|data) ∼ GH(λ̄, ᾱ, β̄, δ̄, µ̄) (10)

where δ̄⋆ =
√
Y 2 + δ2, Y 2 =

∑n
i=1(Xi− X̄)2, λ̄ = λ− n−1

2 , ᾱ =
√

n
a2 (γ2 + nb2

a2 )

and β̄ = n b
a2 . Let γ̄2 = ᾱ2−β̄2. As a consequence γ̄2 = n

a2 γ
2, δ̄ =

√

a2

n (Y
2 + δ2)

and µ̄ = aX̄.

Proof. To prove (9) simply note that:

p(σ2|data) ∝
∫

σ−n exp

{

− 1

2σ2
(Y 2 + n(ξ − X̄)2)

}

×
(γ

δ

)λ 1

2Kλ(δγ)
(σ2)λ−1 exp

{

− 1

2

(

δ2σ−2 + γ2σ2
)

}

dξ

∝
∫

(σ2)−n/2+λ−1 exp
{

− 1

2σ2

(

Y 2 + δ2
)

− γ2σ2

2

}

× exp
{

− 1

2σ2
n(ξ − X̄)2

}

dξ

= (σ2)λ−
n+1

2 exp−
{

1

2

(

Y 2 + δ2

σ2
− γ2σ2

2

)

}

.

The second statement is a special case of Barndorff-Nielsen (1977) result.
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We are not primarily interested in p(ηa,b|data), but rather in θa,b = exp(ηa,b)
which is distributed as a log-GH, a distribution that has not, to our knowl-
edge, received any attention in the literature. In any case, we can calcu-
late the moments of p(θa,b|data) that we need for summarizing the posterior
distribution with a quadratic loss function by using the moment-generating
function of the GH distribution (MGH(t)) and more specifically the fact that
E(θ|data) =MGH(1) and V (θ|data) =MGH(2)− [MGH(1)]

2.
If we are able to generate samples from the GH distribution, moreover, we

may obtain a sample from its exponential transformation. The quantiles and
probability intervals may then be calculated using MC techniques. From among
the variety of software available for generating random GH numbers, we mention
the ghyp package running under R (Breymann and Lüthi, 2010).

Mη|data(t) exists only if
∣

∣β̄ + t
∣

∣ < ᾱ, or equivalently if ᾱ2− (β̄+ t)2 > 0 (i.e.,

γ̄2 > t2 + 2n b
a2 t). This condition implies the following constraint on the prior

parameter γ:

γ2 >
a2

n
t2 + 2bt. (11)

The existence of posterior moments requires that γ is above a positive threshold
when a 6= 0, b > 0 (as for the expected value). The threshold is asymptotically
0 for the median, (i.e., θ0,1), and it is negative for the mode (whenever n > t/2):
so, it does not represent a restriction. With respect to the inference on the ex-
pected value (θ1,0.5) note that the popular inverse gamma prior on σ

2, a special
case of the GIG for λ < 0, δ > 0 when γ → 0, does not respect condition (11)
thereby leading to a posterior distribution with non-existent moments. Note
that this result is consistent with the following remark from Zellner (1971) con-
cerning the inference about θ1,0: posterior moments exist only for the limit as
n→∞ (that is, when the log-t posterior converges to the log-normal).
Similarly, the uniform prior over the range (0, A) for σ (Gelman , 2006) im-
plies that p(σ2) ∝ 1

σ1(0,A), which may be seen as an approximation to a

Gamma( 1
2 , ǫ) (where ǫ = (4A2)−1) truncated at A2. For λ > 0, γ > 0 and

δ → 0, GIG(λ, δ, γ)→ Gamma(λ, γ2/2). If we let A→∞, therefore, p(σ) ∝ 1
is equivalent to a GIG prior with γ → 0 and thus implies non-existent posterior
moments.

Consistent with intuition, condition (11) implies that, in practice, to obtain
a posterior distribution of θa,b with finite moments, a prior with short tails
should be chosen.
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3.2 Bayes estimators under quadratic and relative quadratic

losses

If we summarize p(θ|data) using the ordinary quadratic loss function we obtain
θ̂QB

a,b = E(θa,b|data) or

θ̂QB
a,b = exp(µ̄)

(

γ̄2

ᾱ2 − (β̄ + 1)2

)λ̄/2

× Kλ̄

(

δ̄
√

ᾱ2 − (β̄ + 1)2
)

Kλ̄(δ̄γ̄)
(12)

= exp(aX̄)

(

γ2

γ2 −
(

a2

n + 2b
)

)(λ−n−1

2
)/2

×
K{λ−n−1

2
}

(
√

(Y 2 + δ2)(γ2 − (a2

n + 2b))
)

K{λ−n−1

2
}

(

√

(Y 2 + δ2)γ2
) . (13)

We provided two alternative expressions for θ̂QB
a,b : (12) is indexed on the pos-

terior parameters, and (13) highlights the role of the prior parameters, which
and will be useful for studying the choice of hyperparameters that is discussed
in the next section.

Under a relative quadratic loss function, the Bayes estimator is defined as
θ̂RQB

a,b = E(θ−1
a,b)/E(θ

−2
a,b) (see Zellner (1971)). The following result shows that

θ̂RQB may be reconducted to a Bayes predictor under a quadratic loss function
with a different choice of b and modified prior parameters.

Theorem 3.2. For the Bayes estimator under relative quadratic loss function,
we have that θ̂RQB

a,b = θ̂QB
a,b⋆ with b⋆ = b− 2a2/n provided that the prior p(σ2) ∼

GIG(λ, δ, γ⋆) with γ2
⋆ = γ2 − 4a2/n+ 4b is assumed.

Proof. Let τa,b = −log(θa,b). From the stated properties of the GIG distribu-
tion, we have τa,b|data ∼ GH(λ̄, ᾱ, β̄, δ̄,−µ̄) and
2τa,b|data ∼ GH(λ̄, ᾱ/2, β̄/2, 2δ̄,−2µ̄). Using (8) it may be shown that

θ̂RQB = exp(aX̄)

[

n
a2 (γ

2 − 4a2

n + 4b)
n
a2 (γ2 − a2

n + 2b)

]{λ−n−1

2
}/2

(14)

×
K{λ−n−1

2
}

(
√

(Y 2 + δ2)(γ2 − a2

n + 2b)
)

K{λ−n−1

2
}

(
√

(Y 2 + δ2)(γ2 − 4a2

n + 4b)
)

If we set b⋆ = b − 2a2/n and γ2
⋆ = γ2 − 4a2

n + 4b we obtain a formula that has
exactly the structure of (13).
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4 Choice of hyperparameters

We can easily see that θ̂QB
a,b is sensitive to the choice of the prior parameters;

therefore a careful choice of λ, δ, γ is an essential part of the inferential pro-
cedure. Following Rukhin (1986), our aim is to choose the hyperameters to
minimize the frequentist MSE of the Bayes estimators. In practice this choice
is a complicated task because expression (13) contains a ratio of Bessel-K func-
tions that is quite intractable. Following Rukhin (1986) again, we will use a
‘small argument’ approximation to obtain the MSE-‘optimal’ values of the hy-
perparameters. Unfortunately this method is viable only for λ and δ because
the small value approximation is free of γ. A more ‘heuristic’ argument will
be proposed for the latter parameter. The simulation in Section 5 shows that
the parameters determined in this manner also leads to good estimators per-
formance when the arguments of the Bessel-K functions are no longer small.
According to (11), priors with light tails are required to guarantee a finite pos-
terior expectation and expected loss when b > 0. For this reason, when a guess
of σ2 is available a priori, it may be used to improve the performances of the
Bayes estimators. How this can be done, without breaking down the MSE even
when the guess is grossly wrong is described in section 4.2.

4.1 Choice of hyperparameters using the small arguments

approximation to the modified Bessel functions of the

third kind

Consider first the following approximation of θ̂QB
a,b using the ‘small argument’

approximation of the Bessel-K functions.

Theorem 4.1. Under the assumptions that (Y 2 + δ2)γ2 < 1, (Y 2 + δ2)(γ2 −
(a2

n + 2b)) < 1 and λ < n−1
2 we have that

θ̂QB ∼= exp(aX̄) exp

{

− (Y 2 + δ2)(a2 + 2nb)

4n(λ− n−3
2 )

}

= θ̂qb (15)

Proof. Now consider the following power series representation of a Bessel func-
tion of the first kind:

Iν(z) =

(

1

2
z

)ν ∞
∑

k=0

(

1
4z

2
)k

k!Γ(ν + k + 1)
(16)

ν ∈ ℜ. Note that for z < 1, the addends in the sum part of (16) are decreasing,
so for small values (z → 0) the series may be approximated by its first terms
(k = 0, 1, 2, . . . ). Moreover,

Kν(z) =
π

2 sin(νπ)

[

I−ν(z)− Iν(z)
]

(17)
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ν ∈ ℜ−Z. Note that both (16) and (17) are proved in Abramowitz and Stegun
(1968), chapter 9. Combining the two and assuming ν > 0 we may write

[

I−ν(z)− Iν(z)
]

=

(

1

2
z

)−ν[

1

Γ(1− ν) +
(

1
4z

2
)

Γ(2− ν) + . . .

−
(

1

2
z

)2ν
1

Γ(ν + 1)
−

(

1

2
z

)2ν+2
1

Γ(ν + 2)
− . . .

]

Note that the terms in the second line are negligible for z → 0. Assuming
ν − 1 ∼= ν and (ν − 1)(ν − 2) ∼= (ν − 1)2

Kν(z) ∼=
π

2 sin(νπ)

(

1

2
z

)−ν
1

Γ(1− ν) exp
(

1

4

z2

1− ν

)

. (18)

We may re-write θ̂QB as

θ̂QB = exp(aX̄)

(

γ2 − u
γ2

)ν/2Kν

(

√

(Y 2 + δ2)(γ2 − u)
)

Kν

(

√

(Y 2 + δ2)γ2
) ,

where u = a2+2nb
n , ν = −λ̄. Note that, as we assume 2λ < n− 1, the case ν < 0

is not relevant. Using the fact that Ka( ) = K−a( ) and replacing z with the

arguments of the Bessel-K that appear in θ̂QB complete the proof.

Rukhin (1986) proves that to minimize the frequentist MSE of estimators

in the form exp(aX)g(Y ) such as θ̂qb , and θ̂QB ,

E
[

g(Y )− exp(cσ2)
]2

, (19)

where c = b − 3a2/(2n), should be minimized. Unfortunately, minimization of
(19) with respect to (λ, δ) does not lead to a unique minimum. The optimum
MSE is reached for a set of (λ, δ) pairs that are described by equation (20).

Theorem 4.2. Under the assumptions of theorem 4.1, the value of λ in (15)
that minimizes (19) is given by

λopt =
n− 3

2
− (n− 1)(a2 + 2nb)

4nc
− (a2 + 2nb)

4nc

δ2

σ2
(20)

provided that b /∈ (− a2

2n ,
3a2

2n ). The result holds for any δ in ℜ+.

Proof. Following (19) we should minimize

φ = E

{

exp

[

a2 + 2nb

2n(ν − 1)
(Y 2+δ2)

]

+exp(cσ2)−2 exp
[

a2 + 2nb

4n(ν − 1)
(Y 2+δ2)+cσ2

]}

9



where ν = −λ̄. Because Y 2

σ2 ∼ χ2(n − 1) = Gamma
(

n−1
2 , 1

2

)

then Y 2 ∼
Gamma

(

n−1
2 , 1

2σ2

)

. Using the standard formula for the moment generating

function it follows that E
[

exp
(

rY 2
)]

=
(

1 − 2rσ2
)−n−1

2

, provided that r <
1

2σ2 . Thus

E

{

exp

[

a2 + 2nb

2n(ν − 1)
Y 2

]}

=

(

1−a
2 + 2nb

n(ν − 1)
σ2

)−n−1

2

∼= exp

(

(n− 1)(a2 + 2nb)σ2

2n(ν − 1)

)

when σ2 < n(ν−1)
a2+2nb . The approximated function to be minimized may be written

as

φ̃ = exp

(

(n− 1)(a2 + 2nb)σ2

2n(ν − 1)

)

− 2 exp

(

(n− 1)(a2 + 2nb)σ2

4n(ν − 1)

)

+ exp(cσ2)

Taking partial derivatives of φ̃, and equating both partial derivatives to 0 leads
to exactly the same equation:

exp

{

(a2 + 2nb)

2n(ν − 1)

[

(n− 1)σ2 + δ2
]

}

= exp

{

(a2 + 2nb)

4n(ν − 1)

[

(n− 1)σ2 + δ2
]

+ cσ2

}

.

Taking the log and solving for ν, we obtain

ν = 1 +
(n− 1)(a2 + 2nb)

4nc
+
(a2 + 2nb)

4nc

δ2

σ2
. (21)

So, we may obtain an ’optimal’ value of ν for any choice of (positive) δ2. Formula
(20) follows from noting that ν = n−1

2 − λ.

Note that if b ∈ (− a2

2n ,
3a2

2n ) we would obtain λopt > n−1
2 for which the

approximation (15) on which this choice of λ is based is not valid anymore. In
practice, the median (a = 1, b = 0) is the only relevant case that falls outside the
applicability of theorem 4.2. To choose λ when b = 0 we may observe that the
estimator obtain under quadratic loss, (13), and relative quadratic loss, (14),

are very close and asymptotically equivalent. Since b⋆ /∈ (− a2

2n ,
3a2

2n we may then

apply (20) replacing b⋆ = b− 2a2

n instead of b.
The λopt in (20) is a function not only of δ, as anticipated, but also of the

unknown σ2; therefore, an optimal choice of (δ, λ) should depend, at least in
principle, on a prior guess for σ2. A method for circumventing the problem
that is implicitly suggested by the generalized prior (3), is to let δ → 0. This
condition may be approximated in practice by a δ that is much smaller than
σ so as to make the third addend in (20) negligible. This approximation can
be justified by noting (from 6) that δ has the same order of magnitude of the
expectation and the mode of σ2; therefore, choices of the type δ = kσ2

0 for some
constant k and prior guess of the variance σ2

0 , imply a negligible third addend

in (20) in the ‘small value setting’ we assumed for the derivation of θ̂qb.
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The estimator θ̂qb
1,0.5 is connected to popular estimators that have already

been discussed in the literature. Note that if δ = 0, a = 1, b = 0.5 and

we replace λopt into (3.1), we obtain θ̂qb
1,0.5 = exp

(

(X̄) + S2(n−3)
2n

)

, which is
the MSE-optimal estimator (3.9) proposed by Zellner (1971) with the assumed
known σ2 replaced by S2 = Y 2/(n − 1). This estimator is also similar to the
one proposed in Evans and Shaban (1976) with the function g truncated to the
first term.

As far as γ is concerned, we propose choosing a value close to the minimum
value to assure for the existence of the first two posterior moments. Therefore,
we specify the GIG with heaviest possible tail among those yielding p(θ|data)
with finite variance:

γ2
0 = max

{

0, 4
(a2

n
+ b

)}

+ ǫ. (22)

where ǫ is a positive, typically small constant. Note that γ0 depends on n.
In any case, we found in our simulations that θ̂QB

1,0.5 are not particularly sensitive
to alternative choices of γ0 that are close to (i.e., of the same order of magnitude

of) the γ0 we propose. Much larger values lead to inefficient θ̂
QB
1,0.5 with far larger

frequentist MSEs.
Moreover, the resulting GIG distribution will have a particularly light right

tail for positive b. This result implies that the prior will be relatively peaked.
Because a choice δ close to 0 implies a peak close to 0, in the next section we
explore how a prior guess on the population variance may be used to improve
the performances of the Bayes estimators.

4.2 Choice of hyperarameters based on prior guesses of σ
2

Assume that a prior guess σ2
0 for σ2 is available and this value is ‘far’ from 0.

The subject of this section is how to specify priors that incorporate this prior
guess and preserve the optimality properties we have described. We restrict our
attention to positive b, because when b ≤ 0, the existence of the first posterior
moment does not necessarily imply a prior with light tails, and we may choose
priors with a more distributed probability mass.

We start by introducing the following approximation of E(σ2) and that is
based on the inequality (6) and that has proved in simulations to be effective
for a wide range of choices for λ, δ, γ:

E(σ2) ∼= λ+
√

λ2 + δ2γ2

γ2
(23)

In the following we denote the approximate expected value from (23) by σ2
E .

We then introduce the following result:

Theorem 4.3. Assuming that i) λ is a function of δ as expressed in (20) and

that ii) b > 3a2

2n , we have σ2
E = kσ2 for 0 < k < 1.

11



Proof. We may rewrite (20) as λ = c1 − c2δ
2 with c1 = −1 − (n − 1) 2a2

2nb−3a2

and c2 =
a2+2nb

2(2nb−3a2)σ2 . Substituting this identity into (23) and solving for δ2,

we obtain:

δ2 =
kσ2(kγ2σ2 − 2c1)

1− 2kc2σ2
. (24)

Of course, δ2 must be positive. The signs of both c1 and c2 depends on that of

c. Because if 2nb − 3a2 > 0 (i.e., b > 3a2

2n ) implies that c1 < 0 and c2 > 0, the
numerator of δ2 is always positive and we may focus on the denominator. It is
positive whenever

k <
2nb− 3a2

2nb+ a2
< 1 (25)

a condition that reduces to k < n−3
n+1 for a = 1, b = 0.5.

The main implication of this result is that the relationship between λ and
δ implied by (20) leads naturally to conservative priors whose expected values
cannot exceed σ2. This finding is consistent with all the theory of MSE-optimal
estimation of log-normal parameters, in which efficiency is improved at the
price of some negative bias. As a byproduct, (24) suggests how to choose δ2 as
a function of γ2, a prior guess σ2

0 and k.
To clarify the interpretation of the parameter k, we study its relation to

the coefficient of variation of the prior distribution. Note first that if W ∼
GIG(λ, δ, γ), with λ < −1, then

CV 2(W ) ∼= − 1

λ+ 1
. (26)

To see how this result follows, note that

CV 2(W ) + 1 =
Kλ+2(δγ)

Kλ+1(δγ)

Kλ(δγ)

Kλ+1(δγ)
,

that is, CV 2(W ) + 1 = E(W1)/E(W2), with W1 ∼ GIG(λ+ 1, δ, γ) and W2 ∼
GIG(λ, δ, γ). Using the approximation (23) for the expected values, we find
that

CV 2(W ) + 1 =
(λ+ 1) +

√

(λ+ 1)2 + δ2γ2

λ+
√

λ2 + δ2γ2
.

Because
√

m2
1 +m2

∼= |m1|+ m2

2|m1|
for a positive m2, CV

2(W )+1 ∼= λ(λ+1)−1

for λ < −1, from which (26) follows. We can now state the following result.

Theorem 4.4. Given assumptions i) and ii) of theorem 4.3, assuming that δ is
selected according to (24) and using the approximation in (26) for the squared
coefficient of variation, if follows that CV 2(σ2) is a monotonically decreasing
function of k.

12



Proof. Because b > 3a2

2n , implies that c1+1 < 0 and c2 > 0, λ = c1−c2δ2 implies
that λ+1 < 0. It follows from (26) that the squared coefficient of variation will
be monotonically decreasing in k whenever −(λ+1) is monotonically increasing
(that is, when its derivative is positive) ∀k ∈ (0, 2nb−3a2

2nb+a2 ).

To determine the sign of d
dk{c2δ2−(c1+1)}, we focus on the sign of the numerator

in d
dk

c2kσ2(kγ2σ2−2c1)
1−2kc2σ2 .

(

2c2kγ
2σ4 − 2c1c2σ

2
)(

1− 2kc2σ
2
)

+
(

c2k
2γ2σ4 − 2c1c2kσ

2
)

2c2σ
2 > 0

may be simplified to

2c2σ
2
(

kγ2σ2 − c2k2γ2σ4 − c1
)

> 0.

This inequality holds whenever kγ2σ2(1− c2kσ2) > c1. Given that c1 < 0, this

condition holds ∀k ∈ (0, 2nb−3a2

2nb+a2 ) because for k within this range, we know that

1− 2c2kσ
2 > 0 implies that 1− c2kσ2 > 0.

When selecting a value of k within its permissible range, we should consider
that the larger the value of k, the closer the expected value of the prior is to
the guess σ2

0 , but also the smaller the prior’s coefficient of variation (that is the
more informative is the distribution). Likewise, a larger a priori coefficient of
variation yields an expected value farther to the left of σ2

0 .
The parameter k may be interpreted as a measure of the amount of a priori

information available. If we are quite uncertain about our prior guess for σ2 it
makes sense to have not only a prior with a large coefficient of variation but also
a conservatively small expected value. In fact, it can be easily shown through
simulation that prior specification that put a sizeable part of the prior mass
beyond σ2 yields Bayes estimators with huge frequentist MSEs. Therefore, the
relationship (through k) between a prior expected value and the coeffient of
variation is consistent with the optimization of frequentist MSE of the Bayes
estimators.

We also note that the relationship between k and the squared CV is non-
linear. The speed of the squared CV reduction increases with k; therefore,
choices of k close to its maximum imply very peaked prior distributions. On the
other extreme, a small k leads to a prior that is practically the same as those
considered in Section 4.1.

5 Simulation

In this section, we compare, using their frequentist MSEs, the Bayes estimators
introduced in the previous sections with other estimators, both frequentist and
Bayesian. We focus on the estimating the mean of the log-normal (i.e., θ1,0.5),
a popular problem in the literature and for which several competing estimators
exist. Specifically, we consider the unbiased estimator of Evans and Shaban
(1976) and the estimator proposed by Shen et al. (2006) which the authors
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proved to be more efficient than the various alternatives that had previously
been proposed in the literature. We also consider the Bayes estimator of Rukhin
(1986). As a general benchmark, we also consider the MSE-optimal estimator
of Zellner (1971) which is based on a known σ2.

The simulation set-up is essentially the same as that introduced in Zhou
and Gao (1997) and also used by Shen et al. (2006). We assume that X ∼
N(−σ2, σ2); then exp(X) is log-normally distributed, and our estimandE

[

exp(X)
]

=
1. We consider 6 distinct values for σ2 (σ2 = 0.1, 0.5, 1, 2, 5, 20) and three sam-
ple sizes (n = 11, 101, 400). The results we present used M = 100, 000 MC
samples, and were obtained using R.

In table 1, we present the results obtained under the priors specified accord-
ing to the suggestions of Section 4.1; specifically we set δ = 0.01. In presenting
the results, we denote the estimator of formula (3.1) in Rukhin (1986) by θ̂Ru,
with the prior parameters chosen using formulas (3.6) and (3.7) of the same

paper. Let θ̂ES denote the unbiased estimator of Evans and Shaban (1976)

and let θ̂SBZ denote the estimator from Shen et al. (2006). We also denote

the optimal estimator assuming a known σ2 that was discussed above by θ̂Zel.
Because the simulations only address estimating the mean, we omit the indexes
related to the choice of a, b.

Despite the prior parameters having been chosen using a ‘small arguments’
approximation to, the Bessel-K function, table 1 shows that θBQ performs well
regardless of the size of σ2. Specifically θBQ is close to θSBZ for all values of
σ2, n. We emphasize this as θSBZ is the reference frequentist estimator in the
recent literature. Both estimators are negatively biased and the bias rapidly
increases with σ2, especially when n = 11. In any case, note that θZel, which
is MSE-optimal and assumes known σ2, is similar in this respect. θBQ is also
more efficient than θES . For small σ2, θBQ is only moderately biased and shows
a similar MSE, while for large population variances, the unbiasedeness of θES

is quite costly in terms of variance.
When comparing θBQ to θBR, we find that the two performs similarly for

small σ2, but θBQ becomes clearly superior to the predictor based on the rela-
tive quadratic loss function as σ2 increases. θRu exhibits an MSE close to that
of θBQ for small σ2, but its properties deteriorate dramatically for large popu-
lation variances. We have already noted that the prior chosen for σ2 in Rukhin
(1986) is the limit of a GIG for δ → 0; nonetheless the proposed choice for γ is
inconsistent with the existence of the first two moments of the posterior distri-
bution for the mean of the log-normal. The results for θ̂Ru when n = 400 and
σ2 ≤ 2 are missing because of numerical problems. These estimators involve
the calculation of Bessel-K functions with very large orders (the order increases
linearly with n) and arguments very close to 0, which results in huge values.
These values lead to numerical instability and the generation of errors with the
software we used. Because they are not essential to our purposes, we do not
investigate the problem further.

In table 2, we report selected results for the estimators of the log-normal
mean in the case where the priors for σ2 incorporate prior guesses using the
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Table 1: Comparison of alternative estimators: prior for σ2 not incorporating
guesses
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methodology described in Section 4.2. These priors are relevant only for large σ2;
therefore, we report the results only for σ2 = 1, 5, 20. They involve a parameter
k that controls both the closeness of the prior expectation to σ2

0 (the prior
guess) and the peakedeness of the prior. LetM denote the maximum admissible
value for k according to (25); we consider the cases where k = 0.5M and k =

M . The purpose of this second set of comparisons involving θ̂QB is mainly to
determine how much efficiency improves when a guess of the population variance
is available and used in the prior specification and how sensitive these gains are
to incorrect guesses for σ2. For this purpose, we consider the following values
for σ2

0 : 0.4σ
2, 0.8σ2, σ2, 1.2σ2, 1.6σ2, 2σ2. These values correspond to errors in

guessing σ2 that range from large and negative to large and positive. The results
are reported only for n = 11, 101 because the impact of the prior specification
is less interesting for n = 400.

With respect to Table 2, we note that, as expected, when the guess σ2
0 is

exactly equal to σ2 there are large gains in effciency relative to the parallel
results in Table 1. The gains are larger for k = M than for k = 0.5M . To
better appreciate the size of these gains, the MSEs and biases should be also
be compared with those of θ̂Zel from Table 1, whose MSEs represent a lower
bound.

When k = 0.5M , there is much less sensitivity to wrong guesses for σ2 than
when k =M . As anticipated in Section 4.2 this finding is explained by the prior
becoming peaked and the prior coefficient of variation decreasing dramatically
when k gets close to its upper bound. We observe this decreased sensitivity for
both under- and over- statement of σ2. Specifically, when σ2

0 = 0.4σ2, the prior
implied by k = 0.5M is more diffuse, which compensates for its expectation
being farther to the right than in the case of k = M . For values of the guess
close to σ2, a more peaked distribution leads to estimators that behave better.
However, as soon as the prior expected value exceeds the underlying true value
(when σ2

0 = 1.2σ2, for example), we start to observe an increase in the MSE and
a switch in the sign of the bias (from negative to positive) for the estimators
associated with k =M . For larger positive errors in guessing σ2, the properties
of these estimators deteriorates fast and dramatically.

For k = 0.5M , we observe smoother behavior. The estimators with the best
MSE are not those where σ2

0 = σ2. This results is due to E(σ2) = kσ2
0 which

imply that a value of σ2 moderately greater than σ2 yields a prior with an
expected value closer to σ2. It is also unwise in this situation to intentionally
overstate σ2. From the case of σ2

0 = 2σ2, we may observe that the properties

of θ̂QB when k = 0.5M also deteriorate when there is gross positive error in
guessing the population variance.

We conclude that when a reasonable prior guess for σ2 is available, the ef-
ficiency of the θ̂QB Bayes estimators may be improved. Except for the case of
k close to the upper limit of its admissible range, these improvements are sub-
stantial and can be obtained with a reasonable level of robustness with respect
to guessing errors. Concerning the choice of k, we presented empirical results
for k = 0.5M that represent the best performance for the simulation setting
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Table 2: Comparison of alternative estimators: prior incorporating guesses of
σ2

MSE Bias
n σ2 = 1 σ2 = 5 σ2 = 20 σ2 = 1 σ2 = 5 σ2 = 20

σ2
0 = 0.4σ2

k = .5M 11 0.101 0.521 0.988 -0.157 -0.638 -0.994
k =M 11 0.110 0.593 0.995 -0.227 -0.743 -0.997
k = .5M 101 0.014 0.137 0.792 -0.031 -0.226 -0.873
k =M 101 0.023 0.309 0.973 -0.117 -0.540 -0.986

σ2
0 = 0.8σ2

k = .5M 11 0.097 0.474 0.977 -0.121 -0.564 -0.987
k =M 11 0.091 0.432 0.952 -0.140 -0.564 -0.974
k = .5M 101 0.014 0.127 0.736 -0.021 -0.181 -0.830
k =M 101 0.013 0.131 0.772 -0.052 -0.310 -0.876

σ2
0 = σ2

k = .5M 11 0.096 0.453 0.963 -0.101 -0.515 -0.979
k =M 11 0.088 0.377 0.875 -0.092 -0.421 -0.913
k = .5M 101 0.014 0.123 0.680 -0.015 -0.149 -0.779
k =M 101 0.011 0.067 0.324 -0.013 -0.106 -0.498

n σ2
0 = 1.2σ2

k = .5M 11 0.096 0.438 0.940 -0.080 -0.455 -0.964
k =M 11 0.091 0.406 0.986 -0.040 -0.227 -0.701
k = .5M 101 0.014 0.120 0.609 -0.009 -0.109 -0.693
k =M 101 0.013 0.131 2.934 0.029 0.189 1.238

σ2
0 = 1.6σ2

k = .5M 11 0.099 0.457 0.876 -0.036 -0.296 -0.879
k =M 11 0.117 1.316 80.534 0.074 0.401 2.648
k = .5M 101 0.014 0.132 0.683 0.005 -0.004 -0.281
k =M 101 0.030 1.845 3483.366 0.124 1.236 52.430

σ2
0 = 2σ2

k = .5M 11 0.108 0.627 1.666 0.012 -0.069 -0.539
k =M 11 0.181 6.355 13668.7 0.204 1.573 44.9
k = .5M 101 0.015 0.188 5.421 0.019 0.141 1.067
k =M 101 0.074 13.207 2684534 0.238 3.463 1468.1

17



considered here and also for others we do not report for the sake of brevity. A
smaller ks tends to reproduce the results we have seen for the choices of prior
parameters discussed in Section 4.1 while a larger k shares, although to a lesser
degree, the problems illustrated for k =M .

6 Conclusions and future work

In this paper, we considered the popular log-normal model and the specific
problems associated with estimating many of its parameters (including mean,
median and mode). These problems are caused by the fact that log−t and other
distributions that can be met the analysis of the log-normal model have no finite
moments. Our approach is Bayesian but parallel problems arise from a frequen-
tist perspective. Specifically we wanted to continue using the popular quadratic
loss function to summarize the posterior distribution. We found that a general-
ized inverse gamma prior for the population variance allows formally stating the
conditions on the prior parameters that lead to posterior distributions with finite
moments; moreover, the Bayes estimators of log-normal parameters associated
to quadratic loss function have desirable frequentist properties.

Further developments of this research are possible in many directions. We
are interested in applying generalized inverse gamma priors to the variance com-
ponents in normal mixed models specified for the log of Poisson means that are
commonly used (for example) in epidemiology. An extension of this methodol-
ogy may also be applied to prediction problems in finite population modeling
where normal models on the log-scale are popular. From a more theoretical
point of view, we want to explore the relationship between our estimator and
the other solutions proposed in the literature, such as the estimator of the log-
normal mean proposed by Shen et al. (2006) which performs similarly to ours
in simulations.
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