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Abstract

In this article we derive some new identities concerning π, algebraic radicals and some special occurrences
of the Gauss hypergeometric function 2F1 in the analytic continuation. All of them have been derived by tack-
ling some elliptic or hyperelliptic known integral, and looking for another representation of it by means of
hypergeometric functions like those of Gauss, Appell or Lauricella. In any case we have focused on integrand
functions having at least one couple of complex-conjugate roots. Founding upon a special hyperelliptic reduc-
tion formula due to Hermite, [6], π is obtained as a ratio of a complete elliptic integral and the four-variable
Lauricella function. Furthermore, starting with a certain binomial integral, we succeed in providing

√
2/3 as a

ratio of a linear combination of complete elliptic integrals of the first and second kinds to the Appell hyperge-
ometric function of two complex-conjugate arguments. Each of the formulae we found theoretically has been
satisfactorily tested by means of Mathematica R©
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1 Introduction

In this article some new identities concerning π and other relevant numbers are obtained following a method-
ology like that which appeared in our previous paper [9], which the reader is referred to, also for a review on
the recent literature on π formulae. Hereinafter we will focus on some integrals not considered in [9], namely
those with complex-conjugate roots, i.e. like ∫ p(x)√

q(x)
dx

being q(x) a third/fourth degree real coefficients polynomial with almost one couple of complex-conjugate
roots and p(x) with degree 0 or 1.

In the second section, by means of elliptic integrals, whose radicands always have complex-conjugate roots,
evaluated by [3], we obtain further identities of elliptic-hypergeometric nature, not only to π but also to alge-
braic radicals like

√
2, 4
√

3. Our most prominent outcomes appear to be where the hypergeometric functions

2F1 (Gauss), F1 (Appell) and F(n)
D (Lauricella) are theoretically found inside the unit disk, or in their analytic

continuation. In the third section, starting from the integral where 2α− β > 1:

∫ ∞

0

tβ

(1 + t2)α
dt

we will establish some determinations, completely new as we deem, on the Gauss hypergeometric function
2F1 with argument 2, without making use of any formulae on analytic continuation.
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In the fourth section, a hyperelliptic subject takes place. A special hyperelliptic integral can in fact be
reduced to an elliptic one, by the variable transformation:

y =
2(z3 − b3)

3(z2 − a2)

leading to the reduction (Hermite 1876, [6]):∫ ∞

z1

z√
(z2 − a2)(4z3 − 3a2z− b3)

dz =
1√
6

∫ ∞

−2z1

dy√
y3 − 3a2y + 2b3

. (1)

Founding upon (1), if b > a > 0, defining q1(z) = 4z3 − 3a2z − b3, q2(y) = y3 − 3a2y + 2b3 we have two
polynomials that have only one real root: moreover, there exists z1 > 0 such that q1(z1) = 0, q2(−2z1) = 0.
Notice that each root (real or complex) of q2(y) can be obtained by multiplying the q1(z) roots by −2. Next we
will use the double approach (hypergeometric and elliptic) to compute some integrals which we have not dealt
with before, [9], where all the roots of q(x) are real and the interval of integration is bounded. In [9], integrals
with real roots had been carried out over bounded intervals as per the famous hypergeometric-elliptic Jacobi
(1832) reduction shown in [7]:

∫ 1

0

(√
ab + z

)
dz√

z(z− 1)(z− ab)(z− a)(z− b)
=

1√
(1− a)(1− b)

∫ 1

0

dy√
y(1− y)(1− cab y)

where

cab = −

(√
a−
√

b
)2

(1− a)(1− b)
.

We will see how the integral on the left-hand side of (1) can be evaluated via the same methods described in [9]
through the Lauricella hypergeometric function F(4)

D , some argument of which shall be necessarily complex.
As a consequence, a new π identity will follow once the (1) integral has been expressed as a complete first kind
elliptic integral, formula 241.00 page 88 of [3]. In this case the transformation of the hyperelliptic integral in
(1) to a hypergeometric one, is more difficult since the roots of the cubic equation require Cardano’s solution.
Furthermore we will need further assumptions on the real parameter a in (1) in order to ensure the convergence
of the hypergeometric series to which the hyperelliptic integral has been switched into. Since we lack these
assumptions, it will not be possible to employ the classic hypergeometric expansion in multiple power series;
therefore, the identity we are going to prove will be true based on the analytic continuation of F(4)

D .

Notations

For the reader’s best convenience we recall the main notations of the special functions involved throughout
the paper: the reader is referred to [14, 1, 11, 4, 8, 10] for further information.

Euler-Legendre integral (Gamma function), defined for x > 0:

Γ(x) =
∫ ∞

0
e−uux−1du.

Pochhammer symbol:

(a)m =
Γ(a + m)

Γ(a)
= a(a + 1) · · · (a + m− 1).

Complete elliptic integral of first kind, with modulus |k| < 1 :

K(k) =
∫ 1

0

du√
(1− u2)(1− k2u2)

.

Complete elliptic integral of second kind, with modulus |k| < 1:

E(k) =
∫ 1

0

√
1− k2u2

1− u2 du.
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Gauss hypergeometric series defined for |x1| < 1

2F1

(
a; b

c

∣∣∣∣∣ x1

)
=

∞

∑
m=0

(a)m (b)m
(c)m

xm
1

m!
,

Recall the Integral Representation Theorem, acronym IRT, which holds for Re a > 0, Re(c− a) > 0, |x1| < 1:

2F1

(
a; b

c

∣∣∣∣∣ x1

)
=

Γ(c)
Γ(c− a)Γ(a)

∫ 1

0

ua−1(1− u)c−a−1

(1− x1 u)b du

Appell two-variables hypergeometric function defined for |x1| < 1, |x2| < 1:

F1

(
a; b1, b2

c

∣∣∣∣∣ x1, x2

)
=

∞

∑
m1=0

∞

∑
m2=0

(a)m1+m2(b1)m1(b2)m2

(c)m1+m2

xm1
1

m1!
xm2

2
m2!

,

whose IRT reads, if Re a > 0, Re(c− a) > 0, as:

F1

(
a; b1, b2

c

∣∣∣∣∣ x1, x2

)
=

Γ(c)
Γ(a)Γ(c− a)

∫ 1

0

ua−1 (1− u)c−a−1

(1− x1 u)b1 (1− x2 u)b2
du. (2)

We will employ several times the general reduction formula expressing F1 in terms of 2F1, see [11] formula
(8.3.4) page 218, namely:

F1

(
a, b1, b2
b1 + b2

∣∣∣∣ x, y
)
=

1
(1− y)a 2F1

(
a, b1

b1 + b2

∣∣∣∣ x− y
1− y

)
(3)

Lauricella hypergeometric functions of n variables

F(n)
D

(
a; b1, . . . , bn

c

∣∣∣∣∣ x1, . . . , xn

)
=

∞

∑
m1=0

· · ·
∞

∑
mn=0

(a)m1+···+mn(b1)m1 · · · (bn)mn

(c)m1+···+mn m1! · · ·mn!
xm1

1 · · · x
mm
n

whose IRT for Re a > 0, Re(c− a) > 0 is:

F(n)
D

(
a; b1, . . . , bn

c

∣∣∣∣∣ x1, . . . , xn

)
=

Γ(c)
Γ(a) Γ(c− a)

∫ 1

0

ua−1(1− u)c−a−1

(1− x1u)b1 · · · (1− xnu)bn
du. (4)

A reduction formula of the same nature as that in (3) keeps its validity even while reducing the number of
hypergeometric variables when the coefficient c equates the sum of all the bj. For example the three-variable

Lauricella F(3)
D can be reduced to the Appell F1 according to the

Lemma 1.1. The reduction formula holds:

F(3)
D

(
a; b1, b2, b3

b1 + b2 + b3

∣∣∣∣∣ x1, x2, x3

)
=

1
(1− x3)a F1

(
a, b2, b3

b1 + b2 + b3

∣∣∣∣ x1 − x3

1− x3
,

x2 − x3

1− x3

)
(5)

More generally:

F(n)
D

(
a; b1, . . . , bn

b1 + · · ·+ bn

∣∣∣∣∣ x1, . . . , xn

)
=

1
(1− xn)a F(n−1)

D

(
a, b2, . . . , bn

b1 + · · ·+ bn

∣∣∣∣ x1 − xn

1− xn
, . . . ,

xn−1 − xn

1− xn

)
(6)

Proof. In the integral giving F(3)
D the same change u v shown by Slater in [11] p. 217-218:

u =
v

(1− x3)

(
1− x3

x3 − 1
v
) =⇒ du =

dv

(1− x3)

(
1− x3

x3 − 1
v
)2 .
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shall be used. The outcome follows by the direct computation keeping in mind that:

1− x3 u =
1

1− x3

x3 − 1
v

, 1− x2 u =
1− x3 − x2

x3 − 1
v

1− x3

x3 − 1
v

, 1− x1 u =
1− x3 − x1

x3 − 1
v

1− x3

x3 − 1
v

, 1− u =
1− v

1− x3

x3 − 1
v

All these hypergeometric functions can be analytically continued by the IRT to the complex field as a whole
excluding the real positive axis for each of the variables xj.

2 Elliptic-hypergeometric identities

Starting from the cubic case, let us consider the elliptic integral 241.00 of [3]:

∫ ∞

a

dt√
(t− a) (t2 + b2)

=
2

4
√

a2 + b2
K

√√a2 + b2 − a
2
√

a2 + b2

 (7)

with a third degree polynomial under the square root and a couple of complex-conjugate roots. Also by com-
puting (7) hypergeometrically, we will find our first new π formulae:

Theorem 2.1. Assume a > 0 and b any real number. The following identity holds:

π =
2 4
√

a2 + b2
√

a

K

√√a2 + b2 − a
2
√

a2 + b2


F1

( 1
2 , 1

2 , 1
2

1

∣∣∣∣∣ b2

a2 + b2 +
ab

a2 + b2 i,
b2

a2 + b2 −
ab

a2 + b2 i

) (8)

Moreover we also have:

π =
√

2

(√√
a2 + b2 + a

4
√

a2 + b2
+ i

√√
a2 + b2 − a

4
√

a2 + b2

) K

√√a2 + b2 − a
2
√

a2 + b2


2F1

( 1
2 , 1

2

1

∣∣∣∣∣ 2b2

a2 + b2 +
2ab

a2 + b2 i

) (9)

Proof. Starting from formula (7), evaluating the left hand side integral and passing to the variable u:

u = 1− a
t

=⇒ dt =
a

(1− u)2 du,

we see that:∫ ∞

a

dt√
(t− a) (t2 + b2)

=

√
a

a2 + b2

∫ 1

0

u−1/2 (1− u)−1/2[
1−

(
b2

a2+b2 +
ab

a2+b2 i
)

u
]1/2 [

1−
(

b2

a2+b2 − ab
a2+b2 i

)
u
]1/2 du

so using the relevant IRT (2) for the Appell function, we find out:

π F1

( 1
2 , 1

2 , 1
2

1

∣∣∣∣∣ b2 + ab i
a2 + b2 ,

b2 − ab i
a2 + b2

)
=
∫ 1

0

u−1/2 (1− u)−1/2[
1−

(
b2+ab i
a2+b2

)
u
]1/2 [

1−
(

b2−ab i
a2+b2

)
u
]1/2 du. (10)

Thesis (8) follows by comparing (10) and (7). The second statement follows from the general reduction formula
expressing F1 in terms of 2F1, see formula (3); taking a = b1 = b2 = 1/2 we find:

F1

( 1
2 , 1

2 , 1
2

1

∣∣∣∣∣ b2 + ab i
a2 + b2 ,

b2 − ab i
a2 + b2

)
=

√√a2 + b2 + a
2a

− i

√√
a2 + b2 − a

2a

 2F1

( 1
2 ; 1

2

1

∣∣∣∣∣ 2b2 + 2ab i
a2 + b2

)
.
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In such a way, substituting in (8), after some algebraic work, formula (9) follows.

An analogous outcome is true for fourth degree polynomial. We know that, see [3] 213.00 page 48 with
b > 0: ∫ b

−b

dt√
(a2 + t2)(b2 − t2)

=
2√

a2 + b2
K
(

b√
a2 + b2

)
. (11)

We have the:

Theorem 2.2. The identity holds:

π =

2 K
(

b√
a2 + b2

)
F1

( 1
2 ; 1

2 , 1
2

1

∣∣∣∣∣ 2b2 − 2ab i
a2 + b2 ,

2b2 + 2ab i
a2 + b2

) (12)

If 0 < b
√

3 < a, the hypergeometric series defining the Appell F1 converges; if, on the contrary the condition b
√

3 ≥
a > 0 holds, the relation (12) is meaningful whenever Appell F1 function is analytically continued. Furthermore, by (3)
it follows that:

π =
2(a− i b)√

a2 + b2

K
(

b√
a2 + b2

)
2F1

( 1
2 , 1

2

1

∣∣∣∣∣− 4ab i
(a− i b)2

) (13)

Proof. Let us perform on the left-hand side of (11) the change of variable t = b(2u− 1) so that:

1√
a2 + b2

∫ 1

0

u−1/2(1− u)−1/2√(
1− 2b2−2ab i

a2+b2 u
) (

1− 2b2+2ab i
a2+b2 u

) du =
2√

a2 + b2
K
(

b√
a2 + b2

)

Thesis (12) follows by IRT (2) after noting that the module of the two complex conjugate arguments of F1 is
given by: ∣∣∣∣2b2 + 2ab i

a2 + b2

∣∣∣∣ = ∣∣∣∣2b2 − 2ab i
a2 + b2

∣∣∣∣ = 2b√
a2 + b2

.

To get the second identity, one shall apply only the transformation (3) and simplify.

Even if we start with an integral similar to (11), the next hypergeometric transformation does not lead to
any π identity, but allows us to evaluate the Lauricella’s hypergeometric function F(4)

D analytic continuation
for some special set of the variables. The start-up is formula 221.00 page 61 of [3]: if a > b > 0, then:

∫ ∞

0

dt√
(t2 + a2) (t2 + b2)

=
1
a

K

(√
a2 − b2

a2

)
(14)

Theorem 2.3. If a > b > 0 then:

F(4)
D

(
1; 1

2 , 1
2 , 1

2 , 1
2

2

∣∣∣∣∣ 1 + i a, 1− i a, 1 + i b, 1− i b

)
=

1
a

K

(√
a2 − b2

a2

)
(15)

Owing to four of Lauricella’s arguments that remain outside the unit disk, the left-hand side of (15) has to be defined in
the F(4)

D analytic continuation.
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Proof. Changing the variable in (14) using t = (1− u)/u we get:∫ ∞

0

dt√
(t2 + a2) (t2 + b2)

=
∫ 1

0

du√
[1− (1− ia)u] [1− (1 + ia)u] [1− (1− ib)u] [1− (1 + ib)u]

and hereinafter the thesis (15) follows.

In (15) π does not appear because parameters a and c of F(4)
D have the values 1 and 2 respectively, so that:

Γ(c)
Γ(a)Γ(c− a)

= 1

On the contrary, in all the previous formulae (10), (9), (12), (13) we always have a = 1/2 and c = 1. The above
mentioned case also occurs in the next identity where the square root of 2 will be given as a ratio of an elliptic
integral to a Lauricella function.

Theorem 2.4. Let a, b ∈ R be two positive numbers. Then:

√
2 =

K
(

a√
a2 + b2

)
F(3)

D

( 1
2 ; 1

2 , 1
2 , 1

2
3
2

∣∣∣∣∣ a2 − i ab
a2 + b2 ,

a2 + i ab
a2 + b2 ,

1
2

) (16)

By the reduction formula (5) we get:

2 =

K
(

a√
a2 + b2

)
F1

( 1
2 ; 1

2 , 1
2

3
2

∣∣∣∣∣ a− i b
a + i b

,
a + i b
a− i b

) (17)

Proof. Starting from the complete elliptic integral 212.00 page 47 of [3]:∫ ∞

b

dt√
(a2 + t2)(t2 − b2)

=
1√

a2 + b2
K
(

a√
a2 + b2

)
changing variables again:

t =
b

1− u
=⇒ dt =

b
(1− u)2

so that:

1√
a2 + b2

K
(

a√
a2 + b2

)
=
∫ 1

0

du√
(2u− u2) (a2u2 − 2a2u + a2 + b2)

=
1√

2(a2 + b2)

∫ 1

0

u−1/2√(
1− 1

2 u
) [

1−
(

a2−ab i
a2+b2

)
u
] [

1−
(

a2+ab i
a2+b2

)
u
] du

Thesis (16) follows after the IRT. Again, thesis (17) after (16) and (5).

For the lack of computer algebra packages for the Lauricella functions, the above formula 16 will be the
best benchmark in view of its future, hopefully near, implementation.
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3 Some new results on the analytic continuation of 2F1

Our next outcome will consist of an analogous formula providing once again an arithmetic radical through
the complete elliptic integral K and of the Appell F1 function computed in its analytic continuation. In this
case, thanks to the special structure of parameters of F1, we will obtain a further relationship involving the
2F1analytic continuation. Notice that the analytic continuation of 2F1 outside the unit disk, i.e. |z| > 1, namely
for values not allowing the IRT, is ensured by the classic reflection formulae like those in [12] on page 120:

2F1

(
a; b

c

∣∣∣∣∣ z

)
=

Γ(c)Γ(b− a)
Γ(b)Γ(c− a)

(−z)−a
2F1

(
a; a− c + 1

a− b + 1

∣∣∣∣∣ 1
z

)

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−b
2F1

(
b− c− 1; b

b− a + 1

∣∣∣∣∣ 1
z

) (18)

The analytic continuation 2F1 is a subject of recent research like [2], or [13], where a complicated formula is
found involving three determinations of 2F1. Therefore we deem our finding on the value of 2F1 for z = 2 is
of some interest not only to the analytic number theory, but also to fixing a benchmark for any computational
efforts. We start with the integral, 2α− β > 1 :

∫ ∞

0

tβ

(1 + t2)
α dt =

1
2

Γ
(

β+1
2

)
Γ
(

2α−β−1
2

)
Γ(α)

(19)

notice that (19) can be found for instance by passing to u = arctan t in the integral, keeping in mind one of the
expressions of the Euler Beta function:

B(x, y) = 2
∫ π

2

0
(sin u)2x−1(cos u)2y−1du

and the Beta-Gamma theorem: B(x, y) = Γ(x)Γ(y)/Γ(x + y). Computing (hypergeometrically) again the inte-
gral on the left hand side of (19), one gets:

Theorem 3.1. If 2α− β > 1 then:

2F1

(
2α− β− 1; α

2α

∣∣∣∣∣ 2

)
= (−i)2α−β−1√π

Γ
(

α +
1
2

)
Γ
(

1 +
β

2

)
Γ
(

α− β

2

) (20)

where the complex powers are referred to the principal argument.

Proof. Changing the variables on left-hand side of (19) by means of the usual transformation t = (1− u)/u we
get: ∫ ∞

0

tβ

(1 + t2)
α dt =

∫ 1

0

(1− u)βu2α−β−2

[1− 2u + 2u2]
α du

Splitting 1− 2u + 2u2 = [1− (1− i)u] [1− (1 + i)u] we can use the IRT to obtain the Appell function:∫ ∞

0

tβ

(1 + t2)
α dt =

Γ(2α− β− 1)Γ(β + 1)
Γ(2α)

F1

(
2α− β− 1; α, α

2α

∣∣∣∣∣ 1− i, 1 + i

)
(21)

with conjugate complex arguments. By the reduction (3):∫ ∞

0

tβ

(1 + t2)
α dt =

Γ(2α− β− 1)Γ(β + 1)
Γ(2α)

1
(−i)2α−β−1 2F1

(
2α− β− 1; α

2α

∣∣∣∣∣ 2

)
(22)

equating to (19), thesis (20) follows, using the duplication formula, which holds for 2z 6= 0, −1, −2, . . .

Γ(2z) =
22z−1
√

π
Γ(z)Γ

(
z +

1
2

)
.

to simplify some coefficients.
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For special values of α parameter, integral (19) can be given by means of elliptic integrals, then producing
further remarkable equalities where 2F1 of argument 2 can be computed with the knowledge of some complete
elliptic integrals. Next let us provide some integral formulae taken by [3] and [5]. The first is [3] 273.00 page
152: ∫ ∞

0

dt
4
√
(t2 + 1)3

=
√

2 K
(

1√
2

)
(23)

the second is [3] 274.00 page 154:

∫ ∞

0

dt
3
√
(t2 + 1)2

=
3

4
√

3
K

√2−
√

3
4

 (24)

the third one is [3] 273.54 page 154 or, better, [5] 3.185.5 page 311:∫ ∞

0

dt
4
√
(t2 + 1)5

= 2
√

2 E
(

1√
2

)
−
√

2 K
(

1√
2

)
(25)

and the last one is [3] integrals 273.53 and 361.02 (we take here the opportunity to point out a misprint in the
integral 3.185.7 page 312 of [5]): ∫ ∞

0

t2

4
√
(1 + t2)

7
dt =

2
√

2
3

K
(

1√
2

)
(26)

In such a way, by comparison of the hypergeometrical solution in (22) with the special cases α = 3/4, 2/3, 5/4
and β = 0 and α = 7/4 and β = 2 computed via complete elliptic integrals in (23), (24), (25) and (26), one gets
immediately that:

Theorem 3.2. The following four formulae for 2F1 hold, the first from (23):

2F1

( 1
2 ; 3

4
3
2

∣∣∣∣∣ 2

)
=

1
2
(1− i)K

(
1√
2

)
(27)

Same way, a start from (24) will lead to:

2F1

( 1
3 ; 2

3
4
3

∣∣∣∣∣ 2

)
=

√
3

2 −
1
2 i

4
√

3
K

√2−
√

3
4

 (28)

From (25) we infer:

2F1

( 3
2 ; 5

4
5
2

∣∣∣∣∣ 2

)
=

3
2
(1 + i)

[
K
(

1√
2

)
− 2E

(
1√
2

)]
(29)

Eventually from (26) we infer:

2F1

( 1
2 ; 7

4
7
2

∣∣∣∣∣ 2

)
=

5
8
(1− i)K

(
1√
2

)
(30)

Stopping just a step before applying the reduction formula (3) and evaluating the integral at the left-hand
side of (19) via the formula (21) instead of (22), one finds:

√
2 =

K
(

1√
2

)
F1

( 1
2 ; 3

4 , 3
4

3
2

∣∣∣∣∣ 1− i, 1 + i

) (31)

8



π and the hypergeometric functions of complex argument G. Mingari Scarpello and D. Ritelli

4
√

3 =

K

√2−
√

3
4


F1

( 1
3 ; 2

3 , 2
3

4
3

∣∣∣∣∣ 1− i, 1 + i

) (32)

√
2

3
=

2E
(

1√
2

)
− K

(
1√
2

)
F1

( 3
2 ; 5

4 , 5
4

5
2

∣∣∣∣∣ 1− i, 1 + i

) (33)

4
√

2
5

=

K
(

1√
2

)
F1

( 1
2 ; 7

4 , 7
4

7
2

∣∣∣∣∣ 1− i, 1 + i

) (34)

Lastly, by comparing (27) with (30) and (31) with (34) we obtain:

2F1

( 1
2 ; 3

4
3
2

∣∣∣∣∣ 2

)
=

4
5 2F1

( 1
2 ; 7

4
7
2

∣∣∣∣∣ 2

)
(35)

F1

( 1
2 ; 3

4 , 3
4

3
2

∣∣∣∣∣ 1− i, 1 + i

)
=

4
5

F1

( 1
2 ; 7

4 , 7
4

7
2

∣∣∣∣∣ 1− i, 1 + i

)
(36)

4 Hyperelliptic-hypergeometric identities

Up to now we have managed only elliptic integrals: in this section the hyperelliptic ones will appear. We are
going to construct a new identity linking π to a complete elliptic integral and to the hypergeometric Lauricella’s
function of four variables.

Theorem 4.1. Let 0 < a < b, and

S := S(a, b) =
1
2

3
√

b3 +
√

b6 − a6, T := T(a, b) =
1
2

3
√

b3 −
√

b6 − a6

so that the real root z1 and the couple of complex-conjugate roots z2 = z3 of q1(z) = 4z3 − 3a2z− b3 are given by:

z1 = S + T, z2 = −1
2
(S + T) +

√
3

2
(S− T) i, z3 = −1

2
(S + T)−

√
3

2
(S− T) i

Then, putting

Kb
a = K

√1
2
+

√
3(S + T)

4
√

S2 + ST + T2

 , Fb
a = F(4)

D

( 1
2 ; 1

2 , 1
2 , 1

2 , 1
2

1

∣∣∣∣∣ x1, x2, x3, x4

)

where the arguments x1, x2, x3, x4 are dependent on T, S and then on a, b according to:

x1 =
a

a− (S + T)
, x2 =

a
a + S + T

, x3 =
S2 + T2

2 (S2 + ST + T2)
− (S2 − T2) i

2
√

3 (S2 + ST + T2)
, x4 = x̄3

In such a way we find that:

π =
2
√
(S2 + ST + T2) [(S + T)2 − a2]

4
√

3
√
(S + T)3 4

√
S2 + ST + T2

Kb
a

Fb
a

(37)
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Proof. Starting from (1) of Hermite, in order to compute the hypergeometric integral on the left-hand side, we
need the roots of the cubic q1(z) = 4z3− 3a2z− b3. We assume b > a > 0 and we know that q1(z) has only one
real zero (let it be z1), whilst z2 = z3 are complex conjugate roots. We have 0 < a < z1. The customary change
from z to u, z = z1/(1− u) normalizing to [0, 1] the left integral in (1), provides:∫ ∞

z1

z√
(z2 − a2)(4z3 − 3a2z− b3)

dz =

z3/2
1

2
√
(z2

1 − a2)(z1 − z2)(z1 − z3)

∫ 1

0

u−1/2(1− u)−1/2√(
1− a

a−z1
u
) (

1− a
z1+a u

) (
1− z2

z2−z1
u
) (

1− z3
z3−z1

u
) du

π z3/2
1

2
√
(z2

1 − a2)(z1 − z2)(z1 − z3)
F(4)

D

( 1
2 ; 1

2 , 1
2 , 1

2 , 1
2

1

∣∣∣∣∣ a
a− z1

,
a

a + z1
,

z2

z2 − z1
,

z3

z3 − z1

) (38)

where the hyperelliptic integral has by IRT been expressed through a suitable Lauricella function. We see that
the arguments of F(4)

D in (38) are exactly the same conjugate complex numbers x3 and x4 that were introduced
in the theorem statement; such numbers have modulus < 1 because:∣∣∣∣ z2

z2 − z1

∣∣∣∣ = ∣∣∣∣ z3

z3 − z1

∣∣∣∣ = 1√
3

√
S2 − ST + T2

S2 + ST + T2

The second argument of F(4)
D in (38) is < 1, whilst the first is < 1 if 2a < z1 = S + T, which ensures that the hy-

pergeometric series converges. If such a condition is not met, (38) has to be meant in the analytic continuation
of the Lauricella function.

The integral on the right hand side of (1) can be evaluated through the cardanic formula for the real roots
y1, and the complex-conjugate ones y2 = y3 of the cubic q2(y) = y3− 3a2y + 2b3 and via the formula [3] 241.00
page 88: ∫ ∞

α

dy√
(y− α)

[
(y− p)2 + q2

] = 2√
A

K

(√
A + p− α

2A

)

where A =
√
(p− α)2 + q2. Observing that q1(r) = 0 ⇐⇒ q2(−2r) = 0, we have:

q2(y) = [y + 2(S + T)]
[
(y− S− T)2 + 3(S− T)2

]
Therefore the right-hand side integral in (1) is given by:

∫ ∞

−2(S+T)

dy√
y3 − 3a2y + 2b3

=

√
2

4
√

3 (S2 + ST + T2)
K

√1
2
+

√
3(S + T)

4
√

S2 + ST + T2

 (39)

Thesis (37) follows solving to π after having equated (38) to (39) via (1).

5 Conclusions

Several new identities have been found following our previous article [9] approach, by hypergeometrically
treating some known integrals in terms of special functions, complete elliptic integrals or eulerian functions. In
this article the treatment has been focused on the hypergeometrical complex arguments. Even though our aim
is not to provide new numerical methods for computing remarkable mathematical constants, all the displayed
identities have beeen checked numerically by means of Mathematica R© where almost all the invoked special
functions are implemented. The exception is the F(n)

D Lauricella family, computed with a naive implementation
through a partial sum of the hypergeometric series by which it is defined.

It would be an invaluable asset to the applications for both Mathematical Physics and pure Mathematics,
if the wealth of functional identities on Lauricella functions, readable in [4], were embedded in a computer
algebra system.

Our third research step will be the detection of analogue identities using the arithmetic of function fields
over a finite field.
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