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Abstract

This paper discusses a consistent bootstrap implementation of the likelihood
ratio [LR] co-integration rank test and associated sequential rank determination
procedure of Johansen (1996). The bootstrap samples are constructed using the
restricted parameter estimates of the underlying VAR model which obtain under
the reduced rank null hypothesis. A full asymptotic theory is provided which
shows that, unlike the bootstrap procedure in Swensen (2006) where a combi-
nation of unrestricted and restricted estimates from the VAR model is used, the
resulting bootstrap data are I(1) and satisfy the null co-integration rank, regard-
less of the true rank. This ensures that the bootstrap LR test is asymptotically
correctly sized and that the probability that the bootstrap sequential procedure
selects a rank smaller than the true rank converges to zero. Monte Carlo evidence
suggests that our bootstrap procedures work very well in practice.

Keywords: Bootstrap; Co-integration; Trace statistic; Rank determination.

1 Introduction

Consider the case where the p-dimensional observations fXtg satisfy the kth order reduced
rank vector autoregressive (VAR) model

(1) �Xt = ��0Xt�1 +
k�1X
i=1

�i�Xt�i + ��0Dt + �dt + "t (t = 1; :::; T )

with f"tg independent and identically distributed (i.i.d.) with mean zero and full-rank vari-
ance matrix 
, and where the initial values X1�k; :::; X0 are �xed in the statistical analysis.

�We thank Iliyan Georgiev, Niels Haldrup, Bent Nielsen, Heino Bohn Nielsen, S�ren Johansen
and Anders Swensen for many useful discussions on this work. Parts of this paper were written
while Cavaliere and Rahbek both visited CREATES whose hospitality is gratefully acknowledged.
Rahbek is also a�liated with CREATES funded by the Danish National Research Foundation. An
earlier version of this paper appeared under the title \Bootstrap Sequential Determination of the
Co-integration Rank in VAR Models" as CREATES Research Paper 2010-7.
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If: (a) the characteristic polynomial associated with (1) has p � r roots equal to 1 and all
other roots outside the unit circle, and (b) � and � have full column rank r, then the pa-
rameters in (1) will be said to satisfy the `I(1; r) conditions'. Under the above conditions Xt

is I(1) with co-integration rank r, such that the co-integrating relations �0Xt �E (�0Xt) are
stationary. The deterministic variables are assumed to satisfy one of the following cases (see,
e.g., Johansen, 1996): (i) dt = 0, Dt = 0 (no deterministic component); (ii) Dt = 1, dt = 0
(restricted constant), or (iii) Dt = t, dt = 1 (restricted linear trend).

The well-known (pseudo-) likelihood ratio [LR] test of Johansen (1996) for the hypothesis
of co-integration rank (less than or equal to) r in (1), denoted H (r), against H (p), rejects
for large values of the trace statistic, Qr;T := �T

Pp
i=r+1 log(1 � �̂i), where �̂1 > : : : > �̂p

are the largest p solutions to the eigenvalue problem,

(2)
���S11 � S10S

�1
00 S01

�� = 0,

where Sij := T�1
PT

t=1RitR
0
jt, i; j = 0; 1, with R0t and R1t respectively denoting �Xt

and
�
X 0

t�1; Dt

�0
, corrected (by OLS) for �Xt�1; :::;�Xt�k+1 and dt. The sequential testing

procedure based on Qr;T involves, starting with r = 0, testing in turn H(r) against H(p)
for, r = 0; :::; p � 1, until, for a given value of r, the asymptotic p-value associated with
Qr;T , exceeds a chosen (marginal) signi�cance level. It is now well understood that the
�nite sample properties of the LR test, whether used sequentially or not, when based on
asymptotic inference, can be quite poor; see Johansen (2002). In such circumstances, the
bootstrap, when correctly implemented, can be an important device for improving upon the
�nite sample size properties of asymptotic tests; see, among others, van Giersbergen (1996),
Swensen (2006) and Trenkler (2009), all of whom consider bootstrap procedures based around
i.i.d. re-sampling, and Cavaliere et al. (2010a, 20010b) who use the wild bootstrap.

Of these bootstrap approaches the most complete treatment, particulary in terms of
the underlying asymptotic theory, has been given by Swensen (2006). A key feature of
the bootstrap algorithms proposed in Swensen (2006) is that they estimate (1) under both
H(r) and H(p) and combine the parameter estimates from these to create the bootstrap
sample data. Speci�cally, the bootstrap sample is generated using the estimates of �, �
and � imposing reduced rank r, coupled with the unrestricted estimates of the short-run
coe�cients, �j , j = 1; :::; k � 1 and �. Even though the latter are consistent irrespective of
the true co-integration rank, it has been pointed out in Swensen (2009) that where the null
hypothesis imposes a co-integration rank r smaller than the true rank, r0 say, then so the
potential arises for the resulting bootstrap samples to be explosive or to admit too many roots
on the unit circle, thereby violating the I(1; r) conditions and, hence, invalidating the use of
the bootstrap. Moreover, where this happens it is not merely a �nite sample problem and
pertains even asymptotically. Swensen (2009) shows that to avoid this happening a number
of auxiliary conditions must hold on the (unknown) parameters of the data generating process
(DGP). These conditions rule out a non-empty set of perfectly plausible I(1) DGPs.

In this paper we show that this problem can be solved by considering an alternative
bootstrap scheme where the bootstrap data are generated using parameter estimates of �; �; �
and �1; :::;�k�1; �, all of which are obtained from estimating (1) under the null hypothesis,
H(r).1 Although the resulting estimates of the dynamics are consistent only when r = r0

1This approach was mentioned in Remark 2 of Swensen (2006, pp.1701-02), although it was not
pursued further there other than noting it as a possible alternative.
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(i.e., where the null co-integration rank being tested coincides with the true rank), in Lemma
1 we establish the key result that, nonetheless, even when r < r0 these estimates converge
to pseudo-true values which ensure that the resulting bootstrap data are (at least in large
samples) I(1) with co-integrating rank r. As a consequence we are able, in Proposition 2, to
prove that our bootstrap tests are asymptotically valid, attaining the same �rst-order limit
null distribution as the original LR statistic both when r = r0 and, crucially, when r < r0,
without the need for any auxiliary conditions to hold on the DGP. Given that the original LR
statistic Qr;T diverges when r < r0 this result ensures that the associated bootstrap analogue
of Johansen's sequential procedure will be consistent in the usual sense that the probability of
choosing a rank smaller than the true rank will converge to zero. We also report results from
a small Monte Carlo study which suggest substantial improvements not only on the �nite
sample properties of the asymptotic LR test, but also relative to the corresponding bootstrap
procedures of Swensen (2006) and the Bartlett-corrected LR tests of Johansen (2002).

The paper is organised as follows. In section 2 we outline our proposed bootstrap al-
gorithms (Algorithms 1 and 2), demonstrating how these di�er from Algorithms 1 and 2 in
Swensen (2006). The large sample properties of the bootstrap procedure are established in
section 3. The results of our Monte Carlo study are given in section 4. Section 5 concludes.
Mathematical proofs are contained in the Appendix. In the following

w
! denotes weak con-

vergence,
p
! convergence in probability, and

w
!p weak convergence in probability, in each case

as T ! 1; I(�) denotes the indicator function; x := y indicates that x is de�ned by y; b�c
denotes the integer part of its argument; Ik denotes the k � k identity matrix and 0j�k the
j � k matrix of zeroes; the space spanned by the columns of any m� n matrix a is denoted
as col(a); if a is of full column rank n < m, then �a := a (a0a)�1 and a? is an m � (m� n)
full column rank matrix satisfying a0?a = 0; for any square matrix, a, jaj is used to denote its
determinant, kak the norm kak2 := tr fa0ag and � (a) its spectral radius (that is, the maximal
modulus of the eigenvalues of a); for any vector, x, kxk denotes the usual Euclidean norm,

kxk := (x0x)1=2. Finally, P � denotes the bootstrap probability measure, i.e. conditional on
the original sample; similarly, E� denotes expectation under P �.

2 Bootstrap Algorithms

The bootstrap implementations of the trace tests and associated sequential procedure from
section 1 which we advocate are based around a bootstrap recursion which mimics the DGP
in (1) under H(r). To that end, let v̂ := (v̂1; v̂2; :::; v̂p) denote the eigenvectors from (2), viz,

(3) v̂0S11v̂ = Ip, v̂0S10S
�1
00 S01v̂ = �̂p := diag(�̂1; �̂2; :::; �̂p) .

The (uniquely de�ned) Gaussian QMLE of �, �̂(r), may then be written as �̂(r) := v̂K
(r)
p ,

where K
(r)
p := (Ir; 0r�(p�r))

0, is a selection matrix indexed by r and p. When deter-

ministic terms are included, �̂#(r) := (�̂(r)0; �̂(r)0)0 = v̂K
(r)
p+1. The remaining estimators

�̂(r);b�(r)1 ; : : : ; b�(r)k�1 and �̂
(r) are then obtained by OLS regression, as in Johansen (1996).

Using these estimates, the bootstrap algorithm we consider in this paper is then based
on the recursion

(4) �X�
r;t = �̂(r)�̂(r)0X�

r;t�1 +
k�1X
i=1

b�(r)i �X�
r;t�i + �̂(r)�̂(r)0Dt + �̂(r)dt + "�r;t;
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where the bootstrap shocks "�r;t in (4) are obtained by re-sampling from the corresponding
restricted residuals obtained from estimating (1) under rank r.

The recursive scheme in (4) di�ers from the corresponding bootstrap recursion in Swensen
(2006) which takes the form

(5) �X�
r;t = �̂(r)�̂(r)0X�

r;t�1 +
k�1X
i=1

b�(p)i �X�
r;t�i + �̂(r)�̂(r)0Dt + �̂(p)dt + "�p;t

where b�(p)1 ; : : : ; b�(p)k�1 and �̂(p) are now the estimates of the short run matrices �1; : : : ;�k�1
and �, respectively, from estimating (1) unrestrictedly, i.e. under H (p). This di�erence is
crucial since showing that the bootstrap test of H(r) is consistent when r < r0, requires that
the bootstrap data still satisfy the I(1; r) conditions in large samples.2 As acknowledged in
Swensen (2009), this is not guaranteed when using the recursion in (5), unless a number of
auxiliary restrictions, labelled Assumption 2 in Swensen (2009), hold on the parameters of
(1); see also Remark 6, below. In contrast, as we will formally establish in section 3, these
restrictions are rendered redundant if the bootstrap recursion in (4) is used. This is because
(4) always delivers an I(1) system with r � r0 co-integrating vectors in the limit, regardless
of the true co-integration rank, r0.

We now detail in Algorithm 1 our bootstrap implementation of the LR test for H(r)
against H(p).

Algorithm 1:

(i) Estimate model (1) under H(r) using Gaussian QMLE yielding the estimates �̂(r),

�̂(r); �̂(r), b�(r)1 ; ::::; b�(r)k�1 and �
(r), together with the corresponding residuals, "̂r;t.

(ii) Check that the equation jÂ(r) (z) j = 0, with Â(r) (z) := (1� z) Ip � �̂(r)�̂(r)0z �Pk�1
i=1 �̂

(r)
i (1� z) zi, has p � r roots equal to 1 and all other roots outside the unit

circle. If so, proceed to step (iii).

(iii) Construct the bootstrap sample recursively from (4) initialised at X�
r;j = Xj , j =

1�k; :::; 0; and with the T bootstrap errors "�r;t generated using the re-centred residuals,

"̂cr;t := "̂r;t � T�1
PT

i=1 "̂r;i, for either:

(a) the i.i.d. bootstrap, such that "�r;t := "̂cr;Ut
, where Ut, t = 1; :::; T is an i.i.d. sequence

of discrete uniform distributions on f1; 2; :::; Tg, or

(b) the wild bootstrap, where for each t = 1; :::; T , "�r;t := "̂cr;twt, where wt, t = 1; :::; T ,
is an i.i.d.N(0,1) sequence.

(iv) Using the bootstrap sample, fX�
r;tg, and denoting by �̂

�
1 > : : : > �̂�p the ordered solutions

to the bootstrap analogue of the eigenvalue problem in (2), compute the bootstrap LR
statistic Q�

r;T := �T
Pp

i=r+1 log(1 � �̂�i ). De�ne the corresponding p-value as p�r;T :=
1�G�

r;T (Qr;T ), G
�
r;T (�) denoting the conditional (on the original data) cdf of Q�

r;T .

2A further di�erence between (5) and (4) is that the the bootstrap shocks "�p;t are re-sampled from
the unrestricted residuals which result from estimating (1) under H(p).
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(v) The bootstrap test of H(r) against H(p) at level � rejects H(r) if p�r;T � �.

Remark 1. Although, as we show in section 3, Algorithm 1 ensures that the bootstrap data
satisfy the I(1; r) conditions in the limit, this could fail in small samples. Consequently, step
(ii) checks that the bootstrap samples are indeed I(1) with co-integration rank r. Analogous
conditions are checked in step (iii) of Algorithm 1 in Swensen (2006) for the recursion in (5).

Remark 2. A simpli�ed version of the recursion in (4) can be obtained by excluding the
estimated deterministic term, �̂(r)�̂(r)0Dt + �̂(r)dt, and initializing the recursion at X�

r;1�k =
� � � = X�

r;0 = 0. Due to the similarity of Qr;T with respect to � and asymptotic similarity
with respect to � and the initial values, these two approaches are asymptotically equivalent.

Remark 3. The bootstrap recursion in (4) uses estimates of the short-run matrices, f�jg
k�1
j=1 ,

obtained under H(r). These will therefore be more e�cient than the unrestricted estimates
used in (5) when H(r) holds. Consequently, one would expect the bootstrap tests from (4) to
display superior �nite sample size properties to the tests obtained from (5); see Park (2003)
for the univariate case. When r < r0, although the estimates of f�jg

k�1
j=1 used in (4) will

now, in contrast to those from (5), be inconsistent this does not imply that the bootstrap
tests from (5) will necessarily be more powerful than those from (4), since both bootstrap
recursions are misspeci�ed when r < r0. Both of these predictions are supported by the
Monte Carlo results presented in section 4.

Remark 4. In practice, the cdf G�
r;T (�) required in Step (iv) of Algorithm 1 will be unknown,

but can be approximated in the usual way through numerical simulation; cf. Hansen (1996)
and Andrews and Buchinsky (2000). This is achieved by generating B (conditionally) inde-
pendent bootstrap statistics, Q�

r;T :b, b = 1; :::; B, computed as in Algorithm 1 above. The

simulated bootstrap p-value is then computed as ~p�r;T := B�1
PB

b=1 I(Q
�
r;T :b > Qr;T ), and is

such that ~p�r;T
a:s:
! p�r;T as B !1.

We conclude this section by outlining in Algorithm 2 the bootstrap sequential algorithm
for determining the co-integrating rank.

Algorithm 2: Starting from r = 0 perform the following steps:

(i){(iv) Same as in Algorithm 1.

(v) If p�r;T exceeds the signi�cance level, �, set r̂ = r, otherwise repeat steps (i){(iv) testing
the null of rank (r + 1) against rank p if r + 1 < p, or set r̂ = p if r + 1 = p.

3 Asymptotic Analysis

In this section we prove that the bootstrap LR tests from Algorithm 1 are asymptotically
valid, i.e. that they are asymptotically correctly sized under the null and consistent under
the alternative. The results established in this section hold for any I(1) DGP satisfying the
assumptions stated in Swensen (2006). These coincide with those made for the standard
asymptotic test in Johansen (1996), Assumptions 1 and 2(i) below, coupled with a �nite
fourth order moment condition and the additional assumption from Swensen (2006, Lemma
3), stated as Assumption 3 below, that eigenvalues from (2) are distinct in the limit. Crucially,
we do not require any further conditions, such as Assumption 2 of Swensen (2009), to hold.
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Assumption 1: The parameters in (1) satisfy the I(1,r0) conditions.

Assumption 2: (i) The innovations f"tg in (1) form an i.i.d. sequence with E ("t) = 0 and

E ("t"
0
t) = 
, with 
 positive de�nite, and (ii) E k"tk

4 � K <1.

Assumption 3: The limiting non-zero roots of (2) are distinct.

Our �rst result concerns the limiting behaviour of the QMLE, used to generate the boot-
strap samples in Algorithm 1. In Lemma 1 we show the key result that in the limit this
satis�es the I(1; r) conditions, even when an incorrect rank r < r0 is imposed.

Lemma 1 Let fXtg be generated as in (1) under Assumptions 1, 2(i) and 3. Furthermore,

let �̂(r) := f�̂(r); �̂(r); b�(r)1 ; :::; b�(r)k�1; �̂
(r); �̂(r); 
̂(r)g denote the QMLE for (1) under H(r).

Then: (i) for any r � r0 and as T ! 1, �̂(r)
p
! �

(r)
0 , with the vector of pseudo-true

parameters, �
(r)
0 := f�

(r)
0 ; �

(r)
0 ;�

(r)
1;0; :::;�

(r)
k�1;0; �

(r)
0 ; �

(r)
0 ;


(r)
0 g, de�ned in the Appendix; and

(ii) the pseudo-true parameters �
(r)
0 satisfy the I(1; r) conditions.

Remark 5. Lemma 1 implies that, in su�ciently large samples, the estimates �̂(r); �̂(r); �̂
(r)
1 ;

:::; �̂
(r)
k�1 satisfy the I(1; r) conditions, even if r is lower than the true rank r0. As a conse-

quence, in the limit, the root check in step (ii) of Algorithms 1 and 2 becomes redundant, since
the parameters used in the bootstrap recursions will always satisfy the I(1; r) conditions.

Remark 6. It is important to note that analogous results to those given in Lemma 1 can-
not be established for the corresponding estimates used in (5), as in Algorithm 1 of Swensen
(2006); that is, where �1; :::;�k�1 are estimated unrestrictedly under rank p. As recognized in

Swensen (2009), the estimator there converges to �
(r;p)
0 :=f�

(r)
0 ; �

(r)
0 ;�1;0; :::;�k�1;0; �

(r)
0 ; �0;
0g

which, in general, is not guaranteed to satisfy the I(1; r) conditions. Indeed, Assumption 2 in

Swensen (2009) requires �
(r;p)
0 to satisfy these conditions. Too see this, note that to establish

the result in Lemma 1(ii) one needs, in addition to p� r unit roots, that �
�
�(r)

�
< 1, where

�(r) is de�ned in the proof of Lemma 1 by

(6) �(r) :=

0BBBBBB@
Ir + �

(r)0
0 �

(r)
0 �

(r)0
0 �

(r)
1;0 � � � � � � �

(r)0
0 �

(r)
k�1;0

�
(r)
0 �

(r)
1;0 � � � � � � �

(r)
k�1;0

0 Ip � � � 0 0
...

...
. . .

...
...

0 0 � � � Ip 0

1CCCCCCA .

Assumption 2 of Swensen (2009) requires that �(�
(r)
SW ) < 1 for all r < r0, with �

(r)
SW being

de�ned as in (6) but with �i;0 replacing �
(r)
i;0 (i = 1; :::; k � 1). Thus, by de�nition, this is

a re-statement that the parameters used in the bootstrap recursion (5) satisfy the I(1; r)
conditions in the limit for all r < r0, which is clearly a strong assumption on the dynamics
of the DGP in (1), since it is clear that there are non-empty parameter sets satisfying the

I(1; r0) conditions, but for which �(�
(r)
SW ) < 1 would fail for r < r0.

A direct implication of Lemma 1 for the bootstrap recursion in (4) is stated in the following
proposition, which establishes that for any r � r0 the bootstrap sample generated by (4)
is I(1) with co-integration rank r in large samples. This proposition holds irrespective of
whether an i.i.d. or wild bootstrap re-sampling design is used.
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Proposition 1 Let fXtg be generated as in (1) under Assumptions 1,2 and 3, and let the

bootstrap sample be generated as in Algorithm 1, for any r � r0. Then it holds that

(7) X�
r;t = Ĉ(r)

tX
i=1

"�r;i + �̂r;t + Sr;tT
1=2 ,

where P � (maxt=1;:::;T kSr;tk > �)
p
! 0 for all � > 0. Furthermore, T�1=2Ĉ(r)

PbTuc
i=1 "�r;i

w
!p

C
(r)
0 W (u) ; u 2 [0; 1], where W is a p-dimensional Brownian motion with covariance matrix



(r)
0 , C

(r)
0 := �

(r)
0?(�

(r)0
0? �

(r)
0 �

(r)
0?)

�1�
(r)0
0? is of rank (p� r) � (p� r0) and �

(r)
0 :=

Pk�1
i=1 �

(r)
0;i�Ip.

If there are no deterministics, or a restricted constant in (1), then �̂r;t = 0; in the restricted

linear trend case, T�1�̂r;bTuc
w
! �

(r)
0 u, where �

(r)
0 := C

(r)
0 �

(r)
0 + (C

(r)
0 �

(r)
0 � Ip) ��

(r)
0 �

(r)0

0 .

Remark 7. The proof of Proposition 1 exploits the fact that, by Lemma 1(i), for any rank
r � r0 the bootstrap recursion in (4) coincides, in the limit, with the recursion �X�

r;t =

�
(r)
0 �

(r)0
0 X�

r;t�1+
Pk�1

i=1 �
(r)
i;0�X

�
t�i+�

(r)
0 �

(r)0
0 Dt+�

(r)
0 dt+ "

�
r;t which, by Lemma 1(ii), satis�es

the I(1; r) conditions. This property implies that the bootstrap sample is asymptotically I(1)
with r co-integrating relations.

Using Lemma 1 and Proposition 1, we now establish the asymptotic behaviour of the
bootstrap trace statistic Q�

r;T of Algorithm 1. The stated results hold for any r � r0.

Proposition 2 Let the bootstrap statistic Q�
r;T be generated as in Algorithm 1. Then, un-

der the conditions of Proposition 1, and for any r � r0, Q
�
r;T

w
!p tr(Qr;1), where Qr;1 :=R 1

0 dBp�r(u)Fp�r(u)
0(
R 1
0 Fp�r(u)Fp�r(u)

0du)�1
R 1
0 Fp�r(u)dBp�r(u)

0, with Bp�r a (p � r) di-
mensional standard Brownian motion, and where either: (i) in the no deterministics case,

Fp�r := Bp�r; (ii) in the restricted constant case, Fp�r := (B0
p�r; 1)

0, or, (iii) in the restricted

linear trend case, Fp�r := (B0
p�r; uj1)

0, where ajb denotes the projection residuals of a onto b.

Remark 8. An immediate consequence of Proposition 2 is that the bootstrap test based on
Q�
r;T will be asymptotically correctly sized under the null hypothesis (r = r0), and will be

consistent for all r < r0. These two results follow using the results from Johansen (1996)
that, under Assumptions 1 and 2(i), Qr0;T

w
! tr(Qr0;1) while Qr;T diverges at rate T rate

when r < r0. In view of this, p�r0;T
w
! U [0; 1] and p�r;T := 1�G�

r;T (Qr;T )
p
! 0, for all r < r0.

We conclude this section by stating the following corollary of Proposition 2 which shows
that the bootstrap sequential procedure in Algorithm 2 is consistent, replicating the �rst
order asymptotic properties of the corresponding procedure based on the asymptotic LR
tests given in Johansen (1996, Chapter 12).

Corollary 1 Let r̂ denote the estimator of the co-integration rank as obtained in Algorithm

2. Then, under the conditions of Proposition 1: limT!1 P (r̂ = r) = 0 for all r = 0; 1; :::; r0�
1; limT!1 P (r̂ = r0) = 1� � � I(r0 < p), and lim

T!1
sup

r2fr0+1;:::;pg
P (r̂ = r) � �.
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4 Numerical Results

Using Monte Carlo simulation we compare the �nite sample performance of the bootstrap
procedures from Algorithms 1 and 2 respectively, using the i.i.d. version of the re-sampling
scheme (almost identical results were obtained using the wild bootstrap scheme and, hence,
are not reported) in step (iii), with the corresponding asymptotic procedures of Johansen
(1996), Bartlett-corrected procedures of Johansen (2002) and bootstrap procedures from
Swensen (2006). As our simulation DGP we consider the VAR(2) process of dimension p = 4,

(8) �Xt = ��0Xt�1 + �1�Xt�1 + "t; "t � i:i:d: N(0; I4) (t = 1; :::; T )

with X0 = �X0 = 0, and T 2 f50; 100; 200g. The long-run parameter vectors are set
to � := (1; 0; 0; 0)0, � := (a; 0; 0; 0)0. All experiments were run over 10,000 Monte Carlo
replications. For the bootstrap tests, any replications violating the root check conditions
(step (ii) in Algorithms 1 and 2 and step (iii) in Algorithms 1 and 2 of Swensen, 2006) were
discarded and the experiment continued until 10,000 valid replications were obtained. For
each bootstrap procedure we report the frequency with which such violations occurred.3

We �rst report results for the case of a single co-integration vector, setting a = �0:4 and

�1 :=

2664

 � 0 0
� 
 0 0
0 0 
 0
0 0 0 


3775
with 
 = 0:8 and � 2 f0; 0:1; 0:2; 0:3g. For all of these parameter combinations, Xt is I(1)
with co-integrating rank r0 = 1. The role of the parameter � is to isolate the violation or
otherwise of the auxiliary conditions given in Assumption 2 of Swensen (2009); in particular,
these conditions are satis�ed only for � = 0 or � = 0:1; cf. Remark 6.4

Empirical rejection frequencies [ERF] of the tests for r = 1 are reported in Panel (a) of
Table I for tests run at the nominal 5% level. It is seen from these results that the standard
asymptotic test for r = 1, Q1;T , displays very poor �nite sample size control with ERFs of
around 45% for T = 50, improving somewhat to around 13% for T = 200. In contrast, the
ERFs of our proposed bootstrap test, Q�

1;T , all lie very close to the nominal 5% level, even
for T = 50. In line with the prediction in Remark 3, Q�

1;T also appears to be rather better

sized than the corresponding bootstrap test of Swensen (2006), Q�SW
1;T , the latter being too

liberal. The Q�
1;T test also displays better size control than the Bartlett-corrected LR test,

QBC
1;T , which is somewhat undersized for the smaller sample sizes.
Our proposed bootstrap test also performs well in terms of empirical power. The ERFs of

the bootstrap test for r = 0, Q�
0;T , are nowhere smaller than those of the QBC

0;T test, with the
most signi�cant gains seen for the smaller sample sizes considered. Moreover, in most cases,

3All computations were performed in Gauss 9.0, except the Bartlett corrected statistics which were
computed in Ox using programs kindly supplied to us by Heino Bohn Nielsen. The Gauss procedure
for computing the bootstrap algorithms is available from the authors upon request.

4Speci�cally, when rank r = 0 is tested, it must hold that �(�
(0)
SW ) < 1 where �

(0)
SW = �1. For � = 0

and � = 0:1 this is indeed the case. However, for � = 0:2, �(�
(0)
SW ) = �(�1) = 1:0, while for � = 0:3,

�(�1) = 1:1. In the former case the bootstrap DGP will be integrated of order two in the limit, while
for the latter it will be explosive.
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the power of the bootstrap Q�
0;T test is not lower than that of Swensen's bootstrap Q�SW

0;T

test. The only exceptions occur for � = 0; 0:1 when T = 50, where the empirical power of
Q�

0;T is slightly inferior to that of Q�SW
0;T . However, the latter is strongly oversized under the

null here, having size about 19% when � = 0 and r = 0; cf. Panel (b) of Table I for 
 = 0:8.
The associated results for the sequential procedures are reported in Table II. Among the

two bootstrap algorithms considered, our Algorithm 2 appears to have the best performance in
terms of its ability to select the true co-integration rank, r0 = 1. As expected, our Algorithm
2 is not a�ected by the value of �, whereas contrastingly the behaviour of Swensen's sequential
Algorithm 2 is clearly heavily a�ected by the value of �. For T = 50, Algorithm 2 is also
superior to the Bartlett-corrected procedure, although the reverse appears to be the case for
T = 100; this latter result is, however, largely an artefact of the undersizing observed in QBC

1;T .
We now compare the frequency with which the bootstrap recursions fail to generate valid

I(1) bootstrap samples. Taking the sequential procedures to illustrate, the fraction of times
our Algorithm 2 generates explosive bootstrap samples is remarkably small; in particular,
it never exceeds 0:3%, 0:1% and 0:05% for T = 50, 100 and 200, respectively. In contrast,
Algorithm 2 of Swensen (2006) displays a higher number of failures of the I(1; r) conditions,
even when it is asymptotically valid (� = 0:0 or � = 0:1). For instance, when T = 50
(T = 100) and � = 0:1, explosive bootstrap samples are generated 8:4% (2:7%) of the time.
For I(1) DGPs with � � 0:2, this failure rate increases dramatically; e.g. when � = 0:3
explosive samples are generated 49:5% (91:6%) of the time for T = 50 (T = 200).

To conclude this section we consider the case where a = 0, so that the DGP reduces to the
non-co-integrated VAR(2), �Xt = ��Xt�1 + "t; t = 1; :::; T . As in Johansen (2002, section
3.1), we set �1 := 
I4, so that the I(1; r) conditions are met with r = 0, provided j
j < 1.
The empirical size of the various trace tests for r = 0 are reported for 
 2 f0:0; 0:5; 0:8; 0:9g
in Table I, Panel (b). As 
 increases our Q�

0;T test is clearly preferable to the corresponding

Q�SW
0;T test, again in line with the prediction from Remark 3. Interestingly, for large 
 and

small T the bootstrap test tends to be slightly oversized whereas (in line with Johansen, 2002,
Table V), the Bartlett correction over-corrects, so the corresponding QBC

0;T test is undersized.

5 Conclusions

In this paper we have discussed bootstrap implementations of the likelihood ratio co-integration
rank test and associated sequential procedure of Johansen (1996) based on restricted estimates
of the underlying VAR model. We have shown that, in contrast to what has been established
for the bootstrap procedures advocated in Swensen (2006), this approach is asymptotically
correctly sized and consistent. A small Monte Carlo experiment suggested that this proce-
dure works very well in �nite samples, outperforming not only asymptotic-based procedures,
but also the corresponding procedures from Swensen (2006). Finally, although our analysis
was based on the assumption of i.i.d. errors, the extension to the case of martingale di�er-
ence sequences with heteroskedasticity of unknown form is straightforward using the results
obtained in Cavaliere, Rahbek and Taylor (2010a,b).

Department of Statistical Sciences, University of Bologna; giuseppe.cavaliere@unibo.it

Department of Economics, University of Copenhagen; anders.rahbek@econ.ku.dk

School of Economics, University of Nottingham; robert.taylor@nottingham.ac.uk
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Appendix

Proof of Lemma 1. Let �0; �0; 	0 := (�1;0; :::;�k�1;0); �0; �0 and 
0 denote the true pa-
rameters in (1). We �rst present a convenient normalisation of the co-integration parameters,
which allows us to prove part (i) of the Lemma, convergence to the pseudo-true parameter

vector �
(r)
0 . We then prove part (ii) by establishing that �

(r)
0 does indeed satisfy the I(1; r)

conditions for r � r0. The proofs are �rst obtained for the case (i) of no deterministics and
later generalized to the cases of (ii) a restricted constant and (iii) a restricted linear trend.

Normalisation. By Johansen (1996), the r0 largest eigenvalues (�̂i)i=1;:::;r0 from (2) sat-
isfy, as T ! 1, the population eigenvalue problem,

������ � ��0�
�1
00 �0�

�� = 0, where
��� :=Var(�

0Xt�1j�X2t), �00 :=Var(�Xtj�X2t), ��0 :=Cov(�
0Xt�1;�Xtj�X2t) and �X2t :=�

�X 0
t�1; :::;�X

0
t�k�1

�0
. Let � := (�1; :::; �r0) denote eigenvectors corresponding to the eigen-

values �1 > �2 > ::: > �r0 > 0, such that �0���� = Ir0 . We can then de�ne �0 := �� and

�0 := � (�0)�1. Observe that, ��0 = �0�
0
0, while also

(A.1) ��0�0 = Ir0 and ��00�
�1
00 �0�0 = diag (�1; :::; �r0) ,

with ��0�0 :=Var(�
0
0Xt�1j�X2t) and ��00 :=Cov(�

0
0Xt�1;�Xtj�X2t). Indeed, the relations

in (A.1) are the population equivalents of the sample normalisations in (3).

Convergence to pseudo-true values. First, with �̂ = �̂(r0) the QMLE under the true rank r0,
then as in Johansen (1996, proof of Lemma 13.1), ��00(�̂ � �0)

p
! 0 and T 1=2�00?(�̂ � �0)

p
! 0.

Therefore, since �̂(r) = v̂K
(r)
p = �̂K

(r)
r0 , it follows that, using continuity of the eigenvectors

and eigenvalues (as the latter are distinct by Assumption 3),

(A.2) ��00(�̂
(r) � �

(r)
0 )

p
! 0 and T 1=2�00?(�̂

(r) � �
(r)
0 )

p
! 0

where �
(r)
0 := �0K

(r)
r0 . Next, consider the QMLE �̂(r):

(A.3) �̂(r) = S01�̂
(r) = S01

�
�0 ��

0
0 + �0? ��

0
0?

�
�̂(r)

p
! �0�0K

(r)
r0 = �0K

(r)
r0 =: �

(r)
0 .

Regarding 	̂(r), with �02 :=Cov(�Xt;�X2t), ��02 :=Cov(�
0
0Xt�1;�X2t), �22 :=Var(�X2t)

and, similarly, M02 := T�1
PT

t=1�Xt�X
0
2t, M12 := T�1

PT
t=1Xt�1�X

0
2t, we have

	̂(r) =
�
M02 � �̂(r)�̂(r)0M12

�
M�1

22
p
! 	

(r)
0 :=

�
�02 � �0K

(r)
r0 K

(r)0
r0 ��02

�
��1

22

with K
(r)
r0;? = (0; Ir0�r)

0. Using the projection identity, Ir = K
(r)
r0;?K

(r)0
r0;? +K

(r)
r0 K

(r)0
r0 , which

will be applied repeatedly in this Appendix, it follows that

(A.4) 	
(r)
0 = (�02 � �0��02)�

�1
22 + �0K

(r)
r0;?

K(r)0
r0;?

��02�
�1
22 = 	0 + �0K

(r)
r0;?

K(r)0
r0;?

��02�
�1
22

as (�02 � �0��2)�
�1
22 = 	0. Finally, for 
̂

(r) it holds that

(A.5) 
̂(r) = S00 � �̂(r)�̂(r)0
p
! 


(r)
0 := �00 � �0K

(r)
r0 K

(r)0
r0 �00 = 
0 + �0K

(r)
r0;?

K(r)0
r0;?

�00 > 0:
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Pseudo true values satisfy the I(1,r) conditions, with r � r0. Rewrite the DGP as

(A.6) �Xt = �
(r)
0 �

(r)0
0 Xt�1 +	

(r)
0 �X2t + "r;t,

see (A.3){(A.4), with "r;t given by

(A.7) "r;t = "t + �0K
(r)
r0;?

K
(r)0
r0;?

�
�00X1t�1 ���02�

�1
22 �X2t

�
:

Observe that �
(r)0
0 Xt�1 and �X2t in (A.6) are uncorrelated with "r;t. This property, which

is central to the proof of Lemma 1(ii), is a vital di�erence between our Algorithm 1 and

Algorithm 2 of Swensen (2006); in the latter, 	
(r)
0 is replaced by 	0 (this resulting from the

use of the unrestricted estimator of 	0 in the bootstrap recursion) and the uncorrelatedness
result stated above no longer holds.

With Xt :=
�
X 0

t; :::; X
0
t�k+1

�0
the system can be written in companion form as

(A.8) �Xt = A
(r)
B
(r)0
Xt�1 + E

(r)
t

with E
(r)
t := ("0r;t; 0; :::; 0)

0, X0 �xed, and 	
(r)
0 = (�

(r)
1;0; :::;�

(r)
k�1;0),

(A.9) A
(r) :=

 
�
(r)
0 	

(r)
0

0 Ip(k�1)

!
, B

(r) :=

0BBBBB@
�
(r)
0 Ip 0 � � � 0
0 �Ip Ip � � � 0
0 0 �Ip � � � 0
...

...
...

. . .
...

0 0 0 � � � �Ip

1CCCCCA :

Observe �rst, that by Assumption 1, Yt := B(r)0Xt is covariance stationary with covariance
�Y Y > 0, which from (A.8), using the aforementioned uncorrelatedness, is the solution to,

(A.10) �Y Y = �(r)�Y Y �
(r)0 +�EE ;

where �(r) = (Ir+p(k�1) + B(r)0A(r)) and �EE =Var(B(r)0E
(r)
t ). From the de�nition of "r;t in

(A.7), Var("r;t) > 0 and, as B(r)0E
(r)
t = ("0r;t�

(r)
0 ; "0r;t; 0; :::; 0)

0 it follows that �EE � 0, with
V 0�EEV = 0; and V 0

?�EEV? > 0, where

(A.11) V =

0BBBBBB@

Ir 0 � � � 0

��
(r)
0 0 � � � 0

0 Ip
...

...
...

. . . 0
0 � � � 0 Ip

1CCCCCCA ; V? =

0BBBBB@
�
(r)0
0

Ip
0
...
0

1CCCCCA .

As �(r) solves (A.10), and since �Y Y > 0 and �EE � 0, the spectral radius of �(r) satis�es
�
�
�(r)

�
� 1. Suppose, for � an eigenvalue of �(r)0, j�j = 1. Then, using (A.10), the

corresponding eigenvector v would be in the space spanned by V , v 2 col(V ). However, as

�(r)0V = (Ir+p(k�1) + A
(r)0
B
(r))V =

0BBBBBBB@

Ir 0 � � � 0

0 Ip
...

0 0
. . .

...
. . . Ip

0 � � � 0

1CCCCCCCA
,
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any v 2 col(V ) is not an eigenvector of �(r)0. Thus, we conclude that �
�
�(r)

�
< 1.

Finally, consider the eigenvalue problem,

(A.12)
���(1� z) Ipk � A

(r)
B
(r)0z

��� = 0.

Observe that
��B(r)0A(r)

�� 6= 0; since �
�
�(r)

�
< 1 and B(r)0A(r) = �(r)� Ir+p(k�1). Next, the full

rank of B(r)0A(r) implies, with A
(r)
? = (Ip;�	

(r)
0 )0�

(r)
0;?, that N := (B(r);A

(r)
? ) has full rank,

since
��B(r)0A(r)

�� 6= 0 implies j(A(r);A
(r)
? )0N j 6= 0. Multiplying (A.12) from the left and right

by N and its transpose, respectively, shows that there are (p� r) roots at z = 1, while the
remaining satisfy jzj > 1 since �

�
�(r)

�
< 1. This completes the proof of Lemma 1 for the

case of no deterministic terms.

Case (ii) of a restricted constant : In this case, replace � by �#, and Xt�1 by X
#
t�1, with

X
#
t�1 =

�
X 0

t�1; 1
�0

and �# = (�0; �0)0. De�ne 
#0 := (�00?; 0)
0 and �

#
0 :=

�
��0 ��

0
0; 1
�0

such

that
�
�
#
0 ; 


#
0 ; �

#
0

�
spans Rp# ; p# = p+1. As for the case of no deterministics, it holds that

��#00 (�̂# � �
#
0 )

0 p
! 0, (T 1=2�
#0 ;

��#0 )
0
(�̂# � �

#
0 )

p
! 0. Therefore, as �̂#(r) = v̂K

(r)

p#
= �̂#K

(r)
r0 ,

we �nd,
��#00 (�̂#(r) � �

#(r)
0 )

p
! 0, and (T 1=2�
#0 ;

��#0 )
0
(�̂#(r) � �

#(r)
0 )

p
! 0:

The results then follow proceeding as in the case of no deterministics. Speci�cally, in (A.3)-

(A.7) replace �0 by �
#
0 , and �

(r)0
0 Xt�1 by �

#(r)0
0 X

#
t�1. For (A.8) and onwards, while A(r) and

B(r) remain unaltered, E
(r)
t should be replaced by E

(r)
t +A(r)R(r)0,

(A.13) R
(r) :=

�
�
(r)
0 ; 0; :::; 0

�
:

Case (iii) of a restricted linear trend: Here, �# = (�0; �0)0, while X#
t�1 =

�
X 0

t�1; t
�0

and
dt = 1 enters in (1). For the asymptotic analysis in this case, Rahbek et al. (1999, proof of

Theorem 4.2) apply the non-orthogonal basis
�
�
#
0 ; 


#
0 ; �

#
0

�
for Rp# ; where 
#0 := (�00?;�


0
0)
0

and �#0 := (0; 1)0, with 
0 := �00?C0

�
�0 + �0 ��0�

0
0

�
and C0 := �0? (�

0
0?�0�0?)

�1
�00?. With,

�̂# � �
#
0 := �

#
0 b̂ + 


#
0 b̂
 + �

#
0 b̂�; then by Rahbek et al. (1999), b̂ = op (1), b̂
 = op

�
T 1=2

�
,

b̂� = op (T ) ; such that �̂#(r) = �̂#K
(r)
r0 converges as desired. Proceed as in the case of a

restricted constant, replacing �0 by �#0 in (A.3)-(A.7), using �X2t corrected by a constant
by OLS in the de�nitions of Mi2, i = 0; 1; 2, and correspondingly, in (A.7), subtracting

�0K
(r)
r0;?

K
(r)0
r0;?

E
�
�#0Xt�1 ���02�

�1
22 �X2t

�
. Finally, add the term A(r)R(r)0t+ F(r) in (A.8),

with R(r) de�ned in (A.13) and F(r) := (�
(r)0
0 ; 0; :::; 0)0, such that the covariance stationary

process Yt is de�ned by Yt := B(r)0Xt + R(r)0t. �

Proof of Proposition 1: Consider �rst the case (i) of no deterministics: For r = r0
the result is established in Lemma A.4 of Cavaliere et al. (2010a). Next, for r < r0, set

X�r;t :=
�
X�0

r;t; :::; X
�0
r;t�k+1

�0
and X�r;0 := X0, and use the companion form in (A.8) with "r;t

replaced by "�r;t, to see directly that X�
r;t = (Ip; 0; :::; 0)X

�
r;t has the representation,

(A.14) X�
r;t = Ĉ(r)Pt

i=1"
�
r;t + Sr;tT

1=2;
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where Ĉ(r) = �̂
(r)
?

�
�̂
(r)0
? �̂(r)�̂

(r)
?

��1
�̂
(r)0
? , �̂(r) =

Pk�1
i=1 �̂

(r)
i � I; and Sr;t = S1

r;t + S2
r;t; with

S1
r;t = (�̂(r); 	̂(r))(bB0bA)�1Pt�1

i=0�̂
i(T�1=2bB0e�r;t�i),(A.15)

S2
r;t = T�1=2[Ĉ(r)

�
Ip;�	̂

(r)
�
+ (�̂(r); 	̂(r))(B̂0bA)�̂t

B̂
0]X�0:(A.16)

Here �̂ := (Ir+p(k�1)+ bB0bA) with the matrices bA and bB de�ned as A(r) and B(r) of (A.9) with

�
(r)
0 and �

(r)
0 replaced by the corresponding estimators �̂(r); �̂(r), and e�r;t :=

�
"�0r;t; 0; :::; 0

�0
.

Consider �rst S1
r;t. Note that

max
t=1;:::;T

jjS1
r;tjj � max

t=1;:::;T
jj(�̂(r); 	̂(r))(bB0bA)�1 t�1X

i=0

�̂i(T�1=2bB0e�r;t�i)jj �  T max
t=1;:::;T

jjT�1=2��t jj;

where ��t =
bB0e�r;t = ��̂(r); Ip; 0; :::; 0�0 "�r;t and  T = jj(�̂(r); 	̂(r))(bB0bA)�1jj jjPT�1

i=0 �̂(r)ijj. It

follows that  T
p
!  =




(�(r)0 ;	
(r)
0 )(B(r)0A(r))�1






(B(r)0A(r))�1


 by using the consistency of

the estimators established in Lemma 1 and the de�nition of �̂. In particular, note that for suf-
�ciently large T we have, by continuity, that �(�̂) < 1, which implies that jj�̂ijj �const��i for
some 0 < � < 1, uniformly over i. Finally, showing that P �

�
maxt=1;:::;T



T�1=2��t 

 > �
�

is of order op (1) implies P �
�
maxt=1;:::;T



S1
r;t



 > �
� p
! 0. This holds by showing that

P �
�
T�1=2maxt=1;:::;T



"�r;t

 > �
�
= op (1). For the wild bootstrap, observe that with �"r :=

T�1
PT

t=1 "̂r;t, E
�
�
"�0r;t"

�
r;t

�2
=
�
("̂r;t � �"r)

0 ("̂r;t � �"r)
�2

=
�
"̂0r;t"̂r;t � �"0r�"r

�2
, while for the i.i.d.

bootstrap, E�
�
"�0r;t"

�
r;t

�2
= T�1

PT
t=1

�
"̂0r;t"̂r;t � �"0r�"r

�2
. Thus in both cases one has, by Cheby-

chev's inequality,

P �(T�1=2 max
t=1;:::;T



"�r;t

 > �) � 1
�4T 2

PT
t=1E

�
�
"�0r;t"

�
r;t

�2
= 3

�4T 2
PT

t=1

�
"̂0r;t ("̂r;t � �"r)

�2 p
! 0

since, under the assumption that "t has bounded fourth moment, T�1
PT

t=1

�
"̂0r;t"̂r;t

�2
=

Op (1). To see this note that by de�nition, cf. (A.7),

"̂r;t = �Xt � �̂(r)�̂(r)0X1t�1 � 	̂(r)�X2t = "t �
�
�̂(r)�̂(r)

0

� �0�
0
0

�
X1t �

�
	̂(r) �	0

�
�X2t:

Next, observe �rst that,

�̂(r)�̂(r)
0

� �0�
0
0 =

�
�̂K(r)

r0 K
(r)0
r0 �̂0 � �0K

(r)
r0 K

(r)0
r0 �00

�
� �0K

(r)
r0;?

K
(r)0
r0;?

�00(A.17)

= (�̂� �0)K
(r)
r0 K

(r)0
r0 �00 � �̂K(r)

r0 K
(r)0
r0

�
�̂ � �0

�0
� �0K

(r)
r0;?

K
(r)0
r0;?

�00:

	̂(r) �	0 =
�
M02 � �̂(r)�̂(r)

0

M12

�
M�1

22 � (�02 � �0��02)�
�1
22(A.18)

=
�
M02M

�1
22 ��02�

�1
22

�
�
�
�̂(r)�̂(r)

0

� �0�
0
0

�
M12M

�1
22

� �0
�
�00M12M

�1
22 ���02�

�1
22

�
:
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Using (A.17) and (A.18), and collecting terms, it follows that,

(A.19) "̂r;t = "r;t + vr;t

where "r;t is given in (A.7), while

vr;t =

�
�̂K(r)

r0 K
(r)0
r0

�
�̂ � �0

�0
� (�̂� �0)K

(r)
r0 K

(r)0
r0 �00

�
R1t

+
�
�0
�
�00M12M

�1
22 ���02�

�1
22

�
�
�
M02M

�1
22 ��02�

�1
22

��
�X2t

with R1t = Xt�1�M12M
�1
22 �X2t, that is, Xt�1 corrected for �X2t by OLS regression. Thus,

as claimed above,

(A.20) 1
T

PT
t=1

�
"̂0r;t"̂r;t

�2
= 1

T

PT
t=1

�
"0r;t"r;t

�2
+ op (1) ;

by using standard arguments for the stationary processes "t; �
0
0Xt�1 and �X2t in combination

with consistency of the parameters in the de�nition of vr;t, while for (cross) products in
terms of the non-stationary ��00?Xt�1; standard arguments for non-stationary processes in
combination with super-consistency give the desired result.

For S2
r;t, X

�
0 is �xed at initial values, and again applying the established consistency

from Lemma 1, and that for su�ciently large T we have, �(�̂) < 1, it therefore holds that

P �
�
maxt=1;::;T jjT

�1=2S2
r;tjj > �

� P
! 0.

That T�1=2X�
r;bTuc

w
!p C

(r)
0 W (u), follows if, T�1=2

PbT �c
t=1 "

�
r;t

w
!p W (�), which for the wild

bootstrap, as in Cavaliere et al. (2010a), is implied by the pointwise convergence,

(A.21)
1

T

bTucX
t=1

"̂r;t"̂
0
r;t =

1

T

bTucX
t=1

"r;t"r;t + op (1)
p
! u


(r)
0 ;

see also (A.20). For the i.i.d. bootstrap, the result follows as in Swensen (2006, Lemma S2)
using (A.21) and �nite fourth order moments of "r;t.

Consider next the case of deterministic terms: First in case (ii) of a restricted constant,
the representation is as in (A.14), but with "�r;t replaced by ("

�
r;t+ �̂

(r)�̂(r)0), and e�r;t in (A.15)

replaced by
�
e�r;t +

�
�̂(r)�̂(r)0; 0; :::; 0

�0�
. The results hold as before since Ĉ(r)("�r;t+�̂

(r)�̂(r)0) =

Ĉ(r)"�r;t, and the extra term in S1
r;t induced by

�
�̂(r)�̂(r)0; 0; :::; 0

�0
is bounded in probability

from the previous arguments. For the case (iii) of a restricted linear trend, "�r;t is replaced

by ("�r;t + �̂(r)�̂(r)0t + �̂(r)), and e�r;t in (A.15) by [e�r;t + (�̂(r)�̂(r)0t + �̂(r); 0; :::; 0)0]. Observe

initially that, Ĉ(r)
Pt

i=1("
�
r;i + �̂(r)�̂(r)0t + �̂(r)) = Ĉ(r)(

Pt
i=1 "

�
r;t + �̂(r)t). Next, in terms of

S1
r;t, there is a linear trend part induced by, (�̂

(r); 	̂(r))(bB0bA)�1(�̂t (L) t)bB0 ��̂(r)�̂(r)0; 0; :::; 0�0,
where the polynomial, �̂t (z) :=

Pt�1
i=0 �̂

izi, z 2 C. An expansion of this around z = 1 (cf.

Lemma 4.1, Johansen, 1996) gives, �̂t (z) = �̂t (1)+ �̂�t (z) (1� z) ; with �̂�t (z) =
Pt�2

i=0 �̂
�
i z

i,

�̂�i = �
Pt�1

j=i+1 �̂
i and �̂�i exponentially decreasing as above. Hence the linear trend induced

in S1
r;t is given by, (�̂(r); 	̂(r))(bB0bA)�1�̂t (1) bB0 ��̂(r)�̂(r)0; 0; :::; 0�0 t: Collecting terms,

�̂r;t = [Ĉ(r)�̂(r) + (�̂(r); 	̂(r))(bB0bA)�1�̂t (1) bB0 ��̂(r)�̂(r)0; 0; :::; 0�0]t;
14



and from the established consistency in Lemma 1, T�1 �̂r;[Tu]
w
! �

(r)
0 u, with �

(r)
0 as given in

the proposition, by standard algebraic manipulations. �

Proof of Proposition 2: As in the proof of Theorem 3 of Cavaliere et al. (2010a), this
follows immediately by the results in Proposition 1 using standard arguments and de�ning

Bp�r :=
�
�
(r)0
? 
(r)�

(r)
?

��1=2
�
(r)0
? W . �
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