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ABSTRACT
The Non-Linear Scattering Functions have been theoretically defined and experimentally measured for the linear-
equivalent design of non-linear circuits in arbitrary large signal conditions. Non-linear measures and simulations have
been compared, with good agreement. Linear CAD concepts can therefore be extended to non-linear circuits in a
rigorous way.

I-INTRODUCTION

In previous independent works an Italian group of researchers has theoretically computed [l]-[5], and a Belgian group
has experimentally measured [6]-[7], the Non-Linear Scattering Functions for non-linear circuits under arbitrary
conditions. The two groups are now assessing the validity of this approach, and establishing a practical linear-
equivalent design methodology for arbitrary non-linear circuits.
A Large-Signal Conversion Matrix has been first introduced within the frame of Harmonic-Balance-based analysis and
design of power amplifiers [l]-[3]. By extension of linear concepts, a large-signal linear-equivalent matrix was
computed as a Norton equivalent of the non-linear active device; it was used for the large-signal conjugate match of a
power amplifier under non-linear operations. Obviously, the large-signal Norton equivalent depends on the amplitude of
the applied signal and on the external loads; it must therefore be recomputed if these conditions change. However, its
computation comes for free within a Harmonic Balance frame, because it is easily derived from the Jacobian of the
algorithm. In subsequent works this approach has allowed the extension of linear concepts to non-linear circuits for the
definition of a Maximum Stable Conversion Gain for active Frequency Multipliers [4] and Mixers [5] in the case of
potential instability of these circuits.
An advanced measurement set-up has been independently developed for the non-linear characterisation of microwave
active devices and sub-circuits [6]-[8]. The set-up allows the accurate measurement of amplitude and phase of all
spectral components (currently up to 20 GHz) of incident and reflected waves at the ports of a non-linear device. The
set-up is based on the Nonlinear Network Measurement System (NNMS) [7], originaIly developed by Hewlett-Packard
(now Agilent Technologies) as an improved version of the Microwave Transition Analyser. By means of this set-up, the
definition and extraction of the Non-Linear Scattering Functions has been made possible for non-linear devices under
arbitrary large-signal operations. These scattering functions have been used within a commercial simulator, and their
capability to model the non-linear behaviour of active devices has been demonstrated [8].
Goal of the present work is to demonstrate that the Large-Signal Conversion Matrix and the Nonlinear Scattering
Functions are actually equivalent representations of an arbitrary non-linear device, and that they can be used as a
general and powerful tool for the CAD of non-linear microwave circuits. This demonstration will be carried out by
comparison of actual measurements and computer simulations of a medium-power MESFET from the Alenia Marconi
foundry.

II-THE MEASUREMENT SET-UP

The measurement set-up is schematically shown in fig. 1 [7]. The NNMS accurately measures the amplitude and phase
of all the spectral components present in the experiment up to 20 GHz. The active device is biased by means of an
HP4142B semiconductor parameter analyser. The system includes two synthesised sources: the first one generates a
large input signal that drives the device well into non-linear operations; the second one generates a small perturbating
signal at all frequencies of interest (one at a time), i.e. the incident spectral components that cause the insurgence of
reflected signals coming out of the non-linear device at all harmonically-related frequencies. This perturbating signal is
made small enough to allow linearisation of the system.



As can be seen in fig. 1, a tuner allows proper large-signal matching at output of the active device at fundamental
frequency. The embedding impedances seen by the device at all other harmonics are Z0 in our case; however, additional
diplexers and tuners would allow in principle any harmonic loading, the only limitation being the complexity of the set-
up and cost of the equipment. The perturbating signal is applied to both ports of the device, one at a time and frequency
by frequency, by means of switch and directional couplers. All reflected waves at both ports and at all harmonic
frequencies are detected by means of the same couplers, and are simultaneously and accurately measnred by the NNMS.
The incident and reflected waves are used to compute the Non-Linear Scattering Functions, that are defined as the
(complex) coefficients of the linearised dependence of the reflected (outcoming) waves on the incident (incoming)
waves [7]-[8]:

where k and l are the indices related to the harmonic frequency, and i and j are the indices of the ports of incident and
reflected waves respectively. The G’s and H’s, i.e. the (complex) Non-Linear Scattering Functions, obviously depend
on the bias point, as the standard Scattering Parameters, but also on the large-signal operation state of the device, i.e. on
the incident power and on the embedding loads. If these change substantially, then the scattering functions must be
measured again.
The dependence of the reflected waves is modelled through two complex sets of numbers (Gkj,lj and Hk,i,lj) instead of a
single set as in the case of the standard Scattering Parameters (Sij), because of the non-linear operation state of the
device. In the limit of small-signal fundamental-frequency driving of the device, the two sets can be reduced to one, and
inparticular:

The determination of each scattering function requires in principle a complex measurement; two different perturbating
signals must therefore be applied to determine both G and H, at least in principle. The ideal case would be to apply a
real and an imaginary perturbating signals one after the other; however practical considerations suggest that many
different perturbating signals (incident waves) at many random phases be applied, and that the scattering functions be
found by means of a least-square fit to the redundant measured data.
In this experiment the perturbating signal is applied at fundamental frequency and at all its harmonics; in the case that
the perturbating signal has a different frequency, and that the signal is small enough, the standard conversion matrix
results from the measurement. The main difference with the conversion matrix lies in the fact that the perturbation is
superimposed on an already applied large signal, either at fundamental or at another arbitrary frequency, thus allowing
the conversion-matrix characterisation also of power amplifiers, frequency multipliers, and mixers with arbitrary input
amplitude.
The scattering functions are now compared to their computer-simulated counterparts, as described in the following
paragraph.

III - THE COMPUTER SIMULATIONS

The active device, a 0.5 µm medium power MESFET with 1mm total gate periphery from the Alenia Marconi foundry,
is represented by its non-linear model, extracted from DC and standard S-parameter measurements at all bias points of
interest, and including current and energy conservation constraints [9]. The model is implemented in the HP-ADS
simulator as a Symbolic Defined Device.
The input signal at fundamental frequency with proper amplitude and the embedding impedances at all frequencies as in
the experiment are reproduced in the computer simulation. A Harmonic-Balance analysis of the circuit yields the large-
signal operation state of the device.
A perturbation of this large-signal operation state at all harmonic frequencies (including the fundamental) must now be
introduced, as in the experiment. In fact, this perturbation is usually introduced during the Harmonic-Balance analysis,
when the Jacobian matrix of the system is numerically computed; the Jacobian matrix is then used to numerically solve
the Harmonic-Balance system by means of a Newton-Raphson iteration scheme. In the case of the Jacobian, the
voltages are usually perturbed, and the currents are detected as the output of the system: Non-Linear Admittance
Functions are therefore resulting for the non-linear sub-circuit, but the derivation of the corresponding Scattering
Functions is straightforward.



The requirement of two complex numbers instead of only one for the modelling the linearised dependence of the
outgoing signal on the incoming signal finds its counterpart in the well-know non-analytical nature of the Jacobian
matrix. In fact the latter is usually computed from independent real- and imaginary-part perturbations of the port
voltages, instead of a single complex perturbation, as would be the case for standard linear Scattering Parameters.
The Jacobian matrix is normally not available to users of commercial non-linear CAD programs. In previous works [l]-
[5] an in-house, special-purpose program (PAOMAC) had been developed and extensively used, where the Jacobian-
based Large-Signal Conversion Matrix was available; in this work the commercial HP-ADS simulator has been used, in
order to assess a generally available procedure. An automatic procedure for the computation of the Jacobian matrix of
the non-linear device has been developed and implemented, that yields the Non-Linear Admittance Functions; the Non-
Linear Scattering Functions are easily deduced.

IV - COMPARISONS

A comparison has been performed between the measured and simulated data for a medium-power MESFET, biased at
Vds=5V, Vgs=-1.5V and Ids=60mA for class-A amplification. The transistor is driven from small-signaI into gain
compression by a 2 GHz fundamental-frequency signal at input. Both measurements and simulations obviously yield
the small-signal standard S-parameters, measured by means of an HP8510C Vector Network Analyser, when driven by
a small excitation signal (-10 dBm input power). As the input power increases toward compression, both simulations
and measurements show a splitting of the G and H matrices, illustrating the non-analytical nature of the Jacobian. Also,
at high compression the frequency-conversion terms arise, that are zero for small-signal excitation; these terms are also
splitted into the two G and H terms.
In fig.2 the G2,2,2,1 and H2,2,2,1 terms (the linearised equivalents of the small-signal S2,1 at second harmonic frequency)
are plotted on a polar plot for several input powers from small-signal to 2-dB gain compression, i.e. from -20 dBm to
12.5 dBm input power. The square represents the small-signal S2,1 parameter at 2ω also plotted for comparison; x-
marks and circles are the measured G2,2,2,1 and H2,2,2,1 parameters, while stars and diamonds represent the simulated
G2,2,2,1 and H2,2,2,1 parameters. In spite of the fact that the model is a general-purpose one, not optimised for this purpose,
the agreement is remarkable. The gain compression at second harmonic frequency is clear as the transistor is driven into
the non-linear region by the fundamental-frequency input signal.
In fig.3 the G4,2,2,2 and H4,2,2,2 terms, converting the 2-GHz incident wave at output into the 4-GHz reflected wave at
output, are plotted on a polar plot, again for several input powers from small-signal to 2dB gain compression, i.e. from
-20 dBm to 12.5 dBm input power, with the same symbol conventions. In this case the small-signal parameter is
obviously zero. It is clear from the plot that the 2-to-4 GHz conversion at the output of the transistor rises from zero at
small-signal to a non-negligible value at 2-dB gain compression, with a remarkable agreement between simulated and
measured data. The splitting of the G’s and the H’s in the non-linear regime is also clearly shown.
In fig.4 the measured drain (output) voltage and current waveforms are plotted at 2dB gain compression, when a fifth-
harmonic small perturbating signal is injected at the output port. As illustrated before, it is from this type of small
perturbations that the linearised response is computed.

V  -  CONCLUSIONS

A comparison between simulated and measured data has shown that the Non-Linear Scattering Functions are a reliable
and flexible representation, available to the general non-linear CAD user for the design of non-linear circuits. The
Functions can be either measured by means of advanced hardware, or simulated by means of standard CAD software
and advanced non-linear models. This approach allows the extension of linear concepts to non-linear circuits in a
rigorous and straightforward way.
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Fig. 1. The measurement set-up

Fig. 3. Measured G4,2,2,2 and H4,2,2,2 parameters (x-marks and
circles respectively) and simulated G4,2,2,2 and H4,2,2,2 parameters
(stars signs and diamonds respectively) converting the 2-GHz
incident wave at output into the 4-GHz reflected wave at output
for several input powers from small signal to 2-dB gain
compression (-20 to 13.5 dBm input power) at 2 GHz.

Fig. 2. Measured G2,2,2,1 and H2,2,2,1 parameters (x-marks
and circles respectively) and simulated G2,2,2,1 and H2,2,2,1
parameters (stars and diamonds respectively) for several
input powers from small signal to 2-dB gain compression (-
20 to 13.5 dBm input power) at 4 GHz. The measured small-
signal S2,1 at 4 GHz is also shown (square). To the right, the
expanded detail.

Fig. 4. Measured drain voltage and current waveforms at
2-dB gain compression; a fifth-harmonic small perturbating
signal is superimposed to the large-signal waveform relative
to the large input signal at fundamental frequency.


	MAIN INDEX
	ABSTRACT
	INTRODUCTION
	THE MEASUREMENT SET-UP
	THE COMPUTER SIMULATIONS
	COMPARISONS
	CONCLUSIONS
	ACKNOWLEDGEMENT
	REFERENCES

