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Abstract

This paper begins with the statistics of the decimal digits of n/d with (n, d) ∈ N2 randomly chosen.
Starting with a statement by E. Cesàro on probabilistic number theory, see [3] and [4], we evaluate, through
the Euler ψ function, an integral appearing there. Furthermore the probabilistic statement itself is proved,
using a different approach: in any case the probability of a given digit r to be the first decimal digit after
dividing a couple of random integers is

pr =
1

20
+

1
2

{
ψ

(
r
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+
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)
− ψ

( r
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.

The theorem is then generalized to real numbers (Theorem 1, holding a proof of both nnn
ddd results) and to the

αth power of the ratio of integers (Theorem 2), via an elementary approach involving the ψ function and
the Hurwitz ζ function. The article provides historic remarks, numerical examples, and original theoretical
contributions: also it complements the recent renewed interest in Benford’s law among number theorists.
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1 Introduction: the nnn
ddd theorems

At the end of the 18th century, Gauss was one of the first to use probabilistic arguments for investigating the
number of products consisting of exactly k distinct prime factors below a given bound. The case k = 1 led to
the prime number theorem (proved in 1896), a milestone of analytic number theory. Instead of probabilistic
number theory one should better speak about studying arithmetic functions with probabilistic methods. Any-
way, the first approach in this direction dates back to Gauss, and to Ernesto Cesàro1 who observed, 1881, that
the probability that two randomly chosen integers are coprime is 6/π2. Substantial developments in proba-
bilistic number theory started with the prime divisor counting function Ω(n) of a positive integer n, but only
in 1917 did Hardy and Ramanujan discover the first deep results on such a function. The first of Cesàro’s
papers on the theory of numbers was followed in 1885 by a 117 pages book issued in Paris, [3], entitled: Ex-
cursions arithmetiques a l’infini, which reproduces nine articles from Annali di matematica pura ed applicata about
some relevant problems in arithmetic. They looked at problems concerning the number of common divisors
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†Via Negroli, 6 20136 Milano giovannimingari@yahoo.it
‡Dipartimento di Statistica, Università di Bologna daniele.ritelli@unibo.it
1E. Cesàro (1859-1906) entered the École des Mines where he studied mathematics with Catalan. In Paris he was particularly struck by

lectures of Darboux on geometry which led him to his own studies of intrinsic geometry. Supported by Cremona, Battaglini, and Dini, he
undertook research at the University of Rome from 1884 where the doctorate was awarded to him in 1887. He also developed the study
of divergent series; furthermore his interest in mathematical physics is evident from two successful calculus texts he wrote. Cesàro was
offered the chair of mathematics at Palermo where he remained until 1891, moving then to Naples where he held the chair of mathematical
analysis until his death in 1906.
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of two integers, determination of the values of the sum of their squares, the probability of the incommensu-
rability of three arbitrary numbers, and so on; to these he attempted to apply results obtained in the theory
of Fourier series. In this paper we focus on that collection’s third article (pp. 35–56), entitled Eventualités de la
division arithmétique, originally appearing in [4]. In addition to the topics mentioned above, Cesàro contributed
to founding probabilistic number theory studying the distribution of primes and trying to improve results
obtained there by Chebyshev.

1.1 Cesàro’s statements and the aim of the paper

In [3] p. 49, section 19, or [4], after a sequence of frequentistic arguments, he notes that

On trouve facilement que, si L et Λ sont les frèquences d’une certaine condition dans les séries
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la probabilité que, en prenant u et v au hasard, f
( u

v
)

satisfasse à la même condition, est ègale à la
moyenne arithmétique des deux fréquences. Ainsi:

P =
1
2
(L + Λ) (2)

At this point, taking f (x) = x in the first of two series (1) he states that

D’autre part, dans la seconde des séries (1), chaque chiffre est également fréquent. Donc, d’après
(2), on peut affirmer que: Dans une division quelconque, la probabilité que le premier chiffre
décimal soit r, est:

1
20

+ 5
∫ 1

0

1− ϕ

1− ϕ10 ϕ9+rdϕ. (3)

Next he states that, performing an arbitrary division of two random integers, the ith decimal digit has a
probability to be r given by

1
20

+
10i

2

∫ 1

0

1− ϕ

1− ϕ10 ϕ10i−1+rdϕ. (4)

Our contribution starts by evaluating the integrals (3) and (4). Such integrals, concerning a ratio of rational
functions,

1− ϕ

1− ϕ10 ϕ9+r =
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,

where
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√
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,

are not easy. It is then better to compute them by standing on a higher viewpoint, i.e., introducing the Euler ψ
function. Such a computation was not performed by Cesàro, who probably judged it too involved. But through
an alternative representations of ψ, we realized that those integrals could be expressed by means of infinite
series. This inspired an elementary proof of the same statement of Cesàro, followed by some generalizations
to be found in our Sections 3 and 4.

A theorem of Gauss on ψ of rational arguments simplifies the process, avoiding decomposition into simple
fractions.
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1.2 Formal probability definition

In his arithmetic papers Cesàro freely mentions the probability p(i)r that the ith decimal digit of the ratio of
two integers to be a given digit, say r ∈ {0, . . . , 9}, but quite informally. For better clarity and chiefly to
highlight the difference between the definition in our paper (two real positive numbers randomly chosen) and
that implicitly followed by Cesàro (two integer numbers randomly chosen), we define this discrete version: if
di(v) is the ith decimal digit of the number v, we put:

p(i)r := lim
T→∞

#{(n1, n2) ∈N2 | nj ≤ T for j = 1, 2, di(n1/n2) = r}
#{(n1, n2) ∈N2 | nj ≤ T for j = 1, 2}

whenever such a limit exists. Here #A stands for the cardinality of A. When i = 1 we write pr instead of p(1)r .

2 Cesàro’s integrals evaluation through the ψ function

The main properties of Euler’s ψ function will be recalled, other details being available in [1] and [6]. We have

ψ(x) :=
Γ′(x)
Γ(x)

= −γ− 1
x
+

∞

∑
n=1

x
n(x + n)

, (5)

where γ is the Euler-Mascheroni constant,

γ = lim
n→∞

(
1 +

1
2
+ · · ·+ 1

n
− ln n

)
=
∫ ∞

1

(
1
bxc −

1
x

)
dx.

where bxc is the floor of x. From (5) follows the recursive relation

ψ(x + 1) = ψ(x) +
1
x

. (6)

Furthermore these integral representations for x > 0 will be useful:

ψ(x) = −γ +
∫ ∞

0

e−t − e−x t

1− e−t dt (7)

ψ(x) = −γ +
∫ 1

0

1− ux−1

1− u
du (8)

Of course (8) is obtained from (7) by putting e−t = u. From the second integral formula, taking a, b > 0,
one obtains: ∫ 1

0

ya − yb

1− y
dy = ψ(b + 1)− ψ(a + 1)

of which the Cesàro integral in (3) is a special case:

∫ 1

0

1− ϕ

1− ϕ10 ϕ9+rdϕ =
1
10

∫ 1

0

y
r

10 − y
r+1
10

1− y
dy

=
1
10

{
ψ

(
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)
− ψ

(
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)} (9)

In such a way the probability in (3) is given by

pr =
1

20
+

1
2

{
ψ

(
r

10
+

11
10

)
− ψ

( r
10

+ 1
)}

. (10)

Gauss, see his Gesammelte Werke, Bd. 3, pp. 155–156, (Göttingen, 1866), found for ψ of rational arguments an
expression involving elementary functions only. In fact, for any p, q ∈N with 1 ≤ p < q,

ψ

(
p
q

)
= −γ− 1

2
π cot

(
pπ

q

)
− ln q +

q−1

∑
k=1

cos
(

2kpπ

q

)
ln
(

2 sin
(

kπ

q

))
. (11)
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A relevant proof, more elementary than the original one, can be found in [6]. Joining (6), (10), and (11) we have
a closed form expression of all the required probabilities:

p0 = 101
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π
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√

5
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√
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√
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(
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√

5 ln 1+
√

5
2

)]
p6 = − 29
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2

√
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√
5

10 + ln
√
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√

5
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2
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(√
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√

5
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√
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2

]
p7 = − 11
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√
1− 2√

5
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√
5

2 ln 3−
√

5
2

p8 = 1
360

(
−7 + 18π

√
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(
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√

5
)
− 360 ln 2− 90

√
5 ln 3+

√
5

2

)

p9 = 1
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{
−2− 90π

√
5 + 2

√
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[
ln(800 000) +

√
5 ln

(
9 + 4

√
5
)]}

.

With the help of Mathematica R© it is immediate to verify that

9

∑
k=0

pk = 1.

The correspondent numerical values are

p0 = 0.126730362245; p1 = 0.117357521909; p2 = 0.109924503863;
p3 = 0.103903172141; p4 = 0.098937259282; p5 = 0.094778739397;
p6 = 0.091250211050; p7 = 0.088221779210; p8 = 0.085596363935;
p9 = 0.083300086967.

The computed first digit probability is then decreasing with increasing digits, so that the highest is ‘zero’, and
the lowest is ‘nine’.

Let us quote the recent paper of Qiu and Vuorinen, [11], where, formula (2.3) p. 727, it is proved that for
any x > 1,

`(x) := ln x− 1
2x
− 1

12x2 < ψ(x) < ln x− 1
2x
− 2γ− 1

2x2 := u(x).

So, we see that

sup
x>1

(u(x)− `(x)) =
7
12
− γ ' 0.00611767

and then the use of either u(x) or `(x) instead of ψ(x) produces an error less than 1/100.

2.1 An experimental check of the Cesàro’s law

Before going ahead with the generalizations, the reader should know a possible experimental check on the
above law’s reliability. In order to do it, following the frequentist approach, after a very high number of
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divisions of two positive integers, chosen randomly, we will extract the first digit, recording the occurrence
of each of ten digits. In such a sense we will follow the approach of the empirical checks, performed via
Mathematica R© which is the same as our tool, on the Weisstein web site [12] about Benford’s law.

It will be recalled that the leading digit in tables and physical data is not evenly distributed among the
digits 1 and 9. The first known written reference is a two-pages article by Newcomb, [10] 1881, who stated2

that

Prob(first significant digit = r) = log10

(
1 +

1
r

)
, r = 1, . . . , 9.

In such a way he conjectured that the digit ‘9’ occurs about 4.6% of the time. In 1938, Benford published a
paper [2] describing how well his 20,229 observations were fit by the logarithmic law, nowadays called the
Benford Law stating that for a dimensionless data sequence, the digit ‘1’ tends to occur with probability ' 30%,
almost three times greater than the naive value3, ' 11.1%. There is also a general significant digit Benford law
including not only the first digit, but also the second, which may be zero, and all higher significant digits. For
instance in [5], the probability that the first three significant digits are 3, 1, 4 in that order, is given by

log10

(
1 +

1
314

)
' 0.14%

and similarly for other significant digit patterns.
Cesàro’s law has a different object than Benford’s: in fact Cesàro’s argument is theoretical, founded upon

number theory; on the contrary in the beginning the Benford law was nothing but a empirical statement about
real-world datasets, applicable to some datasets but not all, and only approximate. Things are quite different
nowadays, the law having been embodied as a theoretical mathematical result (see for instance [9] and [7] and
the references therein). Accordingly, a sequence of positive numbers xn is defined as a Benford (base b) if the
probability of observing the first digit of xn in base b is j ∈ {j = 1, 2, . . . b− 1} is given by:

lim
N→∞

#{n < N : first digit of xn in base b isj}
N

= logb

(
1 +

1
j

)
From this definition, one can, for instance, see that the first digit of 2n is Benford in base 10, but not Benford in
base 2 because the first digit is always 1 in this second case. In [9] (Theorem 9.3.1 p. 220) some conditions are
given in order that a recurrence relation of assigned length meets Benford; it is also shown why the first digit
of a geometric Brownian motion is Benford.

But any sequence of digit obtained with the Cesàro procedure takes into account the ‘zero’ digit’s occur-
rences, so this phenomenon is not relevant for Benford’s, dealing with sequences of positive numbers.

Anyway: we did an experimental check by means of Mathematica R©, randomly taking couples of positive
integers between 1 and 107, taking the quotient, repeating 107 times, and recording the relative frequency of
each digit. Comparing such values to the computed ones, we found for each digit a difference on the order of
magnitude of ±10−6, which has been successively confirmed by a similar test on the second place also.

2.2 Further digits

The integral in (4) can be again expressed through ψ:

p(i)r =
1

20
+

10i

20

{
ψ

(
r + 10i + 1

10

)
− ψ

(
r + 10i

10

)}
. (12)

Like in the previous analysis of the first digit, one can compute via elementary functions the probability that,
dividing two randomly chosen integers, the ith digit will be r = 0, 1, . . . , 9. But, due to the recursive relation-
ship on ψ,

ψ(x + n) = ψ(x) +
1
x
+

1
x + 1

+ · · ·+ 1
x + n− 1

, n ∈N,

2Assuming that a universal probability distribution exists over such numbers, it will be invariant under a change of scale. Normalizing
and differentiating such a invariance one will find a hyperbolic probability distribution, so that by integration the logarithmic phenomenon
appears known as Benford’s law.

3Namely the percentage one would get if the digits were equidistributed.
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such formulae quickly become intractable, having to be evaluated with n = 10i−1. For instance the probability
of the second decimal digit being zero is

p(2)0 =
2 991 620 812 234 909
303 502 130 011 080

− π

2

√
5 + 2

√
5 +

√
5

4
ln 5

− 5 ln 20
4
−
√

5− 1
2

ln

(
1
2
+

√
5

2

)

+
1
2

[√
5 ln

(
7− 3

√
5
)
+ ln

(√
5− 1

)
−
√

5 ln
(

3
√

5− 5
)]

.

As i → ∞, the events become equiprobable. Roughly speaking, if, instead of taking the first, we take for
instance the millionth digit, then the probability distribution of the ten occurrences (0, . . . , 9) is uniform.

In fact, see [6] p. 165, the following series expansion holds:

ψ(s)− ψ(s− r) =
∞

∑
n=1

(r)n

n(s)n
,

where (s)n = s(s + 1) · · · (s + n− 1) is the Pochhammer symbol, so that for k, α, β > 0,

k [ψ(α + k)− ψ(β + k)] = k
[

α− β

α + k
+

(α− β)(α− β + 1)
2(α + k)(α + k + 1)

+ · · ·
]

,

and then

lim
i→∞

p(i)r =
1

20
+ lim

i→∞

10i

20

{
ψ

(
r + 10i + 1

10

)
− ψ

(
r + 10i

10

)}
=

1
20

+
1

20
=

1
10

.

3 An elementary proof of both nnn
ddd theorems

In this section Cesàro’s statements will be proved by methods of elementary probability theory, and then they
will be extended to the case of the quotient of positive real numbers with respect to an arbitrary base b ≥ 2.
Choose at random two real positive numbers n, d. We provide an alternative definition of the probability that
the ith digit of the ratio n/d will be r ∈ {0, . . . , b− 1}. There being a choice made in the whole continuum of
possible outcomes, we cannot make use, as for the discrete case, of the ratio of two cardinal numbers. In such
a way the definition can be applied to an arbitrary base b and not only to a simple ratio but also to a power
α > 0 of such a ratio. Given two numbers (n, d) ∈ R+

2, we need to define the probability b
α p(i)r that the ratio( n

d
)α has, to base b ≥ 2, the ith digit r. To do this first we point out formally how to extract the ith digit in base

b of a given real number. Given an integer b ≥ 2 called the base and using the b digits ci ∈ {0, 1, . . . , b− 1}, we
have a representation of a positive real number ν in base b as

ν =
∞

∑
i=−∞

cibi,

Observe that there exists N ∈N such that i > N =⇒ ci = 0 thus

N

∑
i=0

cibi and
−1

∑
i=−∞

cibi

are respectively the integer part and the fractional part of ν. The coefficient c−i in front of b−i, i = 1, 2, . . . is
called the ith digit in the base b representation and will be denoted db

i (ν). Thus

db
i (ν) = r ∈ {0, 1, . . . , b− 1}

if and only if there exists k = 0, 1, . . . such that bi−1ν ∈
[
k + r

b , k + r+1
b

[
.
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Definition 1. Let db
i (ν) be the ith decimal digit for the real number ν; then, given two real positive numbers

n, d and α > 0 we define the probability b
α p(i)r that the ith decimal digit to base b of the ratio (n/d)α to be

r ∈ {0, . . . , b− 1} as

b
α p(i)r = lim

T→∞

µ{(n, d) ∈ R2
+| n, d ≤ T, db

i

(
nα

dα

)
= r}

µ{(n, d) ∈ R2
+ |n, d ≤ T}

if the limit exists. Here µ is the Lebesgue measure on R2
+.

We will keep the notation p(i)r whenever α = 1 and b = 10 and the notation pr if i = 1, α = 1, b = 10.
As a first step we will, by means of the series expansion (5) of ψ, rearrange (10). In fact from (5) we deduce

the following relation, which holds for b, x > 0 :

ψ

(
x + 1

b

)
− ψ

( x
b

)
= b

∞

∑
n=0

1
(x + nb)(x + 1 + nb)

(13)

In such a way, using (13) we see that (10) can be written using a numerical series:

pr =
1

20
+ 5

∞

∑
k=0

1
(10 + 10k + r)(11 + 10k + r)

. (14)

This fact inspired us in looking for an alternative proof to the Cesàro statement, we are going to present in the
following theorem.

Theorem 1. For a couple of real positive numbers n, d taken at random and represented in base b, the probability b p(i)r
that the ith decimal digit of n/d will be r ∈ {0, 1, . . . , b− 1} can be computed by the formula

b p(i)r =
1
2b

+
1
2

∞

∑
k=0

bi

(bi + bk + r)(bi + bk + r + 1)

=
1
2b

+
bi−1

2

{
ψ

(
bi + 1 + r

b

)
− ψ

(
bi + r

b

)}
.

(15)

Proof. We have

{
(n, d) ∈]0, T]2| db

i (n/d) = r
}
=

∞⋃
k=0

{
(n, d) ∈]0, T]2| kb + r

bi ≤ n
d
<

kb + r + 1
bi

}
.

This union is split as U ∪ L, where

U =
bi−1−1⋃

k=0

{
(n, d) ∈]0, T]2| kb + r

bi ≤ n
d
<

kb + r + 1
bi

}
and

L =
∞⋃

k=bi−1

{
(n, d) ∈]0, T]2| kb + r

bi ≤ n
d
<

kb + r + 1
bi

}
Let us explain the split. Reasoning in the plane (n, d) for 0 ≤ k ≤ bi−1 − 1, each of the subsets forming U
succeeds in being a triangle with the base on the horizontal straight line of equation d = T bounded by the
straight lines with slopes ≥ 1. If, on the contrary, k ≥ bi−1, each of the subsets forming V is a triangle based on
the vertical straight line n = T and sided by the straight lines with slopes < 1, as shown in the figure below.
For k = 0, . . . , bi−1 − 1 the kth set in U is the triangle with vertices in the (n, d)-plane

(0, 0),
(

kb + r
bi T, T

)
,
(

kb + r + 1
bi T, T

)
,

hence its Lebesgue measure is T2/(2bi).
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T

T

n

d

Figure 1: Reference (n, d): the shaded areas sketch the standard subsets making up the set U (on the left) and
the set L (on the right).

For k = bi−1, . . . the kth set in L is the triangle with vertices

(0, 0),
(

T,
bi

kb + r
T
)

,
(

T,
bi

kb + r + 1
T
)

,

with Lebesgue measure
biT2

2(kb + r)(kb + r + 1)
.

Therefore,

b p(i)r =
bi−1−1

∑
k=0

1
2bi +

∞

∑
k=bi−1

bi

2(kb + r)(kb + r + 1)

=
1
2b

+
bi

2

∞

∑
n=0

1
(bi + bn + r)(bi + bn + r + 1)

This shows the first of (15), while the second relation follows from (13).

Remark 1.1. Theorem 1 given above does not prove the original statement of Cesàro, which concerns integer
variables (the discrete case) while Theorem 1 concerns all the real ones (the continuous case). It is however not
difficult to reprove also Cesàro’s statement, by combining the above ideas with Gauss’s lattice point technique,
see e.g. [8] section 1.1, theorems 1.1 and 1.4. In fact, considering pairs of integers inside the triangles described
by the sets U and L, the number of such integer points inside a triangle is approximated by the area of the
triangle with an error which is growing as the perimeter of the triangle. In Theorem 1 the number of integer
pairs in U is equal to

bi−1−1

∑
k=0

(
T2

2bi + O(T)
)

which, when divided by T2 converges to 1/2b as T → ∞.
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The sum of integers pairs in L requires further attention, since L contains infinitely many triangles. We
note that the number of integer points in L approximated by the number of integer points in the triangle with
k ≤ b

√
Tc. The integer points not counted by such restriction all lie in the triangle with vertices

(0, 0), (T, 0), (T, Cb
√

Tc)

for some constant C > 0. It follows that the number of integer points in L equals

b
√

Tc

∑
k=bi−1

(
biT2

(kb + r)(kb + r + 1)
+ O(T)

)
+ O(T3/2).

Dividing by T2 and letting T → ∞ gives the desired result.

4 The (nnn
ddd )

α theorems

In this section we can see how the same approach can easily lead to the any decimal digit of nα/dα for α real
and positive.

Let us state in advance something about the Hurwitz zeta function. It will be recalled that the Riemann zeta
function ζ(s) is defined by

ζ(s) =
∞

∑
n=1

1
ns , Re(s) > 1

where s is a complex variable.
The Hurwitz zeta function ζ(s, x), generalizing Riemann’s, is defined by

ζ(s, x) :=
∞

∑
n=0

1
(n + x)s (16)

where Re s > 1 and Re x > 0. We have ζ(s) = ζ(s, 1). Recall the Hurwitz ζ integral representation

ζ(s, x) =
1

Γ(s)

∫ ∞

0

e−xt

1− e−t ts−1dt, (17)

which holds for Re s > 1 and Re x > 0. It is known that the Hurwitz zeta function can be meromorphically
continued to be defined for all complex numbers s with s 6= 1. At s = 1 it has a simple pole with residue 1. Its
meromorphic continuation becomes explicit for s 6= 1 and x > 0 by means of Hermite’s integral representation
theorem:

ζ(s, x) =
1
2

x−s +
1

s− 1
x1−s + 2

∫ ∞

0

sin(s arctan t
x )

(x2 + t2)s/2(e2πt − 1)
dt (18)

More information about ζ(s, x) can be found in [13] chapter 13 or in [1].
The Hurwitz zeta function is linked to the polygamma function if its first variable is a positive integer, i.e.,

n ∈N:

ψn(z) :=
dn

dzn ψ(z) = (−1)n+1n! ζ(n + 1, z). (19)

In what follows, we will need the integration formula

Lemma 1. Let s 6= 1 and a ∈ R+, b ∈ R be such that a + b ∈ R+. Then∫ 1

0
ζ(s + 1, a + bx)dx =

1
sb
{ζ(s, a)− ζ(s, a + b)} . (20)

Proof. Formula (20) follows by: ∫
ζ(s, x)dx =

1
1− s

ζ(s− 1, x)

which, in turn, follows from the relationship:

∂ζ

∂x
(s− 1, x) = (1− s)ζ(s, x),

which is a consequence of (16)

9
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Finally for b > 0, Re(s) > 1, Re(x) > 0 we will employ this relation which is an immediate consequence of
the definition of ζ(s, x)

∞

∑
n=0

1
(bn + x)s =

1
bs ζ(s,

x
b
) (21)

We then can present our generalization of Cesàro’s results.

Theorem 2. For a couple of positive real numbers n, d taken at random and represented in base b, the probability b
α p(i)r ,

with α > 0, that the ith decimal digit of nα/dα will be r ∈ {0, 1, . . . , b− 1} is given by

α
b p(i)r =

1

2 α
√

bi

bi−1−1

∑
k=0

[
(kb + r + 1)1/α − (kb + r)1/α)

]
+

1
2

α
√

bi
∞

∑
k=0

(
1

α
√

bi + bk + r
− 1

α
√

bi + bk + r + 1

) (22)

Moreover when α < 1 in equation (22) the infinite series can be written in terms of Hurwitz zeta function:

α
b p(i)r =

1

2 α
√

bi

bi−1−1

∑
k=0

[
(kb + r + 1)1/α − (kb + r)1/α)

]
+

α
√

bi−1

2

{
ζ

(
1
α

,
bi + r

b

)
− ζ

(
1
α

,
bi + r + 1

b

)} (22b)

Proof. The proof is similar to Theorem 1. In this case we have{
(n, d) ∈]0, T]2| db

i (n
α/dα) = r

}
=

∞⋃
k=0

{
(n, d) ∈]0, T]2| kb + r

bi ≤ nα

dα
<

kb + r + 1
bi

}

=
∞⋃

k=0

{
(n, d) ∈]0, T]2| α

√
kb + r

bi ≤ n
d
<

α

√
kb + r + 1

bi

}
.

As for the previous case in Theorem 1, this union can be split as U ∪ L, where

U =
bi−1−1⋃

k=0

{
(n, d) ∈]0, T]2| α

√
kb + r

bi ≤ n
d
<

α

√
kb + r + 1

bi

}
and

L =
∞⋃

k=bi−1

{
(n, d) ∈]0, T]2| α

√
kb + r

bi ≤ n
d
<

α

√
kb + r + 1

bi

}

For k = 0, . . . , bi−1 − 1 the kth set in U is the triangle with vertices in the (n, d)-plane

(0, 0),

(
α

√
kb + r

bi T, T

)
,

(
α

√
kb + r + 1

bi T, T

)
,

hence its Lebesgue measure is
T2( α
√

kb + r + 1− α
√

kb + r)

2 α
√

bi
.

For k = bi−1, . . . the kth set in L is the triangle with vertices

(0, 0),

T, α

√
bi

kb + r
T

 ,

T, α

√
bi

kb + r + 1
T

 ,

10
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with Lebesgue measure

1
2

 α

√
bi

kb + r
− α

√
bi

kb + r + 1

 T2

Therefore summing the measures of the disjointed events in order to detect the required probability we find
the first formula for b

α p(i)r given in (22). To end the proof and to get the formula (??b) for α < 1, first notice that
the series (22) converges also for this set of α’s, then use the following identity a, k, β > 0

1
(a + k)β

− 1
(1 + a + k)β

=
∫ 1

0

β

(1 + a + k− x)β+1 dx

then summing on k and interchanging summation and integration, we see that

∞

∑
k=0

(
1

α
√

bi + bk + r
− 1

α
√

bi + bk + r + 1

)
=

1
α

∫ 1

0

∞

∑
k=0

1

(bi + r + 1 + kb− x)
1
α +1

dx

=
1

αb
1
α +1

∫ 1

0
ζ

(
1 +

1
α

,
bi + r− x + 1

b

)
dx

Formula (??b) now follows using (21) and (20).

Remark 2.1. We can also prove a discrete version of Theorem 2, by using Gauss’s technique as in Remark 1.1.

Let us close with some points to note.
If in (22) we take the limit α → 1, (15) shall by necessity be obtained, and this is done easily using the

expressions containing infinite series. If one instead wants to use the special functions representations, the
pole at s = 1 of ζ(s, x) can be bypassed: in fact if x, y are two positive real numbers, then

Axy(s) := ζ(s, x)− ζ(s, y)

is continuous in s = 1 attaining there the value

Axy(1) = ψ(y)− ψ(x). (23)

In fact, expressing Axy by means of the integral representation (17) of ζ(s, ·), we have

Axy(s) = ζ(s, x)− ζ(s, y) =
1

Γ(s)

∫ ∞

0

e−xt − e−yt

1− e−t ts−1dt

the limit under the integral for s → 1 is allowed due to the integrand’s summability (including the origin). So
that, by the first part of (7):

Axy(1) =
∫ ∞

0

e−xt − e−yt

1− e−t dt =
∫ ∞

0

e−xt − e−t + e−t − e−yt

1− e−t dt = ψ(y)− ψ(x).

Then, by means of (23), we can put α = 1 in (22), finding (15) again.
Whilst in Cesàro’s formulae the digamma appears, in ours we use the Hurwitz ζ function: this depends on

the non-integrality of the first argument of the generalized zeta function. Therefore if in (??b) one puts α = 1/n
with n ∈N, then thanks to (19) it would be possible to express (??b) by a digamma.

Conclusions

In 1885 E. Cesàro considered in [4] the probability that a whichever digit r, zero included, could occur as the
first when dividing two integers taken at random, say n and d. Such a probability was stated without proof as
depending on the integral ∫ 1

0

1− ϕ

1− ϕ10 ϕ9+rdϕ, r = 0, 1, . . . , 9

11
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which is a non-trivial function of r. In our article, an elementary proof is given of such a formula in the case
of two arbitrary chosen positive real numbers; next, the integral is computed by reducing it to the Euler ψ
function, namely the logarithmic derivative of the Γ function. Such a law has been tested by computer, taking
random couples of positive integers between 1 and 107, performing the division, repeating 107 times, recording
the relative frequency of each digit. By comparison of such values to the computed ones, we found a difference
for each digit of the order of ±10−6, which has been successively confirmed when arranging a similar test of
the second digit. In fact further theorems have been obtained generalizing such a result to the ith decimal digit
of n/d and to the case of numbers in a whichever base b. Further generalizations concerning the probabilistic
occurrence to the second power and finally to the αth power of n/d are proved by using the Hurwitz ζ function
by means of theorems about that function whose role was long ago established through number theory.
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