
The TuCSoN Coordination Model & Technology
A Guide

Andrea Omicini Stefano Mariani
{andrea.omicini, s.mariani}@unibo.it

Alma Mater Studiorum—Università di Bologna a Cesena

TuCSoN v. 1.10.3.0206
Guide v. 1.0.2

January 9, 2013

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 1 / 117

Outline Part I: Basic TuCSoN

Outline of Part I: Basic TuCSoN

1 Basic Model & Language
Basic Model
Naming
Basic Language
Basic Operations

2 Basic Architecture
Nodes & Tuple Centres
Coordination Spaces

3 Basic Technology
Middleware
Tools

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 2 / 117

Outline Part II: Advanced TuCSoN

Outline of Part II: Advanced TuCSoN

4 Advanced Model
Bulk Primitives
Coordinative Computation
Uniform Primitives
Organisation
Agent Coordination Contexts

5 Advanced Architecture
Node Architecture

6 Programming Tuple Centres
Meta-Coordination Language
Meta-Coordination Operations

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 3 / 117

Outline Part III: Conclusion

Outline of Part III: Conclusion

7 Status of the Guide

8 Status of the Technology

9 Bibliography

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 4 / 117

Part I

Basic TuCSoN

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 5 / 117

Outline

Outline

1 Basic Model & Language

2 Basic Architecture

3 Basic Technology

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 6 / 117

The TuCSoN Basic Model & Language TuCSoN Basic Model

Part 1: Basic TuCSoN

1 Basic Model & Language
Basic Model
Naming
Basic Language
Basic Operations

2 Basic Architecture
Nodes & Tuple Centres
Coordination Spaces

3 Basic Technology
Middleware
Tools

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 7 / 117

The TuCSoN Basic Model & Language TuCSoN Basic Model

TuCSoN

TuCSoN(Tuple Centres Spread over the Network) is a model for the
coordination of distributed processes, as well as of autonomous, intelligent
& mobile agents [Omicini and Zambonelli, 1999]

Main URLs

URL http://tucson.apice.unibo.it/

FaceBook http://www.facebook.com/TuCSoNCoordinationTechnology

Google Code http://tucson.googlecode.com/

SourceForge http://sf.net/projects/tucson/

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 8 / 117

http://tucson.apice.unibo.it/
http://www.facebook.com/TuCSoNCoordinationTechnology
http://tucson.googlecode.com/
http://sf.net/projects/tucson/

The TuCSoN Basic Model & Language TuCSoN Basic Model

Basic Entities

TuCSoN agents are the coordinables

ReSpecT tuple centres are the (default) coordination media
[Omicini and Denti, 2001]

TuCSoN nodes represent the basic topological abstraction, which
host the tuple centres

agents, tuple centres, and nodes have unique identities within a
TuCSoN system

System

Roughly speaking, a TuCSoN system is a collection of agents and tuple
centres working together in a possibly-distributed set of nodes

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 9 / 117

The TuCSoN Basic Model & Language TuCSoN Basic Model

Basic Interaction

since agents are pro-active entities, and tuple centres are reactive
entities, coordinables need coordination operations in order to act
over coordination media: such operations are built out of the
TuCSoN coordination language

agents interact by exchanging tuples through tuple centres using
TuCSoN coordination primitives, altogether defining the coordination
language

tuple centres provide the shared space for tuple-based communication
(tuple space), along with the programmable behaviour space for
tuple-based coordination (specification space)

System

Roughly speaking, a TuCSoN system is a collection of agents and tuple
centres interacting in a possibly-distributed set of nodes

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 10 / 117

The TuCSoN Basic Model & Language TuCSoN Basic Model

Basic Topology

agents and tuple centres are spread over the network

tuple centres belong to nodes

agents live anywhere on the network, and can interact with the tuple
centres hosted by any reachable TuCSoN node

agents could in principle move independently of the device where they
run, tuple centres are permanently associated to one device

System

Roughly speaking, a TuCSoN system is a collection of possibly-distributed
nodes and agents interacting with the nodes’ tuple centres

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 11 / 117

The TuCSoN Basic Model & Language TuCSoN Basic Model

Basic Mobility

agents could in principle move independently of the device where they
run [Omicini and Zambonelli, 1998]

tuple centres are essentially associated to one device, possibly
mobile—so, tuple centre mobility is dependent on their hosting device

System

Roughly speaking, a TuCSoN system is a collection of possibly-distributed
nodes, associated to possibly-mobile devices agents, interacting with the
nodes’ tuple centres

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 12 / 117

The TuCSoN Basic Model & Language Naming in TuCSoN

Part 1: Basic TuCSoN

1 Basic Model & Language
Basic Model
Naming
Basic Language
Basic Operations

2 Basic Architecture
Nodes & Tuple Centres
Coordination Spaces

3 Basic Technology
Middleware
Tools

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 13 / 117

The TuCSoN Basic Model & Language Naming in TuCSoN

Nodes

each node within a TuCSoN system is univocally identified by the pair
< NetworkId ,PortNo >, where

NetworkId is either the IP number or the DNS entry of the device
hosting the node
PortNo is the port number where the TuCSoN coordination service
listens to the invocations for the execution of coordination operations

correspondingly, the abstract syntax for the identifier of a TuCSoN
node hosted by a networked device netid on port portno is

netid : portno

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 14 / 117

The TuCSoN Basic Model & Language Naming in TuCSoN

Tuple Centres

an admissible name for a tuple centre is any first-order ground logic
term

since each node contain at most one tuple centre for each admissible
name, each tuple centre is uniquely identified by its admissible name
associated to the node identifier

the TuCSoN full name of a tuple centre tname on a node
netid : portno is

tname @ netid : portno

the full name of a tuple centre works as a tuple centre identifier in a
TuCSoN system

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 15 / 117

The TuCSoN Basic Model & Language Naming in TuCSoN

Agents

an admissible name for an agent is any Prolog first-order ground logic
term [Lloyd, 1984]

when it enters a TuCSoN system, an agent assigned a universally
unique identifier (UUID)1

if an agent aname is assigned UUID uuid, its full name is

aname : uuid

1http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html
Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 16 / 117

http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html

The TuCSoN Basic Model & Language TuCSoN Basic Language

Part 1: Basic TuCSoN

1 Basic Model & Language
Basic Model
Naming
Basic Language
Basic Operations

2 Basic Architecture
Nodes & Tuple Centres
Coordination Spaces

3 Basic Technology
Middleware
Tools

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 17 / 117

The TuCSoN Basic Model & Language TuCSoN Basic Language

Coordination Language

the TuCSoN coordination language allows agents to interact with
tuple centres by executing coordination operations

TuCSoN provides coordinables with coordination primitives, allowing
agents to read, write, consume tuples in tuple spaces, and to
synchronise on them

coordination operations are built out of coordination primitives and of
the communication languages:

the tuple language
the tuple template language

! in the following, whenever unspecified, we assume that Tuple
belongs to the tuple language, and TupleTemplate belongs to the
tuple template language

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 18 / 117

The TuCSoN Basic Model & Language TuCSoN Basic Language

Tuple & Tuple Template Languages

both the tuple and the tuple template languages depend on the sort
of the tuple centres adopted by TuCSoN

given that the default TuCSoN coordination medium is the
logic-based ReSpecT tuple centre, both the tuple and the tuple
template languages are logic-based, too

more precisely

any Prolog atom is an admissible TuCSoN tuple
any Prolog atom is an admissible TuCSoN tuple template

as a result, the default TuCSoN tuple and tuple template languages
coincide

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 19 / 117

The TuCSoN Basic Model & Language TuCSoN Basic Language

Coordination Operations

a TuCSoN coordination operation is invoked by a source agent on a
target tuple centre, which is in charge of its execution

any TuCSoN operation has two phases

invocation — the request from the source agent to the target tuple
centre, carrying all the information about the invocation

completion — the response from the target tuple centre back to the
source agent, including all the information about the
operation execution by the tuple centre

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 20 / 117

The TuCSoN Basic Model & Language TuCSoN Basic Language

Abstract Syntax

the abstract syntax of a coordination operation op invoked on a
target tuple centre tcid is

tcid ? op

where tcid is the tuple centre full name

given the structure of the full name of a tuple centre, the general
abstract syntax of a TuCSoN coordination operation is

tname @ netid : portno ? op

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 21 / 117

The TuCSoN Basic Model & Language TuCSoN Basic Operations

Part 1: Basic TuCSoN

1 Basic Model & Language
Basic Model
Naming
Basic Language
Basic Operations

2 Basic Architecture
Nodes & Tuple Centres
Coordination Spaces

3 Basic Technology
Middleware
Tools

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 22 / 117

The TuCSoN Basic Model & Language TuCSoN Basic Operations

Coordination Primitives

The TuCSoN coordination language provides the following 9 coordination
primitives to build coordination operations

out, rd, in

rdp, inp

no, nop

get, set

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 23 / 117

The TuCSoN Basic Model & Language TuCSoN Basic Operations

Basic Operations

out(Tuple) writes Tuple in the target tuple space; after the operation is
successfully executed, Tuple is returned as a completion

rd(TupleTemplate) looks for a tuple matching TupleTemplate in the target tuple
space; if a matching Tuple is found when the operation is first served,
the execution succeeds by returning Tuple ; otherwise, the execution is
suspended, to be resumed and successfully completed when a matching
Tuple is finally found on the target tuple space, and returned

in(TupleTemplate) looks for a tuple matching TupleTemplate in the target tuple
space; if a matching Tuple is found when the operation is first served,
the execution succeeds by removing and returning Tuple ; otherwise, the
execution is suspended, to be resumed and successfully completed when
a matching Tuple is finally found on the target tuple space, removed,
and returned

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 24 / 117

The TuCSoN Basic Model & Language TuCSoN Basic Operations

Predicative Operations

rdp(TupleTemplate) looks for a tuple matching TupleTemplate in the
target tuple space; if a matching Tuple is found when the
operation is served, the execution succeeds, and Tuple is
returned; otherwise the execution fails, and TupleTemplate

is returned;

inp(TupleTemplate) looks for a tuple matching TupleTemplate in the
target tuple space; if a matching Tuple is found when the
operation is served, the execution succeeds, Tuple is
removed from the target tuple space, and returned;
otherwise the execution fails, no tuple is removed from the
target tuple space, and TupleTemplate is returned;

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 25 / 117

The TuCSoN Basic Model & Language TuCSoN Basic Operations

Test-for-Absence Operations

no(TupleTemplate) looks for a Tuple matching TupleTemplate in the
target tuple space; if no matching tuple is found in the target
tuple space when the operation is first served, the execution
succeeds, and TupleTemplate is returned; otherwise, the
execution is suspended, to be resumed and successfully
completed when no matching tuples can any longer be found
in the target tuple space, then TupleTemplate is returned

nop(TupleTemplate) looks for a Tuple matching TupleTemplate in
the target tuple space; if no matching tuple is found in the
target tuple space when the operation is served, the
execution succeeds, and TupleTemplate is returned;
otherwise, if a matching Tuple is found, the execution fails,
and Tuple is returned

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 26 / 117

The TuCSoN Basic Model & Language TuCSoN Basic Operations

Space Operations

get reads all the Tuples in the target tuple space, and returns
them as a list; if no tuple occurs in the target tuple space at
execution time, the empty list is returned, and the execution
succeeds anyway

set(Tuples) rewrites the target tuple spaces with the list of Tuples ;
when the execution is completed, the list of Tuples is
successfully returned

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 27 / 117

The TuCSoN Basic Architecture TuCSoN Nodes & Tuple Centres

Part 1: Basic TuCSoN

1 Basic Model & Language
Basic Model
Naming
Basic Language
Basic Operations

2 Basic Architecture
Nodes & Tuple Centres
Coordination Spaces

3 Basic Technology
Middleware
Tools

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 28 / 117

The TuCSoN Basic Architecture TuCSoN Nodes & Tuple Centres

Node

a TuCSoN system is first of all a characterised by the (possibly
distributed) collection of TuCSoN nodes hosting a TuCSoN service

a node is characterised by the networked device hosting the service,
and by the network port where the TuCSoN service listens to
incoming requests

Multiple nodes on a single device

Many TuCSoN nodes can in principle run on the same networked device,
each one listening on a different port

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 29 / 117

The TuCSoN Basic Architecture TuCSoN Nodes & Tuple Centres

Default Node

Default port

The default port number of TuCSoN is 20504

so, an agent can invoke operations of the form

tname @ netid ? op

without specifying the node port number portno, meaning that the
agent intends to invoke operation op on the tuple centre tname of the
default node netid : 20504 hosted by the networked device netid

any other port could in principle be used for a TuCSoN node

the fact that a TuCSoN node is available on a networked device does
not imply that a node is also available on the same unit on the default
port—so the default node is not ensured to exist, generally speaking

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 30 / 117

The TuCSoN Basic Architecture TuCSoN Nodes & Tuple Centres

Tuple Centres

given an admissible tuple centre name tname, tuple centre tname is
an admissibile tuple centre

the coordination space of a TuCSoN node is defined as the collection
of all the admissible tuple centres

any TuCSoN node provides agents with a complete coordination
space, so that in principle any coordination operation can be invoked
on any admissible tuple centre belonging to any TuCSoN node

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 31 / 117

The TuCSoN Basic Architecture TuCSoN Nodes & Tuple Centres

Default Tuple Centre

every TuCSoN node defines a default tuple centre, which responds to
any operation invocation received by the node that do not specify the
target tuple centre

Default tuple centre

The default tuple centre of any TuCSoN node is named default

as a result, agents can invoke operations of the form

@ netid : portno ? op

without specifying the tuple centre name tname, meaning that they
intend to invoke operation op on the default tuple centre of the
node netid : portno hosted by the networked device netid

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 32 / 117

The TuCSoN Basic Architecture TuCSoN Nodes & Tuple Centres

Default Tuple Centre & Port

combining the notions of default tuple centre and default port, agents
can also invoke operations of the form

@ netid ? op

meaning that they intend to invoke operation op on the default

tuple centre of the default node netid : 20504 hosted by the
networked device netid

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 33 / 117

The TuCSoN Basic Architecture TuCSoN Coordination Spaces

Part 1: Basic TuCSoN

1 Basic Model & Language
Basic Model
Naming
Basic Language
Basic Operations

2 Basic Architecture
Nodes & Tuple Centres
Coordination Spaces

3 Basic Technology
Middleware
Tools

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 34 / 117

The TuCSoN Basic Architecture TuCSoN Coordination Spaces

Global coordination space

the TuCSoN global coordination space is defined at any time by the
collection of all the tuple centres available on the network, hosted by
a node, and identified by their full name

a TuCSoN agent running on any networked device has at any time
the whole TuCSoN global coordination space available for its
coordination operations through invocations of the form

tname @ netid : portno ? op

which invokes operation op on the tuple centre tname provided by
node netid : portno

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 35 / 117

The TuCSoN Basic Architecture TuCSoN Coordination Spaces

Local Coordination Space

given a networked device netid hosting one or more TuCSoN nodes,
the TuCSoN local coordination space is defined at any time by the
collection of all the tuple centres made available by all the TuCSoN
nodes hosted by netid

an agent running on the same device netid that hosts a TuCSoN
node can exploit the local coordination space to invoke operations of
the form

tname : portno ? op

which invokes operation op on the tuple centre tname locally provided
by node netid : portno

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 36 / 117

The TuCSoN Basic Architecture TuCSoN Coordination Spaces

Defaults & Local Coordination Space

by exploiting the notions of default node and default tuple centre, the
following invocations are also admissible for any TuCSoN agent
running on a device netid:

: portno ? op

invoking operation op on the default tuple centre of node
netid : portno

tname ? op

invoking operation op on the tname tuple centre of default node
netid : 20504

op

invoking operation op on the default tuple centre of default node
netid : 20504

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 37 / 117

The TuCSoN Basic Technology TuCSoN Middleware

Part 1: Basic TuCSoN

1 Basic Model & Language
Basic Model
Naming
Basic Language
Basic Operations

2 Basic Architecture
Nodes & Tuple Centres
Coordination Spaces

3 Basic Technology
Middleware
Tools

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 38 / 117

The TuCSoN Basic Technology TuCSoN Middleware

Technology Requirements

TuCSoN is a Java-based middleware

TuCSoN is also Prolog-based: it is based on the tuProlog Java-based
technology for

first-order logic tuples
primitive & identifier parsing
ReSpecT specification language & virtual machine

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 39 / 117

The TuCSoN Basic Technology TuCSoN Middleware

Java & Prolog Agents

TuCSoN middleware provides

Java API for extending Java programs with TuCSoN coordination
primitives

package alice.tucson.api.*

Java classes for programming TuCSoN agents in Java

alice.tucson.api.TucsonAgent provides a ready-to-use thread,
whose main can directly use TuCSoN coordination primitives

Prolog libraries for extending tuProlog programs with TuCSoN
coordination primitives

alice.tucson.api.Tucson2PLibrary provides tuProlog agents with
the ability to use TuCSoN primitives
by including the :-load library(path/to/Tucson2PLibrary)

directive in its Prolog theory

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 40 / 117

The TuCSoN Basic Technology TuCSoN Middleware

Java APIs I

Package alice.tucson.api

Most APIs are made available through package alice.tucson.api.

TucsonAgentId — exposes methods to get a TuCSoN agent ID, and to
access its fields. Required to obtain an ACC.
getAgentId(): Object — to get the full agent ID
getAgentName(): String — to get only the agent name

TucsonMetaACC — provides TuCSoN agents with an ACC.2 The ACC is
mandatory to interact with a TuCSoN tuple centre.
getContext(TucsonAgentId, String, int): EnhancedACC — to get an

ACC from the (specified) TuCSoN node

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 41 / 117

The TuCSoN Basic Technology TuCSoN Middleware

Java APIs II

TucsonTupleCentreId — exposes methods to get a TuCSoN tuple
centre ID, and to access its fields. Required to perform
TuCSoN operations on the ACC.
getName(): String — to get the tuple centre local name
getNode(): String — to get the tuple centre host’s IP number
getPort(): int — to get the tuple centre host’s listening port number

ITucsonOperation — exposes methods to access the result of a
TuCSoN operation.
isResultSuccess(): boolean — to check operation success
getLogicTupleResult(): LogicTuple — to get operation result
getLogicTupleListResult(): List<LogicTuple> — to get operation

result—to be used with bulk primitives and get s

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 42 / 117

The TuCSoN Basic Technology TuCSoN Middleware

Java APIs III

TucsonAgent — base abstract class for user-defined TuCSoN agents.
Automatically builds the TucsonAgentId and gets the
EnhancedACC.
main(): void — to be overridden by business logic of the user-defined

agent
getContext(): EnhancedACC — to get ACC for the user-defined agent

go(): void — to start main execution of the user-defined agent

SpawnActivity — base abstract class for user-defined TuCSoN activities
to be spawned by a spawn operation. Provides a simplified
syntax for TuCSoN operation invocations.
doActivity(): void — to override with your spawned activity business

logic
out(LogicTuple): LogicTuple — out TuCSoN operation

.
unop(LogicTuple): LogicTuple — unop TuCSoN operation

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 43 / 117

The TuCSoN Basic Technology TuCSoN Middleware

Java APIs IV

Tucson2PLibrary — allows tuProlog agents to access the TuCSoN
platform by exposing methods to manage ACCs, and to
invoke TuCSoN operations.
get context 1(Struct): boolean — to get an ACC for your tuProlog

agent
out 2(Term, Term): boolean — out TuCSoN operation

.
unop 2(Term, Term): boolean — unop TuCSoN operation

Furthermore. . .

Package alice.tucson.api obviously contains also all the ACCs
provided by the TuCSoN platform—among which EnhancedACC.
Please refer to Slides 85–91 for the complete list, and to Slide 92 for an
overview.

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 44 / 117

The TuCSoN Basic Technology TuCSoN Middleware

Java APIs V

Package alice.logictuple

Other APIs are made available through package alice.logictuple. In
particular, those required to manage TuCSoN tuples.

LogicTuple — exposes methods to build a TuCSoN tuple/template and
to get its arguments.
parse(String): LogicTuple — to encode a given string into a TuCSoN

tuple/template
getName(): String — to get the functor name of the tuple
getArg(int): TupleArgument — to get the tuple argument at given

position

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 45 / 117

The TuCSoN Basic Technology TuCSoN Middleware

Java APIs VI

TupleArgument — represents TuCSoN tuples arguments (tuProlog
terms), thus provides the means to access them.
parse(String): TupleArgument — to encode the given string into a

tuProlog tuple argument

getArg(int): TupleArgument — to get the tuple argument at given
position

isVar(): boolean — to test if the tuple argument is a tuProlog Var (other
similar methods provided)

intValue(): int — to get the int value of the tuple argument (other
similar methods provided)

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 46 / 117

The TuCSoN Basic Technology TuCSoN Middleware

Java APIs VII

Package alice.tucson.service

APIs to programatically boot & kill a TuCSoN service are provided by
class TucsonNodeService in package alice.tucson.service.

constructors to init the TuCSoN service (possibly on a given port)

methods to install & shutdown the TuCSoN service
install(): void

shutdown(): void

entry point to launch a TuCSoN node from the command line

2Always an EnhancedACC in current implementationTuCSoN-1.10.3.0206.
Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 47 / 117

The TuCSoN Basic Technology TuCSoN Middleware

Service

given any networked device running a Java VM, a TuCSoN node can
be booted to make it provide a TuCSoN service

a TuCSoN service can be started through the
alice.tucson.service Java API, e.g.

java -cp TuCSoN-1.10.3.0206.jar alice.tucson.service.TucsonNodeService

-port 20506

the node service is in charge of

listening to incoming operation invocations on the associated port of
the device
dispatching them to the target tuple centres
returning the operation completions

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 48 / 117

The TuCSoN Basic Technology TuCSoN Middleware

Coordination Space

a TuCSoN node service provides the complete coordination space

tuple centres in a node are either actual or potential: at any time in a
given node

actual tuple centres are admissible tuple centres that already do have
a reification as a run-time abstraction

potential tuple centres are admissible tuple centres that do not have
a reification as a run-time abstraction, yet

the node service is in charge of making potential tuple centres actual
as soon as the first operation on them is received and served

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 49 / 117

The TuCSoN Basic Technology TuCSoN Tools

Part 1: Basic TuCSoN

1 Basic Model & Language
Basic Model
Naming
Basic Language
Basic Operations

2 Basic Architecture
Nodes & Tuple Centres
Coordination Spaces

3 Basic Technology
Middleware
Tools

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 50 / 117

The TuCSoN Basic Technology TuCSoN Tools

Command Line Interface (CLI) I

Shell interface for human agents / programmers, e.g.
java -cp TuCSoN-1.10.3.0206.jar

alice.tucson.service.tools.CommandLineInterpreter

-netid localhost -port 20505 -aid myCLI

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 51 / 117

The TuCSoN Basic Technology TuCSoN Tools

Command Line Interface (CLI) II

CLI Syntax

〈TucsonOp〉 ::= 〈TcName〉 @ 〈IpAddress〉 : 〈PortNo〉 ? 〈Op〉
〈TcName〉 ::= Prolog ground term
〈IpAddress〉 ::= localhost | IP address
〈PortNo〉 ::= port number
〈Op〉 ::= out(T) | in(TT) | rd(TT) | no(TT) |inp(TT) | rdp(TT) | nop(TT) |

get() | set([T1,...,Tn]) |
out all(TT,TL) | in all(TT,TL) | rd all(TT,TL) | no all(TT,TL) |
uin(TT) | urd(TT) | uno(TT) | uinp(TT) | urdp(TT) | unop(TT) |
out s(E,G,R) | in s(ET,GT,RT) | rd s(ET,GT,RT) | no s(ET,GT,RT) |
inp s(ET,GT,RT) | rdp s(ET,GT,RT) | nop s(ET,GT,RT) |
get s() | set s([(E1,G1,R1),...,(En,Gn,Rn)])

T,T1,...,Tn ::= tuple (Prolog term)
TT ::= tuple template (Prolog term)
TL ::= list of tuples (Prolog list of terms)
E,E1,...,En ::= ReSpecT event
G,G1,...,Gn ::= ReSpecT guard predicate
R,R1,...,Rn ::= ReSpecT reaction body
ET ::= ReSpecT event template
GT ::= ReSpecT guard template
RT ::= ReSpecT reaction body template

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 52 / 117

The TuCSoN Basic Technology TuCSoN Tools

TuCSoN Inspector I

A GUI tool to monitor the TuCSoN coordination space & ReSpecT
VM—to some extent, actually it’s still in development

to launch the Inspector tool

java -cp TuCSoN-1.10.3.0206.jar alice.tucson.introspection.tools.Inspector

available options are
-aid — the name of the Inspector Agent

-netid — the IP address of the device hosting the TuCSoN Node to be
inspected. . .

-portno — . . . its listening port. . .

-tcname — . . . and the name of the tuplecentre to monitor

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 53 / 117

The TuCSoN Basic Technology TuCSoN Tools

TuCSoN Inspector II

Using the Inspector Tool I

if you launched it without specifying the full name of the target
tuplecentre to inspect, choose it from the GUI

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 54 / 117

The TuCSoN Basic Technology TuCSoN Tools

TuCSoN Inspector III

Using the Inspector Tool II

if you launched it giving the full name of the target tuplecentre to
inspect, choose what to inspect inside that tuplecentre

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 55 / 117

The TuCSoN Basic Technology TuCSoN Tools

TuCSoN Inspector IV

What to inspect

In the Sets tab you can choose whether to inspect

Tuple Space — the ordinary tuples space state

Specification Space — the (ReSpecT) specification tuples space state

Pending Ops — the pending TuCSoN operations set, that is the set of the
currently suspended issued operations (waiting for
completion)

ReSpecT Reactions — the triggered (ReSpecT) reactions set, that is the
set of specification tuples (recursively) triggered by the
issued TuCSoN operations

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 56 / 117

The TuCSoN Basic Technology TuCSoN Tools

TuCSoN Inspector V

Tuple Space view

In the Tuple Space view you can

proactively observe the space state, thus getting any change of state,
or reactively observe it, that is getting updates only when
requested—through the Observe! button in the Observation tab

filter displayed tuples according to a given admissible Prolog
template—through the Match! button in the Filter tab

dump (filtered) observations on a given log file—in the Log tab

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 57 / 117

The TuCSoN Basic Technology TuCSoN Tools

TuCSoN Inspector VI

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 58 / 117

The TuCSoN Basic Technology TuCSoN Tools

TuCSoN Inspector VII

Specification Space view

In the Specification Space view you can

load a ReSpecT specification from a file. . .

. . . edit & set it to the current tuplecentre—through the <set s>

button

get the ReSpecT specification from the current tuplecentre—through
the <get s> button. . .

. . . save it to a given file (or to the default one named
default.rsp)—button Save (or Save As)

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 59 / 117

The TuCSoN Basic Technology TuCSoN Tools

TuCSoN Inspector VIII

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 60 / 117

The TuCSoN Basic Technology TuCSoN Tools

TuCSoN Inspector IX

Pending Ops view

In the Pending Ops view you can

proactively observe pending TuCSoN operations, thus getting any
new update whenever available, or reactively observe it, that is
getting updates only when requested—through the Observe! button
in the Observation tab

filtera displayed TuCSoN operations according to a given admissible
Prolog template—through the Match! button in the Filter tab

dump (filtered) observations on a given log file—in the Log tab

afiltering is based on operation tuples solely a.t.m.

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 61 / 117

The TuCSoN Basic Technology TuCSoN Tools

TuCSoN Inspector X

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 62 / 117

The TuCSoN Basic Technology TuCSoN Tools

TuCSoN Inspector XI

ReSpecT Reactions view

In the ReSpecT Reactions view you are notified upon any ReSpecT
reaction triggered in the observed tuplecentre and can dump such
notifications on a given log file.

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 63 / 117

The TuCSoN Basic Technology TuCSoN Tools

TuCSoN Inspector XII

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 64 / 117

Part II

Advanced TuCSoN

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 65 / 117

The TuCSoN Advanced Model TuCSoN Bulk Primitives

Part 2: Advanced TuCSoN

4 Advanced Model
Bulk Primitives
Coordinative Computation
Uniform Primitives
Organisation
Agent Coordination Contexts

5 Advanced Architecture
Node Architecture

6 Programming Tuple Centres
Meta-Coordination Language
Meta-Coordination Operations

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 66 / 117

The TuCSoN Advanced Model TuCSoN Bulk Primitives

Bulk Primitives: The Idea

bulk coordination primitives are required in order to obtain significant
efficiency gains for a large class of coordination problems involving the
management of more than one tuple with a single coordination
operation [Rowstron, 1996]

instead of returning one single matching tuple, bulk operations return
list of matching tuples

in case of no matching tuples, they successfully return an empty list
of tuples: so, bulk primitives always succeed

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 67 / 117

The TuCSoN Advanced Model TuCSoN Bulk Primitives

Bulk Primitives: Simple Examples

For instance, let us assume that the default tuple centre contains just 3 tuples: 2
colour(white) and 1 colour(black)

the invocation of a rd all(color(X)) succeeds and returns a list of 3 tuples, containing
2 colour(white) and 1 colour(black) tuples

the invocation of a rd all(color(black)) succeeds and returns a list of 1 tuples,
containing 1 colour(black) tuples

the invocation of a rd all(color(blue)) succeeds and returns an empty list of tuples

the invocation of a no all(color(X)) succeeds and returns an empty list of tuples

the invocation of a no all(color(black)) succeeds and returns a list of 2 tuples,
containing 2 colour(white) tuples

the invocation of a no all(color(blue)) succeeds and returns a list of 3 tuples,
containing 2 colour(white) and 1 colour(black) tuples

On the other hand, out all(Tuples) just takes a list of Tuples and simply put

them all in the target tuple space.

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 68 / 117

The TuCSoN Advanced Model TuCSoN Bulk Primitives

Bulk Primitives in TuCSoN

The TuCSoN coordination language provides the following 4 bulk
coordination primitives to build coordination operations

out all

rd all

in all

no all

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 69 / 117

The TuCSoN Advanced Model TuCSoN Coordinative Computation

Part 2: Advanced TuCSoN

4 Advanced Model
Bulk Primitives
Coordinative Computation
Uniform Primitives
Organisation
Agent Coordination Contexts

5 Advanced Architecture
Node Architecture

6 Programming Tuple Centres
Meta-Coordination Language
Meta-Coordination Operations

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 70 / 117

The TuCSoN Advanced Model TuCSoN Coordinative Computation

Toward Computationally-complex Coordination

Beyond eval

often, complex computational activities related to coordination – such
as complex calculations, access to external structures, etc. – would be
more easily expressed in terms of a “standard” sequential program
executed within the coordination abstraction

in the original Linda, this was achieved through the eval primitive,
which provides a sort of “expression tuple” that the tuple space
evaluates based on some not-so-clear expression semantics

the execution of the eval is typically reified in the tuple space in
terms of a new tuple, representing the result of the (possibly
complex) computational activity performed

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 71 / 117

The TuCSoN Advanced Model TuCSoN Coordinative Computation

The spawn Primitive I

Generality

in order to allow for complex computational activities related to
coordination, TuCSoN provides the spawn primitive

spawn can activate either TuCSoN Java agent, or a tuProlog agent

the execution of the spawn is local to the tuple space where it is
invoked, and so are their results

correspondingly, the code (either Java or tuProlog) of the agent should
be local to the same node hosting the tuple centre
also, the code can execute TuCSoN coordination primitives, but only
on the same spawning tuple centre

spawn semantics is not suspensive: it triggers a concurrent
computational activity and completion is returned to the caller as
soon as the concurrent activity has started

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 72 / 117

The TuCSoN Advanced Model TuCSoN Coordinative Computation

The spawn Primitive II

General syntax

spawn has basically two parameters

activity — a ground Prolog atom containing either the tuProlog
theory and the goal to be solved – e.g.,
solve(’path/to/Prolog/Theory.pl’, yourGoal) –
or the Java class to be executed—e.g.,
solve(’list.of.packages.YourClass.class’)

tuple centre — a ground Prolog term identifying the target tuple
centre that should execute the spawn

from tuProlog, the two parameters are just the end of the story

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 73 / 117

The TuCSoN Advanced Model TuCSoN Coordinative Computation

The spawn Primitive III

Java syntax

a third parameter is instead necessary when spawning from TuCSoN
Java agent

it could be either

listener — a listener TucsonOperationCompletionListener
is required for synchronous executions of spawn

timeout — an integer value in milliseconds determining the
maximum waiting time for the agent

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 74 / 117

The TuCSoN Advanced Model TuCSoN Uniform Primitives

Part 2: Advanced TuCSoN

4 Advanced Model
Bulk Primitives
Coordinative Computation
Uniform Primitives
Organisation
Agent Coordination Contexts

5 Advanced Architecture
Node Architecture

6 Programming Tuple Centres
Meta-Coordination Language
Meta-Coordination Operations

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 75 / 117

The TuCSoN Advanced Model TuCSoN Uniform Primitives

Uniform Primitives: The Idea

uniform coordination primitives [Gardelli et al., 2007] are required in
order to inject a probabilistic mechanism within coordination, thus to
obtain stochastic behaviour in coordinated systems

uniform primitives replace the don’t know non-determinism of
Linda-like primitives with a uniform probabilistic non-determinism

so, the tuple returned by a uniform primitive is still chosen
non-deterministically among all the tuples matching the template

however, the choice is here performed with a uniform distribution

this promote the engineering of stochastic behaviours in coordinated
systems, and the implementation of nature-inspired coordination
models [Omicini, 2012]

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 76 / 117

The TuCSoN Advanced Model TuCSoN Uniform Primitives

Uniform Primitives: A Simple Example

For instance, let us assume that the default tuple centre contains 15
tuples: 10 colour(white) and 5 colour(black)

using a standard rd(color(X)), say, 1 billion times, don’t know
non-determinism ensures nothing: we could get 1 billion
colour(white) returned, or 1 billion colour(black), or any
distribution in-between; the result would depend on implementation,
and there is no possible a priori probabilistic description of the overall
system behaviour

using a uniform urd(color(X)) in the same way, instead, ensures
that at each request we have two times the chances to get
colour(white) returned instead of colour(black), and that the
overall behaviour could be probabilistically described as basically
returning two colour(white) for each colour(black) as the
matching tuple

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 77 / 117

The TuCSoN Advanced Model TuCSoN Uniform Primitives

Uniform Primitives in TuCSoN

The TuCSoN coordination language provides the following 6 uniform
coordination primitives to build coordination operations

urd, uin

urdp, uinp

uno, unop

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 78 / 117

The TuCSoN Advanced Model TuCSoN Organisation

Part 2: Advanced TuCSoN

4 Advanced Model
Bulk Primitives
Coordinative Computation
Uniform Primitives
Organisation
Agent Coordination Contexts

5 Advanced Architecture
Node Architecture

6 Programming Tuple Centres
Meta-Coordination Language
Meta-Coordination Operations

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 79 / 117

The TuCSoN Advanced Model TuCSoN Organisation

RBAC

Role-Based Access Control (RBAC) models integrate organisation and
security

RBAC is a NIST standard3

roles are assigned to processes, and rule the distributed access to
resources

3http://csrc.nist.gov/groups/SNS/rbac/
Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 80 / 117

http://csrc.nist.gov/groups/SNS/rbac/

The TuCSoN Advanced Model TuCSoN Organisation

RBAC in TuCSoN

TuCSoN tuple centres are structured and ruled in organisations

TuCSoN implements a version of RBAC [Omicini et al., 2005b],
where organisation and security issues are handled in a uniform way
as coordination issues

a special tuple centre ($ORG) contains the dynamic rules of RBAC in
TuCSoN

! current TuCSoN implementation does not provide a stable and
reliable implementation of RBAC, yet

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 81 / 117

The TuCSoN Advanced Model TuCSoN Agent Coordination Contexts

Part 2: Advanced TuCSoN

4 Advanced Model
Bulk Primitives
Coordinative Computation
Uniform Primitives
Organisation
Agent Coordination Contexts

5 Advanced Architecture
Node Architecture

6 Programming Tuple Centres
Meta-Coordination Language
Meta-Coordination Operations

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 82 / 117

The TuCSoN Advanced Model TuCSoN Agent Coordination Contexts

ACC

An Agent Coordination Context (ACC) [Omicini, 2002] is

a runtime and stateful interface released to an agent to execute
operations on the tuple centres of a specific organisation

a sort of interface provided to an agent by the infrastructure to make
it interact within a given organisation

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 83 / 117

The TuCSoN Advanced Model TuCSoN Agent Coordination Contexts

ACC in TuCSoN

the ACC is an organisation abstraction to model RBAC in TuCSoN
[Omicini et al., 2005a]

along with tuple centres, ACC are the run-time abstractions that
allows TuCSoN to uniformly handle coordination, organisation, and
security issues

! current TuCSoN implementation provide a limited yet useful
implementation of the ACC notion

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 84 / 117

The TuCSoN Advanced Model TuCSoN Agent Coordination Contexts

Ordinary Standard ACC

OrdinarySynchACC enables standard interaction with the tuple space,
and enacts a blocking behaviour from the agent’s
perspective: whichever the coordination operation invoked
(either suspensive or predicative), the agent stub blocks
waiting for its completion

OrdinaryAsynchACC enables standard interaction with the tuple space,
and enacts a non-blocking behaviour from the agent’s
perspective: whichever the coordination operation invoked
(either suspensive or predicative), the agent stub does not
block, but is instead asynchronously notified of its completion

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 85 / 117

The TuCSoN Advanced Model TuCSoN Agent Coordination Contexts

Ordinary Specification ACC

SpecificationSynchACC enables standard interaction with the
specification space and enacts a blocking behaviour from the
agent’s perspective: whichever the meta-coordination
operation invoked (either suspensive or predicative), the
agent stub blocks waiting for its completion

SpecificationAsynchACC enables standard interaction with the
specification space and enacts a non-blocking behaviour from
the agent’s perspective: whichever the meta-coordination
operation invoked (either suspensive or predicative), the
agent stub does not block, but is instead asynchronously
notified of its completion

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 86 / 117

The TuCSoN Advanced Model TuCSoN Agent Coordination Contexts

Ordinary ACC

SynchACC enables standard interaction with both the tuple and the
specification space and enacts a blocking behaviour from the
agent’s perspective: whichever the (meta-)coordination
operation invoked (either suspensive or predicative), the
agent stub blocks waiting for its completion

AsynchACC enables standard interaction with both the tuple and the
specification space and enacts a non-blocking behaviour from
the agent’s perspective: whichever the (meta-)coordination
operation invoked (either suspensive or predicative), the
agent stub does not block, but is instead asynchronously
notified of its completion

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 87 / 117

The TuCSoN Advanced Model TuCSoN Agent Coordination Contexts

Bulk ACC

BulkSynchACC enables bulk interaction with the tuple space, and enacts a
blocking behaviour from the agent’s perspective: whichever
the bulk coordination operation invoked, the agent stub
blocks waiting for its completion

BulkAsynchACC enables bulk interaction with the tuple space, and enacts
a non-blocking behaviour from the agent’s perspective:
whichever the bulk coordination operation invoked, the agent
stub does not block, but is instead asynchronously notified of
its completion

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 88 / 117

The TuCSoN Advanced Model TuCSoN Agent Coordination Contexts

Uniform ACC

UniformSynchACC enables uniform coordination primitives with the tuple
space, and enacts a blocking behaviour from the agent’s
perspective: whichever the uniform coordination operation
invoked, the agent stub blocks waiting for its completion

UniformAsynchACC enables uniform coordination primitives with the
tuple space, and enacts a non-blocking behaviour from the
agent’s perspective: whichever the uniform coordination
operation invoked, the agent stub does not block, but is
instead asynchronously notified of its completion

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 89 / 117

The TuCSoN Advanced Model TuCSoN Agent Coordination Contexts

Enhanced ACC

EnhancedSynchACC enables all coordination and meta-coordination
primitives, including uniform and bulk ones, with the tuple
centre, and enacts a blocking behaviour from the agent’s
perspective: whichever the operation invoked, the agent stub
blocks waiting for its completion

EnhancedAsynchACC enables uniform coordination primitives, including
uniform and bulk ones, with the tuple centre, and enacts a
non-blocking behaviour from the agent’s perspective:
whichever the bulk coordination operation invoked, the agent
stub does not block, but is instead asynchronously notified of
its completion

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 90 / 117

The TuCSoN Advanced Model TuCSoN Agent Coordination Contexts

Global ACC

DefaultACC enables all coordination and meta-coordination primitives
with the tuple centre, enacting both a blocking and a
non-blocking behaviour from the agent’s perspective

EnhancedACC enables all coordination and meta-coordination primitives,
including uniform and bulk ones, with the tuple centre,
enacting both a blocking and a non-blocking behaviour from
the agent’s perspective

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 91 / 117

The TuCSoN Advanced Model TuCSoN Agent Coordination Contexts

Overall View over TuCSoN ACC

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 92 / 117

The TuCSoN Advanced Architecture TuCSoN Node Architecture

Part 2: Advanced TuCSoN

4 Advanced Model
Bulk Primitives
Coordinative Computation
Uniform Primitives
Organisation
Agent Coordination Contexts

5 Advanced Architecture
Node Architecture

6 Programming Tuple Centres
Meta-Coordination Language
Meta-Coordination Operations

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 93 / 117

The TuCSoN Advanced Architecture TuCSoN Node Architecture

Architectural View of a TuCSoN Node

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 94 / 117

Programming ReSpecT Tuple Centres TuCSoN Meta-Coordination Language

Part 2: Advanced TuCSoN

4 Advanced Model
Bulk Primitives
Coordinative Computation
Uniform Primitives
Organisation
Agent Coordination Contexts

5 Advanced Architecture
Node Architecture

6 Programming Tuple Centres
Meta-Coordination Language
Meta-Coordination Operations

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 95 / 117

Programming ReSpecT Tuple Centres TuCSoN Meta-Coordination Language

Meta-Coordination Language

the TuCSoN meta-coordination language allows agents to program
ReSpecT tuple centres by executing meta-coordination operations

TuCSoN provides coordinables with meta-coordination primitives,
allowing agents to read, write, consume ReSpecT specification tuples
in tuple centres, and also to synchronise on them

meta-coordination operations are built out of meta-coordination
primitives and of the ReSpecT specification languages:

the specification language
the specification template language

! in the following, whenever unspecified, we assume that
reaction(E ,G ,R) belongs to the specification language, and
reaction(ET ,GT ,RT) belongs to the specification template
language

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 96 / 117

Programming ReSpecT Tuple Centres TuCSoN Meta-Coordination Language

Specification & Specification Template Languages

both the specification and the specification template languages
depend on the sort of the tuple centres adopted by TuCSoN

given that the default TuCSoN coordination medium is the
logic-based ReSpecT tuple centre, both the specification and the
specification template languages are defined by ReSpecT

more precisely

any ReSpecT reaction is an admissible TuCSoN specification tuple
any ReSpecT reaction is an admissible TuCSoN specification template

as a result, the default TuCSoN specification and specification
template languages coincide

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 97 / 117

Programming ReSpecT Tuple Centres TuCSoN Meta-Coordination Language

Meta-Coordination Operations

a TuCSoN meta-coordination operation is invoked by a source agent
on a target tuple centre, which is in charge of its execution

in the same way as TuCSoN coordination operations, all
meta-coordination operations have two phases

invocation — the request from the source agent to the target tuple
centre, carrying all the information about the invocation

completion — the response from the target tuple centre back to the
source agent, including all the information about the
operation execution by the tuple centre

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 98 / 117

Programming ReSpecT Tuple Centres TuCSoN Meta-Coordination Language

Abstract Syntax

the abstract syntax of a coordination operation op s invoked on a
target tuple centre tcid is

tcid ? op s

where tcid is the tuple centre full name

given the structure of the full name of a tuple centre, the general
abstract syntax of a TuCSoN coordination operation is

tname @ netid : portno ? op s

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 99 / 117

Programming ReSpecT Tuple Centres TuCSoN Meta-Coordination Operations

Part 2: Advanced TuCSoN

4 Advanced Model
Bulk Primitives
Coordinative Computation
Uniform Primitives
Organisation
Agent Coordination Contexts

5 Advanced Architecture
Node Architecture

6 Programming Tuple Centres
Meta-Coordination Language
Meta-Coordination Operations

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 100 / 117

Programming ReSpecT Tuple Centres TuCSoN Meta-Coordination Operations

Meta-Coordination Primitives

TuCSoN defines 9 meta-coordination primitives, allowing agents to
read, write, consume ReSpecT specification tuples in tuple spaces,
and to synchronise on them

rd s, in s, out s

rdp s, inp s

no s, nop s

get s, set s

meta-primitives perfectly match coordination primitives, allowing a
uniform access to both the tuple space and the specification space in
a TuCSoN tuple centre

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 101 / 117

Programming ReSpecT Tuple Centres TuCSoN Meta-Coordination Operations

Basic Meta-Operations

out s(E ,G ,R) writes a specification tuple reaction(E ,G ,R) in the target tuple centre; after
the operation is successfully executed, the specification tuple is returned as a
completion

rd s(ET ,GT ,RT) looks for a specification tuple reaction(E ,G ,R) matching
reaction(ET ,GT ,RT) in the target tuple centre; if a matching specification
tuple is found when the operation is first served, the execution succeeds, and
the matching specification tuple is returned; otherwise, the execution is
suspended, to be resumed and successfully completed when a matching
specification tuple is finally found on the target tuple centre, and returned

in s(ET ,GT ,RT) looks for a specification tuple reaction(E ,G ,R) matching
reaction(ET ,GT ,RT) in the target tuple centre; if a matching specification
tuple is found when the operation is first served, the execution succeeds, and
the matching specification tuple is removed and returned; otherwise, the
execution is suspended, to be resumed and successfully completed when a
matching specification tuple is finally found on the target tuple centre,
removed, and returned

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 102 / 117

Programming ReSpecT Tuple Centres TuCSoN Meta-Coordination Operations

Predicative Meta-Operations

rdp s(ET ,GT ,RT) looks for a specification tuple reaction(E ,G ,R)

matching reaction(ET ,GT ,RT) in the target tuple centre;
if a matching specification tuple is found when the operation
is served, the execution succeeds, and the matching
specification tuple is returned; otherwise the execution fails,
and the specification template is returned

inp s(ET ,GT ,RT) looks for a specification tuple reaction(E ,G ,R)

matching reaction(ET ,GT ,RT) in the target tuple centre;
if a matching specification tuple is found when the operation
is served, the execution succeeds, and the matching
specification tuple is removed and returned; otherwise the
execution fails, and the specification template is returned

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 103 / 117

Programming ReSpecT Tuple Centres TuCSoN Meta-Coordination Operations

Test-for-Absence Meta-Operations

no s(ET ,GT ,RT) looks for a specification tuple reaction(E ,G ,R) matching
reaction(ET ,GT ,RT) in the target tuple centre—where
reaction(ET ,GT ,RT) belongs to the specification template language;
if no specification tuple is found in the target tuple centre when the
operation is first served, the execution succeeds, and the specification
tuple template is returned; otherwise, the execution is suspended, to be
resumed and successfully completed when no matching specification
tuples can any longer be found in the target tuple centre, then the
specification tuple template is returned

nop s(ET ,GT ,RT) looks for a specification tuple reaction(E ,G ,R) matching
reaction(ET ,GT ,RT) in the target tuple centre—where
reaction(ET ,GT ,RT) belongs to the specification template language;
if no specification tuple is found in the target tuple tuple when the
operation is first served, the execution succeeds, and the specification
tuple template is returned; otherwise, the execution fails, and a
matching specification tuple is returned

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 104 / 117

Programming ReSpecT Tuple Centres TuCSoN Meta-Coordination Operations

Space Meta-Operations

get s reads all the specification tuples in the target tuple centre,
and returns them as a list; if no specification tuple occurs in
the target tuple centre at execution time, the empty list is
returned, and the execution succeeds anyway

set s([(E1 ,G1 ,R1), ..., (En ,Gn ,Rn)]) rewrites the target tuple
spaces with the list of specification tuples
reaction(E1 ,G1 ,R1), ..., reaction(En ,Gn ,Rn);
when the execution is completed, the list of specification
tuples is successfully returned

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 105 / 117

Part III

Conclusion

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 106 / 117

Status of the TuCSoN Guide

Still Missing I

Formal Semantics

in order to fully understand and exploit TuCSoN, a full formal
specification is required

a formal specification based on [Omicini, 1999] will soon make into
the TuCSoN Guide

Organisation & Security

in order to fully exploit integration of organisation and security with
coordination, a complete specification of Agent Coordination
Contexts and RBAC in TuCSoN is required

model, architecture, and specification of ACC and RBAC are required
to complete the TuCSoN Guide

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 107 / 117

Status of the TuCSoN Guide

Still Missing II

Timed Coordination & Situatedness

in order to fully exploit the power of tuple centres in the engineering
of complex computational systems, the ReSpecT language should be
fully described, both syntactical and semantically

its main extensions toward

timed coordination [Omicini et al., 2005c]
situatedness [Casadei and Omicini, 2009]

should be described in the TuCSoN Guide

Semantic Coordination

in order to exploit TuCSoN within knowledge-intensive environments,
semantic tuple centres were defined [Nardini et al., 2012]

the resulting Semantic TuCSoN coordination model should be
described in the TuCSoN Guide

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 108 / 117

Status of the TuCSoN Technology

Still Missing I

Organisation & Security

the TuCSoN technology does not provide a stable and reliable
implementation of RBAC, yet

the current implementation of ACC provides a limited yet useful
implementation of the ACC notion

Timed Coordination & Situatedness

the current implementation of timed extension of ReSpecT tuple
centres is stable and reliable, however its documentation is delegated
to the forthcoming ReSpecT documentation

situatedness still not fully implemented neither in ReSpecT (language
extensions) nor in the TuCSoN infrastructure (transducers)

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 109 / 117

Status of the TuCSoN Technology

Still Missing II

Semantic Coordination

a working implementation of Semantic TuCSoN is available, but not
yet integrated with the current TuCSoN implementation

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 110 / 117

Bibliography

Bibliography I

Casadei, M. and Omicini, A. (2009).
Situated tuple centres in ReSpecT.
In Shin, S. Y., Ossowski, S., Menezes, R., and Viroli, M., editors, 24th
Annual ACM Symposium on Applied Computing (SAC 2009), volume
III, pages 1361–1368, Honolulu, Hawai’i, USA. ACM.

Gardelli, L., Viroli, M., Casadei, M., and Omicini, A. (2007).
Designing self-organising MAS environments: The collective sort case.
In Weyns, D., Parunak, H. V. D., and Michel, F., editors,
Environments for MultiAgent Systems III, volume 4389 of LNAI, pages
254–271. Springer.
3rd International Workshop (E4MAS 2006), Hakodate, Japan,
8 May 2006. Selected Revised and Invited Papers.

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 111 / 117

Bibliography

Bibliography II

Lloyd, J. W. (1984).
Foundations of Logic Programming.
Springer, 1st edition.

Nardini, E., Omicini, A., and Viroli, M. (2012).
Semantic tuple centres.
Science of Computer Programming.
Special Issue on Self-Organizing Coordination.

Omicini, A. (1999).
On the semantics of tuple-based coordination models.
In 1999 ACM Symposium on Applied Computing (SAC’99), pages
175–182, New York, NY, USA. ACM.
Special Track on Coordination Models, Languages and Applications.

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 112 / 117

Bibliography

Bibliography III

Omicini, A. (2002).
Towards a notion of agent coordination context.
In Marinescu, D. C. and Lee, C., editors, Process Coordination and
Ubiquitous Computing, chapter 12, pages 187–200. CRC Press, Boca
Raton, FL, USA.

Omicini, A. (2012).
Nature-inspired coordination for complex distributed systems.
In Intelligent Distributed Computing VI, Studies in Computational
Intelligence, Calabria, Italy. Springer.
6th International Symposium on Intelligent Distributed Computing
(IDC 2012). Invited paper.

Omicini, A. and Denti, E. (2001).
From tuple spaces to tuple centres.
Science of Computer Programming, 41(3):277–294.

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 113 / 117

Bibliography

Bibliography IV

Omicini, A., Ricci, A., and Viroli, M. (2005a).
An algebraic approach for modelling organisation, roles and contexts
in MAS.
Applicable Algebra in Engineering, Communication and Computing,
16(2-3):151–178.
Special Issue: Process Algebras and Multi-Agent Systems.

Omicini, A., Ricci, A., and Viroli, M. (2005b).
RBAC for organisation and security in an agent coordination
infrastructure.
Electronic Notes in Theoretical Computer Science, 128(5):65–85.
2nd International Workshop on Security Issues in Coordination Models,
Languages and Systems (SecCo’04), 30 August 2004. Proceedings.

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 114 / 117

Bibliography

Bibliography V

Omicini, A., Ricci, A., and Viroli, M. (2005c).
Time-aware coordination in ReSpecT.
In Jacquet, J.-M. and Picco, G. P., editors, Coordination Models and
Languages, volume 3454 of LNCS, pages 268–282. Springer-Verlag.
7th International Conference (COORDINATION 2005), Namur,
Belgium, 20–23 April 2005. Proceedings.

Omicini, A. and Zambonelli, F. (1998).
Coordination of mobile information agents in TuCSoN.
Internet Research, 8(5):400–413.

Omicini, A. and Zambonelli, F. (1999).
Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems, 2(3):251–269.
Special Issue: Coordination Mechanisms for Web Agents.

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 115 / 117

Bibliography

Bibliography VI

Rowstron, A. I. T. (1996).
Bulk Primitives in Linda Run-Time Systems.
PhD thesis, The University of York.

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 116 / 117

Bibliography

The TuCSoN Coordination Model & Technology
A Guide

Andrea Omicini Stefano Mariani
{andrea.omicini, s.mariani}@unibo.it

Alma Mater Studiorum—Università di Bologna a Cesena

TuCSoN v. 1.10.3.0206
Guide v. 1.0.2

January 9, 2013

Omicini, Mariani (Università di Bologna) TuCSoN Guide TuCSoN v. 1.10.3.0206 117 / 117

	Basic Model & Language
	Basic Model
	Naming
	Basic Language
	Basic Operations

	Basic Architecture
	Nodes & Tuple Centres
	Coordination Spaces

	Basic Technology
	Middleware
	Tools

	Advanced TuCSoN
	Advanced Model
	Bulk Primitives
	Coordinative Computation
	Uniform Primitives
	Organisation
	Agent Coordination Contexts

	Advanced Architecture
	Node Architecture

	Programming Tuple Centres
	Meta-Coordination Language
	Meta-Coordination Operations

	Conclusion
	Status of the Guide
	Status of the Technology
	Bibliography

