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Abstract. In Persistent Homology and Topology, filtrations are usually given

by introducing an ordered collection of sets or a continuous function from a
topological space to Rn. A natural question arises, whether these approaches

are equivalent or not. In this paper we study this problem and prove that,
while the answer to the previous question is negative in the general case, the
approach by continuous functions is not restrictive with respect to the other,

provided that some natural stability and completeness assumptions are made.
In particular, we show that every compact and stable 1-dimensional filtration

of a compact metric space is induced by a continuous function. Moreover, we
extend the previous result to the case of multi-dimensional filtrations, requiring
that our filtration is also complete. Three examples show that we cannot drop

the assumptions about stability and completeness. Consequences of our results
on the definition of a distance between filtrations are finally discussed.

Introduction

The concept of filtration is the start point for Persistent Topology and Homology.
Actually, the main goal of these theories is to examine the topological and homo-
logical changes that happen when we go through a family of spaces that is totally
ordered with respect to inclusion [12]. In literature, filtrations are usually given in
two ways. The former consists of explicitly introducing a nested collection of sets
(usually carriers of simplicial complexes), the latter of giving a continuous function
from a topological space to R or Rn (called a filtering function), whose sub-level sets
represent the elements of the considered filtration (cf., e.g., [11, 15]). An example
of these two types of filtrations is shown in Figure 1. The two considered methods
have produced two different approaches to study the concept of persistence. A nat-
ural question arises, whether these approaches are equivalent or not. In our paper
we study this problem and prove that, while the answer to the previous question is
negative in the general case, the approach by continuous functions is not restrictive
with respect to the other, provided that some natural stability and completeness
assumptions are made. In some sense, this statement shows that the approach by
continuous functions (and the related theoretical properties) can be used without
loss of generality, and represents the main result of this paper.

The interest in this investigation is mainly due to the desire of building a bridge
between the two settings, which would ensure that results available in literature
for the approach by functions are also valid for the other method. As examples
of results that have been proved in one setting and that it would be desirable to
apply to the other, we can cite [5] and [4], in which persistence diagrams in the 1-
dimensional and n-dimensional setting, respectively, are proved to be stable shape
descriptors via the use of the associated filtering functions. Another example can
be found in [6], where a Mayer-Vietoris formula involving the ranks of persistent
homology groups of a space and its subspaces is obtained by defining a filtering
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function for the union space and taking account of its restrictions to the considered
subspaces.
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Figure 1. Examples of filtrations. First row: nested carriers of simplicial

complexes {Ci}. Second row: the sub-level sets {Ki} of a real-valued continu-
ous function ϕ.

Another important reason which drives our investigation is related to the problem
of defining a distance between different filtrations of the same space. Nowadays,
this problem is usually tackled by translating the direct comparison between two
filtrations into the comparison of the associated persistence diagrams through the
study of persistent homology. Unfortunately, there exist some simple examples
showing that this kind of comparison is not always able to distinguish two different
filtrations (see e.g. [1, 13, 7]). For this reason, our idea is to define a distance
between filtrations in terms of a distance between the associated filtering functions,
and to this scope, we need to prove that each filtration is induced by at least one
function (see Section 4).

In this paper we just consider stable filtrations. The property of stability of a
filtration we ask for is motivated by the fact that in real applications we need to
work with methodologies that are robust in the presence of noise. As a consequence,
we have to require that the inclusions considered in our filtration persist under the
action of small perturbations. For the same reason, we also need that a small
change of the parameter in our filtration (whenever applicable) does not produce
a large change of the associated set with respect to the Hausdorff distance. These
assumptions are formalized by our definition of stable filtration (Definition 2.1).

In order to make our treatment as general as possible, we just require that the
sets Ki (i ∈ I) in our filtration are compact subsets of a compact metric space K,
and that the indexing set I is compact.

The paper starts by considering filtrations indexed by a 1-dimensional parame-
ter. In this setting, after proving some lemmas, we show that every compact and
stable 1-dimensional filtration of a compact metric space is induced by a continuous
function (Theorem 2.8). In the last part of the paper, this result is extended to
the case of multi-dimensional filtrations (Theorem 3.4), i.e. the case of filtrations
indexed by an n-dimensional parameter (cf. [2, 3]). In order to do that, we need
to assume also that our filtration is complete, i.e. compatible with respect to in-
tersection (Definition 3.2). Three examples show that we cannot drop either the
assumption about stability or the one concerning completeness (Examples 1, 2 and
3). Some considerations on the consequences of our results conclude the paper.
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1. Preliminaries

In this section we give the preliminary concepts and the notation that will be
used throughout the paper.

Let (K, d) be a non-empty compact metric space. Let us denote by Comp(K) the
set {K : K compact inK}. Let us consider the Hausdorff distance dH on Comp(K)\
{∅}. Moreover, let I be a non-empty subset of Rn such that I = I1 × I2 × . . .× In.
The following relation � is defined in I: for i = (i1, . . . , in), i

′ = (i′1, . . . , i
′
n) ∈ I,

we say i � i′ if and only if ir ≤ i′r for every r = 1, . . . , n.

Definition 1.1. An n-dimensional filtration of K is an indexed family {Ki ∈
Comp(K)}i∈I such that, ∅,K ∈ {Ki}i∈I , and Ki ⊆ Ki′ for every i, i′ ∈ I, with
i � i′.

Definition 1.2. An n-dimensional filtration {Ki}i∈I of K is induced by a function

~ϕ : K → Rn if Ki = {P ∈ K : ~ϕ(P ) � i} for every i ∈ I.

Definition 1.3. We shall call compact, or finite any filtration {Ki}i∈I with I =
I1 × I2 × . . .× In a compact, or finite subset of Rn, respectively.

Remark 1.4. When I is bounded, the assumption that ∅,K ∈ {Ki}i∈I is not so
restrictive, since each family of compact sets verifying the last property in Defi-
nition 1.1 can be extended to a family containing ∅ and K, without losing that
property. This assumption allows us a more concise exposition.

2. Mono-dimensional filtrations

This section is devoted to prove our main result in the case of filtrations in-
dexed by a 1-dimensional parameter (Theorem 2.8). Therefore, in what follows,
the symbol I will denote a non-empty subset of R.

For every subset X ⊆ K, let us denote by X, int(X), ∂X, and Xc the closure,
the interior, the boundary, and the complement of X in K, respectively. We recall
that int(X)c = Xc.

Definition 2.1. We shall say that a compact 1-dimensional filtration {Ki}i∈I of
K is stable with respect to the metric d if the following statements hold:

(a) The functions i 7→ Ki and i 7→ Kc
i are continuous, i.e. if (im ∈ I)m∈N is a

sequence converging to ı̄ ∈ I, the sequence (Kim) converges to Kı̄, and the
sequence (Kc

im
) converges to (Kc

ı̄ ) with respect to the Hausdorff distance
dH .

(b) For every set Ki and every j ∈ I with i < j, Ki ⊆ int(Kj).

Remark 2.2. Let us note that in the case {Ki}i∈I is a finite 1-dimensional filtration
of K, Definition 2.1 reduces to Definition 2.1 (b).

Remark 2.3. We observe that, in Definition 2.1 (a), the convergence of the sequence
(Kim) does not imply the convergence of the sequence

(

Kc
im

)

. Indeed, for example,
let us consider the following compact filtration of the set K = [0, 1] ∪ {2} (K is
endowed with the Euclidean metric). We take I = {−1} ∪ [0, 1] ∪ {2} and set
Ki = [0, i] for i ∈ [0, 1], while K−1 = ∅ and K2 = K. It is immediate to check

that the sequence
(

K1−1/m

)

converges to K1, but the sequence
(

Kc
1−1/m

)

does not

converge to Kc
1.

The following Lemmas 2.4–2.7 provide meaningful properties of two functions
α, β : K → I which turn out to be useful in the proof of our main result.

Lemma 2.4. Let {Ki}i∈I be a compact and stable 1-dimensional filtration of K.

For every P ∈ K, let A(P ) = {i ∈ I, P ∈ Kc
i} = {i ∈ I, P /∈ int(Ki)} and
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B(P ) = {i ∈ I, P ∈ Ki}. Then A(P ) and B(P ) are non-empty subsets of I.
Moreover, supA(P ) ∈ A(P ) and inf B(P ) ∈ B(P ).

Proof. First of all let us observe that both A(P ) and B(P ) are non-empty because
imin = min{i ∈ I} ∈ A(P ) since ∅ = Kimin

∈ {Ki}i∈I , and imax = max{i ∈ I} ∈
B(P ) since K = Kimax

∈ {Ki}i∈I .
Let α(P ) = supA(P ). Because of the compactness of I, α(P ) ∈ I and is finite.

Let us show that α(P ) ∈ A(P ). Let (ir) be a non-decreasing sequence of indices of
A(P ) converging to α(P ). From Definition 2.1 (a), it follows that (Kc

ir
) converges

to Kc
α(P ). We have to prove that α(P ) ∈ A(P ), i.e. P ∈ Kc

α(P ). By contradiction,

let us assume that P /∈ Kc
α(P ). Since K

c
α(P ) is compact, d(P,Kc

α(P )) > 0. Therefore,

for any large enough index r, the inequality dH(Kc
α(P ),K

c
ir
) < d(P,Kc

α(P )) holds.

Hence d(P,Kc
ir
) ≥ d(P,Kc

α(P ))− dH(Kc
α(P ),K

c
ir
) > 0 for any large enough index r,

contrarily to our assumption that ir ∈ A(P ), i.e. P ∈ Kc
ir
.

Let β(P ) = inf B(P ). Because of the compactness of I, β(P ) ∈ I and is finite.
Let us show that β(P ) ∈ B(P ). Let (ir) be a non-increasing sequence of indices of
B(P ) converging to β(P ). From Definition 2.1 (a), it follows that (Kir ) converges
to Kβ(P ). We have to prove that β(P ) ∈ B(P ), i.e. P ∈ Kβ(P ). By contradiction,
let us assume that P /∈ Kβ(P ). Since Kβ(P ) is compact, d(P,Kβ(P )) > 0. Therefore,

for any large enough index r, the inequality dH
(

Kβ(P ),Kir

)

< d
(

P,Kβ(P )

)

holds.
Hence d(P,Kir ) > 0 for any large enough index r, contrarily to our assumption
that ir ∈ B(P ), i.e. P ∈ Kir . �

By virtue of the above Lemma 2.4, for every P ∈ K, we can define α(P ) =
maxA(P ) ∈ I and β(P ) = minB(P ) ∈ I. In plain words, for every P ∈ K, Kα(P )

is the largest compact Ki in the filtration such that P ∈ Kc
i = int (Ki)

c
, while

Kβ(P ) is the smallest compact Kj in the filtration such that P ∈ Kj . In particular,

P ∈ Kc
α(P ) ∩ Kβ(P ).

Lemma 2.5. Let {Ki}i∈I be a compact and stable 1-dimensional filtration of K.Then

the following statements hold:

(1) α(P ) ≤ β(P ) for every P ∈ K.

(2) If P,Q ∈ K and α(P ) < α(Q), then β(P ) ≤ α(Q).
(3) If P,Q ∈ K and β(P ) < β(Q), then β(P ) ≤ α(Q).

Proof.

(1) To show that α(P ) ≤ β(P ), let us verify that, if i1 ∈ A(P ) (i.e. P ∈ Kc
i1
)

and i2 ∈ B(P ) (i.e. P ∈ Ki2), then i1 ≤ i2. By contradiction, let us assume
that i2 < i1. Then Definition 2.1 (b) implies that Ki2 ⊆ int(Ki1). Since
P ∈ Ki2 , it follows that P ∈ int(Ki1), i.e. P /∈ Kc

i1
, against the assumption

i1 ∈ A(P ).
(2) Since α(P ) < α(Q), it follows that P ∈ int(Kα(Q)), while P /∈ int

(

Kα(P )

)

.
In particular, P ∈ Kα(Q). Therefore α(Q) ∈ B(P ) and hence β(P ) ≤ α(Q).

(3) Since β(P ) < β(Q), it follows that Q /∈ Kβ(P ), while Q ∈ Kβ(Q). In

particular, Q /∈ int
(

Kβ(P )

)

. Therefore β(P ) ∈ A(Q) and hence β(P ) ≤
α(Q).

�

Remark 2.6. Let us observe that under the assumptions of compactness and sta-
bility of {Ki}i∈I , it follows that, for every P ∈ K with P ∈ ∂Ki for a certain i ∈ I,
α(P ) = β(P ) = i. Indeed, from Lemma 2.5 (1), we have α(P ) ≤ β(P ) for every
P ∈ K. On the other side, since P ∈ ∂Ki implies both that P ∈ Ki, whence
β(P ) ≤ i, and that P /∈ int(Ki), whence α(P ) ≥ i, the equality is proved.
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Lemma 2.7. Let {Ki}i∈I be a compact and stable 1-dimensional filtration of K.Then

the following statements hold:

(1) The function α is everywhere upper semi-continuous.

(2) The function β is everywhere lower semi-continuous.

Proof. Let us consider a sequence (Pr) of points in K converging to a point P ∈ K.

(1) Let (α(Prk)) be a converging subsequence of (α(Pr)). Let us set L
def
=

limk α(Prk). From the compactness of I, L ∈ I, and from Definition 2.1 (a),
the sequence (Kc

α(Prk
)) converges to the compact set Kc

L with respect to dH .

Since P = limk Prk , and Prk ∈ Kc
α(Prk

), we have that P ∈ Kc
L, and hence

α(P ) ≥ L. Therefore, the function α is everywhere upper semi-continuous.

(2) Let (β(Prk)) be a converging subsequence of (β(Pr)). Let us set L
def
=

limk β(Prk). From the compactness of I, L ∈ I, and from Definition 2.1 (a),
the sequence (Kβ(Prk

)) converges to the compact set KL with respect to dH .
Since P = limk Prk , and Prk ∈ Kβ(Prk

), we have that P ∈ KL, and hence

β(P ) ≤ L. Therefore, the function β is everywhere lower semi-continuous.

�

Theorem 2.8. Every compact and stable 1-dimensional filtration {Ki}i∈I of a

compact metric space K is induced by a continuous function ϕ : K → R.

Proof. If {Ki}i∈I = {Kimin
= ∅,Kimax

= K}, then we can just take ϕ : K → R
such that ϕ(P ) = imax for every P ∈ K. This function is continuous and induces
{Ki}i∈I .

Let us consider a proper filtration, i.e. a filtration {Ki}i∈I such that at least
one index i′ ∈ I exists with imin < i′ < imax. We want to prove that there exists a
continuous function inducing it.

Let us observe that Kimin
= ∅ and, because of the compactness of I, the value

i1 = inf(I \ {imin}) ≤ i′ must belong to I. The empty set cannot be the limit
of a sequence of compact non-empty sets with respect to the Hausdorff distance.
Hence it must be i1 > imin. Furthermore, Kc

imax
= Kc = ∅ and, because of the

compactness of I, the value i2 = sup(I \ {imax}) ≥ i′ must belong to I. The empty
set cannot be the limit of a sequence of compact non-empty sets with respect to
the Hausdorff distance. Hence it must be Ki2 6= Kimax

, so that i2 < imax.
Now, let us fix an arbitrary point ∗ /∈ K, and extend the distance d from K

to K ∪ {∗} by setting d(∗, ∗) = 0 and d(∗, P ) = diam(K)/2 for every P ∈ K.
Let us observe that since the filtration is proper, diam(K) > 0. Moreover, for
the same reason, we have that no point P ∈ K exists such that α(P ) = imin and
β(P ) = imax. Hence, for every P ∈ K, we can define the function ϕ : K → R as
follows, by recalling the inequality in Lemma 2.5 (1):

ϕ(P ) =











































β(P ) if imin = α(P )

α(P ) · d
(

P,Kc
β(P )

)

+ β(P ) · d
(

P,Kα(P )

)

d
(

P,Kc
β(P )

)

+ d
(

P,Kα(P )

)

if imin < α(P ) < β(P ) < imax

α(P ) if imin < α(P ) = β(P ) < imax

α(P ) · d (P, ∗) + β(P ) · d
(

P,Kα(P )

)

d (P, ∗) + d
(

P,Kα(P )

) if β(P ) = imax

Before proceeding, we observe that d
(

P,Kα(P )

)

= 0 if and only if α(P ) = β(P ),

and also d
(

P,Kc
β(P )

)

= 0 if and only if α(P ) = β(P ). Moreover, α(P ) ≤ ϕ(P ) ≤

β(P ) in all of the four cases in the definition of ϕ.
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Let us prove that Ki = {P ∈ K,ϕ(P ) ≤ i} for every i ∈ I.
Let us fix an index i ∈ I. If P ∈ Ki then β(P ) ≤ i. Hence, according to the

observation above, ϕ(P ) ≤ β(P ) ≤ i. Varying i ∈ I, this proves that Ki ⊆ {P ∈
K,ϕ(P ) ≤ i} for every i ∈ I.

Let us show that Ki ⊇ {P ∈ K,ϕ(P ) ≤ i} for every i ∈ I. If P /∈ Ki then
P ∈ Kc

i , and hence P ∈ Kc
i , so that i ≤ α(P ). Since P /∈ Ki, it follows that

β(P ) > i. Then, in all of the four cases in the definition of ϕ it is easy to show that
ϕ(P ) > i. Therefore, in any case it results that ϕ(P ) > i.

Now, let us show that ϕ is continuous at any point P ∈ K.
First of all, let us examine the case α(P ) = imin and the case β(P ) = imax.
If α(P ) = imin then (since i1 > imin) β(P ) = i1, and P ∈ int(Ki1) because of

Remark 2.6. So, there exists a neighborhood U of P such that U ⊆ int(Ki1). It
follows that for any point Q ∈ U the equalities α(Q) = imin and β(Q) = i1 hold.

If β(P ) = imax then (since i2 < imax) α(P ) = i2, and P ∈ int(Kc
i2
) because of

Remark 2.6. So, there exists a neighborhood U of P such that U ⊆ int(Kc
i2
). It

follows that for any point Q ∈ U the equalities α(Q) = i2 and β(Q) = imax hold.
In both cases, ϕ is continuous at P .

In the rest of the proof, we shall assume that imin < α(P ) and β(P ) < imax.
In order to prove that ϕ is continuous at P , it will be sufficient to show that,

if a sequence (Pr) converges to P and the sequence (ϕ(Pr)) is converging, then
limr ϕ(Pr) = ϕ(P ). This is due to the boundness of ϕ(K).

Therefore, in what follows we shall assume that the sequences (Pr) and (ϕ(Pr))
are converging.

We recall that every real sequence admits either a strictly monotone or a constant
subsequence. Hence, by possibly extracting a subsequence from (Pr) we can assume
that each of the sequences (α(Pr)), (β(Pr)) is either strictly monotone or constant.
Obviously, this choice does not change the limits of the sequences (Pr) and (ϕ(Pr)).
Let us consider the following two cases:

Case that (β(Pr)) is strictly monotone: If (β(Pr)) is strictly decreasing, then
Lemma 2.5 (3) assures that β(Pr+1) ≤ α(Pr). As a consequence,

ϕ(Pr+1) ≤ β(Pr+1) ≤ α(Pr) ≤ ϕ(Pr).

If (β(Pr)) is strictly increasing, then Lemma 2.5 (3) assures that β(Pr) ≤
α(Pr+1). As a consequence,

ϕ(Pr) ≤ β(Pr) ≤ α(Pr+1) ≤ ϕ(Pr+1).

In both cases, since the sequence (ϕ(Pr)) is converging, also the sequences
(α(Pr)), (β(Pr)) are converging and limr α(Pr) = limr β(Pr) = limr ϕ(Pr). Let
us call ℓ this limit.

The upper semi-continuity of the function α and the lower semi-continuity of
the function β (Lemma 2.7) imply that α(P ) ≥ ℓ ≥ β(P ). We already know
that α(P ) ≤ ϕ(P ) ≤ β(P ), and hence α(P ) = ϕ(P ) = β(P ) = ℓ. Therefore,
ϕ(P ) = limr ϕ(Pr).

Case that β(Pr) = L for every index r: If each element in the sequence (β(Pr))
is equal to a constant L then we know that, from the lower semi-continuity of β
(Lemma 2.7 (2)), β(P ) ≤ L ≤ imax.

• If β(P ) < L, then there is no h ∈ I such that β(P ) < h < L. Indeed, if
such an index h existed, Definition 2.1 (b) would imply that P ∈ Kβ(P ) ⊆
int(Kh). Since P = limr Pr, we would have that Pr ∈ Kh for every large
enough index r. As a consequence, the inequality β(Pr) ≤ h < L would
hold, against the assumption β(Pr) = L for every index r.
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Lemma 2.5 (1) assures that α(Pr) ≤ β(Pr) = L for every index r. Then,
since (α(Pr)) is strictly monotone or constant, either α(Pr) = L for every
index r or α(Pr) ≤ β(P ) for every index r > 0. We observe that the case
α(Pr) < β(P ) cannot happen. Indeed, if the inequality α(Pr) < β(P ) held,
then the definition of α would imply that Pr ∈ int

(

Kβ(P )

)

⊆ Kβ(P ). As
a consequence, the inequality L = β(Pr) ≤ β(P ) would hold, against the
assumption β(P ) < L.

In summary, if β(P ) < L, then either α(Pr) = L for every index r or
α(Pr) = β(P ) for every index r > 0, so that (α(Pr))r>0, and therefore
(α(Pr)), is a constant sequence.

Let us consider the following two subcases:
– Subcase α(Pr) = β(Pr) = L > β(P ) for every r: In this case, the

upper semi-continuity of α implies that α(P ) ≥ limr α(Pr) = L, and
hence that α(P ) > β(P ), contradicting Lemma 2.5 (1). So this case is
impossible.

– Subcase α(Pr) = β(P ) < β(Pr) = L for every r: In this case, the
upper semi-continuity of α implies that α(P ) ≥ limr α(Pr) = β(P ).
Since Lemma 2.5 (1) states that α(P ) ≤ β(P ), we have α(P ) = β(P ).
In summary, in this case, α(Pr) = α(P ) = β(P ) < β(Pr) = L for
every index r. From the definition of the function ϕ, it follows that
ϕ(P ) = α(P ) = β(P ). Let us observe that α(Pr) > imin, otherwise
α(P ) = β(P ) = imin, i.e. P ∈ Kβ(P ) = Kimin

in contrast with Kimin
=

∅. Moreover, since β(Pr) = L ≤ imax for every index r, the two cases
below must be considered:
If L < imax, then

ϕ(Pr) =
α(Pr) · d

(

Pr,Kc
β(Pr)

)

+ β(Pr) · d
(

Pr,Kα(Pr)

)

d
(

Pr,Kc
β(Pr)

)

+ d
(

Pr,Kα(Pr)

)

=
β(P ) · d

(

Pr,Kc
L

)

+ L · d
(

Pr,Kβ(P )

)

d
(

Pr,Kc
L

)

+ d
(

Pr,Kβ(P )

) .

If L = imax, then

ϕ(Pr) =
α(Pr) · d (Pr, ∗) + β(Pr) · d

(

Pr,Kα(Pr)

)

d (Pr, ∗) + d
(

Pr,Kα(Pr)

)

=
β(P ) · d (Pr, ∗) + imax · d

(

Pr,Kβ(P )

)

d (Pr, ∗) + d
(

Pr,Kβ(P )

) ,

with ∗ an arbitrary point not belonging to K, and such that d(∗, Q) =
diam(K)/2 for every Q ∈ K.
Since P ∈ Kβ(P ) and limr Pr = P , we have limr d(Pr,Kβ(P )) = 0. Fur-

thermore, if L < imax, then Kc
L 6= ∅, and limr d(Pr,Kc

L) = d(P,Kc
L) >

0; if L = imax, let us observe that d(Pr, ∗) = d(P, ∗) > 0 for every
Pr ∈ K. Therefore, in both cases, limr ϕ(Pr) = β(P ) = ϕ(P ), i.e. ϕ
is continuous at P .

• If β(P ) = L, then L < imax (since we are assuming β(P ) < imax). Recalling
that (α(Pr)) is either a strictly monotone or a constant bounded sequence,
let L′ = limr α(Pr).

If the sequence (α(Pr)) were strictly monotone, we could find two indexes
r1, r2 such that α(Pr1), α(Pr2) 6= L and α(Pr1) < α(Pr2). Lemma 2.5
assures that β(Pr1) ≤ α(Pr2) ≤ β(Pr2). Since β(Pr1) = β(Pr2) = L, it



8 B. DI FABIO AND P. FROSINI

follows that α(Pr2) = L, against our assumption that α(Pr1), α(Pr2) 6= L.
Therefore, the sequence (α(Pr)) must be constant.

In summary, if β(Pr) = β(P ) = L for every index r, then α(Pr) = L′ for
every index r.

Since the function α is upper semi-continuous (Lemma 2.7 (1)), we have
that α(P ) ≥ L′. If the inequality α(P ) > L′ holds, then α(Pr) < α(P )
for every index r. Lemma 2.5 (2) assures that β(Pr) ≤ α(P ), and hence
α(P ) ≥ L. Lemma 2.5 (1) assures that α(P ) ≤ β(P ), and hence α(P ) ≤ L.
Therefore, α(P ) = L.

In summary, if β(Pr) = β(P ) = L for every index r, then either α(P ) =
L′ or α(P ) = L.

Therefore, we have to examine these last three cases:

(i) : β(Pr) = β(P ) = L > α(Pr) = α(P ) = L′ for every index r;
(ii) : β(Pr) = β(P ) = α(P ) = L > α(Pr) = L′ for every index r;
(iii) : β(Pr) = β(P ) = α(P ) = L = α(Pr) = L′ for every index r.

(i) : If β(Pr) = β(P ) = L > α(Pr) = α(P ) = L′ for every r, recalling that
imin < α(P ) < β(P ) < imax, the definition of the function ϕ implies
that

ϕ(Pr) =
α(Pr) · d(Pr,Kc

β(Pr)
) + β(Pr) · d(Pr,Kα(Pr))

d(Pr,Kc
β(Pr)

) + d(Pr,Kα(Pr))

=
L′ · d(Pr,Kc

L) + L · d(Pr,KL′)

d(Pr,Kc
L) + d(Pr,KL′)

while

ϕ(P ) =
L′ · d(P,Kc

L) + L · d(P,KL′)

d(P,Kc
L) + d(P,KL′)

.

Therefore limr ϕ(Pr) = ϕ(P ), and hence the function ϕ is continuous
at P .

(ii) : If β(Pr) = β(P ) = α(P ) = L > α(Pr) = L′ for every index r, the
definition of the function ϕ implies that, in the case α(Pr) > imin,

ϕ(Pr) =
α(Pr) · d(Pr,Kc

β(Pr)
) + β(Pr) · d(Pr,Kα(Pr))

d(Pr,Kc
β(Pr)

) + d(Pr,Kα(Pr))

=
L′ · d(Pr,Kc

L) + L · d(Pr,KL′)

d(Pr,Kc
L) + d(Pr,KL′)

,

otherwise, if α(Pr) = imin, ϕ(Pr) = β(Pr) = L. Recalling that
P ∈ Kc

α(P ) = Kc
L and limr Pr = P , it follows that, in both cases,

limr ϕ(Pr) = L. On the other hand ϕ(P ) = α(P ) = L. Therefore
limr ϕ(Pr) = ϕ(P ), and hence the function ϕ is continuous at P .

(iii) : If β(Pr) = β(P ) = α(P ) = L = α(Pr) = L′ for every index r, the
definition of the function ϕ implies that ϕ(Pr) = ϕ(P ) = L for every
index r. Therefore limr ϕ(Pr) = ϕ(P ), and hence the function ϕ is
continuous at P also in this case.

�

Let us observe that, dropping the assumption of stability (Definition 2.1), The-
orem 2.8 does not hold, as the following examples show. The first one does not
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verify property (a) in Definition 2.1, the second one does not verify property (b) in
Definition 2.1.

Example 1. Let K be the closed interval [0, 2], and I = {−1} ∪ [0, 1]. Let us
consider the compact sets

Ki =







∅ if i = −1
{0} if i = 0
[0, i+ 1] if i ∈]0, 1].

This filtration of K is not stable because, contrarily to Definition 2.1 (a), when the
index i tends to 0, the compact sets Ki do not tend to K0.

Let us show that this filtration of the interval K cannot be induced by any
function ϕ : K → R. Indeed, if such a function ϕ existed, we would have ϕ(P ) ≤ ε
for every ε > 0 and every P ∈ [0, 1] since [0, 1] ⊆ Kε for every ε > 0. Therefore, ϕ
would take a non-positive value at each P ∈ [0, 1], against the equality K0 = {0}.

Example 2. Let K be the disk filtered by the family {K0,K1,K2,K3} in Figure 2,
with K0 = ∅ and K3 = K. This filtration of K is not stable because, contrarily
to Definition 2.1 (b), K1 * int(K2). Let us show that this filtration of the disk

K3 ≡ K

K1

K2

P̄

Figure 2. An example of non-stable 1-dimensional filtration of the disk K.

K cannot be induced by a continuous function ϕ : K → R. Indeed, if such a
continuous function ϕ existed, it should be that ϕ(P̄ ) ≤ 1, since P̄ ∈ K1. On the
other hand, if we consider a sequence (Pr) of points of K3 \ K2 that converges to
P̄ , we should have ϕ(P̄ ) = limr ϕ(Pr) ≥ 2 (since ϕ(Pr) > 2 for every index r, given
that Pr /∈ K2). This contradiction proves our statement.

3. Multi-dimensional filtrations

In this section, we extend the main result of Section 2 to n-dimensional filtrations,
n ≥ 1, i.e. to the case of filtrations indexed by an n-dimensional parameter. There-
fore, in what follows, the symbol I will denote a compact subset I1 × I2 × . . .× In
of Rn and pj : I → Ij , 1 ≤ j ≤ n, the projection of I onto the j-th component.

For every fixed j with 1 ≤ j ≤ n and every h ∈ Ij , let us set

Kj
h = K(max I1,...,max Ij−1,h,max Ij+1,...,max In) =

⋃

i∈I
pj(i)=h

Ki.

We observe that {Kj
h}h∈Ij is a compact 1-dimensional filtration of K.
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Definition 3.1. We shall say that a compact n-dimensional filtration {Ki}i∈I of
K is stable with respect to d if the compact 1-dimensional filtrations {K1

i1
}i1∈I1 ,

{K2
i2
}i2∈I2 , . . ., {K

n
in
}in∈In are stable with respect to d.

Definition 3.2. A compact n-dimensional filtration {Ki}i∈I of K will be said to
be complete if, for every i = (i1, . . . , in) ∈ I, Ki = K1

i1
∩ K2

i2
∩ . . . ∩ Kn

in
.

Remark 3.3. Let us observe that, setting imin = (min I1,min I2, . . . ,min In) and
imax = (max I1,max I2, . . . ,max In), Definition 3.2 implies that Kimin

= K1
min I1

∩

K2
min I2

∩ . . . ∩ Kn
min In

= ∅ ∩ ∅ ∩ . . . ∩ ∅ = ∅, and Kimax
= K1

max I1
∩ K2

max I2
∩ . . . ∩

Kn
max In

= K ∩K ∩ . . . ∩K = K.

Theorem 3.4. Every compact, stable and complete n-dimensional filtration {Ki}i∈I

of a compact metric space K is induced by a continuous function ~ϕ : K → Rn.

Proof. By Definition 3.2, the completeness of {Ki}i∈I implies that, for every i =
(i1, i2, . . . , in) ∈ I, Ki is equal to K1

i1
∩ K2

i2
∩ . . . ∩ Kn

in
. Moreover, by Defini-

tion 3.1, the stability of {Ki}i∈I implies the stability of the 1-dimensional filtra-
tions {K1

i1
}i1∈I1 , {K2

i2
}i2∈I2 , . . ., {Kn

in
}in∈In . Then, by Theorem 2.8, for every

{Kj
ij
}ij∈Ij , j = 1, . . . , n, there exists a continuous function ϕj : K → R such that

Kj
ij
= {P ∈ K : ϕj(P ) ≤ ij} for every ij ∈ Ij . Hence,

K(i1,i2,...,in) = K1
i1 ∩ K2

i2 ∩ . . . ∩ Kn
in

= {P ∈ K : ϕ1(P ) ≤ i1} ∩ {P ∈ K : ϕ2(P ) ≤ i2} ∩ . . . ∩ {P ∈ K : ϕn(P ) ≤ in}

= {P ∈ K : ~ϕ(P ) = (ϕ1, ϕ2, . . . , ϕn)(P ) � (i1, i2, . . . , in)}.

Therefore, the function ~ϕ : K → Rn induces {Ki}i∈I . Moreover, ~ϕ is continuous
since its components ϕ1, ϕ2, . . . , ϕn : K → R are continuous. �

Let us observe that, without the assumption of completeness (Definition 3.2),
Theorem 3.4 does not hold, as the following example shows.

Example 3. Let K be the rectangle in Figure 3, filtered by the family {K(i1,i2)},
with (i1, i2) varying in the set I = {0, 1, 2} × {0, 1, 2}. From Remark 3.3, we have
K(0,i) = K(i,0) = ∅ for i = 0, 1, 2, and K(2,2) = K. We observe that {K(i1,i2)}(i1,i2)∈I

is stable since the 1-dimensional filtrations {K1
i1
}i1∈{0,1,2} = {K(0,2),K(1,2),K(2,2)},

and {K2
i2
}i2∈{0,1,2} = {K(2,0),K(2,1),K(2,2)} are stable with respect to d. However,

{K(i1,i2)}(i1,i2)∈I is not complete since K(1,1) $ K(2,1) ∩ K(1,2).

K(2,2) ≡ K

K(1,1)

K(1,2)

K(2,1) P̄

Figure 3. An example of non-complete 2-dimensional filtration of the rec-
tangle K.
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Let us show that this 2-dimensional filtration of the rectangle K cannot be
induced by a continuous function ~ϕ : K → R2.

Let P̄ ∈ K(1,2) ∩ K(2,1) \ K(1,1) as in Figure 3. If there existed ~ϕ = (ϕ1, ϕ2) :

K → R2 inducing this filtration, then ϕ1(P̄ ) ≤ 1 because P̄ ∈ K(1,2), and ϕ2(P̄ ) ≤ 1

because P ∈ K(2,1). Therefore, ~ϕ(P̄ ) � (1, 1). This means that P̄ should belong to
K(1,1), giving a contradiction.

4. Comparing filtrations via functions

In the application of persistent homology to the problem of shape comparison,
it is natural to estimate the shape dissimilarity of two spaces starting from the
comparison of filtrations defined on them. Nowadays, this problem is usually tackled
by computing the bottleneck distance between the persistence diagrams associated
with each filtration. Unfortunately, the loss of information due to the passage
from filtrations to persistence diagrams often makes these descriptors unable to
distinguish different shapes (see e.g. [1, 13, 7]).

As proved in the previous sections, under appropriate assumptions, every filtra-
tion of a compact space is induced by at least one continuous function. Hence, by
virtue of this fact, it is possible to directly compare two filtrations by computing
distances between the associated filtering functions defined as in Theorem 2.8 (for
the case n = 1) and Theorem 3.4 (for the case n > 1). For example, we could use
the natural pseudo-distance if we are interested in the functions’ invariance under
the action of homeomorphisms, or the L-infinity distance if this is not the case.

Let us recall that the natural pseudo-distance between two continuous functions
ϕ,ϕ′ : K → Rn is defined as δ(ϕ,ϕ′) = inf

h∈H(K)
‖ϕ− ϕ′ ◦ h‖∞, where H(K) denotes

the set of all self-homeomorphisms of K [8, 9, 10, 14]. The use of the natural
pseudo-distance implies that the distance between the filtrations induced by ϕ and
ϕ ◦h, with h ∈ H(K), vanishes, so that these filtrations are considered equivalent.

The choice of comparing two filtrations in terms of the natural pseudo-distance
between the associated filtering functions results to be more powerful than the
bottleneck distance between the associated persistence diagrams, in distinguishing
two different filtrations. We will show this fact through an example inspired to the
one in [7].

Let K be the circle S1, and consider the two stable finite filtrations {Ki} and
{K′

i} shown in Figure 4 which are defined on the set of indices I = {0, 1, 2, 3, 4, 5, 6},
and are such that K0 ≡ K′

0 ≡ ∅, K6 ≡ K′
6 ≡ K. Let us construct ϕ,ϕ′ : K → R as

in the proof of Theorem 2.8, defining on K the geodesic distance d, and extending
it to an arbitrary point ∗ /∈ K by setting d(∗, P ) = diam(K)/2 = π/2 for every
P ∈ K. The value of ϕ and ϕ′ at each point of K is its ordinate in the real plane.

While the bottleneck distance between the persistence diagrams associated with
{Ki} and {K′

i} is zero in all homology degrees, let us prove that δ(ϕ,ϕ′) is positive.
By contradiction, let us assume that δ(ϕ,ϕ′) = 0. Then, for every ε > 0 sufficiently
small, there should exist a homeomorphism hε : K → K such that max

P∈K
|ϕ(P ) −

ϕ′ ◦ hε(P )| ≤ ε. Such a homeomorphism should take all the points of maximum
(minimum, respectively) of ϕ to points near the points of maximum (minimum,

respectively) of ϕ′ with the same ordinate. Therefore, denoting by
⌢
xyz the arc

of S1 which contains y and has x and z as its endpoints, the points Q and R in

Figure 4 should be taken to hε(Q) ∈
⌢

B′Q′C ′ and hε(R) ∈
⌢

D′T ′A′, respectively,
where A′, B′, C ′, D′ are such that ϕ′(B′) = ϕ′(C ′) = ϕ(Q) − ε, ϕ′(A′) = ϕ′(D′) =

ϕ(R) + ε. Hence, either
⌢

hε(Q)S′hε(R) = hε(
⌢
QGR) or

⌢
hε(Q)S′hε(R) = hε(

⌢
QER).
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11

1 1

22

2 2

33

3 3

44

4 4

55

5 5

66

6 6
ϕ′

K1 K2 K3 K4 K5 K6

K′
1 K′

2 K′
3 K′

4 K′
5 K′

6

ϕ

0

0
00

0 0

2π2π

2π 2π

R

A′ B′ C′ D′

E F G H

T ′

Q

Q′ S′

Figure 4. Two filtrations of S1 with the same persistence diagrams but a

non-zero natural pseudo-distance between the inducing functions.

As proved in [7], in the first case max
P∈
⌢
QGR

|ϕ(P ) − ϕ′ ◦ hε(P )| >
|ϕ(G)− ϕ(H)|

2
;

in the second case, max
P∈
⌢
QER

|ϕ(P ) − ϕ′ ◦ hε(P )| >
|ϕ(E)− ϕ(F )|

2
. In conclusion,

max
P∈K

|ϕ(P ) − ϕ′ ◦ hε(P )| > min

{

|ϕ(G)− ϕ(H)|

2
,
|ϕ(E)− ϕ(F )|

2

}

> ε, against the

assumption. Hence persistent homology is not able to distinguish the two considered
shapes, contrarily to the natural pseudo-distance between the associated filtering
functions.
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