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Abstract

This paper reviews strategies that allow one to identify the effects of policy

interventions on the unconditional or conditional distribution of the outcome

of interest. This distiction is irrelevant when one focuses on average treatment

effects since identifying assumptions typically do not affect the parameter’s inter-

pretation. Conversely, finding the appropriate answer to a research question on

the effects over the distribution requires particular attention in the choice of the

identification strategy. Indeed, quantiles of the conditional and unconditional

distribution of a random variable carry a different meaning even if identification

of both these set of parameters may require conditioning on observed covariates.

Keywords: impact heterogeneity, quantile treatment effects, rank invariance.

JEL codes: C18

1 Introduction

In the recent years there has been a growing interest in the evaluation literature

for models that allow essential heterogeneity in the treatment parameters and

more generally for models that are informative on the impact distribution. The

recent increase in the attention devoted to the identification and estimation of

quantile treatment effects (QTEs) is due to their intrinsic ability to character-

ize the heterogenous impact of the treatment on various points of the outcome
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distribution. QTEs are informative about the impact distribution when the po-

tential outcomes observed under various levels of the treatment are comonotonic

random variables. The variable describing the relative position of an individual

in the outcome distribution thus plays a special role in this setting, representing

at the same time the main dimension along which treatment effects are allowed

to vary as well as a key ingredient to relate potential outcomes. Several identi-

fication approaches currently used in the literature for the assessment of mean

effects have thus been extended to quantiles. Most of these strategies require to

condition on a set of variables to achieve identification. While conditioning on

a set of observed regressors does not affect the interpretation of the parameters

in a mean regression, this is not the case for quantiles. The law of iterated

expectations guarantees that the parameters of a mean regression have both

a conditional and an unconditional mean interpretation. This does not carry

over to quantiles, where conditioning on covariates affects the interpretation of

the residual disturbance term. Indeed, since quantile regression allows one to

characterize the heterogeneity of the treatment response only along this latter

dimension, conditioning on covariates in quantile regression generally affects the

interpretation of the results.

This paper reviews strategies aimed at identifying quantile treatment effects,

covering strategies that deal with the identification of conditional and uncondi-

tional quantile treatment effects with particular attetion to cross-sectional data

applications in which the treatment is endogenous without conditioning on ad-

ditional covariates. The aim of the paper is to provide useful guidance for users

of quantile regression methods in choosing the most appropriate approach while

addressing a specific research question.

The remainder of the paper is organized as follows. After introducing the ba-

sic notation and the key parameters of interest in Section 2, Section 3 reviews

solutions to the identification of quantile treatment effects. The review covers

strategies that are appropriate only when the outcome of interest is a continuous

variable, i.e. in cases where the quantiles of the outcome distribution are un-

ambiguosly defined. It concludes illustrating some of the methods through two

illustrative examples aimed at assessing the distributional impacts of training

on earnings and of education on wages. Section 4 concludes.
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2 What Are We After: Notation and Pa-

rameters of Interest

In this section I first introduce the notation used throughout the paper and then

define the objects whose identification is sought.

Y denotes the observed outcome, D the intensity of the treatment received

and W a set of observable individual characteristics. W may include exogenous

variables X and instruments Z.1 Y is restricted to be continuous while D,W

can be either continuous or discrete random variables. Both Y and D can

be decomposed in two components: one of which is deterministic and one of

which is stochastic. These two components need not be additively separable.

The stochastic components account for differences in the distribution of D and

Y across otherwise identical individuals. The econometric models reviewed in

Section 3 place restriction on : i) the scale of D; ii) the number of independent

sources of stochastic variation in the model; iii) the distribution (joint, marginal,

conditional) of these stochastic components and D or W ≡ (X,Z); iv) the

scale of Z. Y d
i denotes the potential outcome for individual i if the value of

the treatment is d: it represents the outcome that would be observed had the

individual i been exposed to level d of the treatment. FY d(·), fyd(·) and F−1
Y d (·) =

q(d, ·) denote the corresponding cumulative distribution and density function and

the quantile function. The conditional distribution and conditional quantile are

denoted by FY d(·|x) and F−1
Y d (·|x) = q(d, x, ·).

We are interested in characterizing the dependence structure between Y and

D eventually conditioning on a set of covariates W in the presence of essential

heterogeneity and in the absence of general equilibrium effects. Knowledge of

the joint distribution (Y d)d∈D or the conditional joint distribution (Y d|x)d∈D

would allow to characterize a distribution for the outcome for any possible level

of the treatment. When potential outcomes are comonotonic, they can be de-

scribed as different functions of the same (single) random variable and quantile

treatment effects (QTEs) are informative on the impact distribution. The po-

tential outcome could be written as yd = q(d, u), u ˜ U(0, 1), q(d, u) is increasing

in u as is refereed in the literature as the structural quantile function. If the

potential outcomes are not comonotonic, QTEs are informative on the distance

between potential outcomes distributions, which may be interesting per se, but

not on the impact distribution. We thus concentrate on strategies that focus on

1Capital letters denote random variables and lower case letters denote realizations.
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QTEs.2 In the binary case, QTEs (see equation (2)) are defined as the horizontal

distance between the distribution function in the presence and in the absence of

the treatment ([9]; [15]) .3

δ(τ) = F−1
Y 1 (τ)− F−1

Y 0 (τ) 0 < τ < 1 (2)

We can distinguish conditional and unconditional quantile treatment effects

by characterizing the uniformly distributed random variable that describes the

quantile of the outcome variable. This distinction becomes clearer if we think

about a specific empirical example.

Motivating Example: Returns to Education or Training

There is a large literature that studies the returns to education. Key questions

in this literature (e.g. does additional education cause wage increase? does

additional schooling increase wages more for the more able than for the less

able? does additional schooling increase or decrease wage inequality?) can be

addressed using quantile regression methods. In this applications, the treatment

is likely endogenous in the outcome equation without conditioning on additional

covariates: typically researchers seek instruments that allow to isolate exogenous

variation in education in the wage equation. Suppose we could measure the indi-

vidual ability ai that drives the endogeneity of education in the wage equation.

Now, consider the alternative specifications for the wage model presented in

equation (3), (4) where D denotes schooling (the treatment).

Yi = α0(f(εi, ai)) + α1(f(εi, ai))D (3)

Yi = β0(εi)ai + β1(εi)D (4)

These specifications differ because they impose different structures of the vari-

ables governing the heterogeneity in the returns to education. In equation (3)

the relative position of an individual in the wage distribution is determined by

(εi, ai), i.e. by both an unobserved uniformly distributed error component εi

and by the observed individual ability level while in equation (4) the relative

position of the individual is only determined by εi. In both cases, we can think

2The review will not cover strategies that focus on other objects and may deliver QTEs as byprod-
uct such as [8], for instance.

3In the continuous case δ(τ) represents the change in Y induced by a change in D from d to d+ ε
when ε is small.

δ(τ) =
∂QY (τ |d)

∂d
0 < τ < 1 (1)
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Table 1: Moment conditions under assumptions in [2] and [11]

Quantile conditional unconditional
Y1 E[{1(Y < q(1, x))− τ} · wy,d,x ·D|X] = 0 E[{1(Y < q(1))− τ} · wy,d ·D] = 0

Y0 E[{1(Y < q(0, x))− τ} · wy,d,x · (1−D)|X] = 0 E[{1(Y < q(0))− τ} · wy,d · (1−D)] = 0

weight 1− D[1−P (Z=1|Y,D,X)]
1−P (Z=1|X)

− (1−D)P (Z=1|Y,D,X)]
P (Z=1|X)

E[ Z−P (Z=1|X)
P (Z=1|X)[1−P (Z=1|X)]

|Y,D](2D − 1)

Note: Positive weights are reported. See [2] and [11] for other definitions of weights.

about the relative position of an individual in the wage distribution as his/her

proneness ([9]) to earn a high wage for a given level of schooling D. However,

in model (3) we would refer to the total proneness/ability while in model (4) we

would be speaking only about unobserved proneness/ability.4 Using model (3)

we can explore whether the returns to education vary depending on the indi-

viduals’ total ability levels while using model (4) we can study how the returns

to education vary for given observed ability levels. Individuals who earn high

wages conditional on some specific level of ability may not be the same individu-

als who earn high wages in the sample. However conditioning on observed ability

maybe important to be able to isolate the causal effect of schooling D on the

distribution of wages Y . Equation (5) and Equation (6) represent the structural

quantile function corresponding to model (3) and (4) respectively5: equation (5)

is an example of an unconditional quantile regression model while equation (6)

is an example of a conditional quantile regression model. This distinction might

be empirically relevant since, in general, for a given τ ∈ (0, 1), α1(τ) 6= β1(τ).

f(ε, a) ≡ ε∗, ε∗ ˜ U(0, 1) QY (τ |d) = α0(τ) + α1(τ)d (5)

ε ˜ U(0, 1) QY (τ |d) = β0(τ)ai + β1(τ)d (6)

3 Identification Strategies and Estimation

In cross-sectional applications, two main identification approaches have been

extended to QTEs: strategies based on the unconfoundedness assumption and

strategies based on the availability of an instrumental variable. In the first case,

the researcher must be willing to assume that the joint distribution of the poten-

tial outcomes is independent of the treatment conditional on a set of exogenous

4To the best of my knowledge, [17] is the first to distinguish between total and observed proneness.
5Under comonotonicity of potential outcomes, the structural quantile function describes the link

between potential outcomes.

6



covariates. Under this assumptions, conditional QTEs can be estimated as orig-

inally proposed by [14] and unconditional QTEs can be estimated as proposed

by [10]. [2] and [6], [7] propose identifying assumptions for conditional quantiles

when an instrumental variable is available. The assumptions of [2] guarantee

identification of conditional and unconditional QTEs when the treatment is bi-

nary and endogenous and a binary instrument is available. They lead to the

moment conditions described in Table 1: in both cases, identification relies on

previous results ([1], [13]) that guarantee that in the subpopulation of compliers

comparisons by treatment D, conditional on X, have a causal interpretation.

Recall that compliers are individuals whose treatment status is affected by the

instrument Z but that this sub-population cannot be identified directly from

the data, because it is defined by means of potential outcomes. The moment

conditions highlight that is possible to construct weights that ’find compliers in

the population in an average sense’ ([1]). The weights will differ when one is

interested in the conditional or in the unconditional quantiles. Only the weights

considered in the second case ’simultaneously balance the distribution of the co-

variates between treated and non-treated compliers’ ([12]). In both cases weights

are functions of P (Z = 1|X) and observed variables. Estimation thus proceeds

in two steps: 1) weights are estimated; 2) weighted quantile regressions are run.6.

Estimation requires two steps also under the identification strategy proposed by

[6], [7] and [17], [18] but does not involve re-weighting. The crucial assumption

for identification in the approach by [6] is rank invariance or rank similarity,

i.e. we require that the individual’s rank in the potential outcome distribution,

conditional on exogenous covariates, is not systematically affected by the treat-

ment. The assumptions by [6] lead to the moment condition in equation (7).

Equation (7) suggests an estimation procedure that first requires to compute the

conditional quantiles of the random variable Y − q(d, x, τ) given X and Z; then,

choose as estimate of q(d, x, τ) the one that minimizes the absolute value of the

coefficient associated with Z in the first step.7

Pr[Y − q(d, x, τ) ≤ 0|X,Z] = τ. (7)

6When identification is achieved relying on uncounfoundedness, the moment conditions are similar
but the weights are identically 1 for conditional quantiles ([14]) and are D

P (D=1|X) + 1−D
1−P (D=1|X) for

unconditional quantiles ([10]).
7This approach can be used when the treatment and instrument are binary, discrete as well as

continuous.
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The instrumental variable approach for the identification of unconditional QTEs

proposed by [17] delivers the moment condtions in equation (8)

E[Z{1(Y ≤ q(d, τ))− τX}] = 0, τX ≡ P[Y ≤ q(d, τ)|X]. E[1(Y ≤ q(d, τ))− τ ] = 0.

(8)

These moment conditions reflect the idea that, first, the instrument Z does not

affect the distribution of the disturbance once X is controlled for and, second, the

joint distribution of X and the disturbance is unrestricted. Estimation involves

first an estimation of the quantiles of Y − q(d, τ) given X and Z and τX ; then, a

second step choose as estimate of q(d, τ) the value that minimizes the coefficient

of Z averaging over all possible values of X.

We now apply these strategies to two illustrative examples taken from the

literature. Table 2 reports estimates of the effect of training (or education) on

the conditional and unconditional distribution of earnins (or log wages) using

data of males from [2] and data from [5], respectively.8 Column (1) and (2)

reports results delivered when training or education are treated as exogenous

in the estimation of conditional and unconditional quantiles respectively. Col-

umn (3) and (4) report estimates that address the endogeneity of training or

education in the outcome equation relying on [2]. These estimates apply to the

sub-population of compliers. Column (5)-(8) report estimates based on [6] or

[17]. These approaches guarantee global identification of conditional and uncon-

ditional QTEs. We discuss the top-panel estimates first: in the example from [2]

the treatment assignment is randomized thus covariates are not needed for iden-

tification. Indeed, under both the identification approaches considered, training

effects on the conditional and unconditional quantiles do not exhibit substantial

differences in magnitude and all suggest that the effect of training is larger at

the top of the earnings distribution.9 In addition, both the identification strate-

gies deliver similar results, suggesting that key assumptions are unlikely to be

violated in both cases. Let’s now turn to the estimates in the bottom part of

8In the second example, only reforms that increased compulsory schooling for 3 years are considered
(i.e. only Greece, Italy and Finland) and the original treatment (years of education) and instrument
(years of compulsory schooling) were recoded to binary. Estimates of column (1), (2), (3), (4) have
been computed by the author using the STATA package ivqte by [12], except column (3) for the
first example (taken from the article). Estimates in column (1) replicate original results in the papers
except that standard errors are now robust to heteroskedasticity; estimates of columns (5)-(8) are
taken from [18] for the AAI02 example and obtained using the STATA package ivqreg by Do Wan
Kwack available from Christian Hansen’s research page.

9When endogeneity of training is addressed, point estimates of the returns to training are gener-
ally lower in the unconditional distribution with respect to the returns observed holding race, age,
education and marital status fixed.
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Table 2: Effect of Training on the Conditional and Unconditional Distribution of
Earnings ([2], males only) and Effect of Education on the Conditional and Uncondi-
tional Distribution of Log Wages ([5], males, Italy Greece and Finland,treatment and
instrument recoded to binary)

Exogenous Training Endogenous Training
Strategy Monotonicity Rank Invariance

Conditional Unconditional Conditional Unconditional Conditional Unconditional
(1) (2) (3) (4) (5) (6) (7) (8)

q KB78 F07 AAI02 FM10 CH08 CH08 w/o controls P11 logit P11 probit
Effect of Training on Earnings, Abadie et al. (2002) Obs. 5102

0.25 2510 3058 702 414 530 200 100 100
417)∗∗∗ (377)∗∗∗ (670) (754) (629) (746) (753) (750)

0.50 4420 4678 1544 1291 310 1320 790 790
(613)∗∗∗ (771)∗∗∗ (1074) (1239) (1101) (1234) (1151) (1161)

0.75 4678 4626 3131 2457 2660 1710 1490 1490
(901)∗∗∗ (1056)∗∗∗ (1376)∗∗ (1650) (1845) (1712) (1542) (1530)

0.85 4806 5532 3378 3971 3190 3580 3410 3410
(1045)∗∗∗ (1241)∗∗∗ (1811)∗ (1886)∗∗ (1185)∗∗ (1427)∗∗ (1542)∗ (1550)∗

Effect of Education on Log Wages, Brunello et al. (2009) Obs. 2292
0.30 0.168 0.223 0.303 0.514 0.836 -0.198

(0.024)∗∗∗ (0.064)∗∗∗ (0.142)∗∗ (16.48) (0.063)∗∗∗ (0.033)∗∗∗ - -
0.50 0.177 0.208 0.328 0.521 0.985 -5.119

(0.024)∗∗∗ (0.062)∗∗∗ (0.126)∗∗∗ (5.95) (0.063)∗∗∗ (0.124)∗∗∗ - -
0.75 0.213 0.297 0.154 0.599 1.868 0.996

(0.026)∗∗∗ (0.072)∗∗∗ (0.168)∗∗∗ (10.13) (0.998)∗∗ (0.037)∗∗∗ - -

Legend: Column labels refer to the estimation method. KB78: as in [14]; F07: as in [10]; AAI02: as in [2]; FM10: as

in [11], [12]; CH08: as in [7]; P11: as in [18].

the table. In this example, covariates are needed for identification: we need

to control for country specific secular trends in education and differences across

countries in the levels of education and wages to be able to isolate the exogenous

variation in education induced by school reforms. In this example, addressing

endogeneity seems to have relevant consequences: the estimates in column (1)

and (2) suggest that returns are increasing over the wage distribution, while esti-

mates in columns (3) suggest the opposite -although precision of these estimates

is low- and in column (4) we find no evidence of heterogeneity.10 Estimates of

conditional QTEs under rank invariance are reported in column (5); estimates of

unconditional QTEs in column (6) assume rank invariance and do not use covari-

ates for identification. The estimates in column (5) are unrealistic and suggest

that rank invariance is unlikely to hold. Estimates in column (6) are negative

and confirm that controlling for covariates is necessary for identification.

10In this example, we look at the effect of three more additional years of schooling on wages.
Assuming linearity and dividing point estimates reported by three, the results in columns (1)-(3) are
fairly consistent with the literature: association is lower that causal effects; causal estimate suggest
a return between 10% and 4% for each additional year of education.
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4 Conclusions

In this paper, I reviewed approaches that guarantee the identification of quantile

treatment effects (QTEs). In many cases, these approaches correspond to ex-

tensions of strategies conventionally used in linear regression models (selection

on observables, instrumental variables, fixed effects) to quantile regressions. An

important consequence of the difference between the statistical tools applied in

these two settings is that the interpretation of treatment parameters differs be-

tween conditional and unconditional quantile regressions, while, conversely, the

law of iterated expectations guarantees that the treatment parameter in a linear

regression as both a conditional and an unconditional mean interpretation. It

is crucial to bear this in mind while using QTEs to answer a specific research

question. Consider the recent proposal of [3] to link educator compensation to

the ranks of their students within what the author call an appropriately defined

comparison sets. The authors’ suggest to employ methods in [4] to contrast

actual ranks of students of a given teacher with some predicted counterfactual

rank. Betebenner ([4]) however employs conditional quantile regression methods

aimed specifically at answering questions like Are there students with unusually

low growth who need special attention?, i.e. a value-added specification of the

achievement. Barlevy and Neal ([3]) instead look for a method that allows to

isolate the teachers contribution to a student rank in the achievement distribu-

tion in a given period, eventually conditioning on covariates for identification.

In other words Barlevy and Neal would like to avoid attributing to a teacher the

changes in perfomance of a student that are only due to his initial proficiency

level. Standard value added specifications for students’ achievement in quan-

tile regression context are not the appropriate instrument to address questions

about the heterogeneity in students’ achievement depending on their initial abil-

ity level. Those quantile regression describe instead how students experiecing

the largest gains in performance over a given time period perform relative to stu-

dents experiencing the lowest gains in the same period. Cross-sectionally, some

of the high-gain students may be in the lower part of the test score distribution.11

11A similar point was made by [16] in his discussion of the analysis of the effect of vouchers on
student achievements.
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