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Abstract

In this paper we investigate the behaviour of a number of methods for estimating the co-

integration rank in VAR systems characterized by heteroskedastic innovation processes. In partic-

ular we compare the efficacy of the most widely used information criteria, such as AIC and BIC,

with the commonly used sequential approach of Johansen (1996) based around the use of either

asymptotic or wild bootstrap-based likelihood ratio type tests. Complementing recent work done

for the latter in Cavaliere, Rahbek and Taylor (2013, Econometric Reviews, forthcoming), we es-

tablish the asymptotic properties of the procedures based on information criteria in the presence

of heteroskedasticity (conditional or unconditional) of a quite general and unknown form. The

relative finite-sample properties of the different methods are investigated by means of a Monte

Carlo simulation study. For the simulation DGPs considered in the analysis, we find that the BIC-

based procedure and the bootstrap sequential test procedure deliver the best overall performance

in terms of their frequency of selecting the correct co-integration rank across different values values

of the co-integration rank, sample size, stationary dynamics and models of heteroskedasticity. Of

these the wild bootstrap procedure is perhaps the more reliable overall since it avoids a significant

tendency seen in the BIC-based method to over-estimate the co-integration rank in relatively small

sample sizes.
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1 Introduction

It is now well-known that sequential procedures based on the asymptotic (pseudo-) likelihood ratio

[PLR] test of Johansen (1988, 1991, 1996) for determining the co-integration rank of a VAR system

of variables integrated of order one [denoted I(1)] can have quite poor finite sample properties; see,

in particular, Johansen (2002), and the references therein. As a consequence, it is not surprising

that a number of recent papers have investigated the use of alternative methods for determining the

co-integration rank.

Information-based methods are widely used for econometric model selection and therefore provide

an appealing alternative to approaches based on Neyman-Pearson type tests for determining the

co-integration rank. A significant body of research on co-integration analysis has focused on the

issue of co-integration rank estimation based on the use of standard information criteria. Under

conditions which, among other things, rule out conditional or unconditional heteroskedasticity in the

shocks, Aznar and Salvador (2002) and Kapetanios (2000) demonstrate the weak consistency (formally

defined in Section 3) of approaches based on the familiar BIC (Rissanen, 1978; Schwarz, 1998) and

HQC (Hannan and Quinn, 1979), outlining the conditions which need to hold on the associated penalty

functions for this to obtain. Using Monte Carlo simulation, Wang and Bessler (2005) present results

which suggest that the performance of a BIC-based approach is close to that of the approach based

on PLR (trace) tests and tends to outperform the corresponding approach based on the AIC (Akaike,

1974). Indeed, Kapetanios (2004) establishes the inconsistency of the AIC-based approach, deriving

its asymptotic distribution and showing that the resulting estimate of the co-integration rank displays

a severe upward bias. Interestingly, Baltagi and Wang (2007) conduct a co-integration analysis on 165

data sets used in published studies. They find that the percentage of agreement between procedures

based on AIC, HQC, and BIC is quite low at below 60%, suggesting an apparent divergence in the

co-integration rank suggested by the different information criteria.

Many key macroeconomic and financial variables appear to be characterized by permanent changes

in unconditional volatility (see, e.g., McConnell and Perez Quiros, 2000; van Dijk, Osborn and Sensier,

2002; Sensier and van Dijk, 2004), and/or the presence of conditionally heteroskedastic shocks (see,

e.g., Gonçalves and Kilian, 2004). Several authors have shown that traditional co-integration tests

can display significant upward size distortions in the presence of conditionally heteroskedasticity (Lee

and Tse, 1996; Cavaliere, Rahbek and Taylor, 2010a [CRT2010a, hereafter]) or non-stationary het-

eroskedasticity (Cavaliere, Rahbek and Taylor, 2010b [CRT2010b, hereafter]). Specifically, CRT2010b

show that the sequential PLR method of Johansen (1996) is no longer valid, even asymptotically, in

the presence of permanent changes in the error variance. In response to this, Cavaliere, Rahbek and

Taylor (2012, 2013) [CRT2012 and CRT2013, respectively, hereafter] show that this can be rectified

by using a proper bootstrap implementation of Johansen’s sequential method. Specifically, they show

that when (i) the bootstrap samples are constructed using the restricted parameter estimates of the

underlying VAR model which obtain under the reduced rank null hypothesis, and (ii) the bootstrap

shocks are generated according to the so-called wild bootstrap re-sampling scheme, then the bootstrap
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sequential procedure is consistent, in the sense that the probability of selecting a rank smaller than

the true rank converges to zero and the probability of overestimating the true rank is bounded by the

chosen significance level.

The asymptotic validity of the aforementioned information criteria based approaches to selecting

the co-integration rank have only been established under the assumption of i.i.d. shocks. Cheng and

Phillips (2012) show that the semi-parametric variants of standard information criteria approaches to

selecting the co-integration rank (including the AIC, BIC and HQC procedures) proposed by Cheng

and Phillips (2009) remain weakly consistent for the the co-integrating rank (under the same rate

conditions on the penalty term) even if the shocks display time-varying heteroskedasticity of the form

considered in CRT2010b. However, so far as we are aware, the properties of the fully parametric

information criteria based procedures mentioned above have not been analysed for the cases of either

conditionally or unconditionally heteroskedastic shocks.

The aim of this paper is to fill this gap in the literature by analysing and comparing the methods

outlined above for determining the co-integration rank in an I(1) VAR system driven by heteroskedastic

shocks. We make two distinct contributions to the literature. First, and for both the case of stationary

conditional heteroskedasticity and non-stationary unconditional heteroskedasticity, we provide suffi-

cient conditions for the information criteria to be weakly consistent as the sample size diverges. Second,

we use Monte Carlo simulation methods to compare the performance of the procedures in cases where

the innovations display time-varying behaviour in either their conditional or unconditional variances.

Our simulation study provides some important insights into the finite-sample behaviour of the different

methods of rank determination under the forms of conditional and unconditional heteroskedasticity

considered.

The remainder of the paper is organized as follows. Section 2 describes the co-integrated VAR

model with heteroskedastic innovations. Section 3 outlines the co-integration rank determination

methods considered in our analysis. In Section 4 we analyse the large sample properties of the various

methods considered. The results from our Monte Carlo simulation study are reported in Section 5.

Section 6 concludes the paper. Proofs are relegated to the Appendix.

In the following:
p→ is used to denote convergence in probability, as T → ∞; x := y to indicate

that x is defined by y; Ik denotes the k × k identity matrix, 0k the k-vector of zeroes and 0j×k the

j × k matrix of zeroes; for any square matrix, A, |A| is used to denote its determinant and ‖A‖ the

norm ‖A‖2 := tr {A′A}; for any vector, x, ‖x‖ denotes the usual Euclidean norm, ‖x‖ := (x′x)1/2.

2 The Heteroskedastic Co-integrated VAR Model

We consider the p-dimensional process {Xt} which satisfies the kth order reduced rank vector autore-

gressive (VAR) model:

∆Xt = αβ′Xt−1 +
k−1∑
i=1

Γi∆Xt−i + αρ′Dt + φdt + εt, t = 1, ..., T (2.1)
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where Xt := (X1t, ..., Xpt)
′ and where the initial values, X1−k, ..., X0, are taken to be fixed in the

statistical analysis. In the context of (2.1), CRT2012 define the ‘I(1, r) conditions’ to hold where the

characteristic polynomial associated with (2.1) has p − r roots equal to 1 with all other roots lying

outside the unit circle, and where α and β have full column rank r.

The deterministic variables in (2.1) are taken to satisfy one of the following cases (see, e.g., Jo-

hansen, 1996): (i) Dt = 0, dt = 0 (no deterministic component); (ii) Dt = 1, dt = 0 (restricted

constant); or (iii) Dt = t, dt = 1 (restricted linear trend). The innovation process εt := (ε1t, ..., εpt)
′ is

assumed to satisfy one of the following three assumptions outlined in CRT2013:

Assumption V The innovations {εt} are independent and identically distributed with zero mean

and a variance matrix Σ of full-rank and satisfy the condition E ‖εt‖4 ≤ K <∞ .

Assumption V’ With respect to the filtration Ft, where Ft−1 ⊆ Ft for t = ...,−1, 0, 1, 2, ..., the

innovations {εt} form a martingale difference sequence and satisfy E ‖εt‖4 ≤ K < ∞ and the global

homoskedasticity condition:

1

T

T∑
t=1

E
(
εtε
′
t|Ft−1

) p→ Σ > 0. (2.2)

Assumption V” The innovations {εt} are defined as εt = σtzt, where zt ∼ i.i.d. (0, Ip) with E ‖zt‖4 ≤
K < ∞ and the matrix σt is non-stochastic1 and satisfies σt := σ (t/T ) for all t = 1, ..., T , where

σ (·) ∈DRp×p [0, 1]. Furthermore, Σ (u) := σ (u)σ (u)′ is assumed to be positive definite for all u ∈ [0, 1].

Remark 1 As pointed out by CRT2013, Assumption V represents the basic assumption on εt

considered by Johansen (1996) with the Gaussianity assumption relaxed to a fourth-order moment

requirement. Assumption V’ is introduced by CRT2010a for dealing with innovation processes that

are serially uncorrelated and potentially conditionally heteroskedastic. In particular, Assumption

V’ allows for, among other things: multivariate stable GARCH-type models and the autoregressive

stochastic volatility models considered in Gonçalves and Kilian (2004), and models with deterministic

or periodic heteroskedasticity. The condition in (2.2) of Assumption V’ implies the so-called global

stationarity (see, e.g., Davidson, 1994, pp. 454-455) which allows the conditional (and, consequently,

unconditional) variance of εt to be time-varying, provided that it is asymptotically stable over all

possible fixed fraction of the data (see Remark 2.1 in CRT2010a). Assumption V” allows the elements

of the innovation covariance matrix to display a countable number of jumps, provided that Σt := σtσ
′
t

is bounded. Therefore, for example, denoting the (i, j)th element of Σ(u) by Σij(u), the case of a

single break at time bτT c in the covariance E(εitεjt) obtains for Σij (u) = Σ0
ij + (Σ1

ij − Σ0
ij)I (u ≥ τ).

Remark 2 In the case where the I(1, r) conditions are satisfied and either Assumption V or V’

holds, Xt is I(1) with co-integration rank r such that the co-integration relations β′Xt − E (β′Xt)

are stationary (Assumption V) or globally stationary (Assumption V’). In general, the co-integration

1As noted by CRT2013, the requirement that σt is non-stochastic is only made to simplify the analysis and can be

generalised to allow for cases where σ (·) is stochastic and independent of zt; see Remark 2.2 of CRT2010b for further

details.
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relations are not stationary under Assumption V”, since σt is time-varying. However, β′Xt−E (β′Xt)

is free of stochastic trends and, thus, can be considered as stable (CRT2010b).

3 Co-integration Rank Determination Methods

In this section we briefly outline the methods for the co-integration rank determination considered

in this paper. In addition to the well-known sequential likelihood ratio test of Johansen (1996) and

its bootstrap counterpart (CRT2012 and CRT2013), we consider the most widely used information

criteria (BIC, AIC, and HQC).

3.1 Sequential (standard and bootstrap) Likelihood Ratio Tests

Assuming knowledge of the lag length parameter k in (2.1), the well-known PLR test of Johansen

(1996) for the hypothesis of co-integration rank (less than or equal to) r in (2.1), denoted H (r),

against H (p), rejects for large values of the trace statistic,

Qr,T := −T
p∑

i=r+1

log(1− λ̂i) ,

where λ̂1 > . . . > λ̂p are the largest p solutions to the eigenvalue problem,∣∣λS11 − S10S−100 S01
∣∣ = 0, (3.1)

where Sij := T−1
∑T

t=1RitR
′
jt, i, j = 0, 1, withR0t andR1t respectively denoting ∆Xt and

(
X ′t−1, Dt

)′
,

corrected (by OLS) for ∆Xt−1, ...,∆Xt−k+1 and dt. The sequential testing procedure based on Qr,T

consists of, starting with r = 0, testing iteratively H(r) against H(p), for r = 0, ..., p− 1, until, for a

given value of r, the asymptotic p-value associated with Qr,T , exceeds a chosen (marginal) significance

level. In what follows we will denote this estimator as r̂PLR.

The analogous bootstrap estimator of the co-integrating rank, denoted r̂BLR in what follows,

obtained from the bootstrap analogue of the foregoing sequential procedure is proposed in CRT2012

and CRT2013 and iterates over the following steps, starting from r = 0:

(i) Estimate model (2.1) under H(r) using Gaussian pseudo maximum likelihood yielding the esti-

mates β̂(r), α̂(r), ρ̂(r), Γ̂
(r)
1 , ...., Γ̂

(r)
k−1 and φ(r), together with the corresponding residuals, ε̂r,t.

2

(ii) Check that the equation |Â(r) (z) | = 0, with Â(r) (z) := (1− z) Ip−α̂(r)β̂(r)′z−
∑k−1

i=1 Γ̂
(r)
i (1− z) zi,

has p− r roots equal to 1 and all other roots outside the unit circle. If so, proceed to step (iii).

2The estimates β̂(r) need to be defined as β̂(r) := V̂ K
(r)
p , where K

(r)
p := (Ir, 0r×(p−r))

′ is a selection matrix indexed by

r and p, and, when deterministic terms are included, β̂#(r) := (β̂(r)′, ρ̂(r)′)′ = V̂ K
(r)
p+1. Here V̂ = [υ̂1, . . . , υ̂p], normalized

by V̂ ′S11V̂ = Ip, denotes the eigenvectors corresponding to the ordered eigenvalues λ̂1 > . . . > λ̂p which solve the

determinantal equation in (3.1). See CRT2012 for further details.
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(iii) Construct the bootstrap sample recursively from

∆X∗r,t = α̂(r)β̂(r)′X∗r,t−1 +
k−1∑
i=1

Γ̂
(r)
i ∆X∗r,t−i + α̂(r)ρ̂(r)′Dt + φ̂(r)dt + ε∗r,t, t = 1, ..., T

initialised at X∗r,j = Xj , j = 1−k, ..., 0, and with the T bootstrap errors ε∗r,t generated using the

re-centred residuals, ε̂cr,t := ε̂r,t − T−1
∑T

i=1 ε̂r,i, for either:

(a) the i.i.d. bootstrap, such that ε∗r,t := ε̂cr,Ut , where Ut, t = 1, ..., T is an i.i.d. sequence of

discrete uniform distributions on {1, 2, ..., T}, or

(b) the wild bootstrap, where for each t = 1, ..., T , ε∗r,t := ε̂cr,twt, where wt, t = 1, ..., T , is an

i.i.d. N(0,1) sequence.

(iv) Using the bootstrap sample, {X∗r,t}, and denoting by λ̂∗1 > . . . > λ̂∗p the ordered solutions to

the bootstrap analogue of the eigenvalue problem in (3.1), compute the bootstrap LR statistic

Q∗r,T := −T
∑p

i=r+1 log(1 − λ̂∗i ). Define the corresponding p-value as p∗r,T := 1 − G∗r,T (Qr,T ),

G∗r,T (·) denoting the conditional (on the original data) cdf of Q∗r,T .

(v) If p∗r,T exceeds the significance level, η, set r̂BLR = r, otherwise repeat steps (i)–(iv) testing the

null of rank (r + 1) against rank p if r + 1 < p, or set r̂BLR = p if r + 1 = p.

CRT2013 show that, in the presence of heteroskedasticity in the innovation process, the procedure

based on the wild bootstrap significantly outperforms its i.i.d. bootstrap analogue. Consequently, we

will only report simulation results in what follows for the wild bootstrap procedure; i.e., option (b) of

step (iii) of the algorithm.

3.2 Information Criteria

The general form of the information criterion we consider in this paper is given by IC(r) = −2`T (r) +

pT (r), where `T (r) is the maximised log-likelihood function under rank r and pT (r) = cTπ(r) denotes

the penalty function which depends on the number of parameters π(r) and on the term cT which may

depend on the sample size T .

Information criteria for determining the co-integration rank can thus be computed using the resid-

ual covariance matrix Σ̂(r) estimated from the conventional reduced rank regression outlined in the

previous subsection (see, e.g., Johansen, 1996).3 In particular, up to a constant term which does not

depend on r, the maximised log-likelihood is given by `T (r) = −T
2 log

∣∣∣Σ̂(r)
∣∣∣ where

∣∣∣Σ̂(r)
∣∣∣ = |S00|

r∏
i=1

(1− λ̂i)

3Again knowledge of the lag length parameter k in (2.1) is therefore also assumed in the context of the information

criterion-based methods which follow.
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and λ̂1 > . . . > λ̂r are the r largest ordered eigenvalues obtained solving the determinantal equation

in (3.1). Consequently, the general criterion used to assess co-integration rank is given by

IC(r) := T log
∣∣∣Σ̂(r)

∣∣∣+ cTπ(r) (3.2)

where π(r) = r(2p− r) when no deterministic component is involved, π(r) = r(2p− r+ 1) in the case

of restricted constant, and π(r) = r(2p− r+ 1) + p in the restricted trend case. Different values of the

coefficient cT yield different information criteria through the resulting penalty function, pT = cTπ(r).

The most widely used are BIC, HQC and AIC where cT = log T , 2 log log T , and 2, respectively,

thereby yielding:

BIC(r) := T log
∣∣∣Σ̂(r)

∣∣∣+ (log T )π(r), (3.3)

HQC(r) := T log
∣∣∣Σ̂(r)

∣∣∣+ 2(log log T )π(r), (3.4)

and

AIC(r) := T log
∣∣∣Σ̂(r)

∣∣∣+ 2π(r). (3.5)

The co-integration rank estimator is then given, in generic form, by

r̂IC := arg min
r=0,1,...,p

IC(r).

With an obvious notation, the resulting co-integration rank estimators corresponding to the BIC,

HQC and AIC will be denoted r̂BIC, r̂HQC and r̂AIC.

4 Asymptotic Analysis

In this section we discuss and compare the asymptotic properties of the rank determination methods

outlined in the previous section. In doing so, we complement the asymptotic analysis in CRT2012 and

CRT2013 on (standard and bootstrap) sequential likelihood ratio testing and provide new results on

the large-sample properties of information criteria in the presence of conditional and unconditional

heteroskedasticity.

In what follows we let r0 denote the true co-integration rank and, commensurately, in what follows

we will often refer to the case where the parameters of (2.1) satisfy the I(1, r0) conditions.

4.1 Sequential (standard and bootstrap) Likelihood Ratio Tests

It is known from results provided in Johansen (1996) and CRT2010a that the estimator of the co-

integration rank obtained using the sequential procedure based on Johansen’s asymptotic PLR test is

consistent under i.i.d. shocks and conditionally heteroskedastic shocks satisfying Assumption V’, but

that this is not the case when the shocks are unconditionally heteroskedastic, as in Assumption V”.

For convenience we summarise these results in the following theorem.
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Theorem 1 Let {Xt} be generated as in (2.1) with the parameters satisfying the I(1, r0) conditions.

Then, under either Assumption V or V’, for a chosen significance level η, limT→∞ P (r̂PLR = r) = 0

for all r = 0, 1, ..., r0− 1; limT→∞ P (r̂PLR = r0) = 1− η for r = r0 and limT→∞ P (r̂PLR = r) ≤ η for

all r = r0+1, ..., p. Under Assumption V”, for any chosen significance level, limT→∞ P (r̂PLR = r) = 0

for all r = 0, 1, ..., r0 − 1.

Taken together, the results in Theorem 1 imply that the sequential procedure based on the asymp-

totic PLR tests (using standard asymptotic critical values) will never underestimate the co-integration

rank in large samples. However, as shown in CRT2010b, this procedure will likely over-estimate the

true co-integration rank, even in large samples, when unconditional heteroskedasticity of the form

given in Assumption V”is present in the shocks, owing to the dependence of the limiting null distribu-

tion of the PLR statistic, Qr0,T , on nuisance parameters relating to the pattern of heteroskedasticity

present. CRT2013 show that a consistent procedure can, however, be obtained by using the bootstrap

tests from Section 3.1. CRT2013 demonstrate that, under Assumptions V and V’, the sequential pro-

cedure based on either the i.i.d. or wild bootstrap algorithm is consistent, but that only the latter

bootstrap algorithm delivers a consistent sequential procedure under Assumption V”. These results

relating to the bootstrap procedures are summarized in the following theorem.

Theorem 2 Let {Xt} be generated as in (2.1) with the parameters satisfying the I(1, r0) conditions.

Moreover, suppose that the limiting nonzero eigenvalues from (3.1) are distinct. Then,

(i) under either Assumption V or V’ and for either the i.i.d. or wild bootstrap re-sampling design in

step (iii), for a chosen significance level η, limT→∞P (r̂BLR = r) = 0 for all r = 0, 1, ..., r0 − 1;

limT→∞P (r̂BLR = r0) = 1− η for r = r0; and limT→∞P (r̂BLR = r) ≤ η for all r = r0 + 1, ..., p;

(ii) under Assumption V”, for the wild bootstrap re-sampling design in step (iii)(b), for a chosen

significance level η, limT→∞P (r̂BLR = r) = 0 for all r = 0, 1, ..., r0−1; limT→∞P (r̂BLR = r0) =

1− η for r = r0; and limT→∞P (r̂BLR = r) ≤ η for all r = r0 + 1, ..., p.

4.2 Information Criteria

It is well-known (see, inter alia, Paulsen, 1984; Nielsen, 2006) that the BIC and HQC, but not the

AIC, provide weakly consistent4 estimates of the lag order k in both pure I(0) and pure I(1) finite-

order VAR models driven by either i.i.d. or martingale difference shocks, provided cT in the penalty

function analogous to that given in (3.2) is such that cT →∞ and cT /T → 0 as T →∞. Aznar and

Salvador (2002) and Kapetanios (2000) show that the same conditions on cT ensure that r̂BIC and

r̂HQC, as defined in Section 3.2, are weakly consistent for the co-integration rank in (2.1) in the case of

where the shocks are i.i.d. (Assumption V), but that this does not hold for r̂AIC which is inconsistent.

4An estimator Tn is defined to be weakly consistent if it converges in probability to the true value of the unknown

parameter θ; i.e. Tn
p→ θ.
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In Theorem 3 we now extend the results in Aznar and Salvador (2002) and Kapetanios (2000) to

provide sufficient conditions on the penalty term that guarantee consistency under conditional and

unconditional heteroskedasticity of the form given in Assumptions V’ and V”.

Theorem 3 Let {Xt} be generated as in (2.1) with the parameters satisfying the I(1, r0) conditions.

Then, under either Assumption V, V’, or V”, it holds that, as T →∞:

(i) for r > r0, Prob(IC(r) > IC(r0))→ 1, provided cT→∞;

(ii) for r < r0, Prob(IC(r) > IC(r0))→ 1, provided cT /T→0.

Hence, if cT
T + 1

cT
→0, r̂IC

p→ r0.

Remark 3 An immediate corollary of the results in Theorem 3 is that the BIC and HQC based

estimators, r̂BIC and r̂HQC, respectively, are weakly consistent for the co-integration rank while the

corresponding AIC estimator, r̂AIC, is not because its penalty function does not satisfy the rate

conditions on cT stated in the theorem. These results hold regardless of whether the innovations

satisfy Assumption V, V’, or V”. Notice that because AIC violates the rate condition required in (i)

it will be an asymptotically upward biased estimator of the co-integration rank regardless of whether

Assumption V, V’, or V” holds.

Remark 4 It is seen from the results in Theorem 3 that the conditions required on cT to ensure

the weak consistency of the BIC and HQC based co-integration rank estimators in the presence of

conditional and unconditional heteroskedasticity are precisely the same as shown to be required for

consistency under i.i.d. shocks by Aznar and Salvador (2002) and Kapetanios (2000). This is because

the consistency of these estimators derives from the asymptotic order of the λ̂i, i = 1, ..., p, rather than

from their exact limits. Since the former is not influenced by the presence of heteroskedasticity in the

innovations, the r̂BIC and r̂HQC estimators remain consistent under Assumptions V’ and V”. However,

we anticipate that the finite sample behaviour of these procedures are likely to be affected by both

the limiting distribution of T λ̂i, for i = r0 + 1, ..., p, and the heteroskedastic form of the innovation

process. This will be investigated further in the next section.

5 Numerical Results

Using Monte Carlo simulation we investigate the finite sample performances of the methods for es-

timating the co-integration rank outlined in Section 3 under both homoskedastic models and models

with conditional or unconditional heteroskedasticity.

As our simulations DGP we will consider an extended version of the simulation DGP used in

CRT2013, given by the following VAR(2) process of dimension p = 4:

∆Xt = αβ′Xt−1 + Γ1∆Xt−1 + εt, t = 1, ..., T (5.1)
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with εt a martingale difference sequence (see below for specification details), X0 = ∆X0 = 0, and for

sample sizes T ∈ {50, 100, 200, 400}. The long-run parameter vectors are set to

β′ :=

[
1 0 0 0

0 1 0 0

]
and α′ :=

[
a 0 0 0

0 b 0 0

]
. (5.2)

Furthermore, we set Γ1 := γI4, so that the I(1, r) conditions are met, provided |γ| < 1. In the

following, results are reported for γ ∈ {0.0, 0.1, 0.2, 0.3, 0.5, 0.8, 0.9}. Notice that the system in (5.1)

approaches the I(2) boundary as γ approaches unity.

In the context of (5.1) we consider for the individual components of εt the univariate innovation

processes and parameter configurations used in CRT2013 which correspond to those used in section

4 of Gonçalves and Kilian (2004) and in section 5 of CRT2010b, to which the reader is referred for

further discussion. These are as follows:

• Case A. εit, i = 1, ..., p, is an independent sequence of N (0, 1) variates.

• Case B. εit, i = 1, ..., p, is an independent sequence of Student t (ν) (normalised to unit variance)

variates. Results are reported for ν = 5.

• Case C. εit is a standard GARCH(1, 1) process driven by standard normal innovations of the

form εit = h
1/2
it vit, i = 1, ..., p, where vit is i.i.d. N(0, 1), independent across i, and hit =

ω + d0ε
2
it−1 + d1hit−1, t = 0, ..., T . Results are reported for d0 = 0.05 and d1 = 0.94.

• Case D. εit is the first-order AR stochastic volatility [SV] model: εit = vit exp (hit), hit =

λhit−1 + 0.5ξit, with (ξit, vit)
′ ∼ i.i.d. N(0,diag(σ2ξ , 1)), independent across i = 1, ..., p. Results

are reported for λ = 0.951, σξ = 0.314.

• Case E. εit is a non-stationary, heteroskedastic independent sequence of N
(
0, σ2it

)
variates,

where σ2it = 1 for t ≤ bTτc and σ2it = κ for t > bTτc, all i = 1, ..., p. Results are reported for

τ = 2/3 and κ = 3 (late positive variance shift).

Both Cases A and B satisfy Assumption V (i.i.d. shocks). Under Case C, for the chosen parameter

configuration, εt is globally stationary with finite 4th order moments and, thus, satisfies Assumption

V’. Similarly, the SV model of Case D is strictly stationary with bounded fourth order moments;

see Carrasco and Chen (2002), and, hence, also satisfies Assumption V’. Finally, Case E involves a

single, permanent shift in the innovation variance, thus leading to error sequences which are globally

heteroskedastic and satisfy Assumption V”.

All experiments are run over 10,000 Monte Carlo replications. For the bootstrap tests, any replica-

tions in which the algorithm generates explosive samples are discarded and the experiment continues

until 10,000 valid replications are obtained. For each bootstrap procedure we report the frequency with

which such violations occur.5 The number of replications used in the wild bootstrap algorithms is set

5As shown in CRT2012 and CRT2013 the frequency of times with which the bootstrap algorithm fails to generate I(1)
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to 399. The PLR and bootstrap PLR tests were all conducted at the nominal 0.05 significance level.6

Throughout the Tables of results which follow the frequencies with which the various procedures select

the true co-integration rank are highlighted in bold text.

We first consider the case of no co-integration in Section 5.1, then the case of a single co-integration

vector in Section 5.2 and finally two co-integration relations in Section 5.3. In each of these three cases

a restricted constant was fitted for the deterministic component. The corresponding results for the

restricted trend will also be discussed at the end of this section.7

5.1 The No Co-integration Case (r0 = 0)

We first report results for the case of no co-integration (r0 = 0) which obtains by setting a = b = 0 in

the long-run parameter vector α in (5.2). In this case (5.1) reduces to the VAR(1) in first differences,

∆Xt = Γ1∆Xt−1 + εt, t = 1, ..., T .

We first consider the frequencies of co-integration rank determination for the sequential procedures

of the different methods for Case A (i.i.d. Gaussian shocks) and Case B (i.i.d. t(5) shocks), which are

reported in Tables 1.1 and 1.2, respectively.

[ TABLES 1.1-1.2 ABOUT HERE ]

Since all the tests are run at the (asymptotic) 5% significance level, both the sequential procedures

based on the standard asymptotic PLR and the wild bootstrap should (in the limit) select r = 0

with probability 95% and r > 0 with probability 5%. The results in Tables 1.1 and 1.2 show that

the standard sequential procedure based on Qr,T can display very poor performance relative to this

asymptotic benchmark, in particular when γ = 0.8 or 0.9, or where the sample size is not very large.

For example, when γ = 0.9 and T = 50 and with Gaussian shocks the standard procedure over-fits the

co-integration rank about 95% of the time, selecting a rank of either 3 or 4 over 40% of the time, even

though the true rank is zero. For T = 400 the behaviour of the standard procedure in this example is

much improved although it still overestimates the co-integration rank in about a quarter of cases. In

contrast, and in line with the results in CRT2013, the analogous sequential procedure based on the

bootstrap Q∗wr,T tests is seen to deliver far superior finite sample performance throughout. In almost

all cases the empirical frequency with which it selects the true co-integration rank lies very close to

95%. A comparison between the results in Tables 1.1 and 1.2, suggests that both the asymptotic

and bootstrap sequential procedures are little affected by whether the shocks are Gaussian or t(5)

distributed.

samples, thus violating the root check condition denoted in step (ii), is quite low. The percentages reported in columns

labelled RC in Tables 1.1-1.5, 2.1-2.5, and 3.1-3.5 confirm their results. A notable number of violations are seen to occur

when volatility is persistent (Cases D and E) and the sample size is very small (T = 50), but the frequency of such

failures decreases rapidly as the sample size increases.
6All the simulations reported in the paper were programmed using MATLAB. Our MATLAB programs are available

on request.
7For the standard PLR tests the asymptotic critical values used are taken from Table 15.2 of Johansen (1996).
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Consider next the results for the information criteria in Tables 1.1 and 1.2. In line with results

reported in previous studies (see, e.g., Kapetanios, 2004; Wang and Bessler, 2005) the AIC-based

procedure is shown to be completely unreliable. Even in the simplest case where γ = 0 and the shocks

are Gaussian, the AIC-based procedure detects the true co-integration rank, r0 = 0, around 7% of the

time for T = 50, increasing to only 20% for T = 400.8 The performance of the AIC-based procedure

is even worse when γ 6= 0. In contrast, the BIC-based procedure generally performs well. Indeed BIC-

based procedure selects r = 0 at least 98.9% of the time when T = 200 and reaches (or approaches)

100% when T = 400, for all values of γ considered and regardless of whether the shocks are Gaussian

or t(5) distributed. However, the BIC-based procedure does display a significant tendency to over-

estimate the co-integration rank when the sample size is small (T ≤ 100), with this effect becoming

stronger, others things being equal, as γ increases. The HQC-based procedure is dominated by the

BIC procedure throughout the results in Tables 1.1-1.2 but is clearly preferable to the AIC procedure.

We now turn to a discussion of the results for the two (stationary) conditionally heteroskedastic

processes specified in Cases C (independent stationary GARCH(1,1) processes) and D (stationary

autoregressive SV processes) above. For r0 = 0, results for the different methods are reported in

Tables 1.3 (Case C) and 1.4 (Case D).

[ TABLES 1.3-1.5 ABOUT HERE ]

Comparing the results in Table 1.3 with those in Tables 1.1 and 1.2, it is seen that the results for

each of the various procedures under stationary GARCH(1,1) errors are very similar to those obtained

under i.i.d. Gaussian and t(5) errors (Cases A and B). However, and in line with the simulation results

reported in CRT2010b and CRT2013, a comparison of the results in Tables 1.4 with those in Tables

1.1 and 1.2 shows a significant decline in the behaviour of the standard sequential procedure under

the autoregressive SV model.9 Of the two stationary conditionally heteroskedastic innovation process

considered, the autoregressive SV (Case D) model clearly highlights the benefits of using a sequential

procedure based on the wild bootstrap tests rather than the standard PLR tests. Indeed, throughout

Table 1.4 the empirical frequencies with which r = 0 is selected by the sequential procedure based

on the wild bootstrap Q∗wr,T tests remain close to 95%. Like the standard sequential procedure, the

finite sample performance of the information criteria-based methods is also affected by the presence

of SV in the shocks. For T = 50, the most reliable of these, the BIC-based procedure, selects the

true co-integration rank 74.8% of the time when γ = 0 and this frequency drops to 35.4% when

γ = 0.9. As with the previous cases considered, the performance of the AIC-based procedure is

highly unsatisfactory, while the HQC-based procedure shows markedly worse performance than in the

8Notice, of course, that the tendency of the AIC-based procedure to overestimate the co-integration rank will neces-

sarily appear most pronounced in the current scenario where the true co-integration rank is zero, as compared say to a

case where the true rank was closer to the VAR dimension, p.
9As explained in CRT2013, the chosen parameter configuration for Case D implies relatively strong serial dependence

in the conditional variance of the innovations, which has a considerable impact on the finite sample performance of

asymptotic PLR test.
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previous cases considered such that, for example, it even has difficulty in identifying r0 = 0 even when

T = 400.

We next turn to a discussion of the results for the non-stationary heteroskedastic model in Case

E. The results are reported in Table 1.5. Under a single, permanent shift in volatility the sequential

procedure based on the asymptotic test is seen to be extremely unreliable: even in the case where

γ = 0 and T = 400, the frequency of determining the true co-integration rank remains below 60%.

Conversely, the procedure based on the wild bootstrap remains reliable at least in the larger sample

sizes reported. However, when T = 50, the wild bootstrap-based sequential procedure shows a slight

tendency to over-estimate the co-integration rank, although this is quickly ameliorated as the sample

size increases; for example, when γ = 0.9 (γ = 0), the frequency of detecting r0 = 0 when T = 50

is 86.9% (90.0%), increasing to 94.7% (94.5%) for T = 400. The finite sample performances of all of

the information criterion-based procedures are clearly affected by the presence of a single volatility

break. The BIC-based procedure remains the most reliable of the information-based methods but,

nonetheless, it does badly over-estimate the co-integration rank for sample sizes smaller than T = 200.

However, for samples of size T = 200 and larger the BIC-based procedure tends to over-estimate the

co-integration rank less frequently than the wild bootstrap approach. In contrast the HQC-based

and, in particular, AIC-based procedures appear very unreliable in the presence of unconditional

heteroskedasticity; indeed, even for γ = 0 and T = 400, the frequency of identifying r0 = 0 is 4.3%

and 64.1% for AIC and HQC, respectively.

Overall then, our results for the non-co-integrated case, suggest that the sequential procedure based

on the wild bootstrap algorithm provides reliable results for all the conditional and unconditional het-

eroskedastic processes considered. Among the information criteria, the BIC-based procedure performs

well in many cases analysed, particular so when the sample size is large where it often outperforms

the wild bootstrap-based procedure. In contrast the HQC-based and, in particular, the AIC-based

procedures do not appear reliable in practice, most notably so where unconditional heteroskedasticity

is present.

5.2 The Co-integrated Case with r0 = 1

We now consider the case of a single co-integration vector. In this case, as in CRT2012 and CRT2013

we consider the VAR(2) in (5.1) where we set a = −0.4 and b = 0 in the long-run parameter vector α

in (5.2), thus obtaining β′ = (1, 0, 0, 0) and α′ = (−0.4, 0, 0, 0). For these parameter combinations, Xt

is I(1) with co-integrating rank r0 = 1.

[ TABLES 2.1-2.2 ABOUT HERE ]

The results for i.i.d. shocks, analogous to those reported in Tables 1.1 and 1.2, are reported in

Tables 2.1 (Gaussian shocks) and 2.2 (t(5) shocks). These results again confirm the simulation findings

of CRT2012 that the standard sequential procedure again performs poorly in the r0 = 1 case under

both Gaussian and t(5) shocks. In contrast, the sequential procedure based on the wild bootstrap again
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performs reasonably well selecting the true co-integrating rank close to the nominal 95 % frequency

in most cases when T ≥ 200, especially so where γ is large. However, when the sample size and the

value of parameter γ are small, namely T ≤ 100 and γ ≤ 0.3, it is seen that the bootstrap sequential

procedure based on Q∗wr,T displays a tendency to under-estimate the co-integration rank selecting r = 0,

rather than the true rank of one, at least 50% of the time. As regards the information criterion-based

methods, the results in Tables 2.1 and 2.2 show that the BIC-based approach correctly identifies the

true co-integration rank, r0 = 1, almost 100% of the time when T = 400, under both Gaussian and

t(5) shocks. However, as was seen for the r0 = 0 case, its performance is affected by the value of γ;

specifically its performance is significantly better when γ is large (γ ≥ 0.5), although this property

in itself is largely an artefact of the tendency of the BIC-based approach to over-estimate the co-

integration rank in such cases in the r0 = 0 case seen in Tables 1.1 and 1.2. When γ ≤ 0.3 and the

sample size is small, T ≤ 100, the HQC-based procedure is preferable to the BIC-based procedure for

both Gaussian and t(5) shocks, although again this is largely an artefact of the greater tendency of

the former to over-estimate the co-integration rank in such cases when r0 = 0. The results in Tables

2.1-2.2 again highlight the inadequacy of the AIC-based procedure.

We now turn to the results for the two (stationary) conditionally heteroskedastic processes, Cases

C and D, which are reported in Tables 2.3 and 2.4, respectively.

[ TABLES 2.3-2.5 ABOUT HERE ]

As with the corresponding results for r0 = 0, reported in Tables 1.1-1.4, the performances of all of

co-integration procedures considered are little affected by the form of conditional heteroskedasticity

specified under Case C, relative to the case of i.i.d. shocks, but are significantly affected under the

autoregressive SV model specified in Case D. For example, while the standard sequential procedure

based on the asymptotic PLR tests correctly estimates the true rank 94% of the time when γ = 0 under

i.i.d. shocks when T = 400 this reduces to only 80% under SV. In contrast, the wild bootstrap-based

sequential procedure again works well, especially when T = 400 and γ is large. Among the information

criterion-based procedures, the BIC-based approach appears overall to be the most reliable under SV,

except where both γ and T are small in which case the HQC-based approach is preferable. Indeed,

except for the case where γ = 0.9, the BIC-based procedure outperforms the wild bootstrap-based

procedure in terms of its frequency of selecting the true co-integration rank, although once again this

is largely attributable to the tendency shown by the former to over-estimate the rank when r0 = 0;

see Table 1.4.

We conclude this section by turning to the results reported in Table 2.5 for the non-stationary

heteroskedastic Case E. As was previously observed in Section 5.1 for the non-co-integrated model,

the finite sample performances of all of the procedures considered are strongly affected by the presence

of a single, permanent shift in the innovation variance. In particular, even for T = 400, the standard

sequential procedure correctly estimates the true co-integration rank only around 75% of the time

when γ ≤ 0.5, with this frequency being even lower when γ ≥ 0.8. In contrast, for T = 400, the wild
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bootstrap-based sequential procedure correctly estimates the co-integration rank to be one at close to

the nominal 95% level, confirming its superiority over the standard procedure based on Qr,T in large

samples under non-stationary volatility. It should be stressed, however, that for small values of γ and

T , the wild bootstrap-based procedure tends to underestimate the co-integration rank; for example,

when γ = 0.3 and T = 100, it determines the true co-integration rank only 40.1% of the time, while it

selects r = 0 with frequency 54.3%. Overall, for these combinations of γ and T , the standard Johansen

procedure outperforms the corresponding wild bootstrap procedure, although again this is an artefact

of the relative size properties of these tests; cf. Table 1.5. The ability of the information criterion-based

approaches to detect the true co-integration rank also deteriorates under Case E. For example, in the

presence of a single break in volatility and where γ = 0.5, the BIC-based procedure estimates the rank

to be one around 48% when T = 50, increasing to around 74% (95%) when T = 100 (T = 200), and

above 98% when T = 400. Under Case E the BIC-based procedures again significantly outperforms

the HQC- and AIC-based procedures. Moreover, as was seen under Case D, the BIC-based procedure

again significantly outperforms (although again the behaviour of these procedures under r0 = 0 partly

explains these differences) the wild bootstrap-based procedure except when γ is large (γ ≥ 0.8) where

this can be reversed.

Overall, when there is a single co-integration relation in the DGP, the sequential procedure based

on the wild bootstrap algorithm displays very good performance for all the forms of heteroskedasticity

considered when the sample size is large. Among the information criteria methods, the BIC-based

procedure delivers the best performance with different heteroskedastic innovation processes having

only limited impact on its efficacy.

5.3 The Case of Two Co-integration Relations, r0 = 2

The case of two co-integration relations is obtained by setting a = b = −0.4 in the long-run vector α

in (5.2) of the VAR(2) model in (5.1). In this case, Xt is I(1) with co-integrating rank r0 = 2.10 The

associated results for the five configurations of the innovation process εt specified in Cases A-E are

reported in Tables 3.1-3.5.

[ TABLES 3.1 - 3.5 ABOUT HERE ]

From the results in Tables 3.1-3.5, it can be noted that, when the sample size is large, the perfor-

mance of the standard sequential procedure again deteriorates when moving from i.i.d. and GARCH

innovations (Cases A, B, and C) to SV and unconditionally heteroskedastic shocks (Cases D and E).

However, perhaps surprisingly, for the smaller values of T considered, the sequential procedure based

on Qr,T tends to determine the true co-integration rank, r0 = 2, more frequently under Cases D

and E than it does under Cases A-C. This is particularly evident when γ is small. Conversely, the

bootstrap-based procedure shows excellent overall performance when the sample is large; for exam-

ple, when T = 400, the true rank is selected close to the nominal frequency of 95% for all the cases

10The case of r0 = 2 is not analysed in CRT2012 or CRT2013.
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considered. However, when T = 50, the standard sequential procedure outperforms the correspond-

ing bootstrap procedure, regardless of the value of the autoregressive parameter γ and the form of

heteroskedasticity considered (although again we note that this is largely an artefact of the relative

sizes of the tests involved in the bootstrap and standard procedures). This pattern is also observed

when T = 100 and γ ≤ 0.5. As was already noted in Sections 5.1 and 5.2, the BIC-based approach

clearly outperforms the corresponding HQC- and AIC-based approaches when the sample size is large

(i.e., T ≥ 200), for all values of γ considered. Moreover, it can be observed from the results in Tables

3.1-3.5 that the small sample performance of the BIC-based approach tends to improve as γ increases.

Where the sample size is small (T ≤ 100) and when γ ≤ 0.5 the HQC-based procedure outperforms

the BIC-based procedure. The AIC-based procedure again tends to over-estimation rank; this is less

pronounced than was the case for r0 = 1 and r0 = 2 for the reasons discussed in footnote 8.

Thus far we have only discussed the case of a restricted constant. We also repeated the foregoing

experiments for the restricted trend case. We do not report these results here but they are available

from the authors on request. Overall, and as might be expected, the results for the restricted trend

case are qualitatively similar to the corresponding restricted constant results, but with an overall

deterioration observed in the performance of all of the procedures the more so the smaller the sample

size, other things being equal. An interesting exception to this general pattern is seen for the BIC-

based approach whose performance in the restricted trend case is, if anything, improved rather than

worsened relative to the restricted constant case when r0 = 1 or 2 and where the value of γ is small.

6 Conclusions

In this paper we have analysed the performance of various methods for determining the co-integration

rank in heteroskedastic VAR models. We have compared the efficacy to do so of the standard sequential

procedure based on the asymptotic PLR test of Johansen (1996), the wild bootstrap analogue of this

procedure due to Cavaliere, Rahbek and Taylor (2010a, 2010b, 2013), and methods based on widely

used information criteria (specifically, AIC, HQC, and BIC). For all these methods, we have evaluated

their asymptotic properties in the presence of heteroskedasticity (conditional or unconditional) in the

shocks of a quite general and unknown form, complementing the results given in Cavaliere, Rahbek

and Taylor (2013), and conducted a Monte Carlo simulation study into their relative performance

in finite samples. Our numerical results have suggested that the BIC-based procedure and the wild

bootstrap sequential test procedure are the most reliable of the available methods for determining

the co-integration rank, at least for the simulation DGPs considered. The BIC-based method was

competitive and even, in certain cases, displayed superior performance to the wild bootstrap proce-

dure for larger sample sizes (noting that, in contrast to the BIC-based procedure, the probability of

selecting the true rank for the bootstrap sequential procedure is bounded by the choice of nominal

significance, even asymptotically). As such, the BIC-based and bootstrap-based sequential methods

usefully complement each other in practice.

All of the methods we have discussed in this paper are based on the assumption that the value of

16



the lag length parameter k in (2.1) is finite and known, or at least has been pre-determined by the

practitioner. An interesting direction for further research is therefore to develop implementations of

the procedures outlined in this paper that simultaneously estimate the co-integration rank and the lag

parameter k in the presence of heteroskedastic shocks, and to compare these approaches with the semi-

parametric and non-parametric information criterion co-integration rank determination procedures of

Cheng and Phillips (2009) and Poskitt (2000), neither of which require this parameter to be known

or finite. This is currently under investigation by the authors.
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A Appendix

Proof of Theorem 1: The result under Assumption V is proved in Johansen (1996), while the

results under Assumptions V’ and V”, are established in CRT2010a.

Proof of Theorem 2: Part (i) is established in Corollary 1 of CRT2012 and the part (ii) is

established in Corollary 1 of CRT2013.

Proof of Theorem 3: The outline of the proof mimics the proof of Aznar and Salvador (2002,

proof of Theorem 4.1), applying results here from CRT2010a under conditional heteroskedastic inno-

vations, viz, under Assumption V’ (see Remark 3.4 in CRT2010a), and for the case of unconditional

heteroskedastic innovations (Assumption V”) by CRT2010b (see their Remark 3.2). Specifically, for

any r 6= r0, we have that

IC(r)− IC(r0) =

{
T
∑r

i=r0+1 log(1− λ̂i) + cT (2p− r − r0)(r − r0) for r > r0

−T
∑r0

i=r+1 log(1− λ̂i) + cT (2p− r − r0)(r − r0) for r < r0

When r > r0, to show that Prob(IC(r)− IC(r0) > 0)→ 1 as T →∞, with cT →∞, consider

IC(r)− IC(r0) = T
r∑

i=r0+1

log(1− λ̂i) + cT (2p− r − r0)(r − r0). (A.1)

As in Johansen (1996, p. 160), and using here Remarks 3.4 and 3.2 of CRT2010a and CRT2010b,

respectively, the first term in (A.1) satisfies

T
r∑

i=r0+1

log(1− λ̂i) = Op(1), for all i = r0 + 1, ..., r.

The second term of (A.1) is positive and dominates the first term if cT →∞. Thus, r > r0 will never

be selected if cT in the penalty term diverges as T →∞.

When r < r0 (and r0 6= 0),

IC(r)− IC(r0) = −T
r0∑

i=r+1

log(1− λ̂i) + cT (2p− r − r0)(r − r0). (A.2)

The right side of (A.2) involves a subset of the largest r0 eigenvalues λ̂i, for i = 1, ..., r0. Under

either Assumption V, V’, or V”, as in Lemma 12.1 in Johansen (1996), these r0 sample eigenvalues

converge to the r0 solutions of
∣∣λΣββ − Σβ0Σ

−1
00 Σ0β

∣∣ = 0, where Σββ , Σβ0 := Σ′0β, and Σ00 are

defined in CRT2010a (pp. 1753-1754) and CRT2010b (p. 22), these being all positive. Consequently,
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−
∑r0

i=r+1 log(1 − λ̂i) is strictly positive in the limit and therefore the first term on the right side in

(A.2) diverges to +∞ as T →∞. Conversely, since (r− r0) < 0, the second term in (A.2) diverges to

−∞ as cT → ∞ and T → ∞. Thus, if cT /T → 0 as T → ∞ then the first term in (A.2) dominates

and Prob(IC(r) > IC(r0)) → 1. Hence, r < r0 will never be selected if cT in the penalty term is of

order o(T ).
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TABLE 1.1: Sequential procedures for determining the co-integration rank. VAR(2) model with rank r0 = 0, i.i.d. Gaussian errors [Case A]

Johansen Bootstrap AIC HQC BIC

γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 r = 0 1 2 3, 4 r = 0 1 2 3, 4

0.0 50 80.1 16.9 2.6 0.4 96.5 3.1 0.3 0.0 0.0 7.3 25.4 29.1 38.1 41.7 38.9 13.1 6.3 89.4 9.9 0.7 0.1

100 89.4 9.4 1.0 0.1 95.5 4.1 0.3 0.1 0.0 13.6 34.1 26.8 25.6 74.3 22.2 2.9 0.7 98.9 1.1 0.0 0.0

200 92.3 7.0 0.6 0.2 95.3 4.4 0.3 0.1 0.0 18.5 35.8 24.5 21.3 88.2 10.8 0.9 0.1 99.9 0.1 0.0 0.0

400 93.5 5.9 0.6 0.1 95.1 4.4 0.5 0.1 0.0 20.4 36.9 24.3 18.4 94.2 5.5 0.3 0.0 100.0 0.0 0.0 0.0

0.1 50 77.6 18.9 3.0 0.6 96.9 2.7 0.4 0.0 0.0 6.3 24.1 29.1 40.5 39.4 38.7 14.6 7.3 88.5 10.7 0.8 0.1

100 88.6 10.2 1.0 0.2 96.1 3.5 0.4 0.0 0.0 12.9 33.1 27.3 26.7 73.1 23.1 3.1 0.7 98.9 1.1 0.0 0.0

200 92.0 7.2 0.6 0.2 95.5 4.1 0.3 0.1 0.0 18.0 35.7 24.6 21.7 87.9 11.1 0.9 0.1 99.9 0.1 0.0 0.0

400 93.3 5.9 0.7 0.1 95.4 4.2 0.4 0.1 0.0 20.3 36.7 24.3 18.7 94.0 5.7 0.3 0.0 100.0 0.0 0.0 0.0

0.2 50 74.4 21.5 3.3 0.8 96.7 2.9 0.4 0.1 0.0 5.2 22.0 28.9 43.9 36.3 39.1 16.1 8.5 87.3 11.6 1.0 0.1

100 87.4 11.3 1.1 0.2 95.9 3.7 0.4 0.0 0.0 12.1 32.1 27.7 28.1 72.0 24.0 3.2 0.9 98.7 1.3 0.0 0.0

200 91.6 7.6 0.6 0.2 95.3 4.2 0.4 0.1 0.0 17.6 35.4 24.7 22.3 87.4 11.4 1.0 0.1 99.9 0.1 0.0 0.0

400 93.0 6.3 0.7 0.1 95.6 4.1 0.2 0.0 0.0 20.1 36.5 24.4 19.1 94.0 5.7 0.3 0.0 100.0 0.0 0.0 0.0

0.3 50 70.4 24.3 4.2 1.0 96.8 2.9 0.2 0.1 0.0 4.1 19.9 28.1 47.9 33.1 39.0 17.8 10.1 85.8 12.8 1.2 0.2

100 86.2 12.2 1.4 0.3 95.7 3.9 0.4 0.1 0.0 10.9 31.1 28.1 29.9 70.2 25.1 3.7 1.0 98.6 1.4 0.0 0.0

200 91.0 8.1 0.7 0.2 95.8 3.8 0.4 0.0 0.0 17.1 34.9 25.1 22.9 86.8 12.1 1.0 0.2 99.9 0.1 0.0 0.0

400 92.8 6.4 0.8 0.1 95.5 4.1 0.3 0.1 0.0 19.7 36.4 24.6 19.4 93.7 5.9 0.3 0.0 100.0 0.0 0.0 0.0

0.5 50 57.5 32.4 7.9 2.3 95.8 3.8 0.4 0.1 0.0 2.0 12.8 24.9 60.3 24.3 36.7 22.0 17.1 80.2 17.4 2.0 0.4

100 80.7 16.6 2.2 0.5 95.7 4.0 0.3 0.1 0.0 8.1 27.9 27.9 36.1 65.2 27.9 5.3 1.6 97.9 2.0 0.1 0.0

200 89.0 9.7 1.0 0.3 95.2 4.3 0.4 0.1 0.0 14.7 33.7 26.5 25.1 84.9 13.6 1.3 0.2 99.8 0.2 0.0 0.0

400 92.1 7.0 0.8 0.1 94.8 4.6 0.5 0.1 0.0 18.4 35.7 25.2 20.7 93.3 6.3 0.4 0.0 100.0 0.0 0.0 0.0

0.8 50 17.8 36.5 27.2 18.5 94.9 4.4 0.6 0.1 0.1 0.1 1.4 7.3 91.1 6.1 17.5 20.8 55.6 58.8 27.4 7.9 5.9

100 52.0 34.2 10.5 3.3 94.7 4.7 0.6 0.1 0.0 1.9 11.3 22.5 64.3 42.4 35.5 14.0 8.2 94.5 5.3 0.2 0.0

200 76.1 19.6 3.4 1.0 95.1 4.5 0.3 0.1 0.1 7.0 24.5 28.3 40.2 75.6 20.7 3.0 0.8 99.5 0.5 0.0 0.0

400 86.8 11.5 1.5 0.3 95.4 4.2 0.3 0.1 0.0 12.6 32.7 27.5 27.2 90.4 8.7 0.7 0.1 100.0 0.0 0.0 0.0

0.9 50 5.3 21.6 30.6 42.5 93.1 5.9 0.9 0.2 1.8 0.0 0.2 1.6 98.2 1.9 6.6 11.1 80.5 45.6 27.0 10.8 16.6

100 23.6 37.1 24.3 15.1 93.3 5.9 0.7 0.1 0.2 0.3 2.7 9.5 87.6 23.9 29.7 19.5 26.8 89.5 9.2 1.1 0.3

200 53.0 33.4 10.2 3.5 93.8 5.5 0.6 0.1 0.1 2.2 12.0 23.0 62.8 60.2 28.9 7.8 3.2 99.0 1.0 0.0 0.0

400 76.1 19.5 3.3 1.0 95.1 4.4 0.4 0.1 0.0 6.9 25.2 28.2 39.7 84.7 13.6 1.4 0.3 99.9 0.1 0.0 0.0
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TABLE 1.2: Sequential procedures for determining the co-integration rank. VAR(2) model with rank r0 = 0, i.i.d. t(5) errors [Case B]

Johansen Bootstrap AIC HQC BIC

γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 r = 0 1 2 3, 4 r = 0 1 2 3, 4

0.0 50 79.7 17.3 2.4 0.5 97.1 2.6 0.3 0.1 0.0 7.9 25.4 28.7 38.0 42.6 37.6 13.9 5.9 88.5 10.7 0.7 0.1

100 89.0 9.7 1.1 0.3 96.0 3.5 0.4 0.0 0.0 14.8 32.9 26.6 25.8 73.7 22.1 3.4 0.8 98.6 1.4 0.0 0.0

200 91.9 7.3 0.8 0.1 95.6 4.0 0.3 0.1 0.0 19.1 36.5 24.2 20.2 88.2 10.9 0.8 0.1 99.8 0.2 0.0 0.0

400 93.1 6.3 0.5 0.1 95.1 4.5 0.4 0.1 0.0 21.0 36.9 23.8 18.4 93.7 6.0 0.3 0.0 100.0 0.0 0.0 0.0

0.1 50 77.6 19.0 2.9 0.6 96.9 2.7 0.4 0.0 0.0 6.8 24.5 28.9 39.8 41.3 37.9 14.4 6.5 88.4 10.6 0.9 0.1

100 88.4 10.3 1.1 0.2 96.1 3.5 0.4 0.0 0.0 13.8 32.7 27.0 26.5 73.3 22.3 3.6 0.8 98.7 1.4 0.0 0.0

200 91.2 7.9 0.8 0.2 95.5 4.1 0.3 0.1 0.0 18.7 35.3 25.3 20.7 88.0 10.9 1.0 0.1 99.8 0.2 0.0 0.0

400 93.3 6.2 0.5 0.1 95.4 4.2 0.4 0.1 0.0 21.4 36.8 24.1 17.8 93.7 6.0 0.3 0.1 100.0 0.0 0.0 0.0

0.2 50 74.4 21.6 3.3 0.7 96.7 2.9 0.4 0.1 0.0 5.5 23.2 28.4 42.9 37.1 38.8 16.1 8.0 86.4 12.6 1.0 0.1

100 87.1 11.3 1.4 0.3 95.9 3.7 0.4 0.0 0.0 12.8 32.9 26.6 27.7 71.3 23.9 4.0 0.8 98.3 1.7 0.0 0.0

200 91.1 8.0 0.8 0.1 95.3 4.2 0.4 0.1 0.0 17.3 35.4 25.4 21.9 87.0 12.0 1.0 0.1 99.8 0.2 0.0 0.0

400 93.1 6.1 0.6 0.2 95.6 4.1 0.2 0.0 0.0 20.5 36.0 24.4 19.1 93.7 5.9 0.3 0.0 100.0 0.1 0.0 0.0

0.3 50 70.6 23.7 4.7 1.1 96.8 2.9 0.2 0.1 0.0 4.3 19.9 27.6 48.2 34.0 37.8 18.4 9.8 84.8 13.6 1.4 0.2

100 85.5 12.6 1.8 0.3 95.7 3.9 0.4 0.1 0.0 11.9 30.6 27.9 29.6 70.7 24.1 4.2 1.0 98.2 1.7 0.0 0.0

200 90.6 8.2 1.1 0.2 95.8 3.8 0.4 0.0 0.0 17.2 35.1 25.1 22.6 86.4 12.3 1.2 0.2 99.8 0.2 0.0 0.0

400 92.7 6.5 0.7 0.1 95.5 4.1 0.3 0.1 0.0 20.9 35.9 24.3 18.9 93.2 6.6 0.2 0.0 100.0 0.0 0.0 0.0

0.5 50 59.2 30.7 8.0 2.1 96.4 3.3 0.3 0.1 0.0 2.1 13.3 24.7 59.9 24.3 37.5 21.1 17.1 78.9 18.3 2.2 0.6

100 80.8 16.2 2.5 0.5 95.6 3.9 0.4 0.1 0.0 8.7 26.9 28.6 35.8 65.2 27.1 5.8 1.9 97.7 2.2 0.1 0.0

200 88.2 10.5 1.1 0.2 95.7 3.9 0.3 0.1 0.0 15.0 33.2 26.2 25.6 85.3 13.2 1.4 0.2 99.7 0.3 0.0 0.0

400 91.6 7.4 0.8 0.2 95.2 4.4 0.4 0.0 0.0 19.6 35.7 24.2 20.5 93.3 6.4 0.3 0.0 100.0 0.1 0.0 0.0

0.8 50 18.2 36.9 27.0 17.9 94.8 4.5 0.6 0.1 0.3 0.1 1.5 7.4 91.0 6.4 17.4 20.8 55.4 58.7 27.7 8.0 5.6

100 52.9 33.6 10.1 3.4 95.0 4.4 0.5 0.1 0.1 1.9 11.7 22.4 64.1 43.3 35.4 13.9 7.4 93.9 5.8 0.2 0.1

200 76.4 19.6 3.2 0.9 94.9 4.6 0.4 0.1 0.0 7.1 25.0 27.3 40.7 75.2 21.0 3.2 0.6 99.5 0.5 0.0 0.0

400 87.3 11.0 1.4 0.3 95.2 4.3 0.5 0.0 0.0 14.1 32.3 26.5 27.1 90.1 9.2 0.6 0.0 100.0 0.0 0.0 0.0

0.9 50 5.8 22.1 30.5 41.5 93.8 5.3 0.8 0.1 2.2 0.0 0.3 1.5 98.2 2.3 7.6 11.0 79.1 46.1 27.8 11.2 14.9

100 23.8 37.7 23.7 14.8 93.8 5.4 0.8 0.1 0.2 0.2 2.5 8.8 88.5 23.2 30.4 19.4 27.0 88.8 9.7 1.1 0.4

200 55.1 31.5 10.2 3.3 94.7 4.7 0.5 0.1 0.0 2.3 12.6 23.1 62.1 61.3 29.0 6.8 2.9 98.9 1.1 0.0 0.0

400 77.3 19.0 3.0 0.7 94.6 4.7 0.6 0.1 0.1 7.2 25.5 28.3 39.1 84.5 13.7 1.6 0.3 99.9 0.1 0.0 0.0
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TABLE 1.3: Sequential procedures for determining the co-integration rank. VAR(2) model with rank r0 = 0, GARCH(1,1) errors [Case C]

Johansen Bootstrap AIC HQC BIC

γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 r = 0 1 2 3, 4 r = 0 1 2 3, 4

0.0 50 79.2 17.6 2.6 0.6 96.3 3.3 0.4 0.0 0.0 7.1 26.0 29.2 37.8 41.9 37.6 14.0 6.6 89.0 10.2 0.7 0.1

100 88.7 9.9 1.1 0.2 96.0 3.7 0.2 0.1 0.0 13.8 33.2 26.8 26.3 73.4 22.1 3.7 0.8 99.0 1.0 0.0 0.0

200 91.0 8.1 0.8 0.2 95.2 4.3 0.4 0.1 0.0 17.9 35.6 25.1 21.4 86.5 12.3 1.1 0.1 99.8 0.2 0.0 0.0

400 91.8 7.6 0.6 0.1 95.3 4.3 0.4 0.1 0.0 20.0 36.2 24.9 18.9 92.7 6.9 0.4 0.0 100.0 0.0 0.0 0.0

0.1 50 76.7 19.6 3.0 0.7 96.5 3.1 0.3 0.1 0.0 6.2 24.3 29.3 40.3 39.4 38.1 15.1 7.4 87.9 11.2 0.7 0.2

100 88.0 10.4 1.3 0.3 95.7 3.8 0.4 0.1 0.0 13.0 32.4 27.1 27.5 72.4 23.0 3.9 0.8 99.0 1.0 0.0 0.0

200 90.7 8.4 0.8 0.2 95.1 4.4 0.4 0.1 0.0 17.5 35.4 25.2 21.9 86.3 12.4 1.1 0.1 99.8 0.2 0.0 0.0

400 91.8 7.5 0.6 0.1 95.0 4.6 0.4 0.0 0.0 19.8 36.6 24.6 19.0 92.6 7.0 0.4 0.0 100.0 0.0 0.0 0.0

0.2 50 73.8 21.5 4.0 0.8 96.3 3.3 0.3 0.1 0.0 5.1 22.3 29.0 43.6 36.7 38.2 16.4 8.8 86.4 12.4 1.0 0.2

100 87.2 11.2 1.4 0.3 95.8 3.7 0.4 0.1 0.0 12.0 31.9 27.5 28.7 71.0 23.9 4.2 1.0 98.9 1.1 0.0 0.0

200 90.2 8.8 0.8 0.2 95.3 4.3 0.4 0.0 0.0 16.8 35.2 25.6 22.4 85.8 12.9 1.2 0.1 99.8 0.2 0.0 0.0

400 91.6 7.7 0.6 0.1 95.1 4.5 0.4 0.0 0.0 19.4 36.7 24.7 19.2 92.4 7.2 0.4 0.0 100.0 0.0 0.0 0.0

0.3 50 69.9 24.3 4.8 1.1 96.0 3.6 0.3 0.1 0.0 4.2 19.8 28.4 47.7 33.5 37.9 18.2 10.4 84.3 14.2 1.2 0.3

100 85.6 12.6 1.6 0.3 95.5 4.1 0.4 0.1 0.0 11.0 30.9 27.7 30.4 69.2 25.0 4.7 1.1 98.7 1.3 0.0 0.0

200 89.7 9.1 1.0 0.2 94.8 4.6 0.6 0.0 0.0 16.2 35.0 25.6 23.3 85.3 13.4 1.2 0.2 99.8 0.2 0.0 0.0

400 91.4 7.9 0.7 0.1 95.0 4.5 0.5 0.0 0.0 19.1 36.5 24.8 19.6 92.2 7.3 0.4 0.0 100.0 0.0 0.0 0.0

0.5 50 56.7 32.2 8.6 2.5 95.7 3.9 0.4 0.0 0.0 2.0 13.5 24.8 59.6 24.7 36.7 21.7 16.9 78.8 18.3 2.5 0.5

100 80.4 16.7 2.4 0.5 95.8 3.8 0.4 0.1 0.0 8.3 26.9 28.7 36.1 64.3 28.0 6.1 1.6 98.0 2.0 0.0 0.0

200 87.9 10.6 1.2 0.3 95.2 4.3 0.5 0.1 0.0 14.2 33.0 26.8 26.0 83.9 14.6 1.4 0.2 99.8 0.2 0.0 0.0

400 90.8 8.3 0.8 0.2 95.0 4.5 0.4 0.1 0.0 17.9 36.1 25.4 20.6 91.9 7.6 0.5 0.0 100.0 0.0 0.0 0.0

0.8 50 17.2 36.6 27.1 19.1 94.5 4.7 0.6 0.2 0.2 0.1 1.6 6.9 91.4 5.9 17.8 21.2 55.1 58.2 27.8 8.3 5.6

100 52.3 34.0 10.7 3.0 94.9 4.4 0.6 0.1 0.0 1.9 11.2 22.7 64.2 42.4 35.4 14.1 8.1 94.5 5.1 0.3 0.0

200 74.9 20.6 3.6 0.9 94.8 4.6 0.5 0.1 0.0 6.7 24.6 28.7 40.1 74.2 21.5 3.5 0.8 99.4 0.6 0.0 0.0

400 85.1 13.0 1.6 0.3 95.0 4.4 0.5 0.1 0.0 12.8 31.9 27.2 28.1 88.5 10.7 0.8 0.1 100.0 0.1 0.0 0.0

0.9 50 5.5 22.4 29.8 42.3 93.0 5.9 0.9 0.2 2.0 0.0 0.2 1.7 98.1 1.9 7.2 11.7 79.2 43.9 28.6 11.1 16.4

100 23.1 38.4 23.9 14.6 93.0 5.9 0.9 0.2 0.2 0.2 2.8 9.3 87.7 23.2 31.0 19.1 26.7 89.1 9.6 1.0 0.3

200 52.9 32.9 10.6 3.7 94.2 5.2 0.6 0.1 0.1 2.0 12.2 23.5 62.2 60.0 28.8 7.7 3.5 98.6 1.4 0.0 0.0

400 75.2 20.6 3.3 0.9 94.3 5.2 0.5 0.1 0.0 7.0 25.0 27.7 40.3 82.8 15.4 1.5 0.3 99.9 0.1 0.0 0.0
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TABLE 1.4: Sequential procedures for determining the co-integration rank. VAR(2) model with rank r0 = 0, Autoregressive Stochastic Volatility [Case D]

Johansen Bootstrap AIC HQC BIC

γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 r = 0 1 2 3, 4 r = 0 1 2 3, 4

0.0 50 65.2 27.0 6.4 1.4 95.2 4.1 0.7 0.0 0.4 5.5 22.4 30.3 41.8 31.5 38.1 19.8 10.6 74.8 20.9 3.5 0.8

100 71.6 23.4 4.1 0.9 94.3 5.0 0.6 0.1 0.2 9.8 29.7 29.8 30.8 53.5 33.7 9.6 3.2 89.5 9.9 0.5 0.1

200 72.5 23.0 3.8 0.6 94.2 5.2 0.6 0.1 0.1 11.9 31.6 29.8 26.7 65.6 27.3 5.8 1.2 94.1 5.6 0.3 0.0

400 74.9 21.4 3.3 0.4 93.8 5.5 0.6 0.1 0.1 12.8 33.2 29.8 24.2 74.7 21.6 3.1 0.6 96.9 3.1 0.0 0.0

0.1 50 62.9 28.6 6.7 1.8 95.0 4.2 0.7 0.1 0.5 5.0 21.3 29.9 43.8 29.6 37.9 20.8 11.7 73.8 21.4 3.8 0.9

100 70.8 23.8 4.5 0.9 94.0 5.2 0.7 0.1 0.2 9.6 28.9 30.0 31.5 52.9 33.7 10.0 3.4 89.1 10.2 0.6 0.1

200 72.6 22.9 3.9 0.6 94.2 5.1 0.8 0.0 0.1 11.8 31.6 29.9 26.8 65.4 27.5 5.8 1.3 94.1 5.7 0.2 0.0

400 74.9 21.4 3.3 0.4 94.3 5.1 0.6 0.1 0.1 12.8 33.2 29.8 24.2 74.9 21.5 3.1 0.5 97.0 3.0 0.0 0.0

0.2 50 60.1 30.2 7.6 2.1 95.0 4.2 0.6 0.2 0.4 4.5 19.6 29.8 46.2 28.0 37.3 21.7 13.0 72.3 22.5 4.2 1.1

100 69.9 24.5 4.7 1.0 94.2 5.1 0.5 0.2 0.2 8.9 28.3 30.2 32.6 51.9 34.2 10.4 3.4 88.8 10.5 0.6 0.1

200 72.4 22.9 4.1 0.7 94.1 5.2 0.6 0.1 0.1 11.5 31.4 29.9 27.2 65.5 27.5 5.8 1.2 94.1 5.6 0.3 0.0

400 74.8 21.5 3.3 0.4 94.5 4.8 0.7 0.1 0.1 12.6 33.5 30.0 23.9 74.9 21.5 3.1 0.5 97.1 2.9 0.0 0.0

0.3 50 57.2 31.9 8.3 2.6 94.9 4.4 0.5 0.1 0.5 3.7 17.4 29.5 49.5 25.7 36.5 22.9 14.9 70.8 23.3 4.7 1.3

100 68.6 25.2 5.1 1.1 94.7 4.7 0.5 0.1 0.2 8.1 27.6 30.1 34.2 51.2 34.1 11.0 3.7 88.4 10.8 0.7 0.2

200 72.4 22.8 4.2 0.7 94.7 4.7 0.5 0.1 0.2 11.3 31.3 29.8 27.6 65.6 27.5 5.8 1.2 94.1 5.6 0.3 0.0

400 75.1 21.3 3.2 0.4 94.0 5.4 0.6 0.1 0.1 12.6 33.3 29.9 24.2 75.0 21.5 3.1 0.5 97.1 2.9 0.0 0.0

0.5 50 46.7 37.1 12.2 4.1 94.8 4.4 0.7 0.1 0.8 2.0 12.2 25.7 60.1 19.3 34.0 25.9 20.8 65.3 26.7 6.1 1.9

100 64.2 28.0 6.4 1.4 94.3 4.8 0.7 0.1 0.3 6.5 24.8 30.0 38.7 47.6 35.4 12.5 4.5 87.3 11.5 1.0 0.2

200 71.2 23.6 4.4 0.8 94.5 4.8 0.6 0.1 0.1 10.4 30.5 29.9 29.3 64.9 27.9 6.0 1.2 93.8 5.8 0.3 0.0

400 75.0 21.2 3.4 0.4 94.0 5.5 0.5 0.0 0.0 12.2 33.4 29.9 24.5 75.2 21.2 3.1 0.4 97.0 3.0 0.0 0.0

0.8 50 16.5 35.6 28.7 19.2 93.0 5.8 1.1 0.1 2.7 0.1 1.9 8.6 89.3 6.2 16.8 22.5 54.6 46.7 31.5 12.8 9.0

100 42.3 38.1 14.8 4.8 94.4 4.9 0.7 0.1 1.0 1.9 11.7 24.2 62.2 31.9 37.0 19.4 11.7 80.9 16.6 2.1 0.5

200 61.0 30.1 7.3 1.6 94.3 5.0 0.6 0.1 0.5 6.0 23.5 30.4 40.2 57.4 31.7 8.6 2.3 92.8 6.8 0.3 0.1

400 72.6 22.9 4.0 0.6 94.9 4.7 0.4 0.1 0.1 9.9 31.0 30.5 28.6 73.9 22.1 3.5 0.5 96.9 3.0 0.1 0.0

0.9 50 6.5 22.6 30.3 40.6 91.7 6.9 1.2 0.3 7.6 0.0 0.4 2.5 97.1 2.5 7.8 12.9 76.8 35.4 29.7 14.4 20.5

100 20.6 37.9 26.1 15.5 92.3 6.4 1.1 0.2 3.0 0.4 3.8 12.0 83.9 18.3 31.1 22.1 28.5 73.7 20.8 4.0 1.5

200 43.5 38.4 13.9 4.3 93.9 5.4 0.5 0.1 0.8 2.4 13.1 24.8 59.7 45.7 35.8 13.3 5.3 90.3 9.0 0.7 0.1

400 63.6 28.9 6.5 1.1 94.4 5.0 0.6 0.1 0.3 6.1 25.1 30.5 38.3 68.5 25.5 5.0 1.0 96.4 3.5 0.1 0.0
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TABLE 1.5: Sequential procedures for determining the co-integration rank. VAR(2) model with rank r0 = 0, Single Volatility Break [Case E]

Johansen Bootstrap AIC HQC BIC

γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 r = 0 1 2 3, 4 r = 0 1 2 3, 4

0.0 50 42.9 41.9 12.9 2.3 90.0 8.5 1.4 0.2 0.6 1.4 13.1 30.4 55.2 14.5 36.0 30.5 19.0 57.8 32.7 7.8 1.7

100 53.2 36.5 8.8 1.5 92.0 7.1 0.8 0.1 0.3 2.6 19.0 32.9 45.5 33.8 41.6 17.8 6.7 85.5 13.3 1.1 0.1

200 58.5 32.9 7.4 1.2 92.9 6.4 0.6 0.1 0.2 3.9 21.8 33.2 41.2 53.0 34.2 10.1 2.7 95.7 4.2 0.1 0.0

400 59.9 32.7 6.5 0.8 94.5 4.9 0.5 0.1 0.1 4.3 22.6 34.7 38.4 64.1 29.4 5.4 1.1 98.6 1.4 0.0 0.0

0.1 50 41.4 42.3 13.7 2.6 90.3 8.4 1.2 0.1 0.7 1.3 12.1 30.0 56.6 13.6 35.1 31.0 20.4 56.3 33.4 8.4 1.9

100 51.8 37.5 9.2 1.6 91.9 7.0 0.9 0.1 0.4 2.5 18.2 33.0 46.4 32.9 41.9 18.4 6.8 85.1 13.7 1.1 0.2

200 58.1 32.9 7.8 1.3 93.2 6.0 0.8 0.1 0.3 4.0 21.5 32.9 41.6 52.3 34.4 10.3 2.9 95.7 4.1 0.2 0.0

400 59.5 33.2 6.5 0.8 93.9 5.5 0.6 0.1 0.2 4.2 22.7 34.3 38.8 63.8 29.5 5.6 1.1 98.5 1.5 0.0 0.0

0.2 50 39.3 43.2 14.8 2.8 89.4 9.1 1.3 0.3 0.6 1.1 11.4 28.9 58.6 12.7 34.0 31.6 21.8 54.9 34.1 9.0 2.1

100 50.4 38.4 9.5 1.7 91.9 7.2 0.8 0.2 0.5 2.4 17.7 33.0 47.0 31.8 42.3 18.7 7.2 84.4 14.2 1.2 0.2

200 57.5 33.5 7.7 1.3 93.2 6.0 0.7 0.1 0.2 3.9 21.1 32.9 42.2 51.4 34.9 10.6 3.1 95.5 4.2 0.2 0.0

400 59.3 33.3 6.6 0.8 94.0 5.4 0.5 0.1 0.2 4.1 22.3 34.4 39.2 63.7 29.6 5.7 1.0 98.5 1.5 0.0 0.0

0.3 50 36.6 44.1 16.0 3.3 90.6 8.2 1.1 0.2 0.8 0.9 10.5 28.2 60.4 11.4 33.2 32.2 23.3 53.0 34.8 9.9 2.2

100 48.7 39.3 10.2 1.8 91.7 7.2 0.9 0.2 0.5 2.2 16.9 32.7 48.2 30.7 42.3 19.4 7.6 83.6 14.9 1.3 0.2

200 56.4 34.2 8.1 1.3 93.3 5.9 0.8 0.0 0.3 3.7 20.9 32.6 42.8 50.5 35.3 11.0 3.2 95.4 4.4 0.2 0.0

400 58.8 33.4 6.8 0.9 93.9 5.3 0.7 0.1 0.3 4.0 22.1 34.5 39.5 63.1 30.0 5.8 1.1 98.5 1.5 0.0 0.0

0.5 50 29.8 45.9 19.8 4.6 89.8 8.9 1.3 0.1 1.0 0.5 7.6 25.1 66.8 8.9 29.5 33.6 28.0 48.3 36.5 12.0 3.3

100 44.6 41.1 12.1 2.2 91.2 7.6 1.1 0.1 0.4 1.8 14.6 32.1 51.5 27.9 42.1 20.9 9.1 81.8 16.2 1.8 0.2

200 53.5 36.0 9.0 1.5 93.3 6.0 0.7 0.1 0.3 3.1 19.8 32.9 44.2 48.0 36.9 11.6 3.4 94.9 4.9 0.3 0.0

400 58.0 33.6 7.5 0.9 94.4 5.1 0.5 0.1 0.3 3.6 21.3 34.6 40.5 62.0 30.5 6.2 1.2 98.4 1.6 0.0 0.0

0.8 50 12.0 40.1 33.5 14.4 88.5 10.4 1.0 0.1 5.9 0.1 2.2 13.0 84.8 3.2 17.1 29.5 50.3 33.5 39.3 18.9 8.3

100 29.4 46.0 19.5 5.1 92.0 7.1 0.8 0.1 0.7 0.7 7.7 26.7 64.9 19.1 39.1 27.1 14.7 73.9 22.0 3.6 0.5

200 42.8 40.7 14.0 2.5 93.8 5.6 0.6 0.1 0.6 1.7 14.5 31.3 52.5 40.1 39.2 15.6 5.2 92.2 7.4 0.4 0.0

400 50.3 38.4 9.6 1.6 94.1 5.3 0.5 0.1 0.4 2.8 18.7 34.2 44.3 56.4 33.5 8.3 1.9 97.9 2.1 0.0 0.0

0.9 50 4.9 27.6 37.0 30.6 86.9 11.5 1.5 0.1 18.8 0.0 0.7 5.2 94.1 1.3 9.0 20.9 68.8 24.6 35.5 22.2 17.7

100 16.0 42.4 29.7 11.9 90.7 8.3 0.9 0.1 4.5 0.2 3.5 16.8 79.5 12.0 32.1 29.8 26.2 65.5 27.3 6.0 1.2

200 30.7 44.4 19.8 5.1 93.0 6.3 0.6 0.1 0.8 0.9 8.9 27.2 63.1 32.0 40.0 19.9 8.2 89.2 10.1 0.6 0.0

400 41.7 43.0 12.9 2.5 94.7 4.8 0.5 0.1 0.4 1.7 14.8 32.2 51.4 50.0 36.6 10.9 2.6 97.3 2.6 0.1 0.0
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TABLE 2.1: Sequential procedures for determining the co-integration rank. VAR(2) model with rank r0 = 1, i.i.d. Gaussian errors [Case A]

Johansen Bootstrap AIC HQC BIC

γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 r = 0 1 2 3, 4 r = 0 1 2 3, 4

0.0 50 72.7 23.4 3.3 0.6 93.6 5.7 0.6 0.1 0.0 3.5 22.4 32.0 42.1 30.5 42.1 19.5 7.9 84.4 14.3 1.1 0.2

100 52.5 42.4 4.5 0.6 70.8 26.1 2.8 0.3 0.0 0.3 26.3 36.7 36.6 22.3 60.9 13.8 3.0 85.7 14.0 0.3 0.0

200 4.5 89.3 5.6 0.7 8.2 87.6 3.8 0.4 0.0 0.0 28.7 37.3 34.0 0.2 87.9 10.6 1.3 35.6 64.2 0.1 0.0

400 0.0 94.3 5.1 0.6 0.0 95.0 4.6 0.4 0.0 0.0 29.2 38.1 32.7 0.0 93.0 6.6 0.4 0.0 100.0 0.0 0.0

0.1 50 68.0 27.0 4.2 0.8 93.0 6.2 0.7 0.2 0.0 2.7 20.4 32.1 44.8 25.7 43.3 21.6 9.5 81.4 17.0 1.5 0.2

100 44.5 49.9 4.9 0.7 66.6 30.7 2.4 0.3 0.0 0.2 25.2 37.3 37.3 15.3 66.3 15.2 3.2 79.6 19.9 0.4 0.0

200 1.7 91.8 5.7 0.8 3.9 91.5 4.1 0.5 0.0 0.0 28.5 37.3 34.3 0.1 87.6 11.0 1.4 21.2 78.7 0.2 0.0

400 0.0 94.2 5.2 0.6 0.0 95.2 4.4 0.4 0.0 0.0 29.0 38.3 32.6 0.0 93.0 6.7 0.4 0.0 100.0 0.0 0.0

0.2 50 61.8 31.7 5.5 1.0 91.8 7.2 0.8 0.2 0.0 1.8 18.2 32.4 47.6 20.8 44.1 24.0 11.2 77.2 20.5 2.0 0.3

100 35.2 58.3 5.7 0.8 58.5 38.0 3.2 0.4 0.0 0.1 24.1 37.2 38.6 9.3 70.2 16.9 3.7 70.3 29.0 0.6 0.0

200 0.5 92.7 6.0 0.8 1.5 93.8 4.3 0.4 0.0 0.0 28.0 37.4 34.6 0.0 87.4 11.2 1.4 9.3 90.5 0.2 0.0

400 0.0 94.1 5.3 0.6 0.0 95.1 4.5 0.4 0.0 0.0 29.0 38.2 32.8 0.0 92.9 6.7 0.4 0.0 100.0 0.0 0.0

0.3 50 54.0 37.5 7.3 1.2 90.7 8.1 1.0 0.2 0.0 1.0 16.1 31.4 51.5 15.7 44.2 26.4 13.8 71.4 25.1 3.1 0.4

100 24.4 68.0 6.7 1.0 48.2 47.6 3.8 0.4 0.0 0.0 22.7 37.2 40.1 4.8 72.3 18.8 4.1 57.1 41.9 1.0 0.0

200 0.2 92.6 6.4 0.9 0.6 94.8 4.1 0.5 0.0 0.0 27.4 37.5 35.2 0.0 87.0 11.5 1.5 2.7 97.1 0.2 0.0

400 0.0 93.9 5.4 0.7 0.0 95.1 4.5 0.4 0.0 0.0 28.9 38.0 33.1 0.0 92.7 6.8 0.5 0.0 100.0 0.0 0.0

0.5 50 32.6 50.9 13.5 3.1 84.0 13.9 1.8 0.3 0.0 0.2 10.2 29.7 59.9 6.2 40.1 32.4 21.3 51.1 40.6 7.2 1.1

100 6.4 83.1 9.2 1.4 24.7 70.9 4.1 0.4 0.0 0.0 19.7 35.9 44.5 0.5 72.2 21.9 5.4 22.1 76.1 1.8 0.1

200 0.0 91.5 7.6 1.0 0.0 94.9 4.5 0.5 0.0 0.0 25.9 37.0 37.1 0.0 85.4 12.7 1.9 0.0 99.7 0.3 0.0

400 0.0 93.4 5.9 0.7 0.0 95.0 4.5 0.6 0.0 0.0 28.2 37.7 34.1 0.0 92.4 7.0 0.5 0.0 100.0 0.0 0.0

0.8 50 2.2 47.2 35.5 15.2 49.9 46.1 3.5 0.5 0.2 0.0 2.4 12.9 84.6 0.2 17.8 31.5 50.5 7.9 61.2 22.2 8.7

100 0.0 75.7 20.2 4.1 1.0 94.4 4.2 0.5 0.1 0.0 9.2 28.0 62.9 0.0 56.6 30.2 13.2 0.1 94.6 4.9 0.4

200 0.0 85.9 12.2 2.0 0.0 95.1 4.4 0.5 0.0 0.0 17.7 35.8 46.5 0.0 79.2 17.3 3.5 0.0 99.3 0.7 0.0

400 0.0 90.8 8.0 1.2 0.0 95.4 4.3 0.4 0.0 0.0 23.8 37.0 39.1 0.0 89.9 9.1 1.0 0.0 99.9 0.1 0.0

0.9 50 0.2 27.9 39.8 32.1 24.8 69.9 4.6 0.7 3.1 0.0 0.7 4.9 94.4 0.0 8.9 20.2 70.9 1.7 51.3 27.1 19.9

100 0.0 55.7 32.5 11.7 0.1 94.5 4.8 0.7 0.2 0.0 3.2 15.5 81.3 0.0 40.1 32.9 27.0 0.0 90.3 8.7 1.0

200 0.0 75.8 19.6 4.6 0.0 95.2 4.3 0.5 0.1 0.0 9.8 29.3 61.0 0.0 70.0 23.0 7.0 0.0 98.7 1.3 0.1

400 0.0 86.3 11.8 2.0 0.0 95.1 4.5 0.4 0.0 0.0 17.8 34.9 47.4 0.0 86.4 11.9 1.7 0.0 99.8 0.2 0.0
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TABLE 2.2: Sequential procedures for determining the co-integration rank. VAR(2) model with rank r0 = 1, i.i.d. t(5) errors [Case B]

Johansen Bootstrap AIC HQC BIC

γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 r = 0 1 2 3, 4 r = 0 1 2 3, 4

0.0 50 72.1 23.7 3.5 0.6 94.6 4.8 0.6 0.1 0.0 3.4 22.4 32.8 41.4 30.7 41.5 19.0 8.8 83.4 15.1 1.4 0.2

100 51.2 43.3 4.9 0.6 71.1 26.2 2.3 0.4 0.0 0.3 25.6 37.0 37.1 20.3 62.1 14.3 3.3 84.8 14.9 0.3 0.0

200 3.7 89.6 6.0 0.7 8.5 87.2 3.9 0.4 0.0 0.0 28.1 37.3 34.6 0.2 87.0 11.3 1.5 34.5 65.3 0.3 0.0

400 0.0 94.6 4.9 0.5 0.0 95.1 4.4 0.5 0.0 0.0 29.8 38.3 32.0 0.0 92.8 6.8 0.5 0.0 100.0 0.0 0.0

0.1 50 66.9 27.7 4.5 0.9 93.4 5.8 0.6 0.2 0.0 2.2 20.7 32.7 44.4 25.5 43.4 21.1 10.0 80.0 18.0 1.7 0.3

100 43.0 50.7 5.5 0.8 65.5 31.6 2.6 0.4 0.0 0.1 24.9 37.3 37.7 13.6 66.8 15.9 3.7 78.9 20.7 0.4 0.0

200 1.6 91.5 6.3 0.7 4.6 90.8 4.2 0.4 0.0 0.0 28.2 37.7 34.1 0.1 87.0 11.3 1.6 19.6 80.2 0.3 0.0

400 0.0 94.0 5.5 0.6 0.0 95.0 4.6 0.4 0.0 0.0 30.7 38.3 31.0 0.0 92.8 6.7 0.6 0.0 100.0 0.1 0.0

0.2 50 61.0 31.9 5.7 1.3 91.8 7.4 0.7 0.2 0.0 1.7 17.8 33.3 47.2 21.2 43.6 24.0 11.3 76.3 21.2 2.2 0.3

100 33.5 59.1 6.4 1.0 58.5 38.0 3.0 0.5 0.0 0.0 24.0 37.5 38.5 8.3 69.4 18.7 3.7 69.4 30.0 0.6 0.0

200 0.4 92.1 6.8 0.8 2.2 93.3 4.0 0.6 0.0 0.0 28.1 37.8 34.1 0.0 86.4 12.2 1.4 8.5 91.2 0.3 0.0

400 0.0 93.6 5.8 0.5 0.0 95.6 4.0 0.4 0.0 0.0 30.3 37.6 32.1 0.0 92.4 7.2 0.5 0.0 100.0 0.0 0.0

0.3 50 53.9 37.0 7.6 1.4 90.9 8.0 0.9 0.2 0.0 1.0 16.7 31.6 50.7 16.0 44.3 26.3 13.5 70.3 26.2 3.0 0.5

100 23.4 68.6 7.1 1.0 49.3 47.3 3.0 0.5 0.0 0.0 23.1 36.4 40.5 4.2 73.1 18.6 4.1 55.6 43.5 0.9 0.0

200 0.1 92.8 6.5 0.6 0.7 94.9 3.9 0.5 0.0 0.0 27.3 38.0 34.7 0.0 86.5 11.9 1.6 2.1 97.4 0.5 0.0

400 0.0 93.9 5.5 0.6 0.0 95.3 4.3 0.5 0.0 0.0 29.8 37.2 33.0 0.0 92.8 6.6 0.6 0.0 100.0 0.1 0.0

0.5 50 33.6 50.1 13.4 2.9 84.5 13.6 1.7 0.2 0.1 0.2 10.8 28.8 60.3 5.6 40.5 33.0 20.9 50.2 41.4 7.4 1.1

100 6.5 82.3 9.9 1.3 25.2 70.6 3.8 0.4 0.0 0.0 19.4 35.8 44.8 0.4 71.7 22.4 5.5 20.9 76.9 2.1 0.1

200 0.0 91.6 7.5 0.9 0.1 95.6 3.9 0.4 0.0 0.0 25.2 37.0 37.8 0.0 85.1 13.0 1.9 0.0 99.5 0.5 0.0

400 0.0 93.0 6.3 0.7 0.0 95.1 4.5 0.4 0.0 0.0 28.8 38.2 33.1 0.0 92.2 7.3 0.5 0.0 100.0 0.1 0.0

0.8 50 1.8 48.4 34.9 15.0 49.8 46.1 3.7 0.4 0.4 0.0 2.0 12.9 85.2 0.2 18.2 30.1 51.5 6.8 61.7 22.6 9.0

100 0.0 74.9 21.0 4.0 1.2 94.3 4.0 0.5 0.1 0.0 9.4 27.7 62.9 0.0 55.9 30.2 14.0 0.1 93.9 5.5 0.5

200 0.0 85.8 12.3 1.9 0.0 95.0 4.5 0.5 0.0 0.0 17.9 35.0 47.2 0.0 79.3 17.3 3.5 0.0 99.2 0.8 0.0

400 0.0 91.0 7.9 1.1 0.0 95.1 4.5 0.5 0.1 0.0 24.6 37.0 38.4 0.0 89.9 9.2 0.9 0.0 99.8 0.2 0.0

0.9 50 0.1 28.5 40.3 31.1 23.4 71.5 4.6 0.6 3.3 0.0 0.6 4.9 94.5 0.0 9.3 20.3 70.4 1.7 52.4 26.4 19.5

100 0.0 55.3 32.8 11.9 0.1 94.8 4.6 0.5 0.3 0.0 3.2 15.5 81.2 0.0 40.2 32.5 27.3 0.0 89.6 9.2 1.3

200 0.0 75.7 20.0 4.3 0.0 94.9 4.6 0.5 0.1 0.0 9.8 28.0 62.2 0.0 69.6 23.4 7.0 0.0 98.4 1.5 0.0

400 0.0 86.9 11.3 1.8 0.0 94.7 4.8 0.5 0.1 0.0 17.8 35.9 46.3 0.0 86.3 12.0 1.7 0.0 99.9 0.1 0.0
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TABLE 2.3: Sequential procedures for determining the co-integration rank. VAR(2) model with rank r0 = 1, GARCH(1,1) errors [Case C]

Johansen Bootstrap AIC HQC BIC

γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 r = 0 1 2 3, 4 r = 0 1 2 3, 4

0.0 50 72.7 23.3 3.4 0.6 93.7 5.4 0.8 0.1 0.0 3.3 21.9 32.7 42.2 31.1 42.0 19.0 8.0 84.6 14.2 1.0 0.2

100 52.3 42.0 4.9 0.8 70.9 26.3 2.5 0.4 0.0 0.4 25.6 37.1 37.0 21.7 60.3 14.9 3.2 86.4 13.3 0.3 0.0

200 4.2 88.6 6.4 0.7 9.1 86.5 4.0 0.4 0.1 0.0 28.0 37.7 34.4 0.4 85.9 12.3 1.4 35.5 64.2 0.3 0.0

400 0.0 92.7 6.6 0.7 0.0 94.7 4.9 0.4 0.0 0.0 29.3 38.3 32.4 0.0 90.9 8.3 0.7 0.1 99.8 0.1 0.0

0.1 50 68.2 26.8 4.3 0.8 93.1 6.1 0.7 0.1 0.0 2.3 19.9 33.1 44.7 27.0 42.3 21.3 9.4 81.4 17.0 1.5 0.2

100 44.0 49.6 5.6 0.9 65.2 31.5 2.8 0.5 0.0 0.2 24.8 37.0 38.0 15.2 64.8 16.5 3.5 80.1 19.4 0.5 0.0

200 1.7 90.9 6.6 0.8 4.9 90.5 4.2 0.5 0.0 0.0 27.8 37.4 34.8 0.1 86.1 12.4 1.5 21.2 78.5 0.3 0.0

400 0.0 92.7 6.6 0.7 0.0 94.8 4.7 0.6 0.1 0.0 29.2 38.1 32.8 0.0 90.9 8.4 0.7 0.0 99.9 0.1 0.0

0.2 50 62.2 31.1 5.6 1.1 91.8 7.3 0.8 0.2 0.0 1.6 18.0 32.8 47.6 22.3 42.3 24.0 11.4 77.3 20.5 2.1 0.2

100 34.9 57.8 6.4 1.0 57.8 38.5 3.3 0.4 0.0 0.1 23.8 37.1 39.1 9.0 69.1 17.9 4.0 71.1 28.3 0.6 0.0

200 0.5 91.8 6.9 0.8 2.2 93.4 3.8 0.5 0.0 0.0 27.5 37.3 35.3 0.0 85.9 12.6 1.5 9.9 89.7 0.4 0.0

400 0.0 92.6 6.7 0.8 0.0 95.3 4.3 0.4 0.0 0.0 28.9 38.1 33.0 0.0 90.8 8.5 0.7 0.0 99.9 0.1 0.0

0.3 50 54.5 36.8 7.2 1.5 90.6 8.1 1.1 0.2 0.0 1.0 15.3 32.3 51.5 16.9 42.4 26.5 14.2 71.6 24.9 3.2 0.3

100 24.7 67.1 7.2 1.0 48.7 47.6 3.3 0.4 0.0 0.0 22.5 36.9 40.6 4.4 71.7 19.3 4.5 57.5 41.5 0.9 0.0

200 0.2 91.9 7.1 0.8 0.6 94.6 4.3 0.5 0.0 0.0 26.8 37.3 35.9 0.0 85.4 13.0 1.6 3.1 96.5 0.4 0.0

400 0.0 92.3 6.9 0.8 0.0 95.4 4.2 0.4 0.0 0.0 28.7 38.0 33.3 0.0 90.7 8.5 0.8 0.0 99.9 0.1 0.0

0.5 50 33.2 49.9 13.9 3.0 83.8 14.3 1.7 0.3 0.0 0.2 10.1 29.0 60.8 6.6 39.4 32.8 21.2 51.7 40.4 6.7 1.2

100 6.5 82.0 10.2 1.4 26.1 69.6 3.9 0.4 0.0 0.0 19.1 36.2 44.7 0.5 71.2 22.3 6.0 22.2 75.7 2.0 0.1

200 0.0 91.2 7.8 1.0 0.0 95.0 4.5 0.5 0.0 0.0 24.8 37.5 37.7 0.0 84.3 13.9 1.8 0.1 99.4 0.5 0.0

400 0.0 91.9 7.3 0.8 0.0 95.5 4.1 0.4 0.1 0.0 27.7 38.2 34.1 0.0 90.4 8.7 0.9 0.0 99.9 0.1 0.0

0.8 50 2.2 47.0 35.5 15.3 49.8 46.2 3.7 0.5 0.3 0.0 2.1 12.7 85.2 0.2 18.2 31.0 50.6 7.9 60.9 22.5 8.8

100 0.0 74.7 20.9 4.3 1.1 94.3 4.3 0.4 0.1 0.0 8.8 27.3 63.8 0.0 55.6 30.7 13.7 0.1 94.3 5.2 0.4

200 0.0 85.5 12.6 1.9 0.0 94.7 4.9 0.4 0.0 0.0 16.8 35.2 48.0 0.0 78.0 18.3 3.7 0.0 99.0 1.0 0.0

400 0.0 89.5 9.2 1.3 0.0 95.4 4.2 0.5 0.0 0.0 23.4 37.8 38.8 0.0 87.9 10.7 1.4 0.0 99.9 0.2 0.0

0.9 50 0.2 27.6 39.8 32.3 24.8 69.6 5.0 0.6 3.3 0.0 0.5 5.0 94.6 0.0 8.8 19.9 71.3 1.8 50.3 27.6 20.3

100 0.0 55.6 32.4 12.1 0.1 94.5 4.9 0.6 0.3 0.0 3.2 16.2 80.6 0.0 39.2 33.4 27.5 0.0 89.6 9.0 1.4

200 0.0 74.6 20.9 4.6 0.0 94.5 4.9 0.6 0.1 0.0 9.5 28.2 62.3 0.0 68.1 24.3 7.6 0.0 98.3 1.7 0.1

400 0.0 85.2 12.9 1.9 0.0 94.5 5.0 0.4 0.0 0.0 17.8 35.6 46.7 0.0 84.3 13.6 2.0 0.0 99.7 0.3 0.0
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TABLE 2.4: Sequential procedures for determining the co-integration rank. VAR(2) model with rank r0 = 1, Autoregressive Stochastic Volatility [Case D]

Johansen Bootstrap AIC HQC BIC

γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 r = 0 1 2 3, 4 r = 0 1 2 3, 4

0.0 50 57.6 31.6 8.6 2.2 92.0 6.6 1.1 0.3 0.3 3.2 18.6 31.8 46.4 23.2 38.8 24.0 14.0 68.9 25.1 4.6 1.4

100 37.8 47.4 12.1 2.7 73.3 22.0 4.1 0.7 0.2 0.9 19.6 35.8 43.7 19.1 49.6 23.3 8.1 70.0 26.1 3.5 0.5

200 6.9 72.3 17.9 2.9 30.6 63.1 5.7 0.6 0.2 0.0 20.7 37.3 42.0 3.0 67.0 24.1 6.0 33.7 61.0 4.9 0.4

400 0.1 79.7 17.8 2.4 2.9 91.0 5.7 0.5 0.1 0.0 21.4 39.0 39.7 0.1 76.2 20.5 3.2 2.3 94.2 3.5 0.1

0.1 50 53.7 34.1 9.6 2.6 91.1 7.2 1.4 0.3 0.4 2.4 17.2 32.1 48.3 20.4 38.3 25.8 15.5 66.3 26.6 5.5 1.6

100 32.4 51.2 13.5 2.8 70.3 25.3 3.8 0.7 0.3 0.6 19.1 36.1 44.2 15.1 51.6 24.7 8.6 64.6 30.6 4.2 0.6

200 4.6 74.1 18.2 3.1 24.6 68.3 6.4 0.7 0.1 0.0 20.6 37.6 41.8 1.9 67.7 24.3 6.1 25.1 69.2 5.3 0.4

400 0.1 79.9 17.7 2.4 1.8 92.5 5.1 0.6 0.2 0.0 21.3 39.0 39.7 0.0 76.3 20.6 3.1 1.2 95.3 3.5 0.1

0.2 50 48.8 37.0 11.3 3.0 89.8 8.5 1.4 0.3 0.3 1.8 15.5 32.1 50.7 17.3 37.6 27.8 17.3 62.2 29.1 6.8 1.9

100 26.6 55.3 15.1 3.1 64.9 30.3 4.2 0.7 0.3 0.4 18.5 36.0 45.0 10.8 53.4 26.5 9.3 57.1 37.1 5.0 0.8

200 2.7 75.9 18.5 2.9 17.7 75.2 6.2 0.8 0.3 0.0 20.3 37.9 41.7 1.0 68.4 24.7 5.9 16.5 77.5 5.6 0.4

400 0.0 80.0 17.6 2.3 1.0 92.9 5.6 0.5 0.1 0.0 21.3 39.1 39.6 0.0 76.4 20.5 3.1 0.5 95.8 3.6 0.1

0.3 50 42.8 40.2 13.3 3.7 88.2 10.0 1.6 0.3 0.5 1.2 13.6 31.6 53.6 13.9 36.6 30.1 19.3 57.2 32.2 8.3 2.3

100 20.2 59.8 16.7 3.3 58.5 35.9 4.8 0.8 0.3 0.2 17.8 36.1 46.0 7.0 55.1 27.8 10.1 47.7 45.3 6.1 1.0

200 1.5 76.9 18.6 3.0 12.0 81.6 5.7 0.7 0.2 0.0 20.2 38.0 41.8 0.5 68.7 24.9 6.0 9.9 83.7 5.9 0.5

400 0.0 80.1 17.7 2.2 0.7 93.6 5.0 0.7 0.1 0.0 21.4 39.0 39.6 0.0 76.5 20.4 3.1 0.2 96.1 3.6 0.1

0.5 50 26.8 48.4 19.1 5.7 83.4 13.9 2.2 0.5 0.9 0.4 9.3 28.8 61.5 6.7 33.2 33.6 26.5 42.2 40.9 12.7 4.1

100 8.4 67.4 20.1 4.1 41.4 52.7 5.4 0.6 0.2 0.1 16.1 35.1 48.8 2.2 55.3 30.6 11.9 24.1 65.9 8.6 1.4

200 0.3 77.6 19.2 2.9 4.3 89.1 6.1 0.5 0.3 0.0 19.6 38.0 42.5 0.1 68.4 25.4 6.1 2.5 91.0 6.1 0.4

400 0.0 80.1 17.8 2.1 0.2 94.3 4.9 0.6 0.1 0.0 21.3 39.0 39.7 0.0 76.8 20.2 3.0 0.0 96.3 3.6 0.1

0.8 50 3.3 41.9 37.1 17.7 54.8 39.9 4.7 0.6 3.3 0.0 1.9 14.7 83.4 0.6 16.7 30.8 51.9 9.6 50.6 26.8 13.0

100 0.5 63.0 28.8 7.7 8.7 84.7 5.8 0.8 1.4 0.0 8.9 28.0 63.1 0.1 45.5 35.5 19.0 1.8 81.4 14.5 2.4

200 0.0 73.4 22.7 3.9 0.5 94.1 4.9 0.6 0.4 0.0 15.6 36.0 48.5 0.0 64.8 27.8 7.4 0.1 92.4 7.0 0.5

400 0.0 79.9 17.5 2.6 0.0 94.2 5.2 0.6 0.2 0.0 20.0 38.8 41.2 0.0 76.6 20.2 3.2 0.0 96.6 3.3 0.1

0.9 50 0.5 26.6 39.4 33.6 32.8 60.3 5.8 1.1 8.7 0.0 0.5 6.5 93.0 0.1 8.4 22.1 69.4 3.3 43.2 29.3 24.2

100 0.0 47.7 36.8 15.5 2.9 90.2 6.1 0.8 3.0 0.0 3.7 18.1 78.2 0.0 33.1 35.9 31.0 0.4 76.7 18.5 4.4

200 0.0 64.6 28.7 6.7 0.1 94.3 4.9 0.6 1.1 0.0 9.7 29.6 60.8 0.0 57.0 32.1 10.9 0.0 90.6 8.7 0.7

400 0.0 76.6 20.2 3.3 0.0 94.8 4.8 0.4 0.4 0.0 16.5 37.1 46.4 0.0 73.8 22.3 4.0 0.0 96.1 3.7 0.1
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TABLE 2.5: Sequential procedures for determining the co-integration rank. VAR(2) model with rank r0 = 1, Single Volatility Break [Case E]

Johansen Bootstrap AIC HQC BIC

γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 r = 0 1 2 3, 4 r = 0 1 2 3, 4

0.0 50 33.3 47.6 16.2 3.0 84.8 12.3 2.4 0.5 0.4 0.5 10.4 30.9 58.2 8.2 34.2 34.8 22.7 48.2 38.4 10.8 2.7

100 19.4 59.0 18.9 2.7 70.6 24.9 3.8 0.7 0.4 0.1 11.4 34.9 53.6 7.3 47.9 32.1 12.6 53.8 40.6 5.2 0.5

200 1.6 74.1 21.5 2.9 25.9 68.7 4.8 0.6 0.4 0.0 12.4 36.3 51.3 0.3 63.6 28.6 7.5 20.1 76.6 3.1 0.2

400 0.0 76.1 21.4 2.5 0.2 94.4 4.9 0.5 0.5 0.0 12.8 37.2 50.0 0.0 71.5 24.0 4.6 0.0 98.4 1.5 0.0

0.1 50 30.2 48.9 17.4 3.5 82.9 13.9 2.7 0.6 0.5 0.4 9.6 30.5 59.5 7.1 33.3 35.6 24.1 44.7 40.3 12.1 3.0

100 15.9 61.2 19.9 2.9 65.7 29.8 3.9 0.6 0.5 0.1 11.1 34.6 54.2 5.3 48.1 33.3 13.3 47.1 46.6 5.7 0.5

200 0.8 74.5 21.8 2.9 19.5 74.8 5.0 0.7 0.5 0.0 12.4 36.1 51.4 0.1 63.1 29.0 7.9 13.0 83.4 3.4 0.2

400 0.0 76.0 21.4 2.6 0.0 94.6 4.9 0.5 0.4 0.0 12.9 36.8 50.3 0.0 71.5 23.9 4.6 0.0 98.4 1.5 0.0

0.2 50 26.7 50.0 19.5 3.8 81.5 15.3 2.8 0.5 0.6 0.3 8.6 29.9 61.3 5.8 31.6 36.5 26.1 40.7 42.2 13.6 3.5

100 12.2 63.4 21.4 3.1 60.9 33.8 4.8 0.6 0.6 0.1 10.5 34.3 55.1 3.5 48.5 34.3 13.8 39.9 52.9 6.7 0.6

200 0.3 74.4 22.2 3.1 12.6 81.2 5.5 0.6 0.4 0.0 12.3 35.9 51.8 0.0 62.7 29.5 7.8 7.2 88.8 3.8 0.2

400 0.0 75.6 21.8 2.6 0.0 94.7 4.8 0.5 0.4 0.0 12.9 36.7 50.4 0.0 71.3 24.1 4.6 0.0 98.4 1.6 0.0

0.3 50 22.7 51.2 21.5 4.6 80.3 16.2 2.9 0.6 0.6 0.2 7.5 29.2 63.1 4.6 30.2 37.2 28.0 36.3 44.3 15.2 4.2

100 8.4 65.3 22.8 3.4 54.3 40.1 5.0 0.6 0.6 0.0 10.2 33.9 55.8 2.2 47.6 35.6 14.6 31.5 59.9 7.9 0.7

200 0.1 73.9 22.7 3.2 7.0 86.8 5.6 0.6 0.5 0.0 12.0 35.7 52.3 0.0 61.7 30.2 8.1 3.4 92.2 4.2 0.2

400 0.0 75.5 21.8 2.7 0.0 94.7 4.8 0.5 0.5 0.0 12.6 36.7 50.7 0.0 71.1 24.3 4.6 0.0 98.2 1.8 0.0

0.5 50 14.1 52.3 27.5 6.2 74.4 21.5 3.5 0.6 1.2 0.0 5.8 26.5 67.7 2.2 25.9 38.8 33.1 25.9 47.8 20.5 5.8

100 2.9 66.5 26.4 4.2 36.7 57.1 5.5 0.8 0.8 0.0 9.4 32.1 58.5 0.5 45.0 37.8 16.7 14.1 73.9 10.8 1.1

200 0.0 72.6 24.0 3.5 1.2 93.0 5.3 0.5 0.6 0.0 11.4 35.1 53.5 0.0 60.1 31.2 8.7 0.2 94.9 4.7 0.2

400 0.0 74.7 22.4 2.9 0.0 94.7 4.7 0.6 0.4 0.0 12.2 36.5 51.4 0.0 70.7 24.6 4.7 0.0 98.2 1.7 0.1

0.8 50 2.4 41.2 41.2 15.3 53.1 41.5 5.0 0.5 7.7 0.0 2.0 16.2 81.8 0.3 13.9 35.6 50.3 7.2 47.9 32.3 12.7

100 0.1 57.1 35.2 7.7 5.2 88.0 6.2 0.7 1.4 0.0 5.4 27.5 67.1 0.0 36.5 40.7 22.8 0.6 80.4 16.6 2.4

200 0.0 65.5 29.6 4.9 0.0 94.0 5.5 0.5 0.9 0.0 9.0 32.2 58.8 0.0 54.4 34.2 11.5 0.0 92.8 6.8 0.4

400 0.0 70.3 26.0 3.8 0.0 95.0 4.5 0.5 0.6 0.0 10.5 35.0 54.5 0.0 66.6 27.3 6.1 0.0 97.7 2.3 0.0

0.9 50 0.5 27.3 44.8 27.5 38.9 54.6 5.8 0.6 24.3 0.0 0.8 8.9 90.4 0.1 8.1 26.9 64.9 2.8 40.7 35.1 21.4

100 0.0 45.2 41.9 13.0 1.1 92.1 6.3 0.5 6.5 0.0 2.9 19.8 77.3 0.0 28.0 41.6 30.4 0.1 74.9 21.4 3.6

200 0.0 58.7 33.9 7.4 0.0 94.5 5.1 0.4 1.1 0.0 6.0 28.8 65.3 0.0 48.9 36.6 14.5 0.0 91.0 8.5 0.6

400 0.0 64.4 30.6 5.0 0.0 94.6 5.0 0.3 0.7 0.0 8.4 33.1 58.5 0.0 62.1 30.4 7.6 0.0 97.1 2.9 0.1
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TABLE 3.1: Sequential procedures for determining the co-integration rank. VAR(2) model with rank r0 = 2, i.i.d. Gaussian errors [Case A]

Johansen Bootstrap AIC HQC BIC

γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 r = 0 1 2 3, 4 r = 0 1 2 3, 4

0.0 50 61.2 31.4 6.2 1.2 88.2 9.6 1.7 0.5 0.0 1.7 13.0 33.0 52.3 23.7 36.7 26.1 13.5 79.7 17.6 2.3 0.4

100 11.1 52.7 32.5 3.6 24.7 49.6 22.7 3.0 0.0 0.0 0.5 39.9 59.6 5.6 19.3 59.4 15.8 72.7 21.0 6.1 0.2

200 0.0 1.5 92.8 5.7 0.0 2.9 92.3 4.7 0.0 0.0 0.0 40.6 59.4 0.0 0.0 87.0 13.0 6.9 12.7 79.9 0.6

400 0.0 0.0 94.7 5.4 0.0 0.0 95.2 4.9 0.0 0.0 0.0 41.3 58.8 0.0 0.0 90.7 9.3 0.0 0.0 99.8 0.2

0.1 50 53.8 36.6 8.0 1.7 85.8 11.6 1.9 0.7 0.0 0.9 10.2 33.2 55.7 18.2 35.0 30.2 16.6 75.7 20.3 3.5 0.5

100 5.7 49.2 40.8 4.3 16.3 49.7 30.7 3.3 0.0 0.0 0.2 39.3 60.5 2.4 13.5 66.4 17.7 61.3 26.4 11.9 0.4

200 0.0 0.5 93.8 5.7 0.0 0.8 94.6 4.7 0.0 0.0 0.0 40.2 59.8 0.0 0.0 86.7 13.3 1.8 6.0 91.5 0.7

400 0.0 0.0 94.5 5.5 0.0 0.0 95.2 4.8 0.0 0.0 0.0 41.2 58.8 0.0 0.0 90.7 9.4 0.0 0.0 99.8 0.2

0.2 50 44.8 41.6 11.4 2.3 82.0 14.7 2.6 0.7 0.0 0.4 7.8 32.7 59.1 13.1 31.9 34.8 20.2 69.8 24.1 5.3 0.8

100 2.3 40.5 52.3 4.9 8.8 48.7 38.3 4.2 0.0 0.0 0.1 38.9 61.1 0.8 7.7 72.0 19.4 46.9 30.4 22.0 0.7

200 0.0 0.1 94.0 6.0 0.0 0.3 94.9 4.7 0.0 0.0 0.0 40.2 59.8 0.0 0.0 86.5 13.5 0.2 1.9 97.1 0.7

400 0.0 0.0 94.5 5.5 0.0 0.0 94.8 5.2 0.0 0.0 0.0 41.1 58.9 0.0 0.0 90.7 9.3 0.0 0.0 99.8 0.2

0.3 50 35.3 45.4 16.2 3.1 78.2 17.5 3.6 0.8 0.0 0.2 5.1 31.9 62.8 8.4 27.6 39.7 24.3 61.2 28.6 8.8 1.4

100 0.7 29.5 64.5 5.4 3.8 41.5 50.2 4.5 0.0 0.0 0.0 38.1 61.9 0.2 3.7 75.2 21.0 28.5 32.2 38.0 1.3

200 0.0 0.0 93.9 6.1 0.0 0.0 95.1 4.9 0.0 0.0 0.0 39.9 60.1 0.0 0.0 86.1 13.9 0.0 0.4 98.8 0.8

400 0.0 0.0 94.4 5.6 0.0 0.0 95.1 4.9 0.0 0.0 0.0 40.8 59.2 0.0 0.0 90.6 9.4 0.0 0.0 99.8 0.2

0.5 50 13.0 49.3 31.3 6.5 59.2 30.9 8.4 1.5 0.1 0.0 1.5 29.2 69.3 1.7 15.2 48.0 35.1 34.8 37.4 23.4 4.5

100 0.0 8.0 85.4 6.6 0.3 19.6 75.8 4.3 0.0 0.0 0.0 36.3 63.7 0.0 0.3 76.1 23.6 3.1 16.0 78.4 2.5

200 0.0 0.0 93.3 6.7 0.0 0.0 95.2 4.8 0.1 0.0 0.0 39.0 61.0 0.0 0.0 85.4 14.7 0.0 0.0 99.0 1.0

400 0.0 0.0 94.2 5.8 0.0 0.0 95.2 4.8 0.0 0.0 0.0 40.5 59.5 0.0 0.0 90.4 9.6 0.0 0.0 99.8 0.2

0.8 50 0.1 14.3 65.2 20.3 12.3 52.1 32.1 3.5 0.4 0.0 0.0 16.4 83.6 0.0 1.5 41.3 57.2 1.3 16.6 62.0 20.2

100 0.0 0.0 87.5 12.5 0.0 0.6 94.0 5.4 0.1 0.0 0.0 26.6 73.4 0.0 0.0 68.5 31.5 0.0 0.2 94.4 5.5

200 0.0 0.0 91.3 8.7 0.0 0.0 95.2 4.8 0.1 0.0 0.0 34.3 65.7 0.0 0.0 82.3 17.7 0.0 0.0 98.5 1.5

400 0.0 0.0 93.0 7.0 0.0 0.0 95.3 4.7 0.1 0.0 0.0 37.8 62.2 0.0 0.0 88.7 11.3 0.0 0.0 99.7 0.3

0.9 50 0.0 4.5 62.2 33.3 2.9 45.4 47.4 4.3 5.7 0.0 0.0 8.3 91.7 0.0 0.4 29.2 70.4 0.1 7.1 61.5 31.3

100 0.0 0.0 81.0 19.0 0.0 0.1 95.0 4.9 0.4 0.0 0.0 17.8 82.2 0.0 0.0 58.3 41.8 0.0 0.0 91.5 8.5

200 0.0 0.0 87.8 12.2 0.0 0.0 94.9 5.1 0.1 0.0 0.0 27.1 72.9 0.0 0.0 77.4 22.6 0.0 0.0 98.1 1.9

400 0.0 0.0 91.1 8.9 0.0 0.0 95.3 4.7 0.0 0.0 0.0 33.4 66.6 0.0 0.0 86.6 13.4 0.0 0.0 99.5 0.5
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TABLE 3.2: Sequential procedures for determining the co-integration rank. VAR(2) model with rank r0 = 2, i.i.d. t(5) errors [Case B]

Johansen Bootstrap AIC HQC BIC

γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 r = 0 1 2 3, 4 r = 0 1 2 3, 4

0.0 50 60.0 32.4 6.6 1.1 88.8 9.2 1.7 0.3 0.0 1.5 12.2 33.3 53.0 22.2 37.1 26.7 14.0 79.0 18.1 2.6 0.4

100 9.9 52.8 33.6 3.8 26.2 47.5 23.1 3.2 0.0 0.0 0.5 40.0 59.6 5.3 18.6 60.0 16.1 72.2 20.5 7.1 0.3

200 0.0 1.5 92.3 6.2 0.1 3.0 92.2 4.7 0.0 0.0 0.0 41.1 59.0 0.0 0.0 86.9 13.0 6.4 12.2 80.7 0.7

400 0.0 0.0 94.6 5.4 0.0 0.0 95.1 4.9 0.0 0.0 0.0 41.3 58.7 0.0 0.0 90.2 9.8 0.0 0.0 99.8 0.2

0.1 50 53.0 36.2 9.1 1.6 85.5 11.7 2.3 0.5 0.0 0.9 9.6 32.4 57.1 17.9 35.2 29.9 17.0 74.7 21.0 3.6 0.7

100 5.4 48.1 42.3 4.2 16.9 48.3 31.1 3.7 0.0 0.0 0.2 38.9 60.9 2.2 12.5 67.6 17.7 60.0 26.5 12.8 0.7

200 0.0 0.3 94.0 5.7 0.0 1.3 93.9 4.8 0.0 0.0 0.0 40.1 59.9 0.0 0.0 86.0 14.1 1.4 5.6 92.1 0.8

400 0.0 0.0 94.6 5.4 0.0 0.0 95.1 4.9 0.0 0.0 0.0 42.2 57.8 0.0 0.0 90.4 9.6 0.0 0.0 99.8 0.2

0.2 50 43.7 42.6 11.2 2.6 83.5 13.2 2.7 0.6 0.0 0.5 6.9 32.6 60.1 12.4 31.6 35.2 20.8 68.4 25.1 5.6 1.0

100 2.0 38.8 54.0 5.2 10.0 47.1 39.1 3.8 0.0 0.0 0.0 39.1 60.9 0.7 7.4 72.3 19.7 45.4 31.1 22.4 1.1

200 0.0 0.1 93.9 6.0 0.0 0.4 95.1 4.4 0.0 0.0 0.0 40.0 60.0 0.0 0.0 86.0 14.0 0.2 2.1 97.0 0.8

400 0.0 0.0 94.1 5.9 0.0 0.0 95.3 4.7 0.1 0.0 0.0 42.4 57.6 0.0 0.0 90.2 9.8 0.0 0.0 99.7 0.3

0.3 50 33.0 48.1 15.6 3.3 77.8 17.6 3.9 0.7 0.0 0.1 4.9 31.5 63.5 7.4 27.2 40.3 25.1 59.8 30.0 8.6 1.6

100 0.5 27.5 66.4 5.6 4.7 40.5 50.7 4.1 0.0 0.0 0.0 38.6 61.4 0.1 3.3 75.7 20.9 28.3 30.5 39.7 1.5

200 0.0 0.0 93.6 6.4 0.0 0.1 94.8 5.1 0.0 0.0 0.0 40.1 59.9 0.0 0.0 86.1 13.9 0.0 0.3 98.8 0.9

400 0.0 0.0 94.5 5.5 0.0 0.0 95.0 5.0 0.0 0.0 0.0 42.1 57.9 0.0 0.0 90.3 9.8 0.0 0.0 99.8 0.2

0.5 50 11.6 49.7 32.2 6.5 58.8 31.0 8.5 1.8 0.1 0.0 1.4 29.0 69.5 1.7 14.3 48.4 35.6 33.0 38.5 23.6 4.9

100 0.0 7.0 85.6 7.4 0.6 19.0 76.0 4.4 0.1 0.0 0.0 35.7 64.3 0.0 0.4 76.1 23.5 3.1 14.7 79.1 3.2

200 0.0 0.0 93.9 6.1 0.0 0.0 95.1 4.9 0.1 0.0 0.0 40.8 59.2 0.0 0.0 85.4 14.6 0.0 0.0 99.2 0.8

400 0.0 0.0 94.2 5.9 0.0 0.0 95.2 4.8 0.0 0.0 0.0 41.4 58.6 0.0 0.0 90.3 9.7 0.0 0.0 99.6 0.4

0.8 50 0.2 13.0 65.9 20.9 12.0 52.0 32.4 3.6 0.6 0.0 0.1 15.8 84.2 0.0 1.3 41.3 57.5 1.2 15.8 63.0 20.0

100 0.0 0.1 86.9 13.0 0.0 0.8 94.8 4.3 0.2 0.0 0.0 27.9 72.1 0.0 0.0 68.2 31.8 0.0 0.1 94.0 5.9

200 0.0 0.0 91.0 9.0 0.0 0.0 95.3 4.7 0.1 0.0 0.0 33.7 66.3 0.0 0.0 81.8 18.2 0.0 0.0 98.5 1.5

400 0.0 0.0 93.1 6.9 0.0 0.0 95.3 4.7 0.1 0.0 0.0 38.8 61.2 0.0 0.0 88.7 11.3 0.0 0.0 99.6 0.4

0.9 50 0.0 4.0 62.5 33.6 3.6 43.5 49.0 4.0 5.6 0.0 0.0 8.3 91.7 0.0 0.4 29.2 70.4 0.1 6.3 61.7 32.0

100 0.0 0.0 81.0 19.0 0.0 0.2 95.4 4.4 0.5 0.0 0.0 18.4 81.6 0.0 0.0 59.0 41.0 0.0 0.0 90.7 9.3

200 0.0 0.0 87.6 12.4 0.0 0.0 95.3 4.7 0.1 0.0 0.0 28.1 71.9 0.0 0.0 77.1 23.0 0.0 0.0 97.6 2.4

400 0.0 0.0 91.5 8.5 0.0 0.0 95.4 4.6 0.1 0.0 0.0 34.0 66.0 0.0 0.0 86.8 13.3 0.0 0.0 99.5 0.6
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TABLE 3.3: Sequential procedures for determining the co-integration rank. VAR(2) model with rank r0 = 2, GARCH(1,1) errors [Case C]

Johansen Bootstrap AIC HQC BIC

γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 r = 0 1 2 3, 4 r = 0 1 2 3, 4

0.0 50 61.4 31.2 6.1 1.3 88.4 9.5 1.7 0.4 0.0 1.6 13.2 33.0 52.2 22.2 38.0 26.2 13.6 80.3 17.0 2.4 0.4

100 11.0 51.9 32.9 4.3 25.3 49.2 22.5 3.0 0.1 0.0 0.4 39.6 60.0 5.6 19.7 57.5 17.1 72.6 19.9 7.2 0.3

200 0.0 1.7 91.8 6.5 0.0 3.8 91.4 4.8 0.0 0.0 0.0 40.1 59.9 0.0 0.1 85.4 14.5 7.0 13.2 78.8 0.9

400 0.0 0.0 93.1 6.9 0.0 0.0 94.8 5.2 0.0 0.0 0.0 41.4 58.6 0.0 0.0 88.7 11.3 0.0 0.0 99.6 0.4

0.1 50 53.7 36.4 8.4 1.6 85.8 11.6 2.0 0.5 0.0 0.9 10.2 33.0 55.9 17.6 35.7 30.1 16.6 75.6 20.4 3.5 0.5

100 5.7 47.7 41.6 5.0 17.1 50.1 29.2 3.6 0.0 0.0 0.2 39.3 60.5 2.6 13.3 65.3 18.8 61.9 24.8 12.8 0.6

200 0.0 0.6 92.8 6.6 0.0 1.5 93.3 5.3 0.0 0.0 0.0 39.6 60.4 0.0 0.0 85.3 14.7 2.0 6.3 90.6 1.1

400 0.0 0.0 93.1 6.9 0.0 0.0 94.7 5.4 0.1 0.0 0.0 41.3 58.7 0.0 0.0 88.8 11.2 0.0 0.0 99.6 0.4

0.2 50 44.9 41.3 11.5 2.3 81.9 14.5 2.8 0.8 0.0 0.4 7.1 32.9 59.6 12.6 32.4 34.5 20.5 69.1 24.9 5.3 0.7

100 2.3 39.6 52.4 5.7 9.4 48.0 38.4 4.1 0.0 0.0 0.1 38.5 61.4 0.9 8.2 70.6 20.4 46.5 29.8 22.8 0.9

200 0.0 0.1 93.2 6.7 0.0 0.6 94.4 5.0 0.0 0.0 0.0 39.5 60.5 0.0 0.0 85.1 14.9 0.3 2.4 96.1 1.2

400 0.0 0.0 93.0 7.0 0.0 0.0 95.2 4.8 0.1 0.0 0.0 41.4 58.6 0.0 0.0 88.8 11.2 0.0 0.0 99.6 0.4

0.3 50 34.4 46.9 15.5 3.2 77.5 18.0 3.6 0.8 0.0 0.2 4.6 32.5 62.8 7.7 28.0 39.2 25.1 60.2 30.1 8.4 1.3

100 0.6 28.7 64.4 6.3 4.2 42.4 49.1 4.3 0.1 0.0 0.0 38.0 62.0 0.2 3.6 74.5 21.7 29.4 31.3 37.8 1.4

200 0.0 0.0 93.2 6.8 0.0 0.1 94.4 5.5 0.0 0.0 0.0 39.4 60.6 0.0 0.0 85.0 15.1 0.0 0.5 98.2 1.2

400 0.0 0.0 92.9 7.1 0.0 0.0 95.2 4.8 0.0 0.0 0.0 41.2 58.8 0.0 0.0 88.7 11.3 0.0 0.0 99.5 0.5

0.5 50 12.4 49.9 31.2 6.4 59.0 30.7 8.5 1.8 0.1 0.0 1.3 28.8 69.9 1.5 15.0 48.0 35.5 34.1 38.9 22.6 4.3

100 0.0 7.8 84.5 7.8 0.3 20.4 74.9 4.4 0.0 0.0 0.0 36.2 63.8 0.0 0.3 75.6 24.1 3.6 15.5 78.0 2.9

200 0.0 0.0 92.9 7.1 0.0 0.0 94.9 5.2 0.2 0.0 0.0 38.5 61.5 0.0 0.0 84.4 15.6 0.0 0.0 98.8 1.2

400 0.0 0.0 92.8 7.2 0.0 0.0 94.7 5.4 0.1 0.0 0.0 40.8 59.2 0.0 0.0 88.4 11.6 0.0 0.0 99.6 0.5

0.8 50 0.2 14.0 64.8 21.0 12.6 52.9 31.2 3.3 0.6 0.0 0.0 15.6 84.4 0.0 1.4 40.7 57.9 1.2 16.7 61.2 20.9

100 0.0 0.0 87.0 13.0 0.0 0.6 94.3 5.1 0.2 0.0 0.0 26.5 73.5 0.0 0.0 67.5 32.5 0.0 0.2 93.8 6.0

200 0.0 0.0 90.6 9.4 0.0 0.0 94.9 5.1 0.1 0.0 0.0 33.5 66.6 0.0 0.0 80.4 19.6 0.0 0.0 98.3 1.7

400 0.0 0.0 91.8 8.2 0.0 0.0 95.0 5.0 0.1 0.0 0.0 38.3 61.7 0.0 0.0 87.2 12.8 0.0 0.0 99.3 0.7

0.9 50 0.0 4.1 61.0 34.9 3.0 44.9 47.7 4.5 5.7 0.0 0.0 8.8 91.2 0.0 0.3 28.8 70.9 0.1 7.4 60.0 32.5

100 0.0 0.0 80.4 19.6 0.0 0.2 95.3 4.5 0.7 0.0 0.0 17.7 82.4 0.0 0.0 57.1 42.9 0.0 0.0 90.8 9.2

200 0.0 0.0 87.0 13.0 0.0 0.0 95.0 5.0 0.1 0.0 0.0 26.5 73.5 0.0 0.0 75.6 24.4 0.0 0.0 97.4 2.6

400 0.0 0.0 90.5 9.5 0.0 0.0 95.0 5.0 0.1 0.0 0.0 34.6 65.4 0.0 0.0 85.6 14.4 0.0 0.0 99.3 0.7
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TABLE 3.4: Sequential procedures for determining the co-integration rank. VAR(2) model with rank r0 = 2, Autoregressive Stochastic Volatility [Case D]

Johansen Bootstrap AIC HQC BIC

γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 r = 0 1 2 3, 4 r = 0 1 2 3, 4

0.0 50 47.0 37.8 11.9 3.3 86.5 10.3 2.5 0.8 0.3 1.6 11.6 30.4 56.4 17.1 34.0 28.2 20.7 64.6 27.0 6.3 2.1

100 11.6 42.2 36.0 10.2 40.3 36.3 18.6 4.8 0.2 0.1 1.8 32.0 66.2 6.3 20.9 45.9 26.9 54.2 29.3 13.4 3.1

200 0.0 6.3 77.0 16.7 3.2 20.7 69.1 6.9 0.2 0.0 0.1 32.1 67.9 0.1 2.0 70.2 27.8 9.6 20.4 63.7 6.3

400 0.0 0.1 82.5 17.3 0.1 1.7 91.9 6.2 0.1 0.0 0.0 33.6 66.4 0.0 0.0 76.1 23.9 0.1 1.1 94.0 4.9

0.1 50 41.4 40.3 14.2 4.2 84.6 11.4 3.0 1.0 0.3 1.1 9.5 29.6 59.7 13.9 31.5 31.1 23.5 60.2 29.2 7.9 2.7

100 7.3 39.2 42.1 11.4 34.5 37.5 22.8 5.2 0.3 0.0 1.2 32.0 66.8 3.6 16.5 51.0 29.0 46.0 31.6 18.5 4.0

200 0.0 3.9 79.3 16.8 2.1 16.3 74.7 7.0 0.2 0.0 0.0 32.2 67.8 0.0 1.2 71.0 27.8 5.0 15.0 73.2 6.9

400 0.0 0.1 82.8 17.1 0.1 1.1 92.7 6.1 0.1 0.0 0.0 33.9 66.2 0.0 0.0 76.1 23.9 0.0 0.5 94.6 4.9

0.2 50 35.0 42.7 17.1 5.2 79.8 14.7 4.3 1.3 0.4 0.7 7.5 29.0 62.8 10.6 28.0 34.1 27.3 54.8 31.8 9.7 3.8

100 4.0 34.6 48.6 12.8 26.5 39.7 28.1 5.7 0.3 0.0 0.7 32.1 67.1 1.8 11.8 55.6 30.8 35.7 32.6 26.7 5.0

200 0.0 2.2 81.0 16.9 1.1 11.2 80.9 6.8 0.3 0.0 0.0 32.5 67.5 0.0 0.6 71.7 27.7 2.3 9.9 80.5 7.3

400 0.0 0.1 82.8 17.1 0.0 0.6 93.6 5.8 0.2 0.0 0.0 34.0 66.0 0.0 0.0 76.2 23.8 0.0 0.3 95.0 4.7

0.3 50 27.3 45.2 20.7 6.8 78.0 16.4 4.4 1.2 0.5 0.4 5.5 28.6 65.6 7.3 24.4 36.9 31.4 47.6 34.3 13.1 5.0

100 1.8 27.9 56.2 14.2 18.5 39.4 35.7 6.4 0.4 0.0 0.5 31.8 67.7 0.8 7.9 58.9 32.4 24.4 31.9 37.3 6.4

200 0.0 1.0 82.0 16.9 1.1 11.2 80.9 6.8 0.3 0.0 0.0 32.6 67.4 0.0 0.3 72.0 27.7 0.6 6.0 85.8 7.7

400 0.0 0.0 83.1 16.9 0.0 0.6 93.6 5.8 0.2 0.0 0.0 34.2 65.9 0.0 0.0 76.5 23.5 0.0 0.2 95.2 4.7

0.5 50 12.2 44.3 32.3 11.2 78.0 16.4 4.4 1.2 0.5 0.1 2.3 26.1 71.6 2.5 14.8 41.9 40.8 28.4 36.5 25.4 9.7

100 0.2 12.1 71.2 16.5 18.5 39.4 35.7 6.4 0.4 0.0 0.2 31.0 68.8 0.1 2.5 62.9 34.6 5.8 20.0 64.4 9.9

200 0.0 0.2 82.9 16.9 0.7 8.0 84.7 6.6 0.3 0.0 0.0 33.2 66.8 0.0 0.0 72.5 27.5 0.0 1.4 90.8 7.8

400 0.0 0.0 83.8 16.2 0.0 0.4 93.5 6.1 0.1 0.0 0.0 34.5 65.5 0.0 0.0 77.3 22.7 0.0 0.0 95.4 4.6

0.8 50 0.4 16.7 57.1 25.8 61.6 27.2 9.0 2.3 0.8 0.0 0.2 15.8 84.0 0.0 2.8 36.9 60.3 2.3 18.8 52.9 26.0

100 0.0 0.9 77.9 21.2 6.6 30.3 56.1 7.0 0.6 0.0 0.0 25.5 74.5 0.0 0.3 59.2 40.5 0.0 2.0 83.6 14.4

200 0.0 0.0 82.1 17.9 0.1 2.9 90.3 6.7 0.2 0.0 0.0 31.0 69.0 0.0 0.0 70.7 29.3 0.0 0.0 92.0 7.9

400 0.0 0.0 84.7 15.3 0.0 0.0 94.8 5.2 0.1 0.0 0.0 34.9 65.1 0.0 0.0 78.5 21.5 0.0 0.0 95.8 4.2

0.9 50 0.1 6.9 55.1 37.9 8.1 46.0 40.0 5.9 12.1 0.0 0.0 9.7 90.2 0.0 1.0 27.8 71.2 0.4 10.2 52.4 37.1

100 0.0 0.3 71.9 27.9 0.1 3.7 90.0 6.3 4.3 0.0 0.0 18.5 81.5 0.0 0.1 51.9 48.0 0.0 0.6 80.9 18.5

200 0.0 0.0 78.9 21.1 0.0 0.1 94.7 5.3 1.3 0.0 0.0 26.1 73.9 0.0 0.0 67.7 32.3 0.0 0.0 90.9 9.0

400 0.0 0.0 84.0 16.0 0.0 0.0 94.9 5.1 0.4 0.0 0.0 33.1 66.9 0.0 0.0 78.2 21.8 0.0 0.0 95.9 4.1

34



TABLE 3.5: Sequential procedures for determining the co-integration rank. VAR(2) model with rank r0 = 2, Single Volatility Break [Case E]

Johansen Bootstrap AIC HQC BIC

γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 r = 0 1 2 3, 4 r = 0 1 2 3, 4

0.0 50 23.7 48.9 23.0 4.3 75.6 18.6 4.7 1.1 0.4 0.2 5.8 29.1 64.9 4.9 25.9 39.2 30.1 39.5 39.8 16.5 4.2

100 3.1 38.6 50.1 8.2 34.3 43.9 18.3 3.5 0.7 0.0 0.8 29.8 69.4 1.2 13.9 55.7 29.2 32.7 39.8 24.3 3.2

200 0.0 2.2 85.2 12.6 0.3 19.7 74.7 5.3 0.6 0.0 0.0 29.8 70.2 0.0 0.3 73.2 26.5 3.0 16.2 77.4 3.4

400 0.0 0.0 87.3 12.7 0.0 0.0 95.1 4.9 0.5 0.0 0.0 30.3 69.7 0.0 0.0 78.8 21.2 0.0 0.0 98.2 1.8

0.1 50 19.9 49.3 25.9 5.0 73.6 19.8 5.3 1.3 0.4 0.1 4.7 28.4 66.8 4.0 23.0 40.7 32.3 35.4 40.5 18.9 5.2

100 1.9 33.5 55.5 9.2 27.1 46.9 22.2 3.8 0.4 0.0 0.5 29.5 70.0 0.7 10.8 58.0 30.6 25.2 39.7 31.1 3.9

200 0.0 1.1 86.2 12.8 0.1 13.1 81.7 5.2 0.5 0.0 0.0 29.8 70.2 0.0 0.1 73.1 26.8 1.0 9.9 85.3 3.8

400 0.0 0.0 87.3 12.7 0.0 0.0 95.0 5.0 0.5 0.0 0.0 30.4 69.6 0.0 0.0 78.8 21.2 0.0 0.0 98.1 1.9

0.2 50 16.6 48.2 29.3 5.9 69.7 22.3 6.4 1.6 0.6 0.1 3.9 27.7 68.3 3.2 20.4 41.6 34.8 30.8 41.0 21.9 6.3

100 0.9 28.4 60.4 10.3 19.3 48.9 27.5 4.3 0.7 0.0 0.3 29.6 70.1 0.3 7.9 59.7 32.2 17.8 38.6 38.9 4.8

200 0.0 0.5 86.4 13.1 0.0 7.7 87.1 5.2 0.6 0.0 0.0 30.0 70.0 0.0 0.0 73.0 27.1 0.3 5.0 90.7 4.0

400 0.0 0.0 87.1 12.9 0.0 0.0 94.8 5.2 0.5 0.0 0.0 30.4 69.6 0.0 0.0 78.8 21.2 0.0 0.0 98.0 2.0

0.3 50 12.6 47.3 33.4 6.8 65.0 26.2 7.0 1.8 0.6 0.0 3.2 27.0 69.9 2.2 17.3 42.4 38.1 25.5 41.2 25.5 7.8

100 0.4 22.0 65.9 11.7 12.2 49.1 34.5 4.3 0.7 0.0 0.1 29.3 70.6 0.1 5.0 61.6 33.3 11.0 34.6 48.6 5.8

200 0.0 0.2 86.4 13.5 0.0 3.5 91.0 5.5 0.7 0.0 0.0 30.1 69.9 0.0 0.0 72.7 27.3 0.0 2.1 93.6 4.3

400 0.0 0.0 86.9 13.2 0.0 0.0 95.0 5.0 0.6 0.0 0.0 30.5 69.5 0.0 0.0 78.8 21.2 0.0 0.0 98.0 2.1

0.5 50 6.0 41.5 42.1 10.5 50.3 36.1 11.3 2.3 1.1 0.0 1.6 24.4 74.0 0.6 11.2 43.7 44.4 14.8 38.8 34.6 11.9

100 0.1 9.3 76.7 14.0 2.8 36.9 55.0 5.3 1.2 0.0 0.0 27.9 72.1 0.0 1.3 63.0 35.7 2.0 19.1 70.4 8.5

200 0.0 0.0 85.9 14.1 0.0 0.3 94.6 5.2 1.0 0.0 0.0 30.2 69.8 0.0 0.0 72.3 27.7 0.0 0.1 95.0 4.9

400 0.0 0.0 86.6 13.4 0.0 0.0 95.0 5.0 0.8 0.0 0.0 30.5 69.5 0.0 0.0 78.7 21.3 0.0 0.0 97.8 2.2

0.8 50 0.3 19.1 58.9 21.8 12.6 52.9 31.2 3.3 0.6 0.0 0.2 16.9 82.9 0.0 3.0 37.9 59.1 2.1 21.4 52.9 23.6

100 0.0 0.5 79.9 19.6 0.0 0.6 94.3 5.1 0.2 0.0 0.0 23.0 77.1 0.0 0.0 57.5 42.5 0.0 1.3 85.8 13.0

200 0.0 0.0 83.4 16.6 0.0 0.0 94.9 5.1 0.1 0.0 0.0 27.0 73.1 0.0 0.0 69.2 30.8 0.0 0.0 94.1 5.9

400 0.0 0.0 85.2 14.8 0.0 0.0 95.0 5.0 0.1 0.0 0.0 28.7 71.3 0.0 0.0 76.9 23.1 0.0 0.0 97.4 2.6

0.9 50 0.0 9.6 58.6 31.8 3.0 44.9 47.7 4.5 5.7 0.0 0.0 11.9 88.0 0.0 1.1 30.8 68.1 0.3 12.3 54.6 32.8

100 0.0 0.1 75.6 24.4 0.0 0.2 95.3 4.5 0.7 0.0 0.0 18.7 81.3 0.0 0.0 51.8 48.2 0.0 0.2 84.1 15.8

200 0.0 0.0 80.7 19.3 0.0 0.0 95.0 5.0 0.1 0.0 0.0 23.5 76.5 0.0 0.0 65.8 34.2 0.0 0.0 92.9 7.1

400 0.0 0.0 83.6 16.4 0.0 0.0 95.0 5.0 0.1 0.0 0.0 25.9 74.1 0.0 0.0 74.4 25.6 0.0 0.0 96.9 3.1
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