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Abstract

In this paper we investigate the behaviour of a number of methods for estimating the co-
integration rank in VAR systems characterized by heteroskedastic innovation processes. In partic-
ular we compare the efficacy of the most widely used information criteria, such as AIC and BIC,
with the commonly used sequential approach of Johansen (1996) based around the use of either
asymptotic or wild bootstrap-based likelihood ratio type tests. Complementing recent work done
for the latter in Cavaliere, Rahbek and Taylor (2013, Econometric Reviews, forthcoming), we es-
tablish the asymptotic properties of the procedures based on information criteria in the presence
of heteroskedasticity (conditional or unconditional) of a quite general and unknown form. The
relative finite-sample properties of the different methods are investigated by means of a Monte
Carlo simulation study. For the simulation DGPs considered in the analysis, we find that the BIC-
based procedure and the bootstrap sequential test procedure deliver the best overall performance
in terms of their frequency of selecting the correct co-integration rank across different values values
of the co-integration rank, sample size, stationary dynamics and models of heteroskedasticity. Of
these the wild bootstrap procedure is perhaps the more reliable overall since it avoids a significant
tendency seen in the BIC-based method to over-estimate the co-integration rank in relatively small

sample sizes.
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1 Introduction

It is now well-known that sequential procedures based on the asymptotic (pseudo-) likelihood ratio
[PLR] test of Johansen (1988, 1991, 1996) for determining the co-integration rank of a VAR system
of variables integrated of order one [denoted I(1)] can have quite poor finite sample properties; see,
in particular, Johansen (2002), and the references therein. As a consequence, it is not surprising
that a number of recent papers have investigated the use of alternative methods for determining the
co-integration rank.

Information-based methods are widely used for econometric model selection and therefore provide
an appealing alternative to approaches based on Neyman-Pearson type tests for determining the
co-integration rank. A significant body of research on co-integration analysis has focused on the
issue of co-integration rank estimation based on the use of standard information criteria. Under
conditions which, among other things, rule out conditional or unconditional heteroskedasticity in the
shocks, Aznar and Salvador (2002) and Kapetanios (2000) demonstrate the weak consistency (formally
defined in Section 3) of approaches based on the familiar BIC (Rissanen, 1978; Schwarz, 1998) and
HQC (Hannan and Quinn, 1979), outlining the conditions which need to hold on the associated penalty
functions for this to obtain. Using Monte Carlo simulation, Wang and Bessler (2005) present results
which suggest that the performance of a BIC-based approach is close to that of the approach based
on PLR (trace) tests and tends to outperform the corresponding approach based on the AIC (Akaike,
1974). Indeed, Kapetanios (2004) establishes the inconsistency of the AIC-based approach, deriving
its asymptotic distribution and showing that the resulting estimate of the co-integration rank displays
a severe upward bias. Interestingly, Baltagi and Wang (2007) conduct a co-integration analysis on 165
data sets used in published studies. They find that the percentage of agreement between procedures
based on AIC, HQC, and BIC is quite low at below 60%, suggesting an apparent divergence in the
co-integration rank suggested by the different information criteria.

Many key macroeconomic and financial variables appear to be characterized by permanent changes
in unconditional volatility (see, e.g., McConnell and Perez Quiros, 2000; van Dijk, Osborn and Sensier,
2002; Sensier and van Dijk, 2004), and/or the presence of conditionally heteroskedastic shocks (see,
e.g., Gongalves and Kilian, 2004). Several authors have shown that traditional co-integration tests
can display significant upward size distortions in the presence of conditionally heteroskedasticity (Lee
and Tse, 1996; Cavaliere, Rahbek and Taylor, 2010a [CRT2010a, hereafter|) or non-stationary het-
eroskedasticity (Cavaliere, Rahbek and Taylor, 2010b [CRT2010b, hereafter]|). Specifically, CRT2010b
show that the sequential PLR method of Johansen (1996) is no longer valid, even asymptotically, in
the presence of permanent changes in the error variance. In response to this, Cavaliere, Rahbek and
Taylor (2012, 2013) [CRT2012 and CRT2013, respectively, hereafter| show that this can be rectified
by using a proper bootstrap implementation of Johansen’s sequential method. Specifically, they show
that when (i) the bootstrap samples are constructed using the restricted parameter estimates of the
underlying VAR model which obtain under the reduced rank null hypothesis, and (ii) the bootstrap

shocks are generated according to the so-called wild bootstrap re-sampling scheme, then the bootstrap



sequential procedure is consistent, in the sense that the probability of selecting a rank smaller than
the true rank converges to zero and the probability of overestimating the true rank is bounded by the
chosen significance level.

The asymptotic validity of the aforementioned information criteria based approaches to selecting
the co-integration rank have only been established under the assumption of i.i.d. shocks. Cheng and
Phillips (2012) show that the semi-parametric variants of standard information criteria approaches to
selecting the co-integration rank (including the AIC, BIC and HQC procedures) proposed by Cheng
and Phillips (2009) remain weakly consistent for the the co-integrating rank (under the same rate
conditions on the penalty term) even if the shocks display time-varying heteroskedasticity of the form
considered in CRT2010b. However, so far as we are aware, the properties of the fully parametric
information criteria based procedures mentioned above have not been analysed for the cases of either
conditionally or unconditionally heteroskedastic shocks.

The aim of this paper is to fill this gap in the literature by analysing and comparing the methods
outlined above for determining the co-integration rank in an I(1) VAR system driven by heteroskedastic
shocks. We make two distinct contributions to the literature. First, and for both the case of stationary
conditional heteroskedasticity and non-stationary unconditional heteroskedasticity, we provide suffi-
cient conditions for the information criteria to be weakly consistent as the sample size diverges. Second,
we use Monte Carlo simulation methods to compare the performance of the procedures in cases where
the innovations display time-varying behaviour in either their conditional or unconditional variances.
Our simulation study provides some important insights into the finite-sample behaviour of the different
methods of rank determination under the forms of conditional and unconditional heteroskedasticity
considered.

The remainder of the paper is organized as follows. Section [2] describes the co-integrated VAR
model with heteroskedastic innovations. Section [3| outlines the co-integration rank determination
methods considered in our analysis. In Section [f] we analyse the large sample properties of the various
methods considered. The results from our Monte Carlo simulation study are reported in Section
Section [6] concludes the paper. Proofs are relegated to the Appendix.

In the following: 2 is used to denote convergence in probability, as T" — oo; x := y to indicate
that x is defined by y; I} denotes the k x k identity matrix, Oy the k-vector of zeroes and 0,y the
J X k matrix of zeroes; for any square matrix, A, |A| is used to denote its determinant and ||A| the

norm || A||? := tr {A’A}; for any vector, , ||z|| denotes the usual Euclidean norm, ||z := («/z)"/?.

2 The Heteroskedastic Co-integrated VAR Model

We consider the p-dimensional process { X;} which satisfies the kth order reduced rank vector autore-
gressive (VAR) model:
k-1

AXy=af' X, 1+ Y TiAX, i+ ap D+ ¢dy+ep, t=1,..,T (2.1)
=1



where X; := (Xiy,..., Xp¢)" and where the initial values, X;_y,..., Xo, are taken to be fixed in the
statistical analysis. In the context of , CRT2012 define the ‘I(1,7) conditions’ to hold where the
characteristic polynomial associated with has p — r roots equal to 1 with all other roots lying
outside the unit circle, and where « and 8 have full column rank r.

The deterministic variables in are taken to satisfy one of the following cases (see, e.g., Jo-
hansen, 1996): (i) D; = 0, d; = 0 (no deterministic component); (ii) D; = 1, d; = 0 (restricted
constant); or (iii) Dy =t, d; = 1 (restricted linear trend). The innovation process e; := (€1, ..., pt)’ is

assumed to satisfy one of the following three assumptions outlined in CRT2013:

Assumption V The innovations {g;} are independent and identically distributed with zero mean

and a variance matrix ¥ of full-rank and satisfy the condition E ||g;||* < K < oo .

Assumption V’ With respect to the filtration F;, where 7,1 C F; for t = ...,—1,0,1,2,...; the
innovations {e;} form a martingale difference sequence and satisfy E ||g;||* < K < oo and the global

homoskedasticity condition:

T

1

= E (el Fior) BT > 0. (2.2)
t=1

N

Assumption V” The innovations {e;} are defined as &; = o2, where 2 ~ 4.i.d. (0, I,) with E || z¢||*
K < oo and the matrix oy is non—stochasticﬂ and satisfies o, := o (t/T) for all t = 1,...,T, where
0 (-) €Drex»[0,1]. Furthermore, ¥ (u) := o (u) o (u)’ is assumed to be positive definite for all u € [0, 1].

Remark 1 As pointed out by CRT2013, Assumption V represents the basic assumption on &
considered by Johansen (1996) with the Gaussianity assumption relaxed to a fourth-order moment
requirement. Assumption V’ is introduced by CRT2010a for dealing with innovation processes that
are serially uncorrelated and potentially conditionally heteroskedastic. In particular, Assumption
V’ allows for, among other things: multivariate stable GARCH-type models and the autoregressive
stochastic volatility models considered in Gongalves and Kilian (2004), and models with deterministic
or periodic heteroskedasticity. The condition in of Assumption V’ implies the so-called global
stationarity (see, e.g., Davidson, 1994, pp. 454-455) which allows the conditional (and, consequently,
unconditional) variance of &; to be time-varying, provided that it is asymptotically stable over all
possible fixed fraction of the data (see Remark 2.1 in CRT2010a). Assumption V" allows the elements
of the innovation covariance matrix to display a countable number of jumps, provided that %; := o0}
is bounded. Therefore, for example, denoting the (¢,7)th element of ¥(u) by ¥;;(u), the case of a
single break at time |77'] in the covariance E(es¢cj;) obtains for 3;; (u) = E?j + (E}j - E%)H (u>T).

Remark 2 In the case where the I(1,r) conditions are satisfied and either Assumption V or V’
holds, Xy is I(1) with co-integration rank 7 such that the co-integration relations 8'X; — F (8'X})

are stationary (Assumption V) or globally stationary (Assumption V’). In general, the co-integration

L As noted by CRT2013, the requirement that o, is non-stochastic is only made to simplify the analysis and can be
generalised to allow for cases where o () is stochastic and independent of z;; see Remark 2.2 of CRT2010b for further

details.



relations are not stationary under Assumption V7, since oy is time-varying. However, 5'X; — F (8'X})

is free of stochastic trends and, thus, can be considered as stable (CRT2010b).

3 Co-integration Rank Determination Methods

In this section we briefly outline the methods for the co-integration rank determination considered
in this paper. In addition to the well-known sequential likelihood ratio test of Johansen (1996) and
its bootstrap counterpart (CRT2012 and CRT2013), we consider the most widely used information
criteria (BIC, AIC, and HQC).

3.1 Sequential (standard and bootstrap) Likelihood Ratio Tests

Assuming knowledge of the lag length parameter k in (2.1)), the well-known PLR test of Johansen
(1996) for the hypothesis of co-integration rank (less than or equal to) r in (2.1)), denoted H (r),

against H (p), rejects for large values of the trace statistic,

p
Qrr=-T Y log(1-X\),

i=r+1

where A\; > ... > j\p are the largest p solutions to the eigenvalue problem,
|AS11 — S10S00 So1| = 0, (3.1)

where S;; :=T7! ZtT:1 Rit Ry, 4,5 = 0,1, with Ro; and Ry respectively denoting AX; and (X1, Dt)/,
corrected (by OLS) for AX;_1,...,AX;_jy; and d;. The sequential testing procedure based on Q.
consists of, starting with r = 0, testing iteratively H(r) against H(p), for r = 0,...,p — 1, until, for a
given value of r, the asymptotic p-value associated with @, 7, exceeds a chosen (marginal) significance
level. In what follows we will denote this estimator as 7pyg.

The analogous bootstrap estimator of the co-integrating rank, denoted 7prr in what follows,
obtained from the bootstrap analogue of the foregoing sequential procedure is proposed in CRT2012

and CRT2013 and iterates over the following steps, starting from r = 0:

(i) Estimate model (2.1) under H(r) using Gaussian pseudo maximum likelihood yielding the esti-
mates B(’"), &) ), ng), e r 1(21 and ¢("), together with the corresponding residuals, ér,t

(i) Check that the equation |A() (z) | = 0, with A (2) := (1 — 2) [,—a® BV 2= 8= F0) (1 — 2 20,

has p — r roots equal to 1 and all other roots outside the unit circle. If so, proceed to step (iii).

2The estimates 3" need to be defined as (™ := VK;,”, where K,(,T) = (Ir,0rx (p—r))" is a selection matrix indexed by
r and p, and, when deterministic terms are included, %) := (30, sy = VKZ(Ql. Here V = [01,..., 0p], normalized
by V'SuV = I,, denotes the eigenvectors corresponding to the ordered eigenvalues Mo> > j\p which solve the
determinantal equation in . See CRT2012 for further details.



(iii) Construct the bootstrap sample recursively from

k—1
AX), = @(T)B(T)/X:,t—l + ngr)AX:,t—i + @(r)ﬁ(r)/Dt + (JAS(T)dt tery, t=1,..,T
i=1
initialised at X, = X;, j =1—k,...,0, and with the T bootstrap errors 7, generated using the

. A A~ _ T ~ .
re-centred residuals, &5, := &, — T~ Y .| &, for either:

(a) the ii.d. bootstrap, such that &7, = &7, , where Us, t = 1,...,T is an i.i.d. sequence of

discrete uniform distributions on {1,2,...,T}, or

(b) the wild bootstrap, where for each t = 1,...,T, &, := & w;, where wy, t = 1,...,T, is an

i.i.d. N(0,1) sequence.

(iv) Using the bootstrap sample, {X;;}, and denoting by M> > 5\; the ordered solutions to
the bootstrap analogue of the eigenvalue problem in (3.1]), compute the bootstrap LR statistic
wp = =T Zf:T_H log(1 — 5\;*) Define the corresponding p-value as p;, :=1— G} p (Qr1),

»7(+) denoting the conditional (on the original data) cdf of @} ;.

(v) If py. 7 exceeds the significance level, n, set 7pLr = r, otherwise repeat steps (i)—(iv) testing the

null of rank (r + 1) against rank p if r +1 < p, or set fgrr =pif r+1=p.

CRT2013 show that, in the presence of heteroskedasticity in the innovation process, the procedure
based on the wild bootstrap significantly outperforms its i.i.d. bootstrap analogue. Consequently, we
will only report simulation results in what follows for the wild bootstrap procedure; i.e., option (b) of

step (iii) of the algorithm.

3.2 Information Criteria

The general form of the information criterion we consider in this paper is given by IC(r) = =207 (r) +
pr(r), where £p(r) is the maximised log-likelihood function under rank r and pp(r) = cpm(r) denotes
the penalty function which depends on the number of parameters 7(r) and on the term ¢p which may
depend on the sample size T

Information criteria for determining the co-integration rank can thus be computed using the resid-
ual covariance matrix 3(") estimated from the conventional reduced rank regression outlined in the
previous subsection (see, e.g., Johansen, 1996)E| In particular, up to a constant term which does not

depend on r, the maximised log-likelihood is given by ¢ (r) = —% log ’ﬁ](?’) where

’gm

= [Sool JT (1 = )
=1

3 Again knowledge of the lag length parameter k in (2.1)) is therefore also assumed in the context of the information

criterion-based methods which follow.



and \y > ... > ), are the r largest ordered eigenvalues obtained solving the determinantal equation

in (3.1). Consequently, the general criterion used to assess co-integration rank is given by

IC(r) :=T'log )f](r)

+ erm(r) (3.2)

where 7(r) = r(2p — r) when no deterministic component is involved, 7(r) = 7(2p — r + 1) in the case
of restricted constant, and 7(r) = 7(2p —r+ 1) 4+ p in the restricted trend case. Different values of the
coefficient cr yield different information criteria through the resulting penalty function, pr = epm(r).
The most widely used are BIC, HQC and AIC where ¢y = logT, 2loglogT, and 2, respectively,
thereby yielding:

BIC(r) := Tlog ‘i“’)

+ (log T)m(r), (3.3)

HQC(r) := Tlog ji(”

+ 2(loglog T')m(r), (3.4)

and

AIC(r) := Tlog )2“) + 2 (r). (3.5)

The co-integration rank estimator is then given, in generic form, by

TIC = arg T:%nlin ) IC(r).

With an obvious notation, the resulting co-integration rank estimators corresponding to the BIC,

HQC and AIC will be denoted 7pic, THqc and Faic.

4 Asymptotic Analysis

In this section we discuss and compare the asymptotic properties of the rank determination methods
outlined in the previous section. In doing so, we complement the asymptotic analysis in CRT2012 and
CRT2013 on (standard and bootstrap) sequential likelihood ratio testing and provide new results on
the large-sample properties of information criteria in the presence of conditional and unconditional
heteroskedasticity.

In what follows we let rg denote the true co-integration rank and, commensurately, in what follows

we will often refer to the case where the parameters of (2.1) satisfy the I(1, r9) conditions.

4.1 Sequential (standard and bootstrap) Likelihood Ratio Tests

It is known from results provided in Johansen (1996) and CRT2010a that the estimator of the co-
integration rank obtained using the sequential procedure based on Johansen’s asymptotic PLR test is
consistent under i.i.d. shocks and conditionally heteroskedastic shocks satisfying Assumption V’; but
that this is not the case when the shocks are unconditionally heteroskedastic, as in Assumption V”.

For convenience we summarise these results in the following theorem.



Theorem 1 Let {X;} be generated as in with the parameters satisfying the I(1, ro) conditions.
Then, under either Assumption V or V', for a chosen significance level n, limy_,oo P (fprr =71) =0
forallr =0,1,...,r0 — 1; limp_,oo P (Fprr =1r0) = 1 —n forr =rg and limp_, P (Fprr =71) <1 for
allr =ro+1,...,p. Under Assumption V", for any chosen significance level, limp_,o P (fprr =1) =0
forallr=0,1,...,79 — 1.

Taken together, the results in Theorem |l|imply that the sequential procedure based on the asymp-
totic PLR tests (using standard asymptotic critical values) will never underestimate the co-integration
rank in large samples. However, as shown in CRT2010b, this procedure will likely over-estimate the
true co-integration rank, even in large samples, when unconditional heteroskedasticity of the form
given in Assumption V”is present in the shocks, owing to the dependence of the limiting null distribu-
tion of the PLR statistic, (), 7, on nuisance parameters relating to the pattern of heteroskedasticity
present. CRT2013 show that a consistent procedure can, however, be obtained by using the bootstrap
tests from Section CRT2013 demonstrate that, under Assumptions V and V’; the sequential pro-
cedure based on either the i.i.d. or wild bootstrap algorithm is consistent, but that only the latter
bootstrap algorithm delivers a consistent sequential procedure under Assumption V”. These results

relating to the bootstrap procedures are summarized in the following theorem.

Theorem 2 Let {X;} be generated as in (2.1)) with the parameters satisfying the I(1, ro) conditions.
Moreover, suppose that the limiting nonzero eigenvalues from (3.1)) are distinct. Then,

(i) under either Assumption V or V'’ and for either the i.i.d. or wild bootstrap re-sampling design in
step (iii), for a chosen significance level n, limp_ooP (Fprr =7) =0 for allr =0,1,...,r9 — 1;

limr—oo P (FBLr = 10) = 1 —n forr =ro; and limp_oo P (Tprr =1) <1 for allr =ro+1,...,p;

(ii) under Assumption V7, for the wild bootstrap re-sampling design in step (iii)(b), for a chosen
significance level ), limr_oo P (Fprr = 1) = 0 for allr = 0,1, ...,70—1; limp oo P (fpLr = 70) =

1 —n forr=ro; and limp_oo P (FeLr =7) <n for allr =ro+1,...,p.

4.2 Information Criteria

It is well-known (see, inter alia, Paulsen, 1984; Nielsen, 2006) that the BIC and HQC, but not the
AIC, provide weakly Consistentﬂ estimates of the lag order k in both pure I(0) and pure I(1) finite-
order VAR models driven by either i.i.d. or martingale difference shocks, provided c¢r in the penalty
function analogous to that given in is such that ¢z — oo and ¢p/T — 0 as T' — oco. Aznar and
Salvador (2002) and Kapetanios (2000) show that the same conditions on c¢r ensure that 7pic and
THQC, as defined in Section are weakly consistent for the co-integration rank in in the case of

where the shocks are i.i.d. (Assumption V), but that this does not hold for #a1c which is inconsistent.

4An estimator T, is defined to be weakly consistent if it converges in probability to the true value of the unknown

parameter 6; i.e. T), = 6.



In Theorem 3 we now extend the results in Aznar and Salvador (2002) and Kapetanios (2000) to
provide sufficient conditions on the penalty term that guarantee consistency under conditional and

unconditional heteroskedasticity of the form given in Assumptions V’ and V”.

Theorem 3 Let {X;} be generated as in (2.1) with the parameters satisfying the I(1, ro) conditions.
Then, under either Assumption V, V’, or V7, it holds that, as T — oo:

(i) for r > ro, Prob(IC(r) > IC(ro)) — 1, provided cp— o0,
(i) for r < ro, Prob(IC(r) > IC(ro)) — 1, provided c¢p/T—0.

Hence, if F + é—)O, Fre S .

Remark 3 An immediate corollary of the results in Theorem 3 is that the BIC and HQC based
estimators, 7pic and 7aqQc, respectively, are weakly consistent for the co-integration rank while the
corresponding AIC estimator, 7a1c, is not because its penalty function does not satisfy the rate
conditions on cr stated in the theorem. These results hold regardless of whether the innovations
satisfy Assumption V, V', or V”. Notice that because AIC violates the rate condition required in (i)
it will be an asymptotically upward biased estimator of the co-integration rank regardless of whether
Assumption V, V’, or V” holds.

Remark 4 It is seen from the results in Theorem [3| that the conditions required on cr to ensure
the weak consistency of the BIC and HQC based co-integration rank estimators in the presence of
conditional and unconditional heteroskedasticity are precisely the same as shown to be required for
consistency under i.i.d. shocks by Aznar and Salvador (2002) and Kapetanios (2000). This is because
the consistency of these estimators derives from the asymptotic order of the \;, i = 1, ..., p, rather than
from their exact limits. Since the former is not influenced by the presence of heteroskedasticity in the
innovations, the 7pic and 7Hqc estimators remain consistent under Assumptions V’ and V”. However,
we anticipate that the finite sample behaviour of these procedures are likely to be affected by both
the limiting distribution of Tj\i, for ¢ = r9 + 1, ..., p, and the heteroskedastic form of the innovation

process. This will be investigated further in the next section.

5 Numerical Results

Using Monte Carlo simulation we investigate the finite sample performances of the methods for es-
timating the co-integration rank outlined in Section [3| under both homoskedastic models and models
with conditional or unconditional heteroskedasticity.

As our simulations DGP we will consider an extended version of the simulation DGP used in
CRT2013, given by the following VAR(2) process of dimension p = 4:

AXt = aﬁlXt_l + FlAXt_l + &4, t= 1, ,T (51)



with £; a martingale difference sequence (see below for specification details), Xo = AXy = 0, and for

sample sizes T € {50,100, 200,400}. The long-run parameter vectors are set to

1 0 00 0 00
B = and o = | ° . (5.2)
0100 0b 00

Furthermore, we set I'y := ~1y, so that the I(1,r) conditions are met, provided |y| < 1. In the
following, results are reported for v € {0.0,0.1,0.2,0.3,0.5,0.8,0.9}. Notice that the system in (5.1))
approaches the I(2) boundary as - approaches unity.

In the context of we consider for the individual components of ¢; the univariate innovation
processes and parameter configurations used in CRT2013 which correspond to those used in section
4 of Gongalves and Kilian (2004) and in section 5 of CRT2010b, to which the reader is referred for

further discussion. These are as follows:

e Case A. ¢, i=1,...,p, is an independent sequence of N (0, 1) variates.

e Case B.¢;, 7 =1, ..., p, is an independent sequence of Student ¢ (v) (normalised to unit variance)

variates. Results are reported for v = 5.

e Case C. ¢ is a standard GARCH (1,1) process driven by standard normal innovations of the
form e = hilt/Qvit, i = 1,...,p, where v; is i.i.d. N(0,1), independent across i, and hy; =

w+ d0522t_1 + dihit—1,t=0,...,T. Results are reported for dy = 0.05 and d; = 0.94.

e Case D. ¢ is the first-order AR stochastic volatility [SV] model: e;; = vizexp (hi), hi =
Ahii—1 + 0.5&;, with (&, v) ~ 1.i.d. N(O,diag(ag, 1)), independent across ¢ = 1, ..., p. Results
are reported for A = 0.951, o¢ = 0.314.

e Case E. ¢;; is a non-stationary, heteroskedastic independent sequence of N (O,aizt) variates,
where 0 = 1 for t < |T'7| and 02 = k for t > |T'7|, all i = 1,...,p. Results are reported for

7 =2/3 and x = 3 (late positive variance shift).

Both Cases A and B satisfy Assumption V (i.i.d. shocks). Under Case C, for the chosen parameter
configuration, ¢; is globally stationary with finite 4 order moments and, thus, satisfies Assumption
V’. Similarly, the SV model of Case D is strictly stationary with bounded fourth order moments;
see Carrasco and Chen (2002), and, hence, also satisfies Assumption V’. Finally, Case E involves a
single, permanent shift in the innovation variance, thus leading to error sequences which are globally
heteroskedastic and satisfy Assumption V7.

All experiments are run over 10,000 Monte Carlo replications. For the bootstrap tests, any replica-
tions in which the algorithm generates explosive samples are discarded and the experiment continues
until 10,000 valid replications are obtained. For each bootstrap procedure we report the frequency with

which such violations occurE| The number of replications used in the wild bootstrap algorithms is set

5 As shown in CRT2012 and CRT2013 the frequency of times with which the bootstrap algorithm fails to generate I(1)
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to 399. The PLR and bootstrap PLR tests were all conducted at the nominal 0.05 significance levelﬁ
Throughout the Tables of results which follow the frequencies with which the various procedures select
the true co-integration rank are highlighted in bold text.

We first consider the case of no co-integration in Section then the case of a single co-integration
vector in Section [5.2) and finally two co-integration relations in Section In each of these three cases
a restricted constant was fitted for the deterministic component. The corresponding results for the

restricted trend will also be discussed at the end of this sectionm

5.1 The No Co-integration Case (o = 0)

We first report results for the case of no co-integration (ro = 0) which obtains by setting a = b =0 in
the long-run parameter vector « in . In this case reduces to the VAR(1) in first differences,
AXy =T1AX 1 +e, t=1,..,T.

We first consider the frequencies of co-integration rank determination for the sequential procedures
of the different methods for Case A (i.i.d. Gaussian shocks) and Case B (i.i.d. ¢(5) shocks), which are
reported in Tables 1.1 and 1.2, respectively.

[ TABLES 1.1-1.2 ABOUT HERE ]

Since all the tests are run at the (asymptotic) 5% significance level, both the sequential procedures
based on the standard asymptotic PLR and the wild bootstrap should (in the limit) select » = 0
with probability 95% and r > 0 with probability 5%. The results in Tables 1.1 and 1.2 show that
the standard sequential procedure based on @, can display very poor performance relative to this
asymptotic benchmark, in particular when v = 0.8 or 0.9, or where the sample size is not very large.
For example, when v = 0.9 and T' = 50 and with Gaussian shocks the standard procedure over-fits the
co-integration rank about 95% of the time, selecting a rank of either 3 or 4 over 40% of the time, even
though the true rank is zero. For T' = 400 the behaviour of the standard procedure in this example is
much improved although it still overestimates the co-integration rank in about a quarter of cases. In
contrast, and in line with the results in CRT2013, the analogous sequential procedure based on the
bootstrap Q7 tests is seen to deliver far superior finite sample performance throughout. In almost
all cases the empirical frequency with which it selects the true co-integration rank lies very close to
95%. A comparison between the results in Tables 1.1 and 1.2, suggests that both the asymptotic
and bootstrap sequential procedures are little affected by whether the shocks are Gaussian or t(5)

distributed.

samples, thus violating the root check condition denoted in step (ii), is quite low. The percentages reported in columns
labelled RC in Tables 1.1-1.5, 2.1-2.5, and 3.1-3.5 confirm their results. A notable number of violations are seen to occur
when volatility is persistent (Cases D and E) and the sample size is very small (T" = 50), but the frequency of such

failures decreases rapidly as the sample size increases.
6 All the simulations reported in the paper were programmed using MATLAB. Our MATLAB programs are available

on request.
"For the standard PLR. tests the asymptotic critical values used are taken from Table 15.2 of Johansen (1996).
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Consider next the results for the information criteria in Tables 1.1 and 1.2. In line with results
reported in previous studies (see, e.g., Kapetanios, 2004; Wang and Bessler, 2005) the AIC-based
procedure is shown to be completely unreliable. Even in the simplest case where v = 0 and the shocks
are Gaussian, the AIC-based procedure detects the true co-integration rank, ro = 0, around 7% of the
time for T" = 50, increasing to only 20% for T' = 400E| The performance of the AIC-based procedure
is even worse when v # 0. In contrast, the BIC-based procedure generally performs well. Indeed BIC-
based procedure selects r = 0 at least 98.9% of the time when 7" = 200 and reaches (or approaches)
100% when T = 400, for all values of v considered and regardless of whether the shocks are Gaussian
or t(5) distributed. However, the BIC-based procedure does display a significant tendency to over-
estimate the co-integration rank when the sample size is small (7" < 100), with this effect becoming
stronger, others things being equal, as v increases. The HQC-based procedure is dominated by the
BIC procedure throughout the results in Tables 1.1-1.2 but is clearly preferable to the AIC procedure.

We now turn to a discussion of the results for the two (stationary) conditionally heteroskedastic
processes specified in Cases C (independent stationary GARCH(1,1) processes) and D (stationary
autoregressive SV processes) above. For rg = 0, results for the different methods are reported in
Tables 1.3 (Case C) and 1.4 (Case D).

[ TABLES 1.3-1.5 ABOUT HERE |

Comparing the results in Table 1.3 with those in Tables 1.1 and 1.2, it is seen that the results for
each of the various procedures under stationary GARCH(1,1) errors are very similar to those obtained
under i.i.d. Gaussian and ¢(5) errors (Cases A and B). However, and in line with the simulation results
reported in CRT2010b and CRT2013, a comparison of the results in Tables 1.4 with those in Tables
1.1 and 1.2 shows a significant decline in the behaviour of the standard sequential procedure under
the autoregressive SV modelﬂ Of the two stationary conditionally heteroskedastic innovation process
considered, the autoregressive SV (Case D) model clearly highlights the benefits of using a sequential
procedure based on the wild bootstrap tests rather than the standard PLR tests. Indeed, throughout
Table 1.4 the empirical frequencies with which » = 0 is selected by the sequential procedure based
on the wild bootstrap Q;'7 tests remain close to 95%. Like the standard sequential procedure, the
finite sample performance of the information criteria-based methods is also affected by the presence
of SV in the shocks. For T' = 50, the most reliable of these, the BIC-based procedure, selects the
true co-integration rank 74.8% of the time when v = 0 and this frequency drops to 35.4% when
v = 0.9. As with the previous cases considered, the performance of the AIC-based procedure is

highly unsatisfactory, while the HQC-based procedure shows markedly worse performance than in the

8Notice, of course, that the tendency of the AIC-based procedure to overestimate the co-integration rank will neces-
sarily appear most pronounced in the current scenario where the true co-integration rank is zero, as compared say to a

case where the true rank was closer to the VAR dimension, p.
9As explained in CRT2013, the chosen parameter configuration for Case D implies relatively strong serial dependence

in the conditional variance of the innovations, which has a considerable impact on the finite sample performance of

asymptotic PLR test.
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previous cases considered such that, for example, it even has difficulty in identifying rg = 0 even when
T = 400.

We next turn to a discussion of the results for the non-stationary heteroskedastic model in Case
E. The results are reported in Table 1.5. Under a single, permanent shift in volatility the sequential
procedure based on the asymptotic test is seen to be extremely unreliable: even in the case where
~ =0 and T = 400, the frequency of determining the true co-integration rank remains below 60%.
Conversely, the procedure based on the wild bootstrap remains reliable at least in the larger sample
sizes reported. However, when T = 50, the wild bootstrap-based sequential procedure shows a slight
tendency to over-estimate the co-integration rank, although this is quickly ameliorated as the sample
size increases; for example, when v = 0.9 (7 = 0), the frequency of detecting rg = 0 when 7' = 50
is 86.9% (90.0%), increasing to 94.7% (94.5%) for T' = 400. The finite sample performances of all of
the information criterion-based procedures are clearly affected by the presence of a single volatility
break. The BIC-based procedure remains the most reliable of the information-based methods but,
nonetheless, it does badly over-estimate the co-integration rank for sample sizes smaller than 7" = 200.
However, for samples of size T" = 200 and larger the BIC-based procedure tends to over-estimate the
co-integration rank less frequently than the wild bootstrap approach. In contrast the HQC-based
and, in particular, AIC-based procedures appear very unreliable in the presence of unconditional
heteroskedasticity; indeed, even for v = 0 and T" = 400, the frequency of identifying ro = 0 is 4.3%
and 64.1% for AIC and HQC, respectively.

Overall then, our results for the non-co-integrated case, suggest that the sequential procedure based
on the wild bootstrap algorithm provides reliable results for all the conditional and unconditional het-
eroskedastic processes considered. Among the information criteria, the BIC-based procedure performs
well in many cases analysed, particular so when the sample size is large where it often outperforms
the wild bootstrap-based procedure. In contrast the HQC-based and, in particular, the AIC-based
procedures do not appear reliable in practice, most notably so where unconditional heteroskedasticity

is present.

5.2 The Co-integrated Case with ry =1

We now consider the case of a single co-integration vector. In this case, as in CRT2012 and CRT2013
we consider the VAR(2) in (5.1)) where we set a = —0.4 and b = 0 in the long-run parameter vector «
in (5.2)), thus obtaining 8 = (1,0,0,0) and o’ = (—0.4,0,0,0). For these parameter combinations, X}

is I(1) with co-integrating rank ro = 1.

[ TABLES 2.1-2.2 ABOUT HERE |

The results for i.i.d. shocks, analogous to those reported in Tables 1.1 and 1.2, are reported in
Tables 2.1 (Gaussian shocks) and 2.2 (¢(5) shocks). These results again confirm the simulation findings
of CRT2012 that the standard sequential procedure again performs poorly in the rg = 1 case under

both Gaussian and #(5) shocks. In contrast, the sequential procedure based on the wild bootstrap again
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performs reasonably well selecting the true co-integrating rank close to the nominal 95 % frequency
in most cases when 1" > 200, especially so where v is large. However, when the sample size and the
value of parameter v are small, namely 7" < 100 and v < 0.3, it is seen that the bootstrap sequential
procedure based on Q:’% displays a tendency to under-estimate the co-integration rank selecting » = 0,
rather than the true rank of one, at least 50% of the time. As regards the information criterion-based
methods, the results in Tables 2.1 and 2.2 show that the BIC-based approach correctly identifies the
true co-integration rank, rg = 1, almost 100% of the time when T = 400, under both Gaussian and
t(5) shocks. However, as was seen for the ro = 0 case, its performance is affected by the value of ~;
specifically its performance is significantly better when -~ is large (7 > 0.5), although this property
in itself is largely an artefact of the tendency of the BIC-based approach to over-estimate the co-
integration rank in such cases in the rp = 0 case seen in Tables 1.1 and 1.2. When v < 0.3 and the
sample size is small, T" < 100, the HQC-based procedure is preferable to the BIC-based procedure for
both Gaussian and ¢(5) shocks, although again this is largely an artefact of the greater tendency of
the former to over-estimate the co-integration rank in such cases when ro = 0. The results in Tables
2.1-2.2 again highlight the inadequacy of the AIC-based procedure.

We now turn to the results for the two (stationary) conditionally heteroskedastic processes, Cases

C and D, which are reported in Tables 2.3 and 2.4, respectively.

[ TABLES 2.3-2.5 ABOUT HERE ]

As with the corresponding results for rg = 0, reported in Tables 1.1-1.4, the performances of all of
co-integration procedures considered are little affected by the form of conditional heteroskedasticity
specified under Case C, relative to the case of i.i.d. shocks, but are significantly affected under the
autoregressive SV model specified in Case D. For example, while the standard sequential procedure
based on the asymptotic PLR tests correctly estimates the true rank 94% of the time when v = 0 under
i.i.d. shocks when T' = 400 this reduces to only 80% under SV. In contrast, the wild bootstrap-based
sequential procedure again works well, especially when 7" = 400 and ~ is large. Among the information
criterion-based procedures, the BIC-based approach appears overall to be the most reliable under SV,
except where both v and T are small in which case the HQC-based approach is preferable. Indeed,
except for the case where v = 0.9, the BIC-based procedure outperforms the wild bootstrap-based
procedure in terms of its frequency of selecting the true co-integration rank, although once again this
is largely attributable to the tendency shown by the former to over-estimate the rank when rg = 0;
see Table 1.4.

We conclude this section by turning to the results reported in Table 2.5 for the non-stationary
heteroskedastic Case E. As was previously observed in Section for the non-co-integrated model,
the finite sample performances of all of the procedures considered are strongly affected by the presence
of a single, permanent shift in the innovation variance. In particular, even for T' = 400, the standard
sequential procedure correctly estimates the true co-integration rank only around 75% of the time

when v < 0.5, with this frequency being even lower when v > 0.8. In contrast, for T' = 400, the wild
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bootstrap-based sequential procedure correctly estimates the co-integration rank to be one at close to
the nominal 95% level, confirming its superiority over the standard procedure based on @, r in large
samples under non-stationary volatility. It should be stressed, however, that for small values of v and
T, the wild bootstrap-based procedure tends to underestimate the co-integration rank; for example,
when v = 0.3 and T' = 100, it determines the true co-integration rank only 40.1% of the time, while it
selects r = 0 with frequency 54.3%. Overall, for these combinations of v and T', the standard Johansen
procedure outperforms the corresponding wild bootstrap procedure, although again this is an artefact
of the relative size properties of these tests; cf. Table 1.5. The ability of the information criterion-based
approaches to detect the true co-integration rank also deteriorates under Case E. For example, in the
presence of a single break in volatility and where v = 0.5, the BIC-based procedure estimates the rank
to be one around 48% when T' = 50, increasing to around 74% (95%) when T' = 100 (7" = 200), and
above 98% when T' = 400. Under Case E the BIC-based procedures again significantly outperforms
the HQC- and AIC-based procedures. Moreover, as was seen under Case D, the BIC-based procedure
again significantly outperforms (although again the behaviour of these procedures under ry = 0 partly
explains these differences) the wild bootstrap-based procedure except when ~ is large (v > 0.8) where
this can be reversed.

Overall, when there is a single co-integration relation in the DGP, the sequential procedure based
on the wild bootstrap algorithm displays very good performance for all the forms of heteroskedasticity
considered when the sample size is large. Among the information criteria methods, the BIC-based
procedure delivers the best performance with different heteroskedastic innovation processes having

only limited impact on its efficacy.

5.3 The Case of Two Co-integration Relations, ry = 2

The case of two co-integration relations is obtained by setting a = b = —0.4 in the long-run vector «
in (5.2) of the VAR(2) model in (5.1]). In this case, X; is I(1) with co-integrating rank roy = QF;UI The
associated results for the five configurations of the innovation process &; specified in Cases A-E are
reported in Tables 3.1-3.5.

[ TABLES 3.1 - 3.5 ABOUT HERE |

From the results in Tables 3.1-3.5, it can be noted that, when the sample size is large, the perfor-
mance of the standard sequential procedure again deteriorates when moving from i.i.d. and GARCH
innovations (Cases A, B, and C) to SV and unconditionally heteroskedastic shocks (Cases D and E).
However, perhaps surprisingly, for the smaller values of T' considered, the sequential procedure based
on Q.7 tends to determine the true co-integration rank, ro = 2, more frequently under Cases D
and E than it does under Cases A-C. This is particularly evident when v is small. Conversely, the
bootstrap-based procedure shows excellent overall performance when the sample is large; for exam-

ple, when T' = 400, the true rank is selected close to the nominal frequency of 95% for all the cases

10The case of 7o = 2 is not analysed in CRT2012 or CRT2013.
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considered. However, when T' = 50, the standard sequential procedure outperforms the correspond-
ing bootstrap procedure, regardless of the value of the autoregressive parameter v and the form of
heteroskedasticity considered (although again we note that this is largely an artefact of the relative
sizes of the tests involved in the bootstrap and standard procedures). This pattern is also observed
when T = 100 and v < 0.5. As was already noted in Sections and the BIC-based approach
clearly outperforms the corresponding HQC- and AIC-based approaches when the sample size is large
(i.e., T' > 200), for all values of v considered. Moreover, it can be observed from the results in Tables
3.1-3.5 that the small sample performance of the BIC-based approach tends to improve as - increases.
Where the sample size is small (7' < 100) and when v < 0.5 the HQC-based procedure outperforms
the BIC-based procedure. The AIC-based procedure again tends to over-estimation rank; this is less
pronounced than was the case for ro = 1 and r¢ = 2 for the reasons discussed in footnote 8.

Thus far we have only discussed the case of a restricted constant. We also repeated the foregoing
experiments for the restricted trend case. We do not report these results here but they are available
from the authors on request. Overall, and as might be expected, the results for the restricted trend
case are qualitatively similar to the corresponding restricted constant results, but with an overall
deterioration observed in the performance of all of the procedures the more so the smaller the sample
size, other things being equal. An interesting exception to this general pattern is seen for the BIC-
based approach whose performance in the restricted trend case is, if anything, improved rather than

worsened relative to the restricted constant case when rg = 1 or 2 and where the value of 7 is small.

6 Conclusions

In this paper we have analysed the performance of various methods for determining the co-integration
rank in heteroskedastic VAR models. We have compared the efficacy to do so of the standard sequential
procedure based on the asymptotic PLR test of Johansen (1996), the wild bootstrap analogue of this
procedure due to Cavaliere, Rahbek and Taylor (2010a, 2010b, 2013), and methods based on widely
used information criteria (specifically, AIC, HQC, and BIC). For all these methods, we have evaluated
their asymptotic properties in the presence of heteroskedasticity (conditional or unconditional) in the
shocks of a quite general and unknown form, complementing the results given in Cavaliere, Rahbek
and Taylor (2013), and conducted a Monte Carlo simulation study into their relative performance
in finite samples. Our numerical results have suggested that the BIC-based procedure and the wild
bootstrap sequential test procedure are the most reliable of the available methods for determining
the co-integration rank, at least for the simulation DGPs considered. The BIC-based method was
competitive and even, in certain cases, displayed superior performance to the wild bootstrap proce-
dure for larger sample sizes (noting that, in contrast to the BIC-based procedure, the probability of
selecting the true rank for the bootstrap sequential procedure is bounded by the choice of nominal
significance, even asymptotically). As such, the BIC-based and bootstrap-based sequential methods
usefully complement each other in practice.

All of the methods we have discussed in this paper are based on the assumption that the value of
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the lag length parameter £ in is finite and known, or at least has been pre-determined by the
practitioner. An interesting direction for further research is therefore to develop implementations of
the procedures outlined in this paper that simultaneously estimate the co-integration rank and the lag
parameter k in the presence of heteroskedastic shocks, and to compare these approaches with the semi-
parametric and non-parametric information criterion co-integration rank determination procedures of
Cheng and Phillips (2009) and Poskitt (2000), neither of which require this parameter to be known

or finite. This is currently under investigation by the authors.
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A Appendix

PROOF OF THEOREM 1: The result under Assumption V is proved in Johansen (1996), while the
results under Assumptions V' and V7, are established in CRT2010a.

PrROOF OF THEOREM 2: Part (i) is established in Corollary 1 of CRT2012 and the part (ii) is
established in Corollary 1 of CRT2013.

PROOF OF THEOREM The outline of the proof mimics the proof of Aznar and Salvador (2002,
proof of Theorem 4.1), applying results here from CRT2010a under conditional heteroskedastic inno-
vations, viz, under Assumption V’ (see Remark 3.4 in CRT2010a), and for the case of unconditional
heteroskedastic innovations (Assumption V”) by CRT2010b (see their Remark 3.2). Specifically, for

any r # rg, we have that

TZ: ro+1 log(1 — 5\1) +cer(2p—1r —19)(r —19) forr >

IC(r) — IC(rg) = i
T2 1 10g(1 = X)) +er(2p — 7 —70)(r —10) for r <o

When r > rg, to show that Prob(IC(r) —IC(r9) > 0) = 1 as T' — oo, with ¢y — oo, consider

IC(r) = IC(ro) =T Z log(1 — Ai) + er(2p — r — 10)(r — 10). (A1)
i=ro+1
As in Johansen (1996, p. 160), and using here Remarks 3.4 and 3.2 of CRT2010a and CRT2010b,
respectively, the first term in (A.1]) satisfies

T Z log(1 — A\;) = Op(1), foralli=ro+1,..,r

The second term of (A.1)) is positive and dominates the first term if ¢ — oo. Thus, r > rg will never
be selected if ¢ in the penalty term diverges as T — oo.
When r < r¢ (and rg # 0),

IC(r) —IC(rg) = —T Z log(1 —Xi) +er(2p —r —10)(r —190). (A.2)

i=r+1
The right side of involves a subset of the largest rg eigenvalues 5\1, for i = 1,...,79. Under
either Assumption V, V’, or V7, as in Lemma 12.1 in Johansen (1996), these ry sample eigenvalues
converge to the 7y solutions of ‘)\255 —250250120/3‘ = 0, where Xgg, Xgo = 26/3’ and Yo are
defined in CRT2010a (pp. 1753-1754) and CRT2010b (p. 22), these being all positive. Consequently,
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2 log(1 — \;) is strictly positive in the limit and therefore the first term on the right side in
diverges to +oo as T' — oco. Conversely, since (r —r9) < 0, the second term in diverges to
—o0 as ep — o0 and T' — oo. Thus, if ¢p/T — 0 as T — oo then the first term in dominates
and Prob(IC(r) > IC(rg)) — 1. Hence, r < ro will never be selected if ¢y in the penalty term is of

order o(T).
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TABLE 1.1: Sequential procedures for determining the co-integration rank. VAR(2) model with rank 7o = 0, ii.d. Gaussian errors [Case A]

Johansen Bootstrap AIC HQC BIC

vy T r=0 1 2 3,4 r=0 1 2 3,4 RC r=0 1 2 3,4 r=0 1 2 3,4 r=0 1 2 3,4

0.0 50 80.1 169 26 04 96.5 31 03 0.0 0.0 7.3 254 29.1 381 41.7 389 13.1 6.3 894 99 07 0.1
100 894 94 10 01 955 41 03 01 00 13.6 341 268 256 743 222 29 07 98.9 1.1 00 0.0
200 923 70 06 02 953 44 03 01 00 185 358 245 213 88.2 108 09 0.1 99.9 01 00 0.0
400 935 59 06 01 951 44 05 01 00 204 369 243 184 942 55 03 00 100.0 00 0.0 0.0
0.1 50 776 189 30 06 96.9 27 04 0.0 0.0 6.3 241 29.1 405 39.4 387 146 7.3 88.5 107 08 0.1
100 88.6 10.2 1.0 02 96.1 35 04 00 00 12,9 331 273 267 73.1 23.1 3.1 0.7 98.9 1.1 00 0.0
200 920 72 06 02 955 41 03 01 00 18.0 357 246 21.v 879 11.1 09 0.1 99.9 01 00 0.0
400 93.3 59 07 01 954 42 04 01 00 203 36.7 243 187 94.0 57 03 00 100.0 00 0.0 0.0
02 50 744 215 33 08 96.7 29 04 0.1 0.0 5.2 220 289 439 36.3 39.1 16.1 8.5 87.3 11.6 1.0 0.1
100 87.4 11.3 1.1 02 959 37 04 00 00 121 321 27v.7 281 72.0 240 32 09 98.7 13 00 0.0
200 916 76 06 02 953 42 04 01 00 17.6 354 247 223 874 114 1.0 0.1 99.9 01 00 0.0
400 930 63 07 01 956 41 02 00 00 20.1 365 244 191 94.0 57 03 00 1000 0.0 00 0.0
0.3 50 704 243 4.2 1.0 96.8 29 02 01 0.0 4.1 199 281 479 33.1 39.0 178 10.1 85.8 128 1.2 0.2
100 86.2 12.2 14 03 957 39 04 01 00 109 311 281 299 70.2 251 3.7 1.0 98.6 1.4 00 0.0
200 910 81 07 02 958 38 04 00 00 17.1 349 251 229 86.8 121 1.0 0.2 99.9 01 00 0.0
400 928 64 08 01 955 41 03 01 00 19.7 364 246 194 93.7 59 03 00 1000 0.0 00 0.0
05 50 575 324 79 23 958 38 04 01 0.0 2.0 128 249 603 24.3 36.7 22.0 17.1 80.2 174 20 04
100 80.7 166 22 05 957 40 03 0.1 0.0 81 279 279 361 65.2 279 53 1.6 97.9 20 0.1 0.0
200 89.0 97 10 03 952 43 04 01 0.0 14.7 33.7 265 251 84.9 136 1.3 0.2 99.8 02 00 0.0
400 92.1 70 08 01 948 46 05 01 00 184 357 252 207 933 63 04 00 1000 0.0 00 0.0
0.8 50 17.8 365 272 185 949 44 06 0.1 0.1 0.1 14 73 911 6.1 175 20.8 55.6 58.8 274 79 59
100 52.0 342 105 33 94.7 47 06 0.1 0.0 1.9 113 225 643 424 355 140 82 945 53 02 00
200 76.1 196 34 1.0 951 45 03 01 0.1 7.0 245 283 402 75.6 20.7 3.0 08 99.5 05 00 0.0
400 86.8 11.5 15 03 954 42 03 01 00 12.6 327 2v5 272 904 87 07 0.1 1000 00 0.0 0.0
0.9 50 53 216 306 425 93.1 59 09 02 138 0.0 0.2 1.6 98.2 1.9 6.6 11.1 80.5 45.6 270 10.8 16.6
100 23.6 37.1 243 151 933 59 07 01 02 03 27 95 876 23.9 29.7 195 26.8 89.5 9.2 1.1 0.3
200 53.0 334 102 35 93.8 55 06 01 0.1 2.2 120 23.0 628 60.2 289 7.8 3.2 99.0 1.0 00 0.0
400 76.1 195 3.3 1.0 951 44 04 01 0.0 6.9 252 282 39.7 84.7 136 14 0.3 99.9 01 00 0.0
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TABLE 1.2: Sequential procedures for determining the co-integration rank. VAR(2) model with rank ro = 0, iid. ¢(5) errors [Case B|

Johansen Bootstrap AIC HQC BIC

vy T r=0 1 2 3,4 r=0 1 2 3,4 RC r=0 1 2 3,4 r=0 1 2 3,4 r=0 1 2 3,4

0.0 50 79.7 173 24 05 971 26 03 01 0.0 7.9 254 287 380 42.6 376 139 59 88.5 10.7 0.7 0.1
100 89.0 9.7 1.1 03 96.0 35 04 00 00 14.8 329 266 258 73.7 221 34 08 98.6 1.4 00 0.0
200 919 73 08 01 956 40 03 01 00 19.1 365 242 202 88.2 109 0.8 0.1 99.8 02 00 0.0
400 93.1 63 05 01 951 45 04 01 00 21.0 369 238 184 93.7 60 03 0.0 100.0 0.0 0.0 0.0
0.1 50 776 190 29 06 969 27 04 0.0 0.0 6.8 245 289 398 41.3 379 144 6.5 88.4 106 09 0.1
100 88.4 10.3 1.1 02 96.1 35 04 00 00 13.8 327 270 265 733 223 36 0.8 98.7 14 00 0.0
200 91.2 79 08 02 955 41 03 01 0.0 187 353 253 207 88.0 109 1.0 0.1 99.8 02 00 0.0
400 93.3 62 05 01 954 42 04 01 00 214 368 241 178 93.7 60 03 0.1 100.0 00 0.0 0.0
02 50 744 216 33 07 96.7 29 04 0.1 0.0 5.5 232 284 429 37.1 388 16.1 8.0 86.4 12.6 1.0 0.1
100 87.1 11.3 14 03 959 37 04 00 00 12.8 329 266 277 713 239 40 0.8 98.3 1.7 0.0 0.0
200 911 80 08 01 953 42 04 01 00 173 354 254 219 87.0 120 1.0 0.1 99.8 02 00 0.0
400 93.1 6.1 06 02 956 41 02 00 00 205 360 244 191 93.7 59 03 00 1000 01 00 0.0
03 50 T70.6 237 47 1.1 96.8 29 02 0.1 0.0 4.3 199 276 482 34.0 37.8 184 98 84.8 13.6 1.4 0.2
100 85.5 12.6 1.8 03 957 39 04 01 00 11.9 306 279 296 70.7 241 4.2 1.0 98.2 1.7 00 0.0
200 90.6 8.2 1.1 02 958 38 04 00 00 17.2 351 251 226 86.4 123 1.2 0.2 99.8 02 00 0.0
400 92.7 65 07 01 955 41 03 01 00 209 359 243 189 93.2 66 02 00 1000 0.0 00 0.0
0.5 50 59.2 307 80 21 964 33 03 01 0.0 2.1 133 247 599 24.3 375 21.1 17.1 789 183 22 0.6
100 80.8 162 25 05 956 39 04 01 0.0 8.7 269 286 358 65.2 27.1 5.8 1.9 97.7 22 0.1 0.0
200 88.2 10.5 1.1 02 957 39 03 01 00 15.0 332 262 256 853 13.2 14 0.2 99.7 03 00 0.0
400 916 74 08 02 95.2 44 04 00 00 19.6 357 242 205 933 64 03 00 1000 0.1 00 0.0
0.8 50 18.2 369 270 179 94.8 45 06 0.1 0.3 0.1 1.5 74 91.0 6.4 174 20.8 554 58.7 277 80 5.6
100 52.9 33.6 10.1 34 95.0 44 05 0.1 0.1 1.9 11.7 224 641 43.3 354 139 74 93.9 58 02 0.1
200 764 196 32 09 949 46 04 01 0.0 7.1 25.0 273 40.v 752 210 32 0.6 99.5 05 00 0.0
400 87.3 11.0 14 03 952 43 05 00 00 141 323 265 271 901 92 06 0.0 1000 00 0.0 0.0
0.9 50 5.8 221 305 415 93.8 53 08 01 22 0.0 03 1.5 98.2 23 76 11.0 79.1 46.1 278 11.2 149
100 23.8 37.7 237 148 93.8 54 08 0.1 0.2 0.2 25 88 885 23.2 304 194 270 88.8 9.7 1.1 0.4
200 55.1 315 102 33 94.7 47 05 01 0.0 23 126 231 621 61.3 290 6.8 29 98.9 1.1 00 0.0
400 773 190 3.0 07 946 47 06 01 0.1 7.2 255 283 391 84,5 137 16 0.3 99.9 01 00 0.0
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TABLE 1.3: Sequential procedures for determining the co-integration rank. VAR(2) model with rank ro = 0, GARCH(1,1) errors [Case C]

Johansen Bootstrap AIC HQC BIC

vy T r=0 1 2 3,4 r=0 1 2 3,4 RC r=0 1 2 3,4 r=0 1 2 3,4 r=0 1 2 3,4

0.0 50 79.2 176 26 06 96.3 33 04 0.0 0.0 7.1 26.0 292 378 41.9 376 140 6.6 89.0 102 07 0.1
100 88.7 9.9 1.1 02 96.0 37 02 01 00 13.8 332 268 263 734 221 3.7 08 99.0 1.0 00 0.0
200 910 81 08 02 952 43 04 01 00 179 356 251 214 86.5 123 1.1 0.1 99.8 02 00 0.0
400 91.8 76 06 01 953 43 04 01 00 20.0 362 249 189 927 69 04 00 100.0 00 0.0 0.0
0.1 50 76.7 196 3.0 07 96.5 3.1 03 01 0.0 6.2 243 293 403 39.4 38.1 15.1 7.4 879 112 07 02
100 88.0 104 13 03 957 38 04 01 00 13.0 324 271 275 724 230 39 08 99.0 1.0 00 0.0
200 90.7 84 08 02 951 44 04 01 00 175 354 252 219 86.3 124 11 0.1 99.8 02 00 0.0
400 91.8 75 06 01 950 46 04 00 00 19.8 366 246 190 926 70 04 00 100.0 00 0.0 0.0
02 50 73.8 215 40 08 963 33 03 01 0.0 51 223 290 436 36.7 382 164 88 86.4 124 1.0 0.2
100 87.2 11.2 14 03 958 37 04 01 00 12.0 319 275 287 T71.0 239 42 1.0 98.9 1.1 00 0.0
200 90.2 88 08 02 953 43 04 00 0.0 16.8 352 256 224 85.8 129 1.2 0.1 99.8 02 00 0.0
400 916 77 06 01 951 45 04 00 00 194 36.7 247 192 924 72 04 00 1000 0.0 00 0.0
0.3 50 69.9 243 438 1.1 96.0 36 03 01 0.0 4.2 198 284 477 33.5 379 182 104 84.3 14.2 1.2 03
100 85.6 12.6 16 03 955 41 04 01 00 11.0 309 27.7 304 69.2 250 47 1.1 98.7 13 00 0.0
200 89.7 9.1 1.0 02 948 46 06 00 00 16.2 350 256 233 85.3 134 12 02 99.8 02 00 0.0
400 914 79 07 01 95.0 45 05 00 00 19.1 365 248 196 922 3 04 00 100.0 0.0 00 0.0
0.5 50 56.7 322 86 25 957 39 04 00 0.0 2.0 135 248 596 24.7 36.7 21.7 16.9 78.8 183 25 0.5
100 80.4 16.7 24 05 958 38 04 01 0.0 83 269 287 361 64.3 28.0 6.1 1.6 98.0 20 00 0.0
200 87.9 10.6 1.2 03 952 43 05 01 00 14.2 330 26.8 260 83.9 146 14 0.2 99.8 02 00 0.0
400 90.8 83 08 02 950 45 04 01 00 179 361 254 206 91.9 76 05 00 1000 0.0 00 0.0
0.8 50 17.2 36.6 271 19.1 94.5 47 06 0.2 0.2 0.1 1.6 6.9 914 5.9 178 21.2 551 58.2 278 83 5.6
100 52.3 34.0 107 30 949 44 06 0.1 0.0 1.9 112 227 642 424 354 141 8.1 94.5 51 03 00
200 74.9 206 36 09 948 46 05 01 0.0 6.7 246 287 401 74.2 215 3.5 0.8 994 06 00 0.0
400 85.1 13.0 16 03 950 44 05 01 00 12.8 319 2v2 281 885 107 08 0.1 1000 01 0.0 0.0
0.9 50 5.5 224 298 423 93.0 59 09 02 20 0.0 0.2 1.7 981 1.9 72 11.7 792 43.9 286 11.1 164
100 23.1 384 239 146 93.0 59 09 02 02 0.2 28 93 877 23.2 31.0 19.1 26.7 89.1 9.6 1.0 0.3
200 52.9 329 106 3.7 942 52 06 01 0.1 2.0 122 235 622 60.0 288 7.7 3.5 98.6 1.4 00 0.0
400 75.2 206 33 09 943 52 05 01 0.0 7.0 25.0 277 403 82.8 154 1.5 0.3 99.9 01 00 0.0
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TABLE 1.4: Sequential procedures for determining the co-integration rank. VAR(2) model with rank 7o = 0, Autoregressive Stochastic Volatility [Case D]

Johansen Bootstrap AIC HQC BIC

0 T r=0 1 2 3,4 r=0 1 2 3,4 RC r=0 1 2 3,4 r=0 1 2 3,4 r=0 1 2 3,4
0.0 50 65.2 27.0 6.4 1.4 952 41 07 00 04 5.5 224 303 41.8 31.5 38.1 198 106 74.8 20.9 3.5 0.8
100 71.6 234 41 09 943 50 06 01 0.2 9.8 29.7 298 308 53.5 337 96 32 895 99 05 0.1

200 72.5 23.0 3.8 06 94.2 52 06 0.1 01 11.9 316 29.8 26.7 65.6 27.3 5.8 1.2 94.1 5.6 0.3 0.0

400 74.9 214 3.3 04 93.8 55 0.6 0.1 0.1 12.8 332 29.8 24.2 74.7 216 3.1 0.6 96.9 3.1 0.0 0.0

0.1 50 62.9 28.6 6.7 1.8 95.0 42 07 01 0.5 5.0 213 299 438 29.6 379 208 11.7 73.8 214 3.8 0.9
100 70.8 23.8 4.5 09 94.0 52 07 0.1 0.2 9.6 289 30.0 315 52.9 33.7 10.0 3.4 89.1 10.2 0.6 0.1

200 72.6 229 3.9 06 94.2 51 08 00 0.1 11.8 316 299 268 654 275 5.8 1.3 94.1 5.7 0.2 0.0

400 74.9 214 3.3 04 943 51 06 0.1 0.1 12.8 332 29.8 242 749 215 3.1 0.5 97.0 3.0 0.0 0.0

0.2 50 60.1 30.2 7.6 21 95.0 42 06 0.2 04 4.5 19.6 29.8 46.2 28.0 37.3 21.7 13.0 72.3 225 4.2 1.1
100 69.9 245 4.7 1.0 94.2 51 05 02 0.2 8.9 283 30.2 326 51.9 34.2 104 3.4 88.8 10.5 0.6 0.1

200 72.4 229 4.1 07 941 52 06 0.1 01 11.5 314 299 272 655 275 5.8 1.2 94.1 5.6 0.3 0.0

400 74.8 21.5 3.3 04 945 48 0.7 0.1 01 12.6 335 30.0 239 74.9 215 3.1 0.5 97.1 2.9 0.0 0.0

0.3 50 57.2 31.9 8.3 26 949 44 05 0.1 0.5 3.7 174 29.5 495 257 36.5 229 149 70.8 233 4.7 1.3
100 68.6 252 5.1 1.1 94.7 47 05 01 0.2 8.1 276 30.1 342 51.2 34.1 11.0 3.7 88.4 10.8 0.7 0.2

200 72.4 228 4.2 07 94.7 47 05 0.1 02 11.3 31.3 29.8 276 65.6 27.5 5.8 1.2 94.1 5.6 0.3 0.0

400 75.1 21.3 3.2 04 940 54 06 0.1 01 12.6 333 299 242 750 21.5 3.1 0.5 97.1 2.9 0.0 0.0

0.5 50 46.7 37.1 12.2 41 94.8 44 07 0.1 0.8 2.0 122 257 60.1 19.3 34.0 259 20.8 65.3 26.7 6.1 1.9
100 64.2 28.0 6.4 1.4 94.3 48 07 01 0.3 6.5 248 30.0 38.7 47.6 354 125 45 87.3 11.5 1.0 0.2

200 71.2 23.6 4.4 08 945 48 06 0.1 0.1 104 305 299 293 64.9 279 6.0 1.2 93.8 5.8 0.3 0.0

400 75.0 21.2 3.4 04 94.0 55 05 00 00 12.2 334 299 245 752 21.2 3.1 04 97.0 3.0 0.0 0.0

0.8 50 16.5 35.6 28.7 192 93.0 58 1.1 01 27 0.1 1.9 8.6 89.3 6.2 16.8 225 546 46.7 31.5 128 9.0
100 42.3 38.1 14.8 4.8 944 49 07 0.1 1.0 1.9 11.7 242 622 31.9 370 194 11.7 80.9 16.6 2.1 0.5

200 61.0 30.1 7.3 1.6 94.3 50 06 01 0.5 6.0 235 304 40.2 574 31.7 8.6 2.3  92.8 6.8 0.3 0.1

400 72.6 229 4.0 06 949 47 04 0.1 0.1 9.9 31.0 30.5 286 73.9 22.1 3.5 0.5 96.9 3.0 0.1 0.0

0.9 50 6.5 226 303 406 91.7 69 12 03 7.6 0.0 0.4 2.5 971 2.5 7.8 129 76.8 354 29.7 144 20.5
100 20.6 379 26.1 155 923 6.4 1.1 0.2 3.0 0.4 3.8 12.0 839 183 31.1 221 285 73.7 20.8 4.0 1.5

200 43.5 384 13.9 43 939 54 05 0.1 038 2.4 13.1 248 59.7 45.7 358 13.3 5.3  90.3 9.0 0.7 0.1

400 63.6 28.9 6.5 1.1 944 50 06 01 0.3 6.1 25.1 30.5 383 685 255 5.0 1.0 964 3.5 0.1 0.0
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TABLE 1.5: Sequential procedures for determining the co-integration rank. VAR(2) model with rank ry = 0, Single Volatility Break [Case E]

Johansen Bootstrap AlIC HQC BIC

v T r=0 1 2 3,4 r=0 1 2 34 RC r=0 1 2 3,4 r=0 1 2 3,4 r=0 1 2 3,4

0.0 50 429 419 129 23 900 85 14 02 06 1.4 131 304 552 14.5 36.0 30.5 19.0 57.8 327 7.8 1.7
100 53.2 36.5 8.8 1.5 92,0 71 08 01 03 2.6 19.0 329 455 33.8 416 178 6.7 85.5 13.3 1.1 0.1
200 585 329 74 12 929 64 06 01 02 3.9 21.8 332 412 53.0 342 10.1 27 957 42 01 00
400 59.9 327 65 08 945 49 05 01 0.1 4.3 226 347 384 64.1 294 54 1.1 98.6 14 0.0 0.0
0.1 50 41.4 423 137 26 903 84 12 0.1 0.7 1.3 121 30.0 56.6 13.6 351 31.0 204 56.3 334 84 1.9
100 51.8 375 9.2 16 91.9 70 09 01 04 2.5 182 330 464 329 419 184 68 85.1 137 1.1 0.2
200 58.1 329 7.8 1.3 93.2 60 08 01 03 4.0 215 329 416 523 344 103 29 95.7 4.1 0.2 0.0
400 595 332 65 08 939 55 06 01 0.2 4.2 227 343 388 63.8 295 56 1.1 98.5 1.5 0.0 0.0
02 50 393 432 148 28 894 91 13 03 06 1.1 114 289 586 12.7 340 31.6 21.8 54.9 34.1 9.0 21
100 50.4 384 9.5 1.7 91.9 72 08 02 05 24 177 330 470 31.8 423 187 72 84.4 142 1.2 0.2
200 575 335 77 13 932 60 07 01 02 3.9 21.1 329 422 514 349 106 31 955 42 02 0.0
400 593 333 66 08 940 54 05 01 0.2 4.1 223 344 392 63.7 296 57 10 98.5 1.5 0.0 0.0
03 50 36.6 441 160 33 906 82 1.1 02 0.8 0.9 105 282 604 11.4 332 322 233 53.0 348 99 22
100 48.7 39.3 10.2 1.8 91.7 72 09 02 05 2.2 169 327 482 30.7 423 194 76 83.6 149 1.3 0.2
200 56.4 342 8.1 1.3 933 59 08 00 03 3.7 209 326 428 50.5 353 11.0 32 954 44 02 0.0
400 58.8 334 68 09 939 53 07 01 03 4.0 221 345 395 63.1 300 58 1.1 98.5 1.5 0.0 0.0
0.5 50 29.8 459 198 46 89.8 89 13 0.1 1.0 0.5 7.6 25.1 66.8 8.9 295 336 28.0 483 36,5 120 3.3
100 44.6 41.1 12.1 22 91.2 76 1.1 01 04 1.8 146 32.1 515 279 421 209 9.1 81.8 16.2 1.8 0.2
200 53.5 36.0 9.0 1.5 933 6.0 07 01 03 3.1 198 329 442 48.0 369 116 34 949 49 03 0.0
400 58.0 336 75 09 944 51 05 01 0.3 3.6 21.3 346 405 62.0 305 6.2 1.2 984 16 0.0 0.0
0.8 50 12.0 40.1 335 144 88.5 104 1.0 0.1 5.9 0.1 2.2 13.0 8438 3.2 171 295 503 33.5 393 189 83
100 29.4 460 195 51 92.0 71 08 0.1 0.7 0.7 77 267 649 19.1 39.1 271 147 73.9 220 3.6 0.5
200 42.8 40.v 140 25 93.8 56 06 01 0.6 1.7 145 313 525 40.1 392 156 52 922 74 04 00
400 50.3 384 9.6 1.6 94.1 53 05 01 04 2.8 187 342 443 56.4 335 83 1.9 979 21 0.0 0.0
0.9 50 49 276 370 306 86.9 115 1.5 0.1 1838 0.0 07 52 941 1.3 9.0 209 68.8 24.6 355 222 17.7
100 16.0 424 297 119 90.7 83 09 0.1 45 0.2 35 168 795 12.0 32.1 298 262 655 273 6.0 1.2
200 30.7 444 198 51 93.0 63 06 01 0.8 09 89 272 631 32.0 400 199 82 89.2 10.1 0.6 0.0
400 41.7 43.0 129 25 94.7 48 05 01 04 1.7 148 322 514 50.0 366 109 26 973 26 01 0.0
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TABLE 2.1: Sequential procedures for determining the co-integration rank. VAR(2) model with rank 7o = 1, ii.d. Gaussian errors [Case A]

Johansen Bootstrap AIC HQC BIC

vy T r=0 1 2 3,4 r=0 1 2 3,4 RC r=0 1 2 3,4 r=0 1 2 3,4 r=0 1 2 3,4

0.0 50 72.7 234 33 06 936 57 06 0.1 0.0 3.5 224 320 421 305 42.1 195 7.9 84.4 14.3 1.1 0.2
100 525 424 45 0.6 70.8 26.1 2.8 03 0.0 0.3 26.3 36.7 36.6 223 60.9 138 3.0 85.7 14.0 03 0.0
200 45 893 56 0.7 82 87.6 38 04 0.0 0.0 28.7 373 34.0 0.2 87.9 106 1.3 35.6 64.2 0.1 0.0
400 0.0 943 5.1 0.6 0.0 95.0 46 04 0.0 0.0 29.2 381 327 0.0 93.0 66 04 0.0 100.0 0.0 0.0
0.1 50 68.0 27.0 42 08 930 6.2 07 02 0.0 2.7 204 321 4438 257 43.3 216 9.5 81.4 17.0 1.5 0.2
100 445 499 49 07 666 30.7 24 03 0.0 0.2 25.2 373 373 153 66.3 152 3.2 79.6 19.9 04 0.0
200 1.7 91.8 57 08 39 915 41 05 0.0 0.0 28.5 373 343 0.1 87.6 11.0 14 21.2 787 02 0.0
400 0.0 942 52 06 0.0 95.2 44 04 0.0 0.0 29.0 383 326 0.0 93.0 67 04 0.0 100.0 0.0 0.0
0.2 50 61.8 31.7 55 1.0 918 7.2 08 0.2 0.0 1.8 18.2 324 47.6 208 44.1 240 11.2 77.2 20.5 20 0.3
100 352 583 57 08 585 38.0 32 04 0.0 0.1 24.1 372 386 93 70.2 169 3.7 703 29.0 06 0.0
200 05 927 60 08 1.5 93.8 43 04 0.0 0.0 28.0 374 346 0.0 87.4 11.2 1.4 9.3 90.5 02 0.0
400 0.0 94.1 5.3 0.6 0.0 95.1 45 04 0.0 0.0 29.0 382 328 0.0 929 67 04 0.0 100.0 0.0 0.0
0.3 50 54.0 375 7.3 1.2 90.7 81 10 02 0.0 1.0 16.1 314 51.5 15.7 44.2 264 138 71.4 25.1 3.1 04
100 244 68.0 6.7 10 482 476 38 04 0.0 0.0 22.7 372 40.1 48 723 188 4.1 57.1 41.9 1.0 0.0
200 02 926 64 09 06 948 41 05 0.0 0.0 27.4 375 352 0.0 87.0 11.5 1.5 2.7 971 02 0.0
400 0.0 939 54 0.7 0.0 95.1 45 04 0.0 0.0 28.9 380 331 0.0 927 68 05 0.0 100.0 0.0 0.0
05 50 326 50.9 135 3.1 84.0 13.9 18 03 0.0 0.2 10.2 29.7 599 6.2 40.1 324 213 51.1 40.6 7.2 1.1
100 6.4 83.1 9.2 14 247 709 41 04 0.0 0.0 19.7 359 445 0.5 72.2 219 54 221 76.1 1.8 0.1
200 0.0 91.5 76 1.0 0.0 949 45 05 0.0 0.0 25.9 370 371 0.0 854 127 19 0.0 99.7 03 0.0
400 0.0 934 59 0.7 0.0 95.0 45 06 0.0 0.0 28.2 377 341 0.0 924 70 05 0.0 100.0 0.0 0.0
0.8 50 2.2 472 355 152 499 46.1 35 05 0.2 0.0 2.4 129 846 0.2 17.8 31.5 50.5 7.9 61.2 222 87
100 0.0 75.7 202 41 1.0 944 42 05 0.1 0.0 9.2 28.0 629 0.0 56.6 30.2 13.2 0.1 94.6 49 04
200 0.0 85.9 122 20 0.0 95.1 44 05 0.0 0.0 17.7 358 46.5 0.0 79.2 173 35 0.0 99.3 0.7 0.0
400 0.0 90.8 8.0 1.2 0.0 954 43 04 0.0 0.0 23.8 370 39.1 0.0 89.9 91 1.0 0.0 99.9 0.1 0.0
0.9 50 0.2 279 398 321 248 69.9 46 07 3.1 0.0 0.7 49 944 0.0 8.9 202 709 1.7 51.3 27.1 199
100 0.0 55.7 325 11.7 0.1 94.5 48 07 0.2 0.0 3.2 155 813 0.0 40.1 329 270 0.0 90.3 87 1.0
200 0.0 75.8 196 4.6 0.0 95.2 43 05 0.1 0.0 9.8 293 61.0 0.0 70.0 230 7.0 0.0 98.7 13 0.1
400 0.0 86.3 11.8 2.0 0.0 95.1 45 04 0.0 0.0 17.8 349 474 0.0 86.4 11.9 1.7 0.0 99.8 02 0.0
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TABLE 2.2: Sequential procedures for determining the co-integration rank. VAR(2) model with rank ro = 1, iid. ¢(5) errors [Case B|

Johansen Bootstrap AIC HQC BIC

vy T r=0 1 2 3,4 r=0 1 2 3,4 RC r=0 1 2 3,4 r=0 1 2 3,4 r=0 1 2 3,4

0.0 50 72.1 23.7 35 06 946 4.8 06 0.1 0.0 34 224 328 414 307 41.5 19.0 88 83.4 15.1 14 0.2
100 51.2 43.3 49 06 71.1 26.2 23 04 0.0 0.3 25.6 370 371 203 62.1 143 3.3 84.8 149 03 0.0
200 3.7 89.6 60 0.7 85 87.2 39 04 00 0.0 28.1 373 346 0.2 87.0 11.3 1.5 34.5 65.3 03 0.0
400 0.0 946 49 0.5 0.0 95.1 44 05 0.0 0.0 29.8 383 320 0.0 928 68 0.5 0.0 100.0 0.0 0.0
0.1 50 66.9 27.7 45 09 934 5.8 06 02 0.0 2.2 207 327 444 255 43.4 21.1 10.0 80.0 18.0 1.7 03
100 43.0 50.7 55 08 655 31.6 26 04 0.0 0.1 249 373 37.7 136 66.8 159 3.7 789 20.7 04 0.0
200 1.6 91.5 63 0.7 46 90.8 42 04 0.0 0.0 28.2 377 341 0.1 87.0 11.3 1.6 19.6 80.2 03 0.0
400 0.0 940 55 06 0.0 95.0 46 04 0.0 0.0 30.7 38.3 31.0 0.0 928 6.7 0.6 0.0 100.0 0.1 0.0
02 50 61.0 319 57 13 918 74 07 02 0.0 1.7 17.8 333 47.2 21.2 43.6 240 11.3 76.3 21.2 22 03
100 335 591 64 1.0 585 38.0 3.0 05 0.0 0.0 24.0 375 385 83 69.4 187 3.7 694 30.0 06 0.0
200 04 921 68 08 22 933 40 06 0.0 0.0 28.1 378 341 0.0 86.4 12.2 1.4 8.5 91.2 03 0.0
400 0.0 93.6 58 05 0.0 95.6 40 04 0.0 0.0 30.3 376 321 0.0 924 72 05 0.0 100.0 0.0 0.0
0.3 50 53.9 370 7.6 1.4 909 80 09 02 00 1.0 16.7 31.6 50.7 16.0 44.3 26.3 13.5 70.3 26.2 30 0.5
100 234 68.6 7.1 1.0 493 47v.3 3.0 05 0.0 0.0 23.1 364 40.5 42 73.1 186 4.1 55.6 43.5 09 0.0
200 0.1 92.8 65 0.6 0.7 949 39 05 0.0 0.0 27.3 380 34.7 0.0 86.5 11.9 1.6 2.1 974 05 0.0
400 0.0 939 55 06 0.0 953 43 05 0.0 0.0 29.8 372 33.0 0.0 928 66 0.6 0.0 100.0 0.1 0.0
05 50 336 50.1 134 29 845 13.6 1.7 0.2 0.1 0.2 10.8 28.8 60.3 5.6 40.5 33.0 20.9 50.2 414 74 1.1
100 6.5 823 99 1.3 252 70.6 38 04 0.0 0.0 19.4 358 4438 04 717 224 55 20.9 76.9 2.1 0.1
200 0.0 91.6 75 09 0.1 956 39 04 0.0 0.0 25.2 370 378 0.0 85.1 13.0 1.9 0.0 99.5 05 0.0
400 0.0 93.0 63 0.7 0.0 95.1 45 04 0.0 0.0 28.8 382 331 0.0 92.2 73 0.5 0.0 100.0 0.1 0.0
0.8 50 1.8 484 349 150 49.8 46.1 3.7 04 04 0.0 2.0 129 852 0.2 18.2 30.1 515 6.8 61.7 226 9.0
100 0.0 749 21.0 4.0 1.2 94.3 40 05 0.1 0.0 9.4 27.7 629 0.0 55.9 302 14.0 0.1 93.9 55 05
200 0.0 85.8 123 1.9 0.0 95.0 45 05 0.0 0.0 17.9 35.0 472 0.0 793 173 35 0.0 99.2 08 0.0
400 0.0 91.0 79 1.1 0.0 95.1 45 05 0.1 0.0 24.6 370 384 0.0 89.9 92 09 0.0 99.8 02 0.0
0.9 50 0.1 28.5 403 31.1 234 715 46 06 3.3 0.0 0.6 49 945 0.0 9.3 203 704 1.7 52.4 264 195
100 0.0 55.3 32.8 119 0.1 948 46 05 0.3 0.0 3.2 155 81.2 0.0 40.2 325 273 0.0 89.6 9.2 1.3
200 0.0 75.7 200 43 0.0 949 46 05 0.1 0.0 9.8 28.0 62.2 0.0 69.6 234 7.0 0.0 98.4 1.5 0.0
400 0.0 86.9 11.3 1.8 0.0 947 48 05 0.1 0.0 17.8 359 46.3 0.0 86.3 12.0 1.7 0.0 99.9 0.1 0.0
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TABLE 2.3: Sequential procedures for determining the co-integration rank. VAR(2) model with rank ro = 1, GARCH(1,1) errors [Case C]

Johansen Bootstrap AIC HQC BIC

vy T r=0 1 2 3,4 r=0 1 2 3,4 RC r=0 1 2 3,4 r=0 1 2 3,4 r=0 1 2 3,4

0.0 50 72.7 233 34 06 937 54 08 01 0.0 3.3 21.9 327 422 31.1 42.0 19.0 8.0 84.6 14.2 1.0 0.2
100 523 42.0 49 038 709 26.3 25 04 0.0 04 25.6 371 370 21.7v 60.3 149 3.2 864 13.3 03 0.0
200 42 88.6 64 0.7 91 86.5 40 04 0.1 0.0 28.0 37.7 344 0.4 85.9 123 14 355 64.2 03 0.0
400 0.0 92.7 6.6 0.7 0.0 94.7 49 04 0.0 0.0 29.3 383 324 0.0 909 83 0.7 0.1 99.8 01 0.0
0.1 50 682 26.8 43 08 931 6.1 07 0.1 0.0 23 199 331 447 270 423 213 94 814 17.0 1.5 0.2
100 440 496 56 09 652 31.5 28 05 0.0 0.2 24.8 370 38.0 152 64.8 165 3.5 80.1 194 05 0.0
200 1.7 90.9 6.6 08 49 90.5 42 05 0.0 0.0 27.8 374 3438 0.1 86.1 124 1.5 21.2 785 03 0.0
400 0.0 92.7 6.6 0.7 0.0 94.8 47 06 0.1 0.0 29.2 381 328 0.0 909 84 0.7 0.0 99.9 0.1 0.0
0.2 50 622 31.1 5.6 1.1 91.8 73 08 02 0.0 1.6 18.0 32.8 47.6 223 42.3 240 114 773 205 21 0.2
100 349 578 64 10 578 385 33 04 0.0 0.1 23.8 371 39.1 9.0 69.1 179 4.0 71.1 28.3 06 0.0
200 05 91.8 69 08 22 934 38 05 00 0.0 27.5 373 353 0.0 85.9 126 1.5 99 89.7 04 00
400 0.0 926 6.7 08 0.0 953 43 04 0.0 0.0 28.9 381 33.0 0.0 90.8 85 0.7 0.0 99.9 0.1 0.0
0.3 50 545 36.8 7.2 1.5 90.6 81 11 02 0.0 1.0 15.3 323 515 16.9 42.4 26.5 14.2 71.6 24.9 32 0.3
100 247 67.1 7.2 1.0 487 476 33 04 0.0 0.0 22.5 369 40.6 44 717 193 45 57.5 41.5 09 0.0
200 02 919 71 0.8 06 946 43 05 0.0 0.0 26.8 373 359 0.0 85.4 13.0 1.6 3.1 96.5 04 0.0
400 0.0 923 69 08 0.0 954 42 04 0.0 0.0 28.7 38.0 333 0.0 90.7 85 0.8 0.0 99.9 0.1 0.0
05 50 332 499 139 30 8.8 143 1.7 03 0.0 0.2 10.1 29.0 60.8 6.6 39.4 328 212 51.7 404 6.7 1.2
100 6.5 82.0 10.2 14 261 69.6 39 04 0.0 0.0 19.1 36.2 44.7 0.5 71.2 223 6.0 222 75.7 20 0.1
200 0.0 91.2 78 1.0 0.0 95.0 45 05 0.0 0.0 24.8 375 377 0.0 84.3 139 1.8 0.1 994 05 0.0
400 0.0 919 73 08 0.0 955 41 04 0.1 0.0 27.7 382 341 0.0 904 87 09 0.0 99.9 0.1 0.0
0.8 50 22 470 355 1563 498 46.2 3.7 0.5 0.3 0.0 2.1 127 852 0.2 18.2 31.0 50.6 79 60.9 225 88
100 0.0 74.7 209 43 1.1 94.3 43 04 0.1 0.0 8.8 273 638 0.0 55.6 30.7 13.7 0.1 943 52 04
200 0.0 85.5 12.6 1.9 0.0 947 49 04 0.0 0.0 16.8 35.2 48.0 0.0 78.0 183 3.7 0.0 99.0 1.0 0.0
400 0.0 89.5 9.2 1.3 0.0 954 42 05 0.0 0.0 23.4 378 3838 0.0 879 107 14 0.0 99.9 02 0.0
0.9 50 0.2 276 398 323 248 69.6 50 06 3.3 0.0 0.5 5.0 946 0.0 8.8 199 713 1.8 50.3 27.6 20.3
100 0.0 55.6 324 121 0.1 945 49 06 0.3 0.0 3.2 16.2 80.6 0.0 39.2 334 275 0.0 89.6 9.0 14
200 0.0 74.6 209 46 0.0 945 49 06 0.1 0.0 9.5 282 623 0.0 68.1 243 7.6 0.0 98.3 1.7 0.1
400 0.0 85.2 129 1.9 0.0 945 50 04 0.0 0.0 17.8 356 46.7 0.0 84.3 136 20 0.0 99.7 03 0.0




6¢

TABLE 2.4: Sequential procedures for determining the co-integration rank. VAR(2) model with rank ro = 1, Autoregressive Stochastic Volatility [Case D]

Johansen Bootstrap AIC HQC BIC

vy T r=0 1 2 3,4 r=0 1 2 3,4 RC r=0 1 2 3,4 r=0 1 2 3,4 r=0 1 2 3,4

0.0 50 57.6 31.6 86 2.2 92.0 6.6 11 03 0.3 3.2 18.6 318 464 232 38.8 24.0 14.0 68.9 25.1 4.6 1.4
100 37.8 47.4 12.1 2.7 733 22.0 41 07 0.2 0.9 19.6 358 43.7 19.1 49.6 233 8.1 70.0 26.1 3.5 0.5
200 69 723 179 29 306 63.1 57 06 0.2 0.0 20.7 373 420 3.0 67.0 24.1 6.0 33.7 61.0 49 04
400 0.1 79.7 178 24 29 91.0 57 05 0.1 0.0 21.4 39.0 39.7 0.1 76.2 205 3.2 23 942 35 0.1
0.1 50 53.7 34.1 96 26 91.1 72 14 03 04 24 17.2 321 483 204 38.3 258 155 66.3 26.6 5.5 1.6
100 324 51.2 135 28 70.3 25.3 3.8 07 0.3 0.6 19.1 36.1 442 15.1 51.6 247 8.6 646 30.6 42 0.6
200 46 741 182 3.1 246 68.3 64 0.7 0.1 0.0 20.6 376 41.8 1.9 67.7 243 6.1 251 69.2 53 04
400 0.1 79.9 177 24 1.8 925 51 06 0.2 0.0 21.3 39.0 39.7 0.0 76.3 206 3.1 1.2 953 35 0.1
02 50 488 37.0 113 3.0 898 85 14 03 03 1.8 15.5 32.1 50.7 173 37.6 278 173 62.2 29.1 6.8 1.9
100 26.6 55.3 15.1 3.1 649 30.3 42 07 03 0.4 18.5 36.0 45.0 10.8 53.4 265 9.3 7.1 37.1 5.0 08
200 2.7 759 185 29 17.7 75.2 6.2 08 0.3 0.0 20.3 379 417 1.0 68.4 247 59 16,5 77.5 56 04
400 0.0 80.0 176 23 1.0 92,9 56 05 0.1 0.0 21.3 391 39.6 0.0 76.4 205 3.1 05 95.8 36 0.1
0.3 50 428 40.2 133 3.7 882 100 16 03 0.5 1.2 13.6 31.6 53.6 139 36.6 30.1 19.3 57.2 32.2 83 23
100 20.2 59.8 16.7 33 585 359 48 08 0.3 0.2 17.8 36.1 46.0 7.0 55.1 278 10.1 477 453 6.1 1.0
200 1.5 76.9 186 3.0 12.0 81.6 57 07 0.2 0.0 20.2 38.0 4138 0.5 68.7 249 6.0 99 83.7 59 05
400 0.0 80.1 177 22 0.7 93.6 50 07 0.1 0.0 21.4 39.0 39.6 0.0 76.5 204 3.1 0.2 96.1 3.6 0.1
0.5 50 26.8 48.4 19.1 5.7 834 139 22 05 09 0.4 9.3 288 61.5 6.7 33.2 336 265 422 40.9 127 4.1
100 84 67.4 201 41 414 52.7 54 06 0.2 0.1 16.1 35.1 4838 2.2 553 306 119 241 65.9 8.6 14
200 03 77.6 192 29 43 89.1 6.1 05 03 0.0 19.6 38.0 425 0.1 68.4 254 6.1 25 91.0 6.1 04
400 0.0 80.1 178 21 02 943 49 06 0.1 0.0 21.3 39.0 39.7 0.0 76.8 202 3.0 0.0 96.3 36 0.1
0.8 50 3.3 419 3r1 177 548 399 47 06 3.3 0.0 1.9 147 834 0.6 16.7 308 51.9 9.6 50.6 268 13.0
100 0.5 63.0 288 7.7 87 84.7 58 08 14 0.0 8.9 28.0 63.1 0.1 45.5 355 19.0 1.8 81.4 145 24
200 0.0 73.4 227 39 05 941 49 06 04 0.0 15.6 36.0 485 0.0 64.8 278 74 0.1 924 70 0.5
400 0.0 799 175 26 0.0 942 52 06 0.2 0.0 20.0 388 41.2 0.0 76.6 202 3.2 0.0 96.6 33 0.1
0.9 50 0.5 26.6 394 336 328 60.3 58 1.1 87 0.0 0.5 65 93.0 0.1 8.4 221 694 3.3 43.2 293 24.2
100 0.0 47.7 36.8 15.5 29 90.2 61 08 3.0 0.0 3.7 18.1 782 0.0 33.1 359 31.0 04 76.7 185 44
200 0.0 64.6 287 6.7 0.1 943 49 06 1.1 0.0 9.7 29.6 60.8 0.0 57.0 321 109 0.0 90.6 87 0.7
400 0.0 76.6 202 3.3 0.0 948 48 04 04 0.0 16.5 37.1 464 0.0 73.8 223 4.0 0.0 96.1 3.7 0.1
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TABLE 2.5: Sequential procedures for determining the co-integration rank. VAR(2) model with rank ro = 1, Single Volatility Break [Case E]

Johansen Bootstrap AIC HQC BIC

v T r=0 1 2 3,4 r=0 1 2 34 RC r=0 1 2 3,4 r=0 1 2 3,4 r=0 1 2 3,4

0.0 50 333 47.6 162 3.0 848 123 24 05 04 0.5 10.4 309 58.2 8.2 34.2 348 227 482 38.4 108 2.7
100 194 59.0 189 27v 706 24.9 38 0.7 04 0.1 11.4 349 53.6 73 479 321 126 538 40.6 52 0.5
200 16 74.1 215 29 259 68.7 48 06 04 0.0 12.4 36.3 513 0.3 63.6 286 7.5 201 76.6 3.1 0.2
400 0.0 76.1 214 25 02 944 49 05 05 0.0 12.8 37.2 50.0 0.0 71.5 240 4.6 0.0 984 15 0.0
0.1 50 30.2 48.9 174 3.5 829 13.9 27 06 0.5 0.4 9.6 30.5 59.5 71 33.3 356 24.1 44.7  40.3 12.1 3.0
100 159 61.2 199 29 657 29.8 39 06 0.5 0.1 11.1 346 54.2 5.3 48.1 333 133 471 46.6 57 0.5
200 0.8 74.5 21.8 29 195 74.8 50 07 05 0.0 124 36.1 514 0.1 63.1 290 79 13.0 83.4 34 0.2
400 0.0 76.0 214 26 0.0 946 49 05 04 0.0 129 36.8 50.3 0.0 71.5 239 46 0.0 984 15 0.0
0.2 50 26.7 50.0 195 38 815 153 28 05 0.6 0.3 8.6 299 61.3 5.8 31.6 36.5 26.1 40.7 42.2 136 3.5
100 122 63.4 214 3.1 609 33.8 48 06 0.6 0.1 10.5 34.3 55.1 3.5 48.5 343 138 399 529 6.7 06
200 0.3 744 222 31 126 81.2 55 06 04 0.0 12.3 359 5138 0.0 62.7 295 78 72 88.8 38 02
400 0.0 75.6 21.8 26 0.0 947 48 05 04 0.0 129 36.7 504 0.0 71.3 24.1 4.6 0.0 984 16 0.0
0.3 50 227 51.2 215 46 803 16.2 29 06 0.6 0.2 7.5 29.2 63.1 4.6 30.2 372 280 363 44.3 152 4.2
100 84 65.3 228 34 543 40.1 50 06 0.6 0.0 10.2 339 558 22 476 356 146 315 599 79 0.7
200 0.1 73.9 227 32 70 86.8 56 06 0.5 0.0 12.0 35.7 523 0.0 61.7 302 8.1 34 922 42 02
400 0.0 75.5 218 27 0.0 947 48 05 05 0.0 12.6 36.7 50.7 0.0 71.1 243 46 0.0 98.2 1.8 0.0
0.5 50 14.1 52.3 275 6.2 744 21.5 35 06 1.2 0.0 5.8 26.5 67.7 2.2 259 388 331 259 47.8 205 5.8
100 29 66.5 264 4.2 36.7 57.1 55 08 0.8 0.0 9.4 321 585 0.5 45.0 378 16.7 141 73.9 108 1.1
200 0.0 72.6 240 3.5 1.2 93.0 53 05 06 0.0 11.4 35.1 535 0.0 60.1 312 87 02 949 47 02
400 0.0 747 224 29 0.0 947 47 06 04 0.0 12.2 36.5 514 0.0 70.7 246 4.7 0.0 98.2 1.7 0.1
0.8 50 24 41.2 412 153 531 41.5 50 05 7.7 0.0 2.0 16.2 818 0.3 13.9 356 503 7.2 479 323 127
100 0.1 57.1 352 7.7 52 88.0 62 07 14 0.0 54 275 67.1 0.0 36.5 40.7 228 0.6 80.4 166 24
200 0.0 65.5 296 4.9 0.0 94.0 55 05 09 0.0 9.0 322 588 0.0 54.4 342 115 0.0 928 68 04
400 0.0 70.3 260 3.8 0.0 95.0 45 05 0.6 0.0 10.5 35.0 545 0.0 66.6 273 6.1 0.0 977 23 0.0
0.9 50 0.5 27.3 448 27.5 389 54.6 58 06 24.3 0.0 0.8 89 904 0.1 81 269 649 2.8 40.7 351 214
100 0.0 45.2 419 13.0 1.1 921 6.3 05 6.5 0.0 29 198 773 0.0 28.0 416 304 0.1 749 214 3.6
200 0.0 587 339 74 0.0 94.5 51 04 1.1 0.0 6.0 288 65.3 0.0 48.9 36.6 14.5 0.0 91.0 85 0.6
400 0.0 64.4 306 5.0 0.0 946 50 03 0.7 0.0 8.4 33.1 585 0.0 62.1 304 76 0.0 971 29 0.1
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TABLE 3.1: Sequential procedures for determining the co-integration rank. VAR(2) model with rank 7o = 2, ii.d. Gaussian errors [Case A]

Johansen Bootstrap AlC HQC BIC

v T r=0 1 2 3,4 r=0 1 2 3,4 RC r=0 1 2 3,4 r=0 1 2 3,4 r=0 1 2 3,4

0.0 50 61.2 314 6.2 1.2 88.2 9.6 1.7 05 0.0 1.7 13.0 33.0 523 23.7 36.7 26.1 135 79.7 17.6 23 04
100 111 527 32,5 3.6 247 496 227 3.0 0.0 0.0 0.5 39.9 596 5.6 19.3 594 1538 72.7 21.0 6.1 0.2
200 0.0 1.5 92.8 5.7 0.0 29 923 47 00 0.0 0.0 40.6 594 0.0 00 87.0 13.0 6.9 127 799 06
400 0.0 00 94.7 54 0.0 00 95.2 49 00 0.0 00 41.3 588 0.0 00 90.7 93 0.0 00 99.8 0.2
0.1 50 53.8 36.6 8.0 1.7 8.8 11.6 1.9 07 0.0 0.9 102 33.2 55.7 18.2 35.0 30.2 16.6 75.7  20.3 3.5 0.5
100 5.7 49.2 40.8 43 16.3 49.7 30.7 33 0.0 0.0 0.2 39.3 605 24 135 664 177 613 264 11.9 04
200 0.0 05 93.8 5.7 0.0 08 946 47 0.0 0.0 0.0 40.2 59.8 0.0 00 86.7 133 1.8 6.0 91.5 0.7
400 0.0 00 945 5.5 0.0 00 95.2 48 00 0.0 00 41.2 588 0.0 00 90.7 94 0.0 00 99.8 0.2
0.2 50 448 416 11.4 23 82.0 14.7 2.6 07 00 04 7.8 32.7 59.1 13.1 319 34.8 202 698 24.1 5.3 0.8
100 2.3 40.5 523 49 8.8 487 38.3 42 0.0 0.0 0.1 38.9 611 08 77 72.0 194 469 304 22.0 0.7
200 0.0 01 94.0 6.0 0.0 03 949 47 0.0 0.0 0.0 40.2 59.8 0.0 00 86.5 135 0.2 1.9 97.1 0.7
400 0.0 00 945 55 0.0 00 94.8 52 00 0.0 00 41.1 589 0.0 00 90.7 93 0.0 00 99.8 0.2
03 50 353 454 16.2 3.1 78.2 175 3.6 08 0.0 0.2 5.1 31.9 6238 84 276 39.7 243 612 286 8.8 14
100 0.7 295 64.5 54 3.8 415 50.2 45 0.0 0.0 0.0 38.1 619 02 3.7 752 210 285 322 38.0 1.3
200 0.0 00 93.9 6.1 0.0 00 951 49 0.0 0.0 0.0 39.9 60.1 0.0 00 86.1 139 0.0 04 98.8 038
400 0.0 00 944 56 0.0 00 951 49 00 0.0 0.0 40.8 59.2 0.0 00 90.6 94 0.0 00 99.8 0.2
0.5 50 13.0 493 31.3 6.5 59.2 309 84 15 0.1 0.0 1.5 29.2 69.3 1.7 152 48.0 35.1 348 374 23.4 45
100 0.0 80 854 6.6 03 196 75.8 43 0.0 0.0 00 36.3 63.7 0.0 03 76.1 236 3.1 160 784 25
200 0.0 00 933 6.7 0.0 00 952 48 0.1 0.0 0.0 39.0 61.0 0.0 00 854 147 0.0 0.0 99.0 1.0
400 0.0 00 94.2 538 0.0 00 95.2 48 0.0 0.0 0.0 40.5 595 0.0 00 904 96 0.0 00 99.8 0.2
0.8 50 0.1 14.3 65.2 203 123 521 321 35 04 0.0 00 16.4 836 0.0 1.5 41.3 57.2 1.3 16.6 62.0 20.2
100 0.0 0.0 87.5 125 00 06 940 54 0.1 00 00 26.6 734 0.0 00 685 315 00 02 944 55
200 0.0 00 91.3 87 0.0 00 95.2 48 0.1 0.0 0.0 34.3 65.7 0.0 00 823 177 0.0 0.0 98.5 1.5
400 0.0 00 93.0 7.0 0.0 00 953 47 0.1 0.0 00 37.8 622 0.0 00 88.7 113 0.0 00 99.7 03
0.9 50 0.0 4.5 62.2 333 29 454 474 43 5.7 0.0 0.0 8.3 91.7 0.0 04 29.2 704 0.1 71 61.5 313
100 0.0 0.0 81.0 19.0 00 01 95.0 49 04 0.0 00 17.8 822 0.0 00 583 418 0.0 00 91.5 85
200 0.0 00 87.8 122 0.0 00 949 51 0.1 0.0 00 271 729 0.0 00 774 226 0.0 0.0 98.1 1.9
400 0.0 00 911 8.9 0.0 00 953 47 00 0.0 00 33.4 66.6 0.0 00 86.6 134 0.0 00 99.5 05
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TABLE 3.2: Sequential procedures for determining the co-integration rank. VAR(2) model with rank ro = 2, iid. ¢(5) errors [Case B|

Johansen Bootstrap AlC HQC BIC

v T r=0 1 2 3,4 r=0 1 2 3,4 RC r=0 1 2 3,4 r=0 1 2 3,4 r=0 1 2 3,4

0.0 50 600 324 6.6 1.1 88.8 9.2 1.7 03 0.0 1.5 122 33.3 53.0 222 371 26.7 14.0 79.0 18.1 26 04
100 9.9 528 33.6 38 262 475 23.1 32 00 0.0 05 40.0 59.6 5.3 18.6 60.0 16.1 72.2  20.5 7.1 0.3
200 0.0 1.5 92.3 6.2 0.1 3.0 92.2 47 0.0 0.0 00 41.1 590 0.0 00 86.9 13.0 6.4 122 80.7 0.7
400 0.0 00 946 54 0.0 00 951 49 00 0.0 0.0 41.3 58.7 0.0 00 90.2 98 0.0 00 99.8 0.2
0.1 50 53.0 36.2 9.1 1.6 8.5 11.7 23 05 00 09 96 324 571 179 352 299 17.0 74.7 21.0 3.6 0.7
100 54 481 42.3 4.2 169 483 31.1 3.7 0.0 0.0 0.2 38.9 609 22 125 67.6 17.7 600 265 12.8 0.7
200 0.0 03 94.0 5.7 0.0 1.3 93.9 48 0.0 0.0 0.0 40.1 599 0.0 00 86.0 14.1 14 56 92.1 0.8
400 0.0 00 946 54 0.0 00 951 49 00 0.0 00 42.2 578 0.0 00 904 96 0.0 00 99.8 0.2
0.2 50 437 426 11.2 2.6 835 13.2 27 06 0.0 0.5 6.9 32.6 60.1 124 31.6 35.2 208 684 251 5.6 1.0
100 2.0 388 54.0 52 100 471 39.1 38 0.0 0.0 0.0 39.1 609 07 74 723 19.7 454 31.1 224 1.1
200 0.0 01 939 6.0 0.0 04 951 44 00 0.0 0.0 40.0 60.0 0.0 00 86.0 14.0 02 21 97.0 08
400 0.0 00 94.1 5.9 0.0 00 953 47 0.1 0.0 00 424 576 0.0 00 90.2 98 0.0 00 99.7 03
0.3 50 330 481 15.6 3.3 77.8 17.6 3.9 07 00 0.1 49 31.5 63.5 74 272 40.3 25.1 59.8  30.0 8.6 1.6
100 0.5 275 66.4 5.6 4.7 405 50.7 41 0.0 0.0 00 38.6 614 0.1 3.3 75.7 209 28.3 305 39.7 15
200 0.0 00 936 64 0.0 01 94.8 51 0.0 0.0 0.0 40.1 599 0.0 00 86.1 139 0.0 03 98.8 09
400 0.0 00 945 5.5 0.0 00 95.0 50 00 0.0 00 421 579 0.0 00 90.3 98 0.0 00 99.8 0.2
0.5 50 11.6 49.7 32.2 6.5 58.8 31.0 85 18 0.1 0.0 1.4 29.0 69.5 1.7 143 484 356 33.0 385 23.6 49
100 0.0 70 856 74 06 190 76.0 44 0.1 0.0 0.0 35.7 64.3 0.0 04 76.1 235 3.1 147 79.1 3.2
200 0.0 00 93.9 6.1 0.0 00 951 49 0.1 0.0 0.0 40.8 59.2 0.0 00 854 146 0.0 00 99.2 08
400 0.0 00 942 59 0.0 00 95.2 48 0.0 0.0 00 41.4 586 0.0 00 903 9.7 0.0 00 99.6 04
0.8 50 0.2 13.0 65.9 209 12.0 52.0 324 36 06 0.0 0.1 15.8 84.2 0.0 1.3 41.3 575 1.2 158 63.0 20.0
100 0.0 01 86.9 13.0 0.0 08 94.8 43 02 0.0 00 279 721 0.0 00 68.2 318 00 0.1 94.0 59
200 0.0 00 91.0 9.0 0.0 00 953 47 0.1 0.0 0.0 33.7 66.3 0.0 00 81.8 182 0.0 0.0 98.5 1.5
400 0.0 00 93.1 6.9 0.0 00 953 47 0.1 0.0 00 38.8 612 0.0 00 88.7 113 0.0 00 99.6 04
0.9 50 0.0 4.0 62.5 33.6 3.6 435 49.0 4.0 5.6 0.0 0.0 8.3 91.7 0.0 04 29.2 704 0.1 6.3 61.7 320
100 0.0 0.0 81.0 19.0 00 02 954 44 0.5 0.0 00 18.4 2816 0.0 0.0 59.0 41.0 0.0 00 90.7 93
200 0.0 0.0 87.6 124 0.0 00 953 47 0.1 0.0 00 28.1 719 0.0 00 771 230 0.0 00 976 24
400 0.0 00 91.5 85 0.0 00 954 46 0.1 0.0 0.0 34.0 66.0 0.0 00 86.8 133 0.0 00 99.5 0.6
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TABLE 3.3: Sequential procedures for determining the co-integration rank. VAR(2) model with rank ro = 2, GARCH(1,1) errors [Case C]
Johansen Bootstrap AlC HQC BIC

0% T r=0 1 2 3,4 r=0 1 2 3,4 RC r=0 1 2 3,4 r=0 1 2 3,4 r=0 1 2 3,4
0.0 50 61.4 31.2 6.1 1.3 88.4 9.5 1.7 04 0.0 1.6 13.2 33.0 52.2 222 380 26.2 13.6 80.3 17.0 2.4 0.4
100 11.0 519 329 43 253 492 225 3.0 0.1 0.0 04 39.6 60.0 56 19.7 57.5 171 726 199 7.2 0.3

200 0.0 1.7 91.8 6.5 0.0 38 914 48 0.0 0.0 0.0 40.1 59.9 0.0 0.1 85.4 145 70 132 788 09

400 0.0 00 931 6.9 0.0 00 94.8 52 00 0.0 0.0 41.4 586 0.0 0.0 88.7 11.3 0.0 00 99.6 04

0.1 50 537 364 84 16 8.8 116 2.0 05 0.0 09 102 33.0 559 176 357 30.1 166 756 204 3.5 0.5
100 57 477 41.6 5.0 171 50.1 29.2 3.6 0.0 0.0 0.2 39.3 60.5 26 133 65.3 188 619 248 12.8 0.6

200 0.0 06 92.8 6.6 0.0 15 93.3 53 00 0.0 0.0 39.6 604 0.0 0.0 85.3 14.7 20 63 90.6 1.1

400 0.0 00 93.1 6.9 0.0 00 94.7 54 0.1 0.0 0.0 41.3 587 0.0 0.0 88.8 11.2 0.0 00 99.6 04

0.2 50 449 413 11.5 2.3 81.9 145 28 08 0.0 0.4 7.1 329 59.6 12.6 324 34.5 20.5 69.1 249 5.3 0.7
100 2.3 396 524 5.7 94 480 384 41 0.0 0.0 0.1 385 614 09 82 70.6 204 465 29.8 22.8 0.9

200 0.0 01 932 6.7 0.0 06 944 50 00 0.0 0.0 39.5 60.5 0.0 0.0 85.1 149 03 24 96.1 1.2

400 0.0 00 93.0 7.0 0.0 00 952 48 0.1 0.0 0.0 41.4 586 0.0 0.0 88.8 11.2 0.0 00 99.6 04

0.3 50 344 469 15.5 3.2 77.5 18.0 3.6 08 0.0 0.2 4.6 32.5 628 7.7 28.0 39.2 251 60.2 30.1 8.4 1.3
100 0.6 28.7 64.4 6.3 42 424 49.1 43 0.1 0.0 0.0 38.0 62.0 02 36 745 21.7 294 313 37.8 14

200 0.0 00 932 638 0.0 01 944 55 00 0.0 0.0 39.4 60.6 0.0 0.0 85.0 15.1 0.0 05 98.2 1.2

400 0.0 00 929 71 0.0 00 952 48 0.0 0.0 0.0 41.2 588 0.0 0.0 88.7 11.3 0.0 0.0 99.5 0.5

0.5 50 124 499 31.2 6.4 59.0 30.7 85 18 0.1 0.0 1.3 28.8 699 1.5 15.0 48.0 35.5 34.1 389 22.6 4.3
100 0.0 78 84.5 738 0.3 204 749 44 0.0 0.0 0.0 36.2 63.8 0.0 03 75.6 24.1 3.6 155 78.0 29

200 0.0 00 929 71 0.0 00 949 52 02 0.0 0.0 385 615 0.0 0.0 84.4 156 0.0 0.0 98.8 1.2

400 0.0 0.0 92.8 7.2 0.0 00 94.7 54 0.1 0.0 0.0 40.8 59.2 00 0.0 88.4 11.6 0.0 0.0 99.6 0.5

0.8 50 02 140 64.8 21.0 126 529 31.2 33 0.6 0.0 00 15.6 844 0.0 14 40.7 579 1.2 16.7 61.2 209
100 0.0 0.0 87.0 13.0 00 06 943 51 02 0.0 0.0 26.5 735 0.0 00 67.5 325 0.0 02 93.8 6.0

200 0.0 00 90.6 94 0.0 00 949 51 0.1 0.0 0.0 33.5 66.6 0.0 0.0 80.4 19.6 0.0 0.0 983 1.7

400 0.0 0.0 91.8 82 0.0 00 95.0 5.0 0.1 0.0 00 383 617 0.0 0.0 87.2 1238 00 0.0 99.3 0.7

0.9 50 0.0 41 61.0 349 3.0 449 477 45 57 00 00 88 912 0.0 03 28.8 709 0.1 74 60.0 325
100 0.0 0.0 80.4 196 0.0 02 953 45 0.7 0.0 00 17.7 824 0.0 0.0 57.1 429 0.0 0.0 90.8 9.2

200 0.0 0.0 87.0 13.0 0.0 00 95.0 5.0 0.1 0.0 0.0 26.5 735 0.0 0.0 75.6 244 0.0 00 974 26

400 0.0 0.0 90.5 95 0.0 00 95.0 5.0 0.1 0.0 00 34.6 654 0.0 0.0 85.6 144 0.0 0.0 99.3 0.7
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TABLE 3.4: Sequential procedures for determining the co-integration rank. VAR(2) model with rank ry = 2, Autoregressive Stochastic Volatility [Case D]

Johansen Bootstrap AIC HQC BIC

y T r=0 1 2 3,4 r=0 1 2 3,4 RC r=0 1 2 3,4 r=0 1 2 3,4 r=0 1 2 3,4
00 50 470 378 11.9 33 8.5 103 2.5 0.8 0.3 1.6 11.6 30.4 564 17.1 340 28.2 207 646 270 6.3 2.1
100 11.6 422 36.0 10.2 403 36.3 18.6 48 0.2 0.1 1.8 32.0 66.2 6.3 209 45.9 269 542 293 134 3.1

200 0.0 63 77.0 16.7 3.2 207 69.1 69 02 0.0 0.1 32.1 679 0.1 20 70.2 278 9.6 204 63.7 6.3

400 0.0 0.1 82.5 173 01 17 91.9 62 0.1 0.0 0.0 33.6 664 0.0 00 76.1 239 0.1 1.1 94.0 49

0.1 50 41.4 40.3 14.2 4.2 84.6 114 3.0 1.0 0.3 1.1 9.5 29.6 59.7 13.9 31.5 31.1 235 60.2 29.2 7.9 2.7
100 7.3 392 421 114 345 375 228 52 0.3 0.0 1.2 32.0 66.8 36 165 51.0 29.0 46.0 31.6 185 4.0

200 0.0 39 79.3 168 21 163 74.7 70 0.2 0.0 0.0 32.2 678 0.0 12 71.0 278 50 15.0 73.2 6.9

400 0.0 0.1 82.8 17.1 01 11 92.7 6.1 0.1 0.0 0.0 33.9 66.2 0.0 00 76.1 239 0.0 05 94.6 4.9

0.2 50 35.0 42.7 17.1 5.2 79.8 14.7 4.3 1.3 0.4 0.7 7.5 29.0 62.8 10.6 28.0 34.1 27.3 54.8 31.8 9.7 3.8
100 4.0 346 48.6 128 265 39.7 28.1 57 0.3 00 07 321 67.1 1.8 11.8 55.6 30.8 35.7 326 26.7 5.0

200 0.0 22 81.0 16.9 1.1 112 80.9 6.8 0.3 0.0 0.0 32.5 67.5 0.0 06 71.7 27.7 23 99 80.5 7.3

400 0.0 0.1 82.8 17.1 0.0 06 93.6 58 02 0.0 0.0 34.0 66.0 0.0 00 76.2 238 0.0 03 95.0 4.7

0.3 50 27.3 452 20.7 6.8 78.0 16.4 4.4 1.2 0.5 0.4 5.5 28.6 65.6 73 244 36.9 314 476 34.3 13.1 5.0
100 1.8 279 56.2 142 185 394 35.7 64 04 0.0 05 31.8 67.7 08 79 589 324 244 319 373 6.4

200 0.0 1.0 82.0 16.9 1.1 112 80.9 6.8 0.3 0.0 0.0 32.6 674 0.0 03 72.0 27.7 06 6.0 858 7.7

400 00 00 831 169 0.0 06 93.6 58 0.2 0.0 0.0 34.2 659 0.0 0.0 76.5 235 0.0 02 95.2 4.7

0.5 50 12.2 443 32.3 11.2 78.0 16.4 4.4 1.2 0.5 0.1 23 26.1 716 2.5 14.8 41.9 40.8 28.4 36.5 25.4 9.7
100 0.2 12.1 71.2 16.5 185 394 35.7 64 0.4 0.0 0.2 31.0 68.8 0.1 2.5 62.9 346 5.8 20.0 64.4 9.9

200 0.0 0.2 829 169 07 80 84.7 6.6 0.3 0.0 0.0 33.2 66.8 0.0 0.0 725 275 0.0 14 90.8 7.8

400 0.0 0.0 83.8 16.2 0.0 04 935 6.1 0.1 0.0 0.0 34.5 65.5 0.0 00 77.3 227 0.0 00 954 46

0.8 50 04 16.7 571 258 616 272 9.0 23 0.8 00 02 15.8 84.0 0.0 28 36.9 60.3 2.3 188 52.9 26.0
100 00 09 779 212 66 303 56.1 70 0.6 0.0 00 255 745 0.0 03 59.2 405 0.0 20 83.6 144

200 0.0 0.0 82.1 179 0.1 29 903 6.7 02 0.0 0.0 31.0 69.0 0.0 0.0 70.7 293 0.0 00 920 79

400 0.0 0.0 84.7 153 0.0 00 948 52 0.1 0.0 0.0 34.9 65.1 0.0 00 785 21.5 0.0 00 95.8 4.2

09 50 0.1 69 551 379 8.1 46.0 40.0 59 12.1 00 00 9.7 90.2 00 10 27.8 71.2 0.4 102 52.4 37.1
100 00 03 719 279 0.1 3.7 90.0 63 4.3 00 00 185 3815 0.0 01 51.9 480 0.0 06 80.9 185

200 0.0 00 78.9 21.1 0.0 01 94.7 53 1.3 0.0 0.0 26.1 739 0.0 0.0 67.7 323 0.0 00 909 9.0

400 0.0 0.0 84.0 16.0 0.0 00 949 51 04 0.0 0.0 33.1 66.9 0.0 00 78.2 21.8 0.0 00 959 4.1
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TABLE 3.5: Sequential procedures for determining the co-integration rank. VAR(2) model with rank ry = 2, Single Volatility Break [Case E]

Johansen Bootstrap AIC HQC BIC

vy T r=0 1 2 3,4 r=0 1 2 3,4 RC r=0 1 2 3,4 r=0 1 2 3,4 r=0 1 2 3,4

0.0 50 23.7 489 23.0 43 75.6 18.6 4.7 11 04 0.2 5.8 29.1 649 49 259 39.2 30.1 39.5 398 16.5 4.2
100 3.1 386 50.1 8.2 343 439 183 35 0.7 0.0 0.8 29.8 694 1.2 139 55.7 29.2 32.7 398 24.3 32
200 0.0 22 85.2 126 03 19.7 74.7 53 06 0.0 0.0 29.8 70.2 0.0 03 73.2 265 3.0 162 774 34
400 0.0 0.0 87.3 127 0.0 00 95.1 49 0.5 0.0 0.0 30.3 69.7 0.0 00 78.8 21.2 0.0 00 98.2 1.8
0.1 50 199 493 25.9 5.0 73.6 19.8 53 13 04 0.1 4.7 28.4 66.8 4.0 23.0 40.7 323 354 405 18.9 52
100 1.9 335 555 9.2 271 469 22.2 38 04 0.0 05 29.5 70.0 0.7 108 58.0 30.6 252 397 311 39
200 0.0 1.1 86.2 128 0.1 131 81.7 52 0.5 0.0 0.0 29.8 70.2 0.0 01 731 2638 1.0 99 853 38
400 0.0 0.0 87.3 127 0.0 0.0 95.0 50 0.5 0.0 0.0 30.4 69.6 0.0 00 78.8 21.2 0.0 00 98.1 1.9
0.2 50 16.6 48.2 29.3 59 69.7 223 6.4 16 0.6 0.1 3.9 27.7 68.3 3.2 204 41.6 3438 30.8 41.0 21.9 6.3
100 0.9 284 60.4 103 19.3 489 27.5 43 0.7 0.0 03 29.6 70.1 0.3 79 59.7 322 178 38.6 38.9 4.8
200 0.0 05 86.4 131 0.0 77 871 52 06 0.0 0.0 30.0 70.0 0.0 00 73.0 271 0.3 5.0 90.7 4.0
400 0.0 00 87.1 129 0.0 00 94.8 52 0.5 0.0 0.0 30.4 69.6 0.0 00 78.8 212 0.0 00 98.0 20
0.3 50 126 473 33.4 6.8 65.0 26.2 7.0 18 0.6 0.0 3.2 27.0 69.9 22 173 424 38.1 255 412 25.5 7.8
100 04 220 65.9 11.7 122 49.1 34.5 43 0.7 0.0 01 29.3 70.6 0.1 5.0 61.6 33.3 11.0 346 48.6 5.8
200 0.0 02 86.4 135 0.0 35 91.0 55 0.7 0.0 0.0 30.1 69.9 0.0 00 727 273 0.0 21 93.6 43
400 0.0 00 86.9 132 0.0 00 95.0 50 06 0.0 0.0 30.5 69.5 0.0 00 78.8 212 0.0 00 98.0 21
0.5 50 6.0 41.5 42.1 10.5 50.3 36.1 11.3 23 1.1 0.0 16 24.4 74.0 0.6 11.2 43.7 444 14.8 38.8 34.6 11.9
100 0.1 9.3 76.7 14.0 28 369 55.0 53 1.2 0.0 00 279 721 0.0 1.3 63.0 35.7 20 19.1 704 85
200 0.0 00 859 141 0.0 03 946 52 1.0 0.0 0.0 30.2 69.8 0.0 0.0 723 277 0.0 01 95.0 49
400 0.0 00 86.6 134 0.0 00 95.0 50 038 0.0 0.0 30.5 69.5 0.0 00 78.7 213 0.0 00 97.8 22
0.8 50 0.3 19.1 58.9 218 126 529 31.2 33 06 0.0 02 16.9 829 0.0 3.0 37.9 59.1 21 214 52.9 236
100 0.0 05 79.9 196 0.0 06 943 51 02 0.0 0.0 23.0 771 0.0 0.0 b57.5 425 0.0 1.3 85.8 13.0
200 0.0 0.0 834 16.6 0.0 00 949 51 0.1 0.0 0.0 27.0 731 0.0 0.0 69.2 308 0.0 00 94.1 5.9
400 0.0 0.0 85.2 1438 0.0 00 950 50 0.1 0.0 0.0 28.7 71.3 0.0 00 76.9 231 0.0 00 974 26
0.9 50 0.0 96 58.6 318 3.0 449 47.7 45 5.7 0.0 0.0 11.9 88.0 0.0 1.1 30.8 68.1 0.3 123 54.6 328
100 0.0 01 75.6 244 00 02 953 45 0.7 0.0 0.0 18.7 81.3 0.0 0.0 51.8 482 00 0.2 84.1 158
200 0.0 0.0 80.7 193 0.0 00 95.0 50 0.1 0.0 0.0 23.5 76.5 0.0 0.0 658 342 0.0 00 92,9 7.1
400 0.0 00 83.6 164 0.0 00 95.0 50 0.1 0.0 0.0 25.9 741 0.0 00 744 256 0.0 00 96.9 3.1




	IC2013-9_full.pdf
	Introduction
	The Heteroskedastic Co-integrated VAR Model
	Co-integration Rank Determination Methods
	Sequential (standard and bootstrap) Likelihood Ratio Tests
	Information Criteria

	Asymptotic Analysis
	Sequential (standard and bootstrap) Likelihood Ratio Tests
	Information Criteria

	Numerical Results
	The No Co-integration Case (r0=0)
	The Co-integrated Case with r0=1
	The Case of Two Co-integration Relations, r0=2

	Conclusions
	Appendix


