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ABSTRACT 
 
As modern circuits become smaller and the frequencies that they work at become higher, inevitably, parasitic 
coupling within the circuits starts to influence the behavior of the circuit more and more. Therefore it is 
necessary to include the influence of mutual coupling in the circuit simulators that are used to design the 
circuit.  
In this paper the circuit is divided into three classes of building blocks: transmission lines, small 
discontinuities (components) and meshed structures (solved using classical MoM). We will describe software 
modules that can calculate the couplings between these classes. The three modules are compatible with each 
other because they use the same parameters (incoming and outgoing waves at the ports, incident fields and 
radiating currents). They can be easily combined with a normal circuit simulation engine to include mutual 
coupling. 
 
COUPLING BETWEEN TRANSMISSION LINES 

 
This section explains how coupling between lines can be calculated much faster by using the eigenmodes 
(traveling waves) that exist on matched transmission lines. Only first order coupling is calculated: the 
radiation effect of the induced currents is neglected. The line – line couplings are calculated for each 
combination of two lines separately, while discarding all other objects in the circuit. The theory that is used 
to calculate line coupling is described in detail in [1]. It will be briefly described here. 
We suppose that only one of the two lines is fed (the source line) and we want to calculate the outgoing 
transmission line waves on the other line (the observation line). We also suppose that both lines are 
terminated in impedances that are equal to their characteristic impedance. This problem has to be solved for 
an arbitrary configuration of the two lines. One classical way to do this is to use a Method of Moments. The 
calculations can be speeded up a lot if we assume that the current on the source line is not influenced by the 
proximity of the observation line. This means however that the lines can not be coupled to tightly (maximum 
about -7 dB). If the coupling is tighter than this then the results can still be improved by applying the method 
again. This time the observation line is regarded as the source line, which is carrying the previously 
calculated current. Extra iteration steps like this can be applied until sufficient accuracy is reached. 
Because we assume that the source line is not influenced by the observation line, the current on this line will 
be a travelling wave. Using the Green’s functions for the substrate we can calculate the field that this current 
distribution will cause on the observation line. Because this line is perfectly matched at both ends, it can be 
regarded as a section of an infinitely long line. The response of such an infinite line to a incident spatial 
Dirac field impulse at position x=0 will be equal to:  
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pulse are the higher order modes. These will only propagate over a very short distance and are therefore 

ignored. If we look at the Dirac impulse as a one-volt source and replace the two semi-infinite pieces of line 
with two impedances of Zc ohms then it is easy to see that the amplitude A in (1) will be equal to 1/(2Zc). We 
can now find the current (from which the S-parameters can be calculated) from a convolution of the impulse 
response of the line (1) and the incident field on the line (E2 = Z21 I1 ). For an observation line with N2 
basisfunctions: 
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INTRA-DISCONTINUITY COUPLING 
 

This second module will calculate the couplings between the discontinuities of the circuit. If these 
discontinuities are small compared to the wavelength and the distance between them is big compared to their 
size then their radiation behavior is comparable to that of a dipole. In this section we will discuss how 
dipoles can be used to calculate the coupling between the circuit’s discontinuities in a fast, approximate, 
way. The better the two above-mentioned assumptions are met, the better the approximation will be. The 
approximation can always be improved by using more dipoles in the component’s model. Because we only 
calculating first order coupling again (ignoring the influence on of components in the vicinity on this 
component’s currents) we can store the dipole excitations and positions in a library system for each 
component. This new method uses far less unknowns than the method of moments.  
Data are added to the S-parameter black box model of the component. This data describes the relation 
between the incoming (port) waves and the currents on the dipoles 
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  (3)    

and the relation between incident fields on the dipoles and  outgoing waves: 
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The new, extended description of the discontinuity becomes: 
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In which S is the S-parameter matrix, and R and T are the matrices defined in (3) and (4). The X submatrix 
describes the reflections of incident fields on the component. Because of these reflections, indirect paths can 
be formed between 2 discontinuities through other discontinuities. The additional fields that are caused by 
these indirect paths are small compared to the direct field. Therefore the X submatrix is neglected and thus 
set to zero. 
Using the new description we can now combine all the S-matrices of the discontinuities into one big S-
matrix, which includes mutual coupling between them:  
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Where Gi,j is a matrix that relates the field on i’s dipoles to the current on j’s. The matrix (6) is named Sd. It 
describes all the discontinuities and their mutual interaction through radiation as a single big S-port. By 
combining it with the line’s S-parameters we can eliminate all waves on internal ports. What remains are the 
S-parameters between externally fed ports.   
The optimal dipole positions are found through the use of an optimisation routine. They don’t change much 
as a function of frequency. If the discontinuity has N ports than excitation of each of these ports will generate 
a distinct field distribution. The optimisation routine tries to position and feed the dipoles in such a way that, 
at the centre frequency, their total field resembles these field distributions as much as possible in a number of 



 

 

well chosen testpoints. Only the positions of the dipoles are variables for the optimisation: The optimal 
dipole excitations for a certain position can be found using a least square method.  
The T-matrix (the dipole excitations for each port) is calculated for each frequency after the ideal dipole 
positions have been calculated for the mid-band frequency. This is done using the least square method again. 
The R matrix can be calculated from the T-matrix through reciprocity. It can be proved that R=T/2.  
 
NUMERICAL RESULTS 
 
The modules of the method are first tested separately and the relation between the approximation error and 
the proximity of the components is investigated. Then a simple circuit is analysed using both the modules 
and the S-parameters are compared to those calculated with the Method of Moments. 
To find the minimum distance at which the line coupling method still yields accurate results the coupling 
between a pair of parallel lines is calculated for different distances. Both horizontal lines have a length of 18 
mm and a width of .61mm (50 ohm). They start at the same X-position. The substrate is 0.635 mm thick and 
εr = 9.9. The coupling was calculated and compared to the standard method of moments (using 80x5 
segments for both lines) for three distances: 3mm, 1.5mm and 1 mm. The continuous line in figure 1 is the 
result using the standard method of moments, the dot-dash line the new method. Ports 1 and 2 are on the 
observation line, ports 3 and 4 on the source line. Ports 1 and 3 are on the left, ports 2 and 4 on the right. The 
results are usable up to 1.5mm. The maximum coupling is then -10 dB. 

Figure 1. Comparison between M.o.M. and new method for coupling between a parallel pair of lines for 
distances of 1, 1.5 and 3mm.  
 
The inter discontinuity coupling module is tested using the T-junction shown in figure 2. A 6 and 3-dipole 
model is calculated for this discontinuity (with 100 testpoints in a circle with Rt = 4mm) and the fields 
generated by the models are compared to those of the component as a function of frequency and distance. 
The calculated model is then used to calculate the S-parameters for the 2 coupled T-junctions. The circuit is 
placed on a substrate with εr = 9.9 and a thickness of .631 mm. For this substrate the lines have a 
characteristic impedance of 50 ohms. For the M.o.M.  both junctions use 88 rooftop basis functions. In all the  

 



 

 

 

 
Figure 2.  Two T-junctions that will be used to 
check the inter discontinuity coupling module. 
Port numbers are indicated 

following figures the T-junction is positioned with 
its middle leg pointing down. The dipole model 
can be verified by analyzing the ratio of the 
maximum error (over all testpoints) to the 
maximum field strength. Over a frequency range 
of 1 to 10 GHz, for a testpoint radius of 4mm, this 
ratio has a maximum value of –30 dB for a 6 
dipole and –15 dB for a 3 dipole model. If plotted 
as a function of distance, then the same ratio is 
below –30 dB for the 6 dipole model at distances 
greater than 3mm, at 30GHz.    
The T-junctions in figure 2 will now be fed by 6 
lines. Each line is 9.135 mm long and .61mm 
wide (50 ohm) and is segmented for the M.o.M. 
with a 3x45 mesh. 

The S-parameters for this simple circuit are calculated using the new method and compared to the M.o.M. 
solution.  Figure 3 shows this comparison. The couplings are split up per type: line-line, line-discontinuity, 
discontinuity-discontinuity, and full coupling. Each graph represents the coupling between two ports. The 
port numbering is shown in figure 2. 
 

Figure 3. Coupling contributions for T-junctions fed by six lines split up by type. d = 3mm.   
 
CONCLUSIONS 

 
The Main advantage of the method is the speed up. The moment method uses 2.142 seconds to set up its 
matrix, .345 seconds to solve it and 3.427 seconds to deembed the 6 ports. Only .152 sec are needed for the 
new method. For large circuits the speed up increases because the inversion time rises proportional to the 3 
power of the number of unknowns. The dipole model needs no inversion and will be much faster for large 
circuits. 
Also, the new model needs far less memory than the moment method because only couplings between 
dipoles of two discontinuities are present in the computers memory. 
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