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Abstract

A highly integrated wide-band MMIC RF-source using the heterodyne frequency conversion scheme is presented in this paper. Two
oscillators, a mixer, and three corresponding buffer amplifiers find place on a MMIC chip with dimensions of 3.0 × 1.8 mm2 manufactured
using a commercially available 0.25 µm pHEMT process. The circuit provides RF power within a wide range of f = 3.5 – 6.5 GHz.

I. I NTRODUCTION

M
ANY applications, in particular the sensor ones, require signal sources with a very wide tuneable bandwidth of
oscillations. Further, one-chip systems are desirable due to the reduced assembly efforts and cost [1]. In particular,

high performance HEMT voltage-controlled oscillators are essential if they have to be integrated together with mixers,
amplifiers etc. to form a system-on-a-chip. Several successful techniques have been reported in the literature which
achieve significant VCO tuning ranges [2–4] using direct VCO tuning.

This paper presents a fully monolithically integrated realization of a signal source that provides RF-power within a
wide range off = 3:5 � 6:5GHz, which corresponds to an almost octave bandwidth. The output power of the MMIC
is Pout = 8:7 � 14:1 dBm. The highly integrated realization is the first-pass success. It requires a chip area of only
3:0� 1:8mm2. A commercially available pHEMT process was used to fabricate the circuitry.

II. D ESIGN APPROACH

When considering a fully monolithically integrated VCO design, the bandwidth of oscillations is mainly determined by
the capacitance-change ratio of the integrated diodes used. The modern pHEMT processes offer integrated diodes with
Cmax=Cmin � 3� 5 that limit the performance of directly tuned oscillators.

The present design approach makes use of the heterodyne frequency conversion scheme. The block diagram of this
approach is shown in Fig. 3. A similar realization was reported in [5] where a source was built using hybrid technique
with five MMICs and off-chip VCO tuning.

Here, the core of the RF-source is the fully integrated VCO that oscillates within the range offV CO = 22:3� 26GHz.
The VCO output-signal level is then increased by the corresponding buffer amplifier that is also employed to reduce the
influence of the further circuitry to the VCO. The local oscillator and its buffer amplifier is employed to provide the LO
signal at an appropriate power level. These signals are then given to the mixer that down-converts the VCO frequency
to the desired IF band. Finally, the output signal is increased by the broadband amplifier that is designed using resistive
feedback.

As a result, an RF-signal within the band of3:5� 6:5GHz is achieved from a MMIC whose microphotograph is shown
in Fig. 4.

A. VCO Circuit

The voltage-controlled oscillator was designed to provide as wide bandwidth of oscillations as possible. The reflection-
type circuit topology was utilized for this reason. Figure 1 demonstrates the principle schematic of the voltage-controlled
oscillator together with the buffer amplifier. Design techniques used to increase the bandwidth of oscillations are similar
to those presented in [6]. A1 � 75 µm pHEMT is employed as the active element. CapacitorCFB induces a negative
differential resistance at the input of the oscillating transistorTOSC:

Six 10 � 15 µm planar pHEMT diodes are used for frequency tuning. The series-parallel connection of the tuning
diodes helps to reduce the RF-voltage value over each single diode, thus, increasing the effective capacitance-modulation
ratio of the configuration. The resonator circuit is completed by the grounded transmission lineTLRES:

The corresponding buffer amplifier was designed with the aim to reduce the influence of the local oscillator on the
VCO behavior. A4 � 30 µm pHEMT is used to do this. Another transistorTBias with the same dimensions is used as
a current source to provide DC biasing. The elementsTLST; LST; andRST help to active the unconditional stability
of the amplifying pHEMT. TwoL-networks consisting ofLout1;2 andCout1;2 provide matching between the amplifier
output and the input of the mixer.

mailto:megej@ieee.org
mailto:Klaus.Beilenhoff@ums-gaas.com


Fig. 5 shows the measured performance of the buffered VCO that was also manufactured separately for characterization
reasons. The circuit provides oscillations within the frequency range offV CO = 22:3 � 26:0GHz. The dependence of
the oscillation frequency on the tuning voltage exhibits a non-linear behavior that is typical for this kind of VCO’s. The
measured output power demonstrates a fairly low variation with tuning voltage and amounts to the value ofPout;V CO =

4:7 � 0:7dBm. The buffered VCO occupies chip area of approximately1:7 � 1:0mm2. It can be seen in the lower left
part of the MMIC in Fig. 4.

B. Local Oscillator

The local oscillator schematic bases on the same design topology as the VCO described above. Also here, a1� 75 µm
pHEMT is used as the oscillating transistor. The main difference was the design of the resonator circuit: a grounded
transmission line is employed to satisfy the oscillation conditions. The buffered oscillator provides RF-power atfLO =

19:4GHz with output power ofPout;LO = 8 dBm. The corresponding buffer amplifier is designed using the same
techniques as in the case of the voltage-controlled implementation. The buffered LO circuit can be found in the upper left
part of the chip in Fig. 4.

C. Mixer Circuit

Apart from the voltage-controlled oscillator—if even its configuration is very simple—the most challenging task during
this work was to design a mixer circuit that operates within a wide frequency range. The main goal was to reduce the
chip-size demand and to achieve conversion gain. The latter condition is especially problematic since the difference in
power levels between the VCO and LO signals is not significant (4 vs. 8 dBm).

Because of the above requirements, active mixer topology was chosen. The microwave mixer implemented here bases
on a simple single-gate configuration. The schematic of the designed mixer circuit is presented in Fig. 6. A self-biased4�

60µm pHEMT is employed as the frequency converter. The gate of the active transistor is virtually biased negatively using
the resistorRFB in its source path. The separation of different signal frequencies is achieved by employing appropriate
matching and filter networks at the mixer output and input. The mixer circuit is located in the upper center part of the
MMIC (Fig. 4).

This sub-circuit was not manufactured separately. Therefore, only calculated results can be shown here whereas mea-
sured performances of the VCO and LO circuits were considered for these simulations. LO-to-RF isolation was calculated
to be better than 10 dB at RF frequencies and better than 20 dB at the LO frequency. The LO-IF and RF-IF isolations both
were determined to be better than 30 dB. Figure 7 shows the calculated conversion gain for measured values ofPout;V CO
andPout;LO: This parameter is as high asGC = 0:7 � �4 dB with decreasing values for lower frequencies. Although
the initial simulation had predicted a conversion gain around +1 dB, the increase of losses can be explained by the fact
that the actual LO-power level is lower than expected. The performed simulations were confirmed by the measurements
of the RF-source performance.

D. Broadband Buffer Amplifier

The buffer amplifier, which increases the power level of the mixer output signal, has to operate in a wide frequency
range. Its schematic is shown in Fig. 2. Two8� 75 µm transistors as the active element and current source, respectively.
An RLC feedback circuit was used to increase the bandwidth of operation and to achieve the unconditional stability. Two
stageLC circuits provide matching at the input and the output. The measured small-signal gain amounts to the value of
10:5� 1 dB over the entire band of interest and the output matching is better than -10 dB.

III. M EASUREDRF-SOURCEPERFORMANCE

As already mentioned above, the circuit was realized using thePH25 pHEMT-process of UMS. The gate-length featured
by this process is0:25 µm.

On-wafer measurements of the RF-source realized were performed using the spectrum analyzerHP8565E. Beforehand,
cable losses were determined. Measured frequency and power of the output signal are depicted in Fig. 8. The MMIC
provides RF signal within a wide frequency range offIF = 3:48 � 6:56GHz covering almost an octave. The output
power levels are within the range ofPout;IF = 8:7 � 14:1 dBm with a rapid decrease towards the lower frequency. It is
mainly due to lower mixer conversion gain (Fig. 7). This is also the reason why the entire tuneable bandwidth of VCO
(down tofV CO = 22:3GHz ) could not be used.

Due to the incorporation of the frequency conversion scheme, the output contains some spurious signals. These signal
levels were measured to be as high as�22 dBc atfIF = 3:5GHz while gradually reducing to�31 dBc atfIF = 6:5GHz.

The presented RF-source realization is the first-pass success. Therefore, the performance shown can still be improved
by performing a re-design of the circuit. So, for example, the tuning range could be increased down toVTUNE = 0V that
would further increase the tuneable bandwidth of oscillations.

IV. CONCLUSION

An MMIC is demonstrated here that provides RF power within a wide frequency range of almost an octave. This
realization incorporates frequency conversion scheme and employs two oscillators, a mixer, and three amplifiers that all
find place on a single MMIC chip. The RF-source is manufactured using a commercial pHEMT process and does not



require any additional elements. This demonstrates the possibility to realize wide-band RF-source on one single MMICs.
The fully monolithically integrated realization presented here significantly reduces assembly efforts and, hence, cost.
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Fig. 1. Principle schematic of the buffered VCO.
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Fig. 4. Microphotograph of the RF-source realized.
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Fig. 5. Measured frequency and output power of the buffered VCO.
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Fig. 6. Principle schematic of the mixer circuit.
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Fig. 7. Mixer conversion gain calculated for measured values of
Pout;V CO andPout;LO:
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Fig. 8. Measured performance of the RF-Source realized.


	MAIN INDEX
	ABSTRACT
	INTRODUCTION
	DESIGN APPROACH
	VCO Circuit
	Local Oscillator
	Mixer Circuit
	Broadband Buffer Amplifier

	MEASURED RF-SOURCE PERFORMANCE
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

