
Anna Freni Sterrantino

Varying coefficient models as Mixed Models:
reparametrization methods and bayesian estimation

Quaderni di Dipartimento

Serie Richerche 2013, n. 5
ISSN

Dipartimento di Scienze Statistiche
“Paolo Fortunati”



Abstract

Non-linear relationships are accommodated in a regression
model using smoothing functions. Interaction may occurs be-
tween continuous variable, in this case interaction between non-
linear and linear covariate leads to varying coefficient model
(VCM), a subclass of generalized additive model.
Additive models can be estimated as generalized linear mixed
models, after being reparametrized.
In this article we show three different type of matrix design for
mixed model for VCM, by applying b-spline smoothing func-
tions. An application on real data is provided and model esti-
mates are computed with a Bayesian approach.

Introduction

Non-linear relations between covariates and response variable are in-
tegrated in a regression model by smooth functions. In presence of
interaction between a smooth function and a variable, we deal with
Varying coefficients models (VCM)(Hastie and Tibshirani, 1993), a
subclass of Generalized additive models (GAM).
Both classes share estimation methods, like Penalized Iteratively re-
weighted least squares (P-IRLS) and software procedures.
Alternative way to treat generalized additive models is to reparametrize
them into a Generalized Linear Mixed Models (GLMM) and then es-
timate with maximum likelihood or penalized quasi-likelihood meth-
ods, (Durban, 2009; Brumback and Rice, 1998; Verbyla et al., 1999) or
by Bayesian methods (Crainiceanu et al., 2005; Fahrmeir and Lang,
2001).
Wrapping GAM, as a generalized linear mixed model, relays on a
smoothing basis anchored on knots and on a penalty parameter to
ensure fitting roughness. This processes is performed by a varied of
basis, like: thin plate splines (Wood, 2006), p-splines (Marx, 2010)
or truncated polynomial.
We present a reparametrization of a varying coefficient model - a
GAM model with an interaction term - in a GLMM form with p-
splines basis (i); three ways on how to express non-linear effect in
fixed and random effect matrices (ii) and provide code for matrices
set up and for Bayesian estimation (iii).
The paper is structured as follows: section (1) introduces a non-linear
regression and linear mixed model frame. Section (2) presents vary-
ing coefficient models with a generic spline basis. Generalized linear
mixed model representation is described in section (3). B-spline basis
and the three ways to reparametrize a VCM are introduced in section
(4) and (5). Finally, an example is provided on real data in section
(6). Discussion and appendix follow respectively.

1 Non-linear regression

A non-linear regression holds for a variable y that depends non-
linearly on a variable x, for the i-th observation equation model is:

yi = f1(xi) + εi (1)
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where ε ∼ N(0, σ2I), f1(·) a smoothing function, and y a Gaussian
distribution. If X̃ is a generic basis for the smoothing function f1(·),
then

yi =

qj∑
j

βjbj(xi) + εi

with βj and bj(xi) respectively smoothing coefficients and basis func-
tion.
A spline basis is constructed on knots qj - a selection of observed xi
values - to limit smoothness and allow for wiggliness. In matrix form
f1(x1) = X̃β, wiggliness is translated as a penalization of smoothing
coefficients controlled by a penalty parameter λ:

y = X̃β + λβTPβ.

To find model estimates, we minimize

S(β) = (y − X̃β)T (y − X̃β) + λβTPβ

with being P a penalty matrix.
For a given λ, the solution to the optimization problem satisfies:

(X̃T X̃ + λP)β̂ = X̃T y

then ŷ = X̃β̂ = Hy with hat matrix H:

H = X̃(X̃T X̃ + λP)−1X̃T .

1.1 Adding linear covariates

Suppose we would like to include other linear covariates, indicated in
matrix form X∗, then:

y = X∗θ + X̃β + ε (2)

we minimize for (θ, β) :

S(θ, β) = (y −X∗θ − X̃β)T (y −X∗θ − X̃β) + λβTPβ.

that satisfies: [
X∗TX X∗TX̃

X̃TX X̃TX̃ + λP

] [
θ̂

β̂

]
=

[
X∗T

X̃T

]
y

Estimation method is penalized iteratively re-weighted least squares
(P-IRLS) or maximum likelihood, while optimal penalty coefficient
value is found by generalized cross validation (GCV), see Wood (2006)
for more details.
But, both models in equation (1) and (2) could be re-parametrize
into a linear mixed model form:

y = Xβ + Zu+ ε (3)
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with ε ∼ N(0, σ2ε I) and u ∼ N(0, σ2uI), and

cov(y) =

(
σ2ε I 0
0 σ2uI

)
The internal structure of X and Z matrices depends by the smoothing
basis, with fixed matrix containing observed predictors and random
matrix incorporating penalties.

2 Varying coefficient models: definition

A varying coefficient model is defined as a generalized additive model
with an interaction effect between a smoothed function that repre-
sents a non-linear relationship and a continuous variable ( binary or
categorical variables are included too). Given the following model:

g(µi) = X∗
i θ + f1(x1i) + f2(x2i)si + ... (4)

µi = E(yi) and yi belonging to the exponential family, g a known
monotonic link function, X∗

i i-th row (i = 1, . . . , n-observations) of
model matrix for any parametric model components, θ parameter
vector, fj ’s smooth function for xj covariates and s a linear variable
that interacts with x2.
Given a generic basis bji for each function (more in section 4), the
j-th smoothing function is:

fj(xj) =

qj∑
j

βjbj(xi)

A model matrix is defined as X̃j, for each j. Therefore fj is a

vector, such that fji = fj(xji) and β̃j = [βj1, . . . , βjqj ]
T , and

fj = X̃j,ik = bjk(xi)β̃j = X̃jβ̃j

Substituting in equation (4)

g(µi) = X∗
i θ + X̃1β̃1 + X̃2β̃2si + ... (5)

Because model equation in (5) is not identifiable, each smooth basis
has to be centered.
A suitable constraints is that the sum of the elements in model matrix
equals zero,

1TX̃jβ̃j = 0.

An efficient solution use QR decomposition on matrix X̃j
T1. Con-

straints imply that we redefine Xj = X̃jZ, such that fj equals Xjβj .
The final form for a varying coefficient model is:

g(µ) = X∗ + X1β1 + (X2β2)s+ ... (6)

1See Appendix B
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To include the effect of a linear covariate is sufficient to multiple
diag(si) - a diagonal matrix with all element zero except on the prin-
cipal diagonal - to model matrix X2. A compact view of model (6)
gives:

g(µi) = Xiβ

with X = [X∗ : X1 : X2diag(s) : . . . ].
A penalization term to control overfitting is represented by a quadratic
form of equation coefficients:

β̃Tj S̃j β̃j

matrix S̃j is composed by known coefficients that control j-th wiggli-
ness. Penalty term is subjected to re-parametrization by QR proce-
dure, for identifiably issues, and it becomes

βTj Sjβj

with

Sj = ZT S̃jZ.

For notational practice, penalty is noted as βTSjβ, where Sj equals
Sj, but has a sparse structure, that

βTSjβ = βTj Sjβj .

Varying coefficient model is reduced to:

g(µ) = Xβ + λβTSjβ

3 Varying coefficient model in mixed model
formulation

Given the non-parametric model:

g(µ) = Xβ + λβTSjβ (7)

the aim is to re-parametrize in a parametric form of equation (3)
For each fj(xj) there is a model matrix and a wiggliness function,
respectively bj(xi) = Xf , J(f) = βTSjβ.
Because we want to compress equation (7) into fixed and random
matrices, smoothing coefficients βs are partitioned in βF for fixed
effect and bR for random effects.
A prior distribution for smooth function is

fβ(β) ∝ exp(−λβTSTβ/2). (8)

But, it is an improper prior for β, given S rank deficiency.
Re-parametrization brings two groups of parameters: one with proper
prior for random effects and one with improper prior for fixed effect.
Penalty matrix S has to be strictly positive and given the singular
value decomposition (svd) S = UTDU, we extract D a diagonal ma-
trix, with eigenvalues on its principal diagonal arranged in descending
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order. From D we recover to submatrices: D+the smallest submatrix
that contains only positive eigenvalues and D∗ that contains on its
diagonal the remaining ordered eigenvalues.

D =

[
D+ 0
0 D∗

]
(9)

Penalty acts only on random effect coefficients, and parameter
vector is partitioned:

(bTR, β
T
F )=UTβ

substituting in penalty term of equation (7)

βTSβ = βTUDUTβ = (bR, β
T
F )D(bTR, β

T
F )T =

(bR, β
T
F )[D+ : D∗](b

T
R, β

T
F )=bTRD+bR

is clear that matrix D+ penalizes only βR. Smooth distribution
for βR, with proper prior for random effects is:

fbR
(bR) ∝ exp(−λbTRD+

T bR/2)

Whereas, random coefficients distribution is:

bR ∼ N(0,D+
−1)/λ.

Orthogonal matrix, resulting from svd penalty matrix, is split in
two block matrices U = [UR : UF]. Two matrices composed by eigen-
vectors associated with null eigenvalues UF and eigenvectors associ-
ated with positive eigenvalues UR.
Fixed and random matrices are:

XF = XfUF

XR = XfUR

Additional transformation on random coefficients

b =

√
D+

−1bR

and
Z = XR

√
D+

lead to XFβF + Zb, and

b ∼ N(0, I/λ).

obtaining desired distribution for random coefficients, stated in equa-
tion (3). No particular spline basis for X̃ and or any penalty matrices
S, have been selected.
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4 B-spline basis

Non-linear relationship is arranged in a regression model by interpo-
lating data or by fitting a truncated power function:

1, x, . . . , xp, (x− k1)p+, . . . , (x− kk)
p
+

with k indicating data observations called knots (k < n ) selected to
anchor the smoothing function. The number of knots or its location
is not so relevant for the fitted model, as stated by (Ruppert, Wand,
and Carroll, 2003). A general rule of thumb is the following:

knots locations: kk = ( k+1
K+2)th sample quantile of unique xi

knots number: K = min(1/4× number of uniquexi, 35)

A generic B-spline is computed as differences of truncated power func-
tions, cubic b-spline basis is generated by four polynomial of degree
three and is non-zero within the range off knots.
A bspline is defined recursively as

b1(x) = 1 b2(x) = xi
b3(x) = R(xi, k1) b4(x) = R(xi, k2)
bk(x) = R(xi, kk)

And function R(x, k) assures that cubic polynomial segments of
data are connected smoothly between them

R(x, k) =
1

4
×

((
k − 1

2

)2

− 1

12

)
×

((
x− 1

2

)2

− 1

12

)

− 1

24
×

((
|x− k| − 1

2

)4

− 1

2
×
(
|x− k| − 1

2

)2

+
7

240

)
In Figure 1 we plot b-splines for different degree value, (Wood,

2006).
Penalties matrices are basis specific and consent for smoothing

flexibility while avoiding over fitting. For b-splines, penalty matrix is
a based on a difference operator of order u, (Eilers and Marx, 1996;
Eilers and Marx, 2004).
For cubic b-splines, a second order difference penalty is sufficient.
First order differences penalize too big jumps between successive pa-
rameters and second order differences penalize deviations from linear
trends. A bspline accompanied by a penalty matrix is called p-spline
(ps).

5 Varying coefficient model reparametrization
with B-spline

Three different fixed and random effect matrices design are presented.
All methods are adapted for a p-spline basis function and for varying
coefficient models, given the starting model form :

g(µi) = X∗
i θ + f1(x1i) + f2(x2i)si + ε
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Figure 1: Bspline for different degree and 10 internal knots

we want to specify:

g(µi) = Xβ + Zu+ ε.

For each non-linear covariate, a b-spline matrix has to be com-
puted. Given a j-th non-linear predictor, (subscript j omitted) x =
[x1, . . . , xn] a B cubic b-spline matrix is computed and has dimension
n× (k + deg), deg is polynomial degree -for cubic b-spline equals 3 -
and k the number of internal knots.
A penalty matrix P is derived by assuming a difference diagonal ma-
trix of order 2,

P =


1 −2 1 0 0 . . .
0 1 −2 1 0 . . .
0 0 1 −2 1 . . .
. . . . . . . . .


of dimension (k + deg)× (k + deg)− 2.
Penalty matrix is defined, as S = PtP. And singular value decompo-
sition

PPT
(k+deg)×(k+deg) = UDUT

The block matrix
U = [UF,UR]
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has UF(k+deg)×2 and UR(k+deg)−2×2 In table 1 we reported the three
matrix design, for a GAM and for a varying coefficient model. For
the three designs, fixed and random matrices are orthogonal and full
column rank.

5.1 Matrix design: I

This first parametrization has been seen in Breitner (2007) to fit a
time varying coefficient model, and in Currie, Durban, and Eilers
(2006).
In this case, fixed effect matrix is defined:

X1 = [1 , x1]

and random matrix is

Z1 = B1URD
−1/2
+

with B1 b-spline matrix associated with the first predictor x1, and
D+ equal to definition in been in equation(9).
For our second additive member of equation: f2(x2)s, matrix b-spline
is equal to

diag(s1, s2, . . . , sn)B2s.

Without loss of generality, a unique penalty matrix is defined, for
both smooth function as long knots number is the same for both.
Random matrix is

Z2 = B2sURD
−1/2
+

for fixed matrix, given the two zeros eigenvalues, it may be composed
as follow

X2 = [x2, x2s].

Random and fixed matrices are combined in block matrices:

X = [1, x1, x2, x2s,X
∗]

Z = [B1URD
−1/2
+ |B2sURD

−1/2
+ ].

If this parametrization is used, it is necessary to ensure that block
matrix is [X : Z] is full column rank and XTZ = 0, i.e. orthogonal.
Both are full column rank,

rank(Z = [B1URD
−1/2
+ |B2sURD

−1/2
+ ]) = (k + deg)− 2

and
rank(X = [1, x1, x2, x2s]) = 4

Whereas, orthogonality is ensured by transformation applied to ob-
tain this reparametrization, for details (Lee, 2010).
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5.2 Matrix design: II

Second type of parametrization was adapted to p-splines by Durban
(2009) in generalized linear models context, following the approach
of Brumback and Rice (1998) that have reformulate the two matrices
in equation (as a solution to an optimization problem).
For the term with no interaction, fixed matrix:

X = [1, x1, x2, x2s,X
∗]

while random matrices

Z1 = B1UD−1/2

With D is defined in equation(9). Analogously for interaction term

Z2 = B2sUD−1/2

Compact block matrix:

Z = [B1UD−1/2|B2SUD−1/2] (10)

If the number of knots, b-spline degree and order of penalty matrix
are same, U and D are identical for both smooth functions in the
model.

5.3 Matrix design: III

Third parametrization is found in Verbyla et al. (1999), following indi-
cation from Green and Silverman (1994) who apply a cubic smoothing
spline. Whereas, Currie and Durban (2002) adapts this parametriza-
tion procedure to p-splines, defining first smooth term

X1 = B1G

and

G =

 1 k1 k21 k
(deg−1)
1

...
...

...
...

1 kk k2k k
(deg−1)
k


With deg being the b-spline degree is cubic, matrix G is reduced

to G = [1 , k], where q are the selected knots. Random effect matrix,
for term is defined as:

Z1 = B1D
T(DDT)−1

For interaction term:
X2 = B2sG

and
Z1 = B2sD

T(DDT)−1

Fixed and random effect matrices are:

X=[B1G|B2sG|X∗]

Z = [B1D
T(DDT)−1|B2sD

T(DDT)−1]

9



M
o
d

el
F

ix
ed

E
ff

ec
t

M
at

ri
x

R
an

d
om

E
ff

ec
t

M
at

ri
x

g
(µ
i)

=
X

∗ i
θ

+
f 1

(x
1
i)

+
ε

X
=

[1
,x

1
|X

∗ ]
Z

=
B
U

R
D

−
1
/
2

+

X
=

[1
,x

1
|X

∗ ]
Z

=
B
U
D

−
1
/
2

X
=

[B
|1
,k
|X

∗ ]
Z

=
D

T
(D

D
T

)−
1

g
(µ
i)

=
X

∗ i
θ

+
f 1

(x
1
i)

+
f 2

(x
2
i)
s i

+
ε

X
=

[1
,x

1
,x

2
,x

2
s,
X

∗ ]
Z

=
[B

1
U
D

−
1
/
2
|B

2
s
U
D

−
1
/
2
]

X
=

[1
,x

1
x
2
,x

2
s,
X

∗ ]
Z

=
[B

1
U

R
D

−
1
/
2

+
|B

2
s
U

R
D

1
/
2

+
]

X
=

[B
1
G
|B

2
s
G
,X

∗ ]
Z

=
[B

1
D

T
(D

D
T

)−
1
|B

2
s
D

T
(D

D
T

)−
1
]

T
ab

le
1:

R
ep

a
ra

m
et

ri
za

ti
on

sc
h

em
e

in
to

a
G

L
M

M
,

fo
r

a
ge

n
er

al
iz

ed
ad

d
it

iv
e

m
o
d

el
an

d
a

va
ry

in
g

co
effi

ci
en

t
m

o
d

el
,

w
it

h
a

p
en

al
ty

m
at

ri
x

of
se

co
n

d
o
rd

er
an

d
a

cu
b

ic
d
eg

re
e.

10



6 Illustration on real data

We show the application of two matrix designs with data from Cleve-
land, Grosse, and Shyu (1991). Ethanol dataset has 88 observations
for two predictors: the equivalence ratio (E), a measure of the fuel-
air mixture, the compression ratio (C) of the engine; and a response
variable NOx, the concentration of nitric oxide and nitrogen dioxide
in engine exhaust, normalized by the work done by the engine.
NOx presents a quadratic effect with predictor E and an interaction
with compression ratio. As deductible in Figure 2, each scatter-plot
depicts the concentration of NOx against engine compression ratio,
by equivalence ratio quartile.
Despite linear relation in the four panels between NOx and compres-
sion ratio, equivalence ratio modifies this relationships: both slope
and intercept vary non parametrically.
Equation model is:

NOx = β1(E) + β2(E)C + ε

Reparametrization for fixed and random effect

NOx = Xβ + Zu

with X = [1, C, E, CE] and Z = [Z1, Z2].

For Bayesian estimates, priors are:{
β0, β1 ∼ Norm(0, 0.001)
σε ∼ Gamma(10−4, 10−4)

We estimated two models, one with a matrix design as in section
(5.1) with graphs in Figure 3 and a second model with matrix design
in section (5.2), and graphs in Figure 4.
The two figures, similar to those in Hastie and Tibshirani (1993) and
Ruppert, Wand, and Carroll (2003), plot slope and intercept - the
smoothed terms- versus equivalence ratio.
In detail, plot in Figure 3a shows a quadratic effect between response
variable and equivalence ratio predictor. There is a positive linear
effect up to 0.85 of equivalence ratio, then declines to zero for higher
values.
Plots in Figure 4 are obtained by estimating a model with a random
effect equal to equation (10), and conclusion draw for the previous
plots are identical, despite some variability in pointwise credible sets.
In appendix A, there are all the steps to perform the computations.

7 Discussion

We show how to reparametrize a varying coefficient model as a gen-
eralized linear mixed model, with b-spline basis, and provided three
different matrix design for fixed and random matrices, followed by an
application on real data and Bayesian estimation.
Crainiceanu, Ruppert, and Wand (2005) published a similar work,
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with application of Bayesian estimates for generalized additive mod-
els reparametrized by thin plate splines in a mixed model form, but
no interaction term.
One motivation behind this work is that p-splines are default basis in
BayesX - a software that estimates GAM and VCM - but is not pos-
sible for users to decide knots selection or a priori parameters value.
WinBUGS software, on the contrary permits to control all estimation
aspects, at the price of some consuming computational time.
Bayesian estimation is supported by the fact that frequentist meth-
ods for mixed models estimation and non Gaussian data present non-
optimal approximation for small dataset, either using WinBUGS or
R package like MCMCglmm by Jarrod (2010).
For a pure Bayesian approach of GAM-VCM, we suggest to refer to
Lang and Brezger, 2004.
B-splines, as thin plate splines, are natural cubic splines, character-
ized for numerical stability and computational efficiency and a change
of basis do not compromise the model fit.
One limitation of this reparametrization is for complex model, an
interaction with tensor products, renders complicate design matrices
and GLMM computationally inefficient and less interpretable, but for
simple model, GLMM is an elegant solution and well-understand for
non statistical public.
Aim of this paper was to show how express a Varying Coefficient
Model in a generalized linear mixed model framework. We provided
three matrix designs methods on a reparametrization of a VCM in a
mixed model, using b-splines smoothing functions.
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Appendix A: Bugs/R code

This is the code used for the data example. Ethanol data are found
in lattice R pacakage.

• Compute b-spline matrix for the smoothed variable, with b-
spline function from R splines package, or see in Eilers and
Marx (1996) R code for function bbase

tpower <- function(x, t, p)
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# Truncated p-th power function

(x - t) ^ p * (x > t)

bbase <- function(x, xl = min(x), xr = max(x), nseg = 10,deg = 3){

# Construct B-spline basis

dx <- (xr - xl) / nseg

knots <- seq(xl - deg * dx, xr + deg * dx, by = dx)

P <- outer(x, knots, tpower, deg)

n <- dim(P)[2]

D <- diff(diag(n), diff = deg + 1) / (gamma(deg + 1) * dx ^ deg)

B <- (-1) ^ (deg + 1) * P %*% t(D)

return(B)

}

• Covariates are standardized.

• Define X matrix and compute Z by one of the possible designs.

X <- cbind(rep(1,nrow(response)), x1, x2,x1*x2)

• Random effect matrix with first design

B1 <- bbase(x,nseg=5)

sdia <- diag(s)

B2s <-sdia%*%B1

D <- diff(diag(ncol(B1)),diff=2)

P = t(D) %*% D

decomp <- svd(P)

sigma <- diag(decomp$d)

un <- decomp$u[,(ncol(B1)-1):ncol(B1)]

us <-decomp$u[,1:(ncol(B1)-2)]

Z1 <- B1%*%us%*%diag(1/sqrt(decomp$d[1:ncol(B1)-2]))

Z2 <- B2s%*%us%*%diag(1/sqrt(decomp$d[1::ncol(B1)-2]))

Z <- cbind(Z1,Z2)

• Random effect matrix with second design

B1 <- bbase(x,nseg=5)

sdia <- diag(s)

B2s <-sdia%*%B1

D <- diff(diag(ncol(B1)),diff=2)

P = t(D) %*% D

decomp <- svd(P)

Z1 <- B1%*%decomp$u%*%diag((1/sqrt(decomp$d)))

Z2 <- B2s%*%decomp$u%*%diag((1/sqrt(decomp$d)))

Z <- cbind(Z1,Z2)

• OpenBUGS model for the Cleveland data is:

model{

for(j in 1:n){
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response[j]~dnorm(mu[j],taub)

mu[j]<-inprod(beta0[],X[j,])+inprod(beta1[],Z[j,])

}

taub~dgamma(0.0001,0.0001)

for(i in 1:num.knots){

beta1[i]~dnorm(0,0.001)}

for( k in 1:P){

beta0[k]~dnorm(0,0.001)

}

sigmab<-1/sqrt(taub)

}

• R Library BRugs, runs OpenBUGS from R

model.fit<-bugs(dati.bugs,inits.bugs, c("beta0","taub",

"beta1","sigmab"),"modelethanol.txt",

n.chains=1,n.iter=n.iter,n.thin=n.thin,

n.burnin=n.burnin, codaPkg=FALSE)

Appendix B: QR Decomposition

If X̃j
T

has dimension n× qj and (qj ≤ n) then:

X̃j
T

= [A : Z]︸ ︷︷ ︸
Orthogonal matrix

[
P
0

]
︸ ︷︷ ︸

Upper triangular matrix

(11)

Where orthogonal part is represented by a block matrix by Dn×(n−qj)
and Zn×qj−(n−qj). Therefore β are defined as β = Zβz and it is proved
that

X̃jβ = [PT0]

[
AT

ZT

]
Zβz = [PT0]

[
0

Ip−m

]
βz = 0

For more details refer to (Wood, 2006).
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Figure 2: Plots of NOx versus compression ratio (C), for low, mod-
erate, high and very high values of equivalence ratio (E).
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Figure 3: Plots obtained from estimates, with a random matrix by
first design in section 5.1. In figures (a) and (b) plot of the posterior
mean of NOx with all the other covariates set on their average values.
Shaded area is the corresponding 95% pointwise credible sets.
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Figure 4: Plots obtained from estimates, with a random matrix by
second design in section 5.2. In figures (a) and (b) plot of the posterior
mean of NOx with all the other covariates set on their average values.
Shaded area is the corresponding 95% pointwise credible sets.
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