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Abstract This paper aims to highlight the importance of considering endogenous peer ef-

fects, as defined by Manski (1993), in order to identify gender composition effect on education

outcome appropriately. Using Manski (1993) linear-in-means model, this paper illustrates

that the gender composition effect that is currently estimated in education function is the

function of three parameters: social multiplier, gender differences in outcome and gender

composition effect (known as a gender peer effect). The appropriate gender peer effect is

identified after using Graham’s variance restriction method to identify and rule out a social

multiplier effect. The findings suggest that a social multiplier plays a crucial role in learning

process for Italian secondary and US primary students, although a gender peer effect is not

as important as highlighted in previous literatures (Hoxby, 2000; Whitmore, 2005; Lavy and

Schlosser, 2011) .
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I Introduction

Pupils attending school may develop their skills and abilities by receiving inputs coming

from a variety of sources: teachers, school facilities, parental investments, environment and

neighborhood, as well as their peers at school. The relationship between peers’ interaction

at school and educational outcome has attracted researchers interest since the Coleman

report (Coleman et al., 1966), which was the first empirical study on peer effects at school.

Subsequently, a large and multidisciplinary literature has focused on pupil’s schoolmates

background characteristics and abilities and their achievement at school. Several years after

Manski (1993) formally discussed the difficulties in the identification of social interaction,

which are potentially relevant to the study of the peer effect in education (Epple and Romano,

2011). In his seminal paper, Manski (1993) expressed three hypotheses 1 that are often used

to explain the conformity of individual behavior with that of the group to which they belong.

He pointed to the simultaneity problem that arises when there are both endogenous and

exogenous social interactions.

Since Manski (1993), the identification of social interaction among schoolmates, com-

monly referred to as peer effects, has emerged as a controversial topic among socio-economic

scholars. On one hand, theoretical researchers have proposed methods for the identification

of social interaction (Graham, 2008; Brock and Durlauf, 2001); on the other hand, the em-

pirical scholars (Zimmerman, 2003; Kremer and Levy, 2008; Hoxby, 2000; Whitmore, 2005;

Lavy and Schlosser, 2011; Angrist and Lang, 2004; Ammermueller and Pischke, 2006; Vigdor

and Nechyba, 2004; Graham, 2008) have employed either experimental or quasi-experimental

research design to determine peer effect.

Only few empirical studies focus on social interaction among schoolmates of a different

gender, referred to as gender peer effects and is commonly proxied by gender composition

1He separated peer effect to three parts as following: endogenous effect is the propensity of individual
to behave in some ways varies with the prevalence of that behavior in the individual’s group, exogenous
effect is the propensity of individual to behave in some way varies with the characteristics of the individual’s
group and correlated effect is when individuals in the same group tend to behave similarly because they have
similar individual characteristics or face similar institutional environments (Epple and Romano, 2011).
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effect (Hoxby, 2000; Whitmore, 2005; Kang, 2007; Lavy and Schlosser, 2011). One such

study is that of Hoxby (2000), who identifies idiosyncratic variation in the number of girls

and achievement of students by comparing adjacent cohorts’ gender and racial groups’ shares.

She estimated gender and race peer effects in Texas elementary schools, finding that boys

and girls have higher test scores when classrooms have a larger number of female students.

Whitmore (2005) studies the share of female students on academic achievements; however,

unlike Hoxby (2000) her findings are mixed (positive in kindergarten and second grade,

zero in first grade and negative in third grade). In her studies Tennessees Project STAR’s

randomized experiment in which gender variation generated by the random assignment of

students into classrooms is exploited.

Most recently, Lavy and Schlosser (2011) estimated the effects of classroom gender com-

position on the scholastic achievements of boys and girls in Israeli primary, middle and

high schools. Following Hoxby (2000), the authors relied on idiosyncratic variations in the

proportion of female students across adjacent cohorts within the same school. They found

that the proportion of girls in a class has a positive and significant effect on the academic

achievements of both girls and boys in high school, with the size of the estimated effects

being similar for both genders. Furthermore, their exploration of the gender peer effect

mechanism indicates that a higher proportion of females in a class lead to a better classroom

and learning environment.

My study contributes to different strands of literature. First, it supplements existing

literature on the identification of a gender peer effect (Hoxby, 2000; Whitmore, 2005; Lavy

and Schlosser, 2011). However, my approach departs from other literature mentioned above

by distinguishing between the gender peer effect (i.e. the variable that was aimed to be iden-

tified initially) and other determinants of the gender composition’s coefficient in regression

function (i.e. the gender differences in outcome and social multiplier)2. Hoxby (2000) claims

that ”when the groups are males and females (unlike racial group), there is no neat test

2 Other determinants can be derived from applying Manski’s linear-in-means model to the gender peer
effect framework, as further described in Chapter 2.

3



of whether a group’s peer effects all operate through peer achievement”. Within Manski’s

framework, this means one cannot separate the exogenous effect of having more females in

the classroom from the fact that females might be better peers and have higher scores. Lavy

and Schlosser (2011) do not consider the spillover effects of pupils achievements in investi-

gating the overall payoff from all the possible mechanisms through which gender peer effects

might be at play; instead, their analysis is limited to the few channels through which a gen-

der peer effect might be at work. Whitmore (2005) mentions that having a predominately

female class in the second grade substantially increases students test scores, which can only

be partly explained by being exposed to higher quality peers (as girls’ scores are higher than

those of boys). Therefore, she claims that there should be something further about having a

predominately female class per se, although her study does not precisely distinguish between

different possible effects.

Second, I contribute to the parts of the literature on social interaction that aim to over-

come the reflection problem 3 in order to estimate the effects of the endogenous social mul-

tiplier in a quasi-experimental framework. Finally, to my knowledge this is the first paper

to estimate a social multiplier in an Italian school.

The remainder of this paper is organized as follows. Section 2 presents the theoretical

concept to show the problem of identification based on Manski’s linear-in-means model.

Section 3 suggests the empirical strategies to solve the identification problems, while section

4 presents the data set. Section 5 presents the results, before section 6 summarizes the

findings and provides a brief conclusion.

II Gender peer effect in linear-in-means form

In order to show the identification problem of estimating a gender peer effect, I assume

that a social interaction takes the linear-in-means form as in Manski (1993). Assume:

3 The term ”reflection problem” is used to characterize the simultaneity problem that arises when there
are both endogenous and exogenous social interaction Epple and Romano (2011)
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yci = α0 + α1xi + α2xc + βȳc + εci (1)

Where; In each grade, denote classes with c and individual with i. y is individual achievement

in school, xi is a dummy variable denoting the gender of individual i, which is equal to 1 if i

is a girl. xc is the proportion of girls in each class (i.e. E(xi|c)), ȳc is the average achievement

of individual i in the class, εci are unobserved attributes that directly affect y. Following

Manski (1993), I assume E(εci|c, xi) = c′σ, which captures the correlated effect.

One should note the two important restrictions associated with the specification intro-

duced above. Firstly, it is implicitly assumed that the gender composition effect is identical

across gender, and secondly, the endogenous effect is homogenous across gender, meaning

that the average achievement of an individual affects all the students identically, regardless

of their gender. The first assumption is verified by looking at the results of previous lit-

erature in the field (Whitmore, 2005; Lavy and Schlosser, 2011). Both Hoxby (2000) and

Lavy and Schlosser (2011) findings show that the proportion of girls in the classroom affect

both genders virtually identical, while the second assumption is logical given that the gender

composition effect is internalized in the model as an exogenous peer effect.

Average achievement within a class leads to:

ȳc = α0/(1− β) + 1/(1− β)(α1 + α2)xc + 1/(1− β)c′σ (2)

A reduced form is obtained by replacing Eq. (2) into Eq. (1):

yci = γα0 + α1xi + ((γ − 1)α1 + γα2)xc + γc′σ (3)

Where; γ = 1/(1−β) is a social multiplier, namely the ratio between the average cumulative
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response and the individual response following an exogenous shock. From Eq. (3), one can

clearly see the identification problem that arises in the study of peer effect, as discussed by

Manski (1993): by OLS regression of individual achievement on gender composition in the

classroom, only the composite parameters α0γ , α1, ((γ − 1)α1 + γα2) and γσ are identi-

fied. Moreover, identification of the composite parameters does not enable us to distinguish

between the two social effects (endogenous and exogenous ones). As one can see from Eq.

(3), based on Manski’s linear-in-means model the coefficient that are estimated so far by

regressing gender composition on educational outcome (i.e ((γ − 1)α1 + γα2)) is formed by

three separate elements: the effect of having more girls in the classroom (α2) , the difference

between girls and boys in educational outcome (α1) and the social multiplier (γ).

III Empirical Strategy

In order to solve the identification problem mentioned in chapter 2, the social multiplier

(γ) is estimated first, which allows driving a gender peer effect that is solely due to the

existence of more girls in the class (α2) by estimating Eq. (3).

A Identification of Social Multiplier

Graham (2008) proposed a method for the identification of a social multiplier (γ in equa-

tion 3), by exploiting differences in variances across groups. For a linear form of social

interaction, he defined the unconditional between-group variance of means outcome as the

sum of the variance of any group level heterogeneity (classroom certain characteristics such

as teacher quality), between-group variance of any individual-level heterogeneity (variability

in average student ability) and the strength of any social interaction (peer effect). There-

fore, in the presence of social interaction, between-group variation in outcome should reflex

between-group variation in ’peer quality’. Following Galbiati and Zanella (2012), we can

rewrite the reduced form model from equations (2) and (3) in variance components. The
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transformation of group-level heterogeneity (αc=α2 girls + σc′), individual-level heterogene-

ity (εci=α1 gender) and the group level average of individual-level heterogeneity (ε̄c= α1girls)

yields the following behavioral equations:

yci = γαc + εci + (γ − 1)ε̄c (4)

ȳc = γ(αc + ε̄c) (5)

Graham (2008) proved that under some specific assumptions discussed below, γ2 can be

identified by using the following conditional and unconditional restrictions:

E[Gb
c − θW2c − γ2Gw

c |W1c,W2c] = 0 (6)

E[

(
W1c

W2c

)
(Gb

c − θW2c − γ2Gw
c )] = 0 (7)

Where; W1c and W2c are two vectors containing observable classroom-level information, W1c

denotes class size (small vs. large) and W2c denotes other classroom-level information such

as the share of educated parents, share of immigrants in the classroom, etc. Gw
c and Gb

c are

within- and between- group statistics, respectively. (For more details, see supplement part

of Graham (2008) and Galbiati and Zanella (2012)).

Eq.(7) delivers the appropriate specification to estimate (i.e. by GMM) the social multi-

plier, γ2, using W1c as an instrumental variable.

The three primitive assumptions that guarantee identification are as follows:

• Independent Random Assignment: Teacher and students assignment to classroom must

be random.
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• Stochastic Separability: The population variance of small and large classroom teacher

effectiveness must be the same.

• Peer Quality Variation: This is a rank restriction, which requires that the variance of

peer quality differs between the two types of classrooms.

B Identification of Composite Parameters

The model based on Eq. (3) suggests that regression of ”gender composition” on educa-

tional outcome delivers the coefficient of the following form:

δ = (γ − 1)α1 + γα2 (8)

δ is estimated for two case studies, namely the US and Italy. The first case study is

based on a randomized experiment, while, for the second case study, idiosyncratic variation

in gender composition across adjacent cohort is employed in order to gain a clean estimate

of δ.

C Identification of Gender Peer Effect

In order to recover a gender peer effect and its standard deviation, a bootstrapping

method is used to approximate the distribution of a statistic by a Monte Carlo simulation.

IV Data

The empirical analysis is based on two case studies: elementary school students in the

US and secondary students in Italy. The reasons for including two different case studies

are threefold. Firstly, in order to investigate the gender peer effect in both primary and

secondary schools. Secondly, in order to gain a better understanding of the importance of

endogenous effects by comparing my results with those from Hoxby (2000) and Whitmore
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(2005), two main contributions to existing literature on gender peer effect. And finally, the

Italian case study is very applicable in order to introduce a method for investigating social

multiplier in a non-experimental framework.

A US

The assessment of gender peer effect in the learning process is conducted by using data

from the class size reduction experiment Project STAR. According to Word et al. (1990),

Project STAR was started in the fall of 1985, whereby kindergarten students were randomly

assigned to one of three class types within their school: small, regular and regular with a

full-time teacher’s aide. Thereafter, teachers were randomly assigned to one of these three

class types.

The within-school randomization was implemented in 79 schools and ultimately included

11,600 students. In the experiment, a single cohort of children was assigned to small or

regular classes from kindergarten through to third grade, before all students returned to

regular sized classes in fourth grade.

B Italy

For the Italian primary students, the data requirements are fulfilled by the INVALSI data

set for the universe of Italian primary and secondary schools in the academic years 2009-

10 and 2010-2011. INVALSI (the National Institute for the Evaluation of the Education

System) is in charge of designing and administering standardized education tests in Italy.

Since 2008, the tests have been administered on an annual basis.

The recent waves of this data set collected data for the population of primary and lower

secondary students in their second, fifth, sixth and eighth Italian grades. For each student,

the data set contains information on class size and grade in the school, immigrant status

based on citizenship and language spoken at home, test scores in Italian and Math, gender,

age and family background information.
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Tables 1, 2 and 3 present the number of observations, the mean, the standard deviation,

and the minimum and the maximum values of math and reading scores of boys, girls and the

overall population for second, fifth and eighth graders, respectively. For example, the fifth

graders standardized reading test had a mean of around 0.7 points and a standard deviation

of around 0.17 points in 2009-2010. The average female scored 0.02 points – around a 0.12

standard deviation – higher than the average male.

V Results

A Social Multiplier and Gender Peer Effect in US Primary

Schools

Full details on the validity of identification assumptions one need to identify social mul-

tiplier with experiment Project STAR are provided by Graham (2008). However, he limited

his analysis to kindergarten students. Table 4 reports Graham (2008) findings for kinder-

garten students as well as the social multipliers that I assess for second and third graders

using Tennessee’s Project STAR experiment. The estimations of social multipliers for sec-

ond graders are 2.23 and 2.14 for math and reading, respectively, and the standard errors

of parameter recovered by using the delta method. These are almost the same as estimated

for kindergarten students. Third graders’ social multipliers are 1.5 and 2 for math and

reading, respectively, which suggests that a social multiplier might be less determinant for

upper graders. The first graders are ruled out from the analysis, given that, according to

Whitmore (2005), kindergarten was not required in Tennessee at the time of Project STAR,

and consequently there was a large influx of new entrants in first grade of significantly lower

quality than kindergarten entrants who might have disrupted classrooms.

The estimations of gender peer effects are presented in Table 5. After accounting for the

roles of a social multiplier and the differences between gender in outcome, gender peer effects

lost most of their initial magnitude. However, one should note that, in the cases where social
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multipliers are not significantly different from one, social interactions are not at place, and

the female share coefficient (δ) reflects the gender peer effect coefficient (α2).

It is important to highlight that a bootstrapping method is used to approximate the

distribution of a statistic by a Monte Carlo simulation in order to recover the gender peer

effect and its standard deviation.

B Social Multiplier and Gender Peer Effect in Italy Primary and

Secondary Schools

In order to identify the social multiplier among Italian students, the discontinuity in

the relationship between enrollment and class size at an enrollment multiple of 25, which

is induced by the so-called ”Maimonides’ rule”4, is employed. This discontinuity induced

classes of different sizes, prompting the need to employ Grahams method. Tables 6 and 7

and panel B of table 3 show descriptive statistics for the grades with enrollments in a range

close to the points of discontinuity. These are the grades with enrollment in the set of intervals

{[22, 30], [47, 55], [72, 80], [97, 105], [122, 130], [147, 155], [172, 180], [197, 205], [222, 230], [247, 255],

[272, 280], [297, 305], [322, 330], [347, 355], [372, 380], [397, 404]}. Around 17 percent of the

total grades are in these intervals after accounting for a +10% margin of flexibility 5. As is

shown in the tables, the average characteristics of classes in the discontinuity sample are

remarkably similar to those for the full sample.

B.1 Assumptions Verification

In this section, I assess the three required assumptions in order to identify social mul-

tiplier: peer quality variation, independent random assignment and stochastic separability.

The approach adopted here is based on non-experimental methods in evaluation research

(Campbell, 1969): regression discontinuity design. This method utilizes verifying the neces-

4 This term was first used by Angrist and Lavy (1999).
5For example, for the first interval enrollment that contains 25 and 26 students is excluded
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sary assumptions in order to estimate social multiplier appropriately.

1. Peer Quality Variation The idea of using RDD to identify class size effect comes from

what Angrist and Lavy (1999) termed Maimonides’ rule, in which they exploit the

fact that class size is partly determined by a known discontinuity function of observed

covariates (enrollment in a grade). For my purpose, the importance of Maimonides

rule is that it has been used to determine the division of enrollment grades into classes

in Italian public schools. Based on Italian law, class size cannot be larger than 25,

with a margin of flexibility of +10 percent. Moreover, it cannot be smaller than 10,

with a margin of flexibility of -10%. Let Z be the total enrollment in a grade and C

the number of classes; subsequently, the rule for class size disregarding the margins of

flexibility is:

S̄ =
Z

Int(Z−1
25

) + 1
(9)

Where lnt(x) is the largest integer smaller or equal to x. Based on equation (14), the

theoretical class size is a function of grade (in a particular school) enrollment, which

displays discontinuities at multiples of 25. We can see the predicted and actual class

size in Italian elementary school in figure 1 (taken from Ballatore et al. (2012)).

On the left of each threshold, the theoretical class size is larger than on the right, with

this feature of the rule offering a source of variation in peer equality. As I will show in

the next section, the variance of peer quality indeed differs between two types of the

classroom. Therefore, one of the three assumptions is required for identification to be

verified (i.e. rank condition is satisfied).

2. Independent Random Assignment 6

The attractive feature of RDD is the fact that it allows testing the validity of its

6this assumption is also called double randomization assumption, which means students and teachers
should independently and randomly assigned to the classroom
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Figure 1: Predicted and actual class size in Italy
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Note: Each graph shows the predicted (red line) and actual (black line) class size in different grades

identification condition, which is parallel to the assumption of independent random

assignment. The condition for identification based on RDD requires that no discon-

tinuity takes place at the threshold for selection in the counterfactual world. This is

called the orthogonality condition, which is as follows:

(Y 1, Y 0) ⊥ I|S = s (10)

Where (Y1, Y0) are the two potential outcomes. I is the binary variable that denotes

treatment status, with I = 1 for small classroom and I = 0 for larger ones. Treatment

status depends on an observable unit characteristic S (enrollment), and there exists

a known point in the support of S where the probability of participation changes

discontinuously (enrollment equal to 25).

Tables 8 and 9 present the test for this assumption based on the idea of comparing

units marginally above and below the threshold with respect to variables whereby:
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• cannot be affected by the treatment;

• are affected by the same unobservable that is relevant for the outcome.

With few exceptions, the evidences in tables 8 and 9 suggest that the existence of

discontinuities in pre-treatment variables is unlikely to be correlated with potential

outcomes. To confirm this result and ensure that the exceptions in tables 8 and 9 are

only a spurious correlations, table 10 indicates the Pearson’s chi-squared Test for the

random assignment of girls in the classroom. This test was first used by Ammermueller

and Pischke (2006). The results of the test suggest that girls are randomly spread

across the classes of different size, which provides further evidence in support of an

”Independent Random Assignment” (for eighth graders, only a Pearson’s chi- squared

Test for all the country is measurable due to limitations in the data set).

The evidences in tables 8, 9 and 10 allow one to reject the presence of discontinuities

in pre-treatment variables that are likely to be correlated with potential outcomes. In

other words, the schools below and above the threshold are comparable.

3. Stochastic separability

This assumption states that the teacher effectiveness variation across two types of

classroom must be equal, and is not valid if the distribution of teacher characteristics

is not similar across classrooms of different sizes. As we compare classes with different

size across different schools, it is very unlikely that teachers are sorted across classes.

However, to further test this assumption, a sensitivity analysis test suggested by Gra-

ham (2008) is performed. The results of the sensitivity analysis test suggest that the

typical difference in effectiveness across a pair of teachers would have to be implausibly

large in small versus large classrooms to produce social multiplier estimates of the size

reported in table 11, if, in fact, there were no peer effects. (For details of sensitivity

analysis, see supplement to Graham (2008))
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B.2 Results

Table 11 reports the estimate of γ2 using 2009-2010 wave of INVALSI dataset for the

second, fifth and eighth graders by estimating equation 7. The first, third and fifth columns

report the results for math and the second, fourth and sixth for reading (Italian). The

estimates of a social multiplier are 2.8, 1.88 and 3.24 for math and 1.52, 3.03 and 3.85 for

reading in the second, fifth and eighth grades, respectively. These findings suggest that

social interaction plays an important role in the learning process. In contrast to the fifth

and eighth graders, the null hypothesis that γ2 = 1 is not rejected at the 90% confidence

level for second graders; therefore, one cannot reject the hypothesis of no peer interaction

for second graders.

Panel B of table 11 shows the first stage results of the estimate. The coefficient of

variable ”small” is statistically significant, which supports the first assumption of peer quality

variation. The first stage F- statistics is large, suggesting that the instrument is not weak. In

order to check the robustness of the results, table 12 presents the social multiplier calculated

for the first two thresholds (enrollments less than 60), with the results proving robust across

the two different samples.

Following the empirical method employed by Hoxby (2000) and Lavy and Schlosser

(2011), gender peer effects for Italian 8th graders (Eq. (3)) are estimated by relying on

idiosyncratic variation in gender composition across adjacent cohorts within the same grade

in the same school (eighth grade is the only grade whereby one can match cohorts of adjacent

years by using the Invalsi data set). This approach proposes a persuasive solution for the

two possible sources of confounding factors: self-selection of students into the schools and

correlation between school characteristics and gender composition.

The estimations of gender peer effects for Italian students are presented in Table 13.

After considering the role of a social multiplier and the differences between genders in terms

of outcome, the gender peer effect is relatively large and negatively significant in math

and approximately zero and not significant in reading. This is consistent with the findings
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from Whitmore (2005)empirical study indicating that a peer effect in school deteriorates

educational outcomes for upper grade females.

VI Conclusion

In this paper, I empirically measure the extent of gender peer effects in Italian secondary

and US primary schools on students academic achievements. Using Manski (1993) linear-

in-means model, I was able to disentangle two different mechanisms through which a higher

proportion of females in the class might affect students academic achievements: a social

multiplier and a gender composition effect. It is shown that the two mentioned mechanisms,

along with gender differences in outcome, form the gender composition coefficient estimated

to date by researchers in order to find gender peer effect in school on academic achievement.

The project STAR experiment allows identifying a gender peer effect for US primary

students, while this is identified for Italian secondary students by using idiosyncratic vari-

ation in gender composition across an adjacent cohort within the same school. In order to

disentangle the multiplier’s effect Graham (2008) conditional variance restriction method is

employed.

With one exception, the evidence provided in this paper suggests that a social interaction

plays a crucial role in the learning process for primary pupils in the US and secondary pupils

in Italy. However, the gender composition effect is not as important as previously thought,

after accounting for a social multiplier and gender gap in the outcome. The general implica-

tion of these findings is that in contrast to gender mix of class, the spillover effects of pupils

achievements should be taken into account in inter- and intra-school resource allocation in

elementary schools. Furthermore, findings show that higher proportions of females in the

math classroom deteriorate the educational outcome of upper grade male pupils. Indeed,

this is consistent with the findings from Whitmore (2005) empirical study.

This study does not control for a heterogeneous social multiplier effect across gender and
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is unable to rule out the possibility that the female proportion in the classroom might differ

in importance for education outcome between the two genders. However, the results provide

important insight towards understanding the relative role of a social multiplier and gender

composition effect.
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Tables:
Table 1: Discriptive Statistics - grade 2

mean sd min p25 p50 p75 max var

A. 2009-2010
Grade 2: 5969 schools,22745 classes
All score math .62 .2 0 .46 .6 .78 1 .04
All score ita .66 .23 0 .5 .69 .85 1 .053
boy score math .63 .2 0 .46 .61 .79 1 .04
boy score ita .64 .23 0 .46 .69 .85 1 .054
girl score math .62 .2 0 .46 .61 .79 1 .04
girl score ita .67 .23 0 .5 .73 .85 1 .051
class size 20.6 3.6 11 18 21 23 35 13

B.2010-2011
Grade 2: 7337 schools, 26628 classes
All score math .66 .19 0 .53 .68 .78 1 .037
All score ita .72 .19 0 .6 .76 .86 1 .035
boy score math .66 .19 0 .53 .68 .82 1 .037
boy score ita .71 .19 0 .6 .76 .87 1 .035
girl score math .65 .19 0 .53 .64 .78 1 .037
girl score ita .73 .18 0 .63 .76 .87 1 .03
class size 19 3.8 11 17 20 22 35 14.7

Source: Invalsi data for academic years 2009-10 and 2010-2011. Performance in a test
is measured as the fraction of correct answers.
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Table 2: Discriptive Statistics - grade 5

mean sd min p25 p50 p75 max var

A. 2009-2010
Grade 5: 5937 schools, 22846 class
All score math .65 .18 0 .52 .66 .79 1 .034
All score ita .7 .17 0 .59 .74 .84 1 .03
boy score math .66 .19 0 .52 .68 .82 1 .035
boy score ita .69 .18 0 .58 .72 .83 1 .031
girl score math .64 .18 0 .5 .64 .77 1 .033
girl score ita .71 .17 0 .61 .74 .84 1 .03
class size 20.8 3.7 11 18 21 24 35 13.8

B. 2010-2011
Grade 5: 7374 schools, 27303 classes
All score math 0.69 .17 0 .59 .72 .83 1 .028
All score ita .74 .14 0 .65 .75 .85 1 .02
boy score math .7 .16 0 .59 .72 .83 1 .02
boy score ita .73 .15 0 .65 .75 .84 1 .02
girl score math .69 .17 0 .57 .7 .83 1 .028
girl score ita .74 .14 0 .65 .77 .85 1 .02
class size 19 3.8 11 17 19 22 35 14.4

Source: Invalsi data for academic years 2009-10 and 2010-2011. Performance in a test
is measured as the fraction of correct answers.

Table 3: Discriptive Statistics - grade 8

mean sd min p25 p50 p75 max var

A. 2009-2010 full sample
Grade 8: 3760 schools, 21577 classes
All score math .49 .18 0 .36 .47 .62 1 .03
All score ita .68 .17 0 .57 .71 .81 1 .03
boy score math .51 .19 0 .38 .5 .66 1 .035
boy score ita .65 .18 0 .55 .69 .79 1 .033
girl score math .46 .17 0 .34 .45 .58 1 .029
girl score ita .7 .16 0 .61 .73 .82 1 .026
class size 20 4.3 11 17 21 24 33 18.7

B. 2009-2010 discontinuity sample
Grade 5: 613 schools, 3604 classes
All score math .48 .18 0 .36 .47 .62 1 .03
All score ita .68 .18 0 .57 .71 .81 1 .032
boy score math .51 .19 0 .36 .5 .64 1 .035
boy score ita .65 .19 0 .54 .67 .79 1 .035
girl score math .46 .17 0 .34 .45 .58 1 .03
girl score ita .7 .16 0 .61 .74 .82 1 .027
class size 20 4.4 11 17 21 24 32 19.3

Source: Invalsi data for academic years 2009-10 and 2010-2011. Performance in a test
is measured as the fraction of correct answers.
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Table 4: Social Multiplier - Tenessee project

Kindergarten 2nd grade 3rd grade
Math Re Math Re Math Re

Gw
c (coefficient: γ2) 3.47 5.28 5 4.58 2.26 4.05

(1.03) (2.48) (1.8) (2.1) (1.3) (1.04)
Social multiplier (γ) 1.86*** 2.3*** 2.23*** 2.14*** 1.5*** 2.01***
(delta method) (0.27) (0.54) (0.4) (0.49) (0.44) (0.26)

p-value H0: γ2= 1 0.018 0.086 0.02 0.09 0.34 0.004

B: First stage
F-stat. 46.8 19.0 57.08 38.88 45.58 56.7

Number of classroom 317 317 331 331 330 325
School fixed effects X X X X X X

Notes. Robust standard errors in parenthesis. Significance levels: *** p<0.01, ** p<0.05,
* p<0.1.

Table 5: Gender peer effect - US

Kindergarten 2nd grade 3rd grade
Math Re Math Re Math Re

Female Share(δ1) 0.42** 0.35** 0.24 0.503** -0.303 -0.33
(0.186) (0.17) (0.281) (0.250) (0.252) (0.26)

Gender peer effect* 0.17*** 0.066*** 0.09*** 0.13*** -0.2*** -0.27***
(0.003) (0.002) (0.004) (0.004) (0.005) (0.003)

Control

School fixed effects X X X X X X
Classroom type X X X X X X
Socio-economic statues X X X X X X
race X X X X X X

Observations 5707 5629 5723 5731 5829 5751
R-squared 0.264 0.263 0.256 0.254 0.228 0.2

Notes. Robust standard errors in parenthesis. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
* a bootstrapping method is utilized to approximate the distribution of a statistic by a Monte Carlo
simulation.
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Table 6: Discriptive Statistics - discontinuity sample grade 2

mean sd min p25 p50 p75 max var

A. 2009-2010
Grade 2: 986 schools, 3632 classes
All score math .62 .2 0 .46 .6 .78 1 .04
All score ita .65 .23 0 .5 .69 .85 1 .05
boy score math .62 .2 0 .46 .61 .78 1 .04
boy score ita .64 .23 0 .46 .6 .78 1 .04
girl score math .62 .2 0 .46 .6 .75 1 .04
girl score ita .67 .23 0 .5 .73 .85 1 .05
class size 21 3.8 11 18 21 24 32 15

B. 2010-2011
Grade 2: 1162 schools, 4228 classes
All score math .66 .19 0 .53 .68 .82 1 .04
All score ita .72 .19 0 .6 .76 .87 1 .035
boy score math .66 .19 0 .53 .68 .82 1 .038
boy score ita .72 .19 0 .6 .76 .87 1 .035
girl score math .65 .19 0 .53 .68 .78 1 .037
girl score ita .73 .18 0 .63 .76 .87 1 .03
class size 19.6 4 11 17 20 23 30 16

Source: Invalsi data for academic years 2009-10 and 2010-2011. Performance in a test
is measured as the fraction of correct answers.

Table 7: Discriptive Statistics - discontinuity sample grade 5

mean sd min p25 p50 p75 max var

A. 2009-2010
Grade 5: 1021 schools, 3791 classes
All score math .65 .18 0 .52 .66 .79 1 .34
All score ita .7 .17 0 .59 .74 .84 1 .03
boy score math .66 .19 0 .52 .68 .82 1 .35
boy score ita .69 .17 0 .58 .72 .84 1 .03
girl score math .64 .18 0 .5 .64 .79 1 .03
girl score ita .71 .17 0 .6 .75 .84 1 .03
class size 21 3.9 11 18 21 24 29 15.3

B. 2010-2011
Grade 5: 1185 schools, 4371 classes
All score math .7 .17 0 .59 .72 .83 1 .028
All score ita .74 .14 0 .65 .77 .85 1 .02
boy score math .71 .17 0 .59 .72 .82 1 .03
boy score ita .74 .14 0 .65 .75 .85 1 .02
girl score math .69 .17 0 .59 .72 .83 1 .028
girl score ita .75 .14 0 .67 .77 .85 1 .019
class size 19 4 11 17 19 23 29 16

Source: Invalsi data for academic years 2009-10 and 2010-2011. Performance in a test
is measured as the fraction of correct answers.
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Table 8: Random Allocation Test - discontinuity sample grade 2

Share with Share with Share with share of
VARIABLES high educated parents low skilled parents num of imigrants girls

gap at the threshold -0.008*** 0.001* -0.001 -0.006*
(0.001) (0.001) (0.001) (0.0035)

Observations 69067 69067 69067 68417
R-squared 0.002 0 0 0

Notes. Robust standard errors in parenthesis. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.

Table 9: Random Allocation Test - discontinuity sample grade 5

Share with Share with Share with share of
VARIABLES high educated parents low books at home num of imigrants girls

gap at the threshold 0 -0.009 0 -0.003
(0.001) (0.006) (0.001) (0.004)

Observations 73822 73822 73822 73181
R-squared 0 0 0 0

Notes. Robust standard errors in parenthesis. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.

Table 10: Pearson’s chi-squared Test for random
assignment of girls in the classroom

Grade 2 Grade 5 Grade 8
All the Country
Pearson’s test statistics 1995.873 2424.859 313.6128
degree of freedom 2644 2770 2961
p-value 1 1 1
North
Pearson’s test statistics 940 928
degree of freedom 1220 1130
p-value 1 1
Center
Pearson’s test statistics 372 439
degree of freedom 477 492
p-value 1 0.96
South
Pearson’s test statistics 682 911
degree of freedom 947 1148
p-value 1 1

Notes. The degrees of freedom are
∑S

s (nclass − 1)/J − 1 . S is
the total number of schools for a given grade and J is the number
of possible values taken by the characteristic one wants to test the
random assignment.
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Table 11: Social Multiplier - Italy

2nd grade 5th grade 8th grade
Math Re Math Re Math Re

Gw
c (coefficient: γ2) 7.86 2.33 3.55 9.21 10.5 14.8

(5) (0.9) (1.4) (1.3) (4.13) (2.9)
Social multiplier (γ) 2.8*** 1.52*** 1.88*** 3.03*** 3.24*** 3.85***
(delta method) (0.89) (0.29) (0.38) (0.22) (0.63) (0.38)

p-value H0: γ2= 1 0.17 0.14 0.07 0 0.02 0

B: First stage
F-stat. 10.44 19.11 49.93 11.36 4.1e+10 1.2e+10
p-value 0.0012 0 0 0.0008 0 0

Number of classroom 3627 3623 3791 3791 3812 3811
School fixed effects X X X X X X

Notes. Robust standard errors in parenthesis. Significance levels: *** p<0.01, **
p<0.05, * p<0.1.

Table 12: Social Multiplier - Italy first two threshold

2nd grade 5th grade 8th grade
Math Re Math Re Math Re

Gw
c (coefficient: γ2) 7.86 2.33 3.55 9.21 7.77 10.84

(6.6) (1.2) (1.88) (1.76) (6.13) (4.05)
Social multiplier (γ) 2.8*** 1.52*** 1.88*** 3.03*** 2.78*** 3.29***
(delta method) (1.19) (0.39) (0.5) (0.29) (1.1) (0.6)

p-value H0: γ2= 1 0.3 0.26 0.17 0 0.27 0.01

B: First stage
F-stat. 5.97 10.95 27.59 6.45 1.4e+12 8.3e+10
p-value 0.015 0.001 0 0.01 0

Number of classroom 785 788 817 817 281 282
School fixed effects X X X X X X

Notes. Robust standard errors in parenthesis. Significance levels: *** p<0.01, **
p<0.05, * p<0.1.
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Table 13: Gender peer effect - Eighth Italian graders

Math Re

Female Share(δ) -0.025 -0.22***
(0.08) (0.1)

Gender peer effect* -0.56*** -0.003
(0.005) (0.003)

Control

School fixed effects X X
Time fixed effect X X

Observations 15102 15102
R-squared 0.8 0.7

Notes. Robust standard errors in parenthesis. Significance levels:
*** p<0.01, ** p<0.05, * p<0.1
* a bootstrapping method is utilized to approximate the distribu-
tion of a statistic by a Monte Carlo simulation.
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