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AbstractThe problem of instrument proliferation and its consequences (overfittingof endogenous variables, bias of estimates, weakening of Sargan/Hansentest) are well known. The literature provides little guidance on how manyinstruments is too many. It is common practice to report the instrumentcount and to test the sensitivity of results to the use of more or fewer in-struments. Strategies to alleviate the instrument proliferation problem arethe lag-depth truncation and/or the collapse of the instrument set (the lat-ter being an horizontal squeezing of the instrument matrix). However, suchstrategies involve either a certain degree of arbitrariness (based on theability and the experience of the researcher) or of trust in the restrictionsimplicitly imposed (and hence untestable) on the instrument matrix. Theaim of the paper is to introduce a new strategy to reduce the instrumentcount. The technique we propose is statistically founded and purely data-driven and, as such, it can be considered a sort of benchmark solution tothe problem of instrument proliferation. We apply the principal componentanalysis (PCA) on the instrument matrix and exploit the PCA scores asthe instrument set for the panel generalized method-of-moments (GMM)estimation. Through extensive Monte Carlo simulations, under alternativecharacteristics of persistence of the endogenous variables, we compare theperformance of the Difference GMM, Level and System GMM estimators
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when lag truncation, collapsing and our principal component-based IV re-duction (PCIVR henceforth) are applied to the instrument set. The samecomparison has been carried out with two empirical applications on realdata: the first replicates the estimates of Blundell and Bond [1998]; thesecond exploits a new and large panel data-set in order to assess the roleof tangible and intangible capital on productivity. Results show that PCIVRis a promising strategy of instrument reduction.
JEL classification: C13, C15, C33, C36, C63.
Keywords: Panel data, generalized method of moments, proliferation ofinstruments, principal component analysis, persistence.

1 Introduction

Dynamic panel data (DPD) have become very popular in the last two decades,thanks in particular to the increasing availability of panel datasets both at a microlevel (e.g. data for individuals, households or firms) and at a macro level (e.g.data for Regions or Countries). The use of dynamic models in macroeconomicsdates back to many decades ago, while it is relatively recent in microeconomics.The possibility of including some kind of dynamics also in a microeconomicframework has become very appealing: in fact, it is now a common practice toestimate dynamic models in empirical analysis in most microeconomic fields.In particular, the generalized method-of-moments (GMM) estimator, in theHoltz-Eakin, Newey and Rosen [1988], Arellano and Bond [1991], Arellano andBover [1995] and Blundell and Bond [1998] formulations, has gained a leadingrole among the DPD estimators, mainly due to its flexibility and to the very fewassumptions about the data generating process it requires. Most of all, whilepreventing from the well known DPD bias (see Nickell [1981]) and from thetrade off between lag depth and sample size1, the GMM estimator also givesthe opportunity to account for individual time-invariant effects and for potentialendogeneity of regressors. Another advantage is the availability of “internal”instruments (lags of the endogenous variables), a noticeable point when findinginstruments is not an easy task. The implementation of ad hoc procedures inmany statistical softwares and the consequent availability of “buttons to push”have done the rest of the job.The GMM estimator however is not the panacea for all the drawbacks of the
1This former problem is instead an intrinsic and unavoidable characteristic of the Anderson-Hsiao [1981, 1982] 2SLS estimator for DPD.
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previously proposed DPD estimators: it is in fact not free of faults. Instrumentproliferation, among the others, is a severe issue in the application of the GMMestimator to DPD models and needs to receive more attention than what it hasbeen done so far. The potential distortions in the estimates by instrumentalvariables (IV) and GMM estimators when the instrument count gets larger andlarger have been treated extensively in the literature2, but not enough attentionhas been paid to this issue in Difference, Level and System GMM estimation ofDPD (DIF GMM, LEV GMM and SYS GMM henceforth).Though these versions of the GMM estimator are designed for a large N-
small T framework, and though the time dimension in panel datasets remainswell below that of a typical time series, it is well-known that the number ofmoment conditions increases exponentially with T and the dimension, m, of thevector of endogenous regressors other than the lagged dependent variable; thisnumber can get rapidly large relative to the sample size. Consequently, theexcessive number of instruments can create a trade-off between bias (overfittingof endogenous variables) and efficiency (additional moment conditions), give animprecise estimate of the variance/covariance matrix of the moments, lower thepower of specification tests (Sargan [1958] / Hansen [1982] test of over-identifyingrestrictions) and exacerbate the weak instruments problem.Unfortunately, the problem of instrument proliferation is only rarely detectedand addressed in empirical analyses with the consequent risk of drawing mis-leading conclusions about the coefficient estimates. In many empirical papers,GMM is often applied with unclear specification of the estimator concerning ini-tial weighting matrix, onestep or twostep estimate and, in particular, the selectionof instruments: different results emerge as a consequence of different choices ofthe instrument matrix (for example, how many lags are included) and it becomesdifficult to interpret such results as robustness checks, as they are based on acertain degree of arbitrariness, ability or experience of the researcher.Moreover, there is not a clear indication on how many instruments is too manyand on which is a reasonable number of instruments to be used in empirical works.
The paper has two aims. The first one is to introduce a data-driven techniquefor the reduction of the instrument count in GMM estimation of DPD with otherexplanatory endogenous variables in addition to the lagged dependent variable.We extract the principal components from the instrument matrix through the prin-cipal component analysis (PCA) and use the PCA scores as a new set of instru-

2See, among the others, Ziliak [1997] and Bowsher [2002].
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ments (we call this procedure principal component-based IV reduction, PCIVR,henceforth). In doing so, we aspire to answer the question “How many momentconditions can be used and still expect to be able to obtain valid inference whenestimating by GMM?”. Since, in the words of Hall and Peixe [2003, p. 271], “It isimpossible to verify a priori which elements of the candidate [instruments] set sat-isfy [the] conditions [orthogonality, identification, efficiency, and non-redundancy]for a given data set”, we suggest a statistically founded rule for the selection ofnon redundant IVs, based on the characteristics of the empirical problem at hand.In doing so, we extend the analysis of Doran and Schmidt [2006] who consideran eigenvalue-eigenvector decomposition of the variance matrix of the momentconditions, and then discard the terms corresponding to the smallest eigenval-ues; they simulate a simple autoregressive DPD and compare results for differentautoregressive parameter values, different variance of individual effects, differentsample sizes N and T .3The second aim of the paper is to fill the gap in the literature by comparingthe performance of the Difference, Level and System GMM estimators whenvarious instrument reduction techniques are adopted. In order to do so, we bothrun extensive Monte Carlo experiments and we estimate economic models on realdata, allowing for the presence of endogenous variables (together with the laggeddependent variable), and checking the effects of various persistence characteristicsof the stochastic processes, of different sample sizes N and T , and of the use ofWindmeijer [2005] finite sample correction.Along with the PCIVR method, the other techniques to reduce the number ofmoment conditions we compare are the two usually employed in the empiricalliterature: the collapsing of the instrument matrix (Roodman [2009b]) and thereduction of the lag depth of the instruments. Both solutions make the instrumentcount linear in T : the former creates different instruments for each lag but notalso for each time period; the latter consists of the inclusion as instruments ofonly few lags instead of all the available ones. Both techniques, separately orcombined together, have gained popularity thanks to their direct implementabilityin the statistical softwares and are now commonly, and often blindly, used inempirical works.4 However, collapsing and lag depth truncation involve a certain
3Mehrhoff [2009] sketches the idea of applying the PCA on the GMM-style instrument matrix inthe Difference GMM framework with no additional endogenous regressors and an arbitrary choiceof the number of components to be retained.4Other suggestions by the literature had less following in the applied works: the projection-restricted IV estimation of Arellano [2003] and the canonical correlations and information criteriaof Hall and Peixe [2003].
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degree of arbitrariness as they ask either to trust the restrictions that are imposedwhen the instrument matrix is collapsed or to choose how many lags to includeamong the instruments. Despite some attempts to investigate the performance ofthe GMM estimators when instrument reduction techniques are employed, theliterature in this fields lacks of exhaustive experiments that compare extensivelythese strategies and their robustness to different settings of the parameters in thesimulation model of a DPD with other endogenous variables besides the laggeddependent variable. Our paper aims to fill this gap.5Our results confirm that PCIVR is a general, data-driven technique to reduceoveridentification problems that can be fruitfully applied to any overidentifiedGMM problem. Having tried alternative criteria in order to select the num-ber of retained components (keep only the components whose eigenvalues arelarger than the average eigenvalue or retain only the components that explain agiven predetermined portion of the original variance), we suggest, as a selectioncriterion, the explanation of 90% of the original variance.In the remainder of the work we proceed as follows: in section 2, afterreviewing the collapsing and limiting, we illustrate the extraction of principalcomponents from the instrument matrix and discuss the rationale of applying thePCA on the instrument set; the comparison of a number of instrument reductiontechniques is presented by replicating the Blundell and Bond [1998] estimates forthe labour demand in the UK and by exploiting extensive Monte Carlo simulations(in section 3); in section 4 we present an empirical application that estimates aproduction function with three inputs - labour, tangible and intangible capital -for a large panel data-set; section 5 draws the conclusions and indicate practicalhints for the empirical analysis; the Appendix runs through the technical detailsof the PCA.
2 Reducing the instrument count in GMM estimation

Consider the general one-way error component DPD model:
yit = αyit−1 + β ′xi,t + φt + υit , υit = ηi + εit , (1)where i = 1, ..,N , t = 1, ..,T , x is a m-dimensional vector of potentially endoge-nous regressors, the φt are the time effects (usually considered deterministic), the

5Roodman [2009b] presents only a Monte Carlo experiment limited to an autoregressive modelto compare the collapsing and lag-truncation techniques but restricts the analysis to the SystemGMM estimator and to a specific parameter setting. Mehrhoff [2009] instead bounds his experimentto the Difference GMM estimator, that is less exposed to instrument proliferation dangers.
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ηi are the individual effects and εit is a zero-mean idiosyncratic error, allowedto be heteroskedastic but not serially correlated. The standard assumptions are:
E [ηi]=E [εit ]=E [ηiεit ]=0 and predetermined initial conditions E [yi1εit ]=0.The Arellano-Bond and Arellano-Bover / Blundell-Bond estimators are linearGMM estimators for the model in first differences (DIF GMM) or in levels (LEVGMM) or both (SYS GMM) where the instrument matrix Z includes the laggedvalues of the endogenous variables only or also the lagged first differences of theendogenous variables6. In the standard framework of DIF and SYS GMM, thecolumns of the instrument matrix Z correspond respectively to two different setsof meaningful moment conditions.In particular, the Arellano-Bond DIF GMM estimator exploits, for each en-dogenous variable, the following (T − 2)(T − 1)/2 moment conditions for theequation (1) in first differences:7

E [(Zi
dif)′∆υi] = E [(Zit−l

dif)′∆υit ] = 0 for t ≥ 3, l ≥ 2 (2)
For the sake of simplicity suppose m=1; the instrument matrix Zdif, that sati-sfies the moment restrictions in (2), contains an IV for each endogenous variable,time period and lag distance and it has the well known form:

Zdif
i =

 yi1 xi1 0 . . . . . . . . . . . . . . . . . . 0... ... ... . . . ... ... ... . . . . . . 00 0 . . . 0 yi1 . . . yiT−2 xi1 . . . xiT−2

 (3)
The Blundell-Bond SYS GMM estimator also exploits, for each endogenousvariable, the additional non-redundant T − 2 orthogonality conditions for theequation (1) in levels:

E [(Zi
lev)′υi] = E [(Zis

lev)′υiT ] = 0 for s = 2, ...,T − 1 (4)
6We use Z to define a general instrument matrix for DPD GMM estimation. Z can stand forthe untransformed matrix, the collapsed matrix or the limited matrix of instruments. When we needto indicate more precisely the matrix we are considering, we use specific superscripts to denote it.7Suitably lagged x-variables can also be used as IVs when the x-variables are predeterminedor strictly exogenous: for predetermined x-variables we have l ≥ 1 and (T − 2)(T + 1)/2 momentconditions; if they are instead strictly exogenous l = 0 and the moment conditions are T (T − 2).
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where, again for m=1, the instrument matrix is:8
Zlev
i =

 ∆yi2 ∆xi2 0 . . . 0... ... . . . . . . 00 0 . . . ∆yiT−1 ∆xiT−1

 (5)
The full instrument matrix for the SYS GMM estimator will thus be:

Zsys
i =

(
Zdif
i 00 Zlev

i

) . (6)
Since usually lags of the explanatory variables are used as IVs, “the phe-nomenon of moment condition proliferation is far from being a theoretical constructand arises in a natural way in many empirical econometric settings” (Han andPhillips [2006, p. 149]). The dimension of the GMM-type instrument matrixgrows exponentially as the number of time periods and regressors expands, evenif the time span of the panel is of moderate size.

2.1 Collapsing and limiting the instrument setAs discussed in Roodman [2009], when we collapse the instrument set weimpose the same condition for all t and we create an instrument for each en-dogenous variable and lag distance rather than for each endogenous variable,time period and lag distance. The collapsed instrument matrix for the equationin first differences has the form, for m=1:
Zdif, C
i =

 yi1 0 xi1 0 0 . . .
yi2 yi1 xi2 xi1 0 . . .... ... ... ... ... . . .

 (7)
with (T − 2) moment conditions for each endogenous.Similarly, the collapsed matrix for the equation in levels is:

Zlev, C
i =

 ∆yi2 ∆xi2
∆yi3 ∆xi3... ...

 (8)
8The LEV GMM estimation considers, for each endogenous variable, time period and lagdistance, all the available lags of the first differences as instrument for the equation in levelsbecause they are non redundant. See Bond [2002] and Bun and Windmeijer [2010] for furtherdiscussion on this issue.
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The collapsed matrix for the system estimator will thus be:
Zsys, C
i =

(
Zdif, C
i 00 Zlev, C

i

) . (9)
with (T − 2) + 1 moment conditions for each endogenous variable.When instead we limit the lag depth, we truncate the moment restrictionsand exploit the conditions in equation (2) only for 2 ≤ l ≤ M , where M is themaximum lag depth we consider. The limited instrument matrix for the equationin first differences will be:

Zdif, L
i =


yi1 xi1 0 0 0 0 0 0 0 0 0 0 . . .0 0 yi2 yi1 xi2 xi1 0 0 0 0 0 0 . . .0 0 0 0 0 0 yi3 yi2 xi3 xi2 0 0 . . .... ... ... ... ... ... ... ... ... ... ... ... . . .


(10)The number of instruments is (T−2)(T−1)2 − (T−2−M)(T−1−M)2 and the instrumentcount depends on the number of endogenous variables, on T and on M . Thetruncation in the lag depth has no impact on Zlev

i , as it already includes onlythe first lag available. By limiting arbitrarily the lag depth, we drop from theinstrument set Z all the information about the lags greater than M ; by collapsingthe instrument matrix, we retain a lot more information as none of the lags isactually dropped, though restrictions are imposed on the coefficients of subsetsof instruments so that we only generate a single instrument for each lag.
2.2 Extracting principal components from the matrix of instrumentsIn order to face the problem of instrument proliferation, we propose a strategythat involves a stochastic transformation of the instrument set: we extract theprincipal components from the instrument matrix Z.The adoption of principal components analysis (PCA) or factor analysis to ex-tract a small number of factors from a large set of variables has become popularin macroeconomic fields of analysis. The main use of factors is in forecasting insecond stage regressions, but they are also employed as instrumental variablesin IV estimation, in augmented VAR models and in DSGE models9. The seminalworks by Stock and Watson [1998, 2002a, 2002b] develop the use of static prin-cipal components to identify common factors when the number of variables in the

9Stock and Watson [2010] provide an extensive survey on the use of estimated factors in eco-nomic analysis.
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dataset gets very large, while Forni et al. [2000, 2004, 2005] propose the use ofdynamic principal components. Stock and Watson [2002a] prove consistency ofthe factors as the number of original variables gets sufficiently large, so that theprincipal components are estimated precisely enough to be used as data insteadof the original variables in subsequent regressions.The idea of using principal components or factors as instrumental variables isnot so new in the literature. Kloek and Mennes [1960] and Amemiya [1966] firstproposed the use of principal components in instrumental variable (IV) estimation.In this stream of literature, we find, among the others, important contributions byKapetanios and Marcellino [2010], Groen and Kapetanios [2009] and by Bai andNg [2010] that rely on factor-IV or factor-GMM estimation10.In the stream that uses factors as instruments, the main novelty of what we dohere is that we consider a DPD model with endogenous explanatory variables andextract principal components allowing for two strategies: (1) we apply PCA to alarge set of lags of each instrument considered separately (what we call PCIV); (2)we apply PCA to a large set of lags of all the different instruments taken together(what we call PCIVT). The idea is that of identifying the most meaningful basisto re-express the information conveyed by the Z, avoiding multicollinearities inthe instrument set. This new basis should filter out the noise component ofthe moment conditions11 and reveal the signal delivered by the instrument set(coming from the mean of the sample moment conditions); most important, thenoise reduction is the result of a data-driven procedure.Through the PCA we extract the largest eigenvalues from the estimated co-variance12 or correlation matrix13 of Z and, by combining the relative eigenvectors,we obtain the loading matrix and the score matrix. We then use the PCA scoresas new instrumental variables for the endogenous variables in GMM estimates(PCIVR).
10A review of the literature on Factor-IV and Factor-GMM estimations is in the introduction ofKapetanios and Marcellino [2010].11The degree of variation over the sample moment conditions increases as the number of momentconditions raises12An unbiased estimator of the covariance matrix of a p-dimensional vector x of random variablesis given by the sample covariance matrix C = 1

N−1X′X where X is a N × p zero mean designmatrix.13There is not a clear indication in the theoretical literature on which is the preferable matrixamong the two. The PCA is scale dependent and the components that are extracted from eithermatrices are different. The PCA on the covariance matrix can be used when the variables arein commensurable units and have similar variances, as it is generally the case in Monte Carloexperiments. In estimating economic models the PCA on the correlation matrix is instead preferable.We always use PCA on the correlation matrix.
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In practice, defined Z as the general p-columns GMM-style instrument ma-trix14, we extract p eigenvalues λ1, λ2, ..., λp ≥ 0 from the covariance matrix of Z,ordered from the largest to the smallest, and derive the corresponding eigenvec-tors (principal components) α1, α2, ..., αp. Our new instruments will be the scoresfrom PCA that are defined as:
sk = Zαk for k = 1, 2, ..., p. (11)

If we write Z = [z1 z2 ... zp] with zj being the j th column of the instrumentmatrix, the score sk corresponding to the k th component can therefore be rewrittenas:
sk = αk1z1 + αk2z2 + ... + αkpzp (12)where αkj is the j th element of the principal component αk .Since the aim of the PCA is data reduction, it would not help to keep all the

p scores in the analysis as this would imply no decrease in the number of instru-ments; only in the first application of section 3 we will check the impact of PCIVRon estimation results when all the p components are retained. In general we sug-gest to retain only (m+ 1) ≤ q < p principal components; as a consequence,only the q corresponding score vectors will form the new transformed instrumentmatrix. Alternative criteria can be applied in order to select the components tobe retained.15 In line with Doran and Schmidt [2006, p. 406], we propose thevariability criterion; in particular, we retain the components that explain 90%of the original variance. With this criterion, the leading eigenvectors from theeigen decomposition of the correlation matrix of the instruments describe a seriesof uncorrelated linear combinations of the instruments that contain most of thevariance. Compared to alternative criteria to select the eigenvalues of interest,we think that retaining principal components that explain a given predeterminedportion of the original variance better avoids the magnification of sampling errorsin the process of inversion of the variance matrix of the moment conditions. Thisshould decrease the variance of the estimated weighting matrix and improve finitesample performance of the GMM estimator.16
14Z can be Zdif , Zsys , Zdif,C , Zsys,C , Zdif,L , Zsys,L , according to the notation adopted in the previoussections. Remember that, in the simplified case of a balanced panel with Ti = T ∀i, and mendogenous variables plus the lagged dependent variable, we have: Zdif has p = ((T − 2)(T −1)/2)(m + 1) columns, Zdif,C has p = (T − 2)(m + 1) columns, Zdif,L a number of columnsdepending also on the lag truncation. In system GMM estimation, further (T − 2)(m+ 1) columnsare added in Zsys and in Zsys,L , while only m+ 1 are added to Zsys,C .15The criteria are discussed in the Appendix.16According to alternative selection criteria, the smallest eigenvalue or the two or three smallest
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Defined the matrix of PCA loadings as V = [α1 α2 ... αp] and the matrixof PCA scores as S, we have that S = ZV. Instead of the moment conditions in(2), we will therefore exploit the following restrictions:
E [(Sdif)′∆υ] = E [(ZdifV)′∆υ] = 0. (13)

Similarly, in the SYS GMM we will also exploit the additional orthogonalityconditions
E [(Slev)′υ] = E [(ZlevV)′υ] = 0. (14)In both cases, the number of moment restrictions depends on the number ofcomponents we retain in the analysis that, in turn, depends on the nature of thedata at hand. As our starting point is that instruments are orthogonal to theerror term, a linear combination of the original instruments will also obviouslybe orthogonal to the error term.The rationale of PCIVR is to use, instead of the untransformed instruments,linear combinations of the original instruments that are properly weighed ac-cording to the PCA loadings: no available instrument is actually dropped, butits influence might be rescaled after the PCA. It is also worth noticing that noneof the instruments that are not in the original matrix Z will enter the linearcombinations which forms the columns of the new instrument matrix. PCA thuspreserves all the information in the original instrument set.A further advantage of PCA is that we can extract principal components notonly from the untransformed instrument matrix but also from any transformationwe think could be useful; for example, applying PCA to the limited or collapsedinstrument matrix would retain all the information each matrix conveys and thusfurther reduce the number of instruments. As another example, we could applymultistep PCA (see e.g. D’Alessio [1989]) to highlight structural aspects of thedata at hand, like persistence or heterogeneity among clusters of individuals.

ones can be arbitrarily dropped; alternatively, one could retain the eigenvalues higher than theaverage eigenvalue or a fixed number of the highest ones. Results that compare the performanceof PCIVR when seveleral of such criteria are applied, as well as under various alternative settings,are available in Mammi [2011].
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3 Comparing the instrument reduction techniques

3.1 The application of PCIVR technique to Blundell and Bond [1998]
modelIn this section we apply our PCIVR technique to the Blundell and Bond [1998]dynamic labour demand equation of p. 135:
nit = αnit−1 + β0wit + β1wit−1 + γ0kit + γ1kit−1 + φt + ηi + vit (15)where nit is the log of employment in firm i in year t , wit is the log of the realproduct wage and kit is the log of the capital stock. The sample is an unbalancedpanel of 140 UK listed manufacturing companies with between 7 and 9 annualobservations over the period 1976-1984. Results are reported in Tables 1, 2 and3 for DIF, SYS and LEV GMM, respectively; in particular, the first column ofTables 1 and 2 replicate DIF and SYS GMM estimates of the last two columnsof Table 4 in Blundell and Bond [1998]. Table 3 adds also LEV GMM estimates.The other columns of Tables 1, 2 and 3 present collapsing (DIFc, SYSc and LEVc),limiting (DIFl, SYSl and LEVl) and PCIVR on each variable separately and onthe variables together (DPCIV100, DPCIV90, DPCIVT90; SPCIV100, SPCIV90,SPCIVT90; LPCIV100, LPCIV90, LPCIVT90). Reported estimates are the one-step GMM ones with standard errors robust to heteroskedasticity. The first pointto stress is that PCIV100, which uses PCA to just transform the instrument setwithout dropping any of the moment conditions, does not alter the estimationresults originally presented by Blundell and Bond. This is true for each variableof the model, for the specification tests and for different GMM estimates (DIF,SYS or LEV). The retain of the scores that are able to explain 90% of the originalvariance (PCIV90) in DIF GMM makes evident the problem of near unit rootcharacterizing the data at hand: lagged wage is no more significant, and Hansenand residuals second-order autocorrelation tests present lower p-values. This asignal of weak instruments due to persistence that specially affect DIF GMM.These problems are exacerbated by PCIVT: putting together all the instrumentsand their lags, the PCA operates a sort of reduced form between near unit rootstochastic processes and therefore, compared to collapse and lag truncation, castslight on the inappropriateness of the instruments. The overfitting of the modelwith troublesome moment conditions produces a downwards bias of the estimates(in the direction of Within-Group estimates) and a general increase in the vari-ance. Moving to SYS GMM we note that the weak instruments problem due topersistence is reduced, as suggested by Blundell and Bond. Now PCIV90 de-livers estimation results that are in line with original SYS GMM more than the
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other instrument reduction techniques, like collapsing and lag truncation. Com-pared to original SYS GMM, however, the reduced number of moment conditionsimplied by PCIVR reveals the rejection of the orthogonality conditions throughthe Hansen test. This rejection can be explained by the use of moment conditionsin levels for the equation in differences; when we look at the LEV GMM, in whichmoment conditions in first differences are used for equations in level, we notehow estimation results are close each other and that the Hansen test does notreject the overidentifying restrictions (the persistence of instruments is solved bythe first-difference transformation).
3.2 Monte Carlo experiments: a multivariate dynamic panel data modelIn our set of Monte Carlo simulations we estimate a multivariate DPD whosesettings are the same as in Blundell et al. [2000]. The model of interest is:

yit = αyit−1 + βxit + ηi + vit (16)
xit = ρxit−1 + τηi + θvit + eitwhere ηi ∼ N (0, σ 2

η ) are the fixed effects; vit ∼ N (0, σ 2
v ) and eit ∼ N (0, σ 2

e )are the idiosyncratic shocks. Initial observations are drawn from a covariancestationary distribution such that
E
[(
xi1 − τηi1− ρ

)
τηi
]
= 0 (17)

E

yi1 − β
(
τηi1−ρ)+ ηi1− α

 ηi

 = 0. (18)
The xit process is positively correlated with ηi and the value of θ is negativeto mimic the effects of measurement error. The setting of the parameters in thesimulation model is as follows:
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α 0.5, 0.95
ρ 0.5, 0.95Iterations 100, 1000N 500T 5, 8, 20
β 1
τ 0.25
θ -0.1
σ 2
η 1
σ 2
v 1
σ 2
e 0.16

In Tables 4, 5, 6 and 7 we consider 500 individuals and two different timelenghts, i.e. T=5, 8; each experiment consists of 1000 iterations; reported es-timates are the two-step DIF and SYS GMM estimators, with standard errorsrobust to heteroskedasticity and with the Windmeijer [2005] finite sample cor-rection. In Tables 8 and 9 we consider 500 individuals and a large temporalspan, T=20; each experiment consists of 100 iterations and reported estimatesare the one-step DIF and SYS GMM estimators, with standard errors robust toheteroskedasticity. We consider different degrees of persistence for yit and xit ,as captured by the autoregressive coefficients α and ρ. The displayed results areas follows: mean is the mean of estimates; p5 and p95 are the 5th and the 95thpercentiles of estimates; sd is the standard deviation of estimates, Hp mean, minand max are the mean, minimum and maximum of the p-values of the Hansentest and Hdf range is the number of overidentifying restrictions. The main aim ofthese simulations is to show that the PCIVR statistical approach gives results inline with the most appropriate estimation method, that depends on the parame-ters’ setting and on the temporal length T . Compared to collapsing and limitinginstruments reduction techniques, PCIVR magnifies the good or bad performanceof an estimation method, without altering the core of the results. In the caseof stationarity of both variables DIF and SYS GMM provide close results, con-firmed by the PCIVR. As the temporal dimension of the sample grows, it becomesmore evident the effectiveness of PCIVR in reducing the number of overidentify-ing restrictions: this is particularly true when all the instruments are considered
14



together, as in the case of PCIVT, where the reduction process driven by thecharacteristics of the simulated data. While collapsing and limiting a priori fixthe number of moment conditions, the PCIVR presents a range of overidentifyingrestrictions which is the wider the larger is T .As we move towards the near unit root case of one or of both variables, thelatter scenario being very close to the Blundell and Bond empirical applicationpresented above, SYS GMM provides less biased and more precise estimates. Itis particularly remarkable that the collapsing gives the highest standard errorsin the case of persistence: this loss in the precision of the estimates is due tonon-acceptable constraints on the dynamic structure of the instrument set. PCIVRis generally safer than collapsing and limiting as it provides estimates closer tothe true parameters. The only not convincing performance is that of PCIVT inthe case of DIF GMM under persistent stochastic processes: in addition to theproblems of near unit root in the variables, we have here also an artificial andnot economically-grounded correlation structure among the variables that furthernegatively affects the procedure of principal component extraction. In section4, we will see that, on the contrary, PCIVT on a set of variables that have aneconomically-founded relationship has a better and more convincing performance.
4 An empirical example: old and new panel data methods

applied to the controversial issue of production function
estimates

In order to compare the performance of alternative instrument reduction tech-niques in the estimation of an economic model on real data, we use a productionfunction specification with three inputs - labour, tangible and intangible capitalstocks - on a large and unbalanced panel of Italian manufacturing companiesover the period 1982-2010. Two main reasons drive our choice. As first mo-tivation, the estimation of production functions from company panel data hasbecome puzzling for panel data estimation methods (e.g. Mairesse and Sassenou[1991], Griliches [1998]). Pooled OLS regressions yield plausible parameter es-timates, in line with factor shares and generally consistent with constant returnto scale. However these estimates should be biased by omitted heterogeneityand endogeneity issues. Attempts to control for unobserved heterogeneity withwithin or first-difference transformations tend to yield less satisfactory parameterestimates: “In empirical practice, the application of panel data methods to micro-data produced rather unsatisfactory results: low and often insignificant capital
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coefficients and unreasonably low estimates of returns to scale” (Griliches andMairesse [1998] p. 177; see also the discussion in Mairesse and Hall [1995]).The endogeneity issue arises from the simultaneous choice of output and inputsby the decision maker and from the correlations between firm-effects (efficiencylevels of the companies, unknown to the econometrician) and the explanatoryvariables. It also arises from possible measurement errors in variables: omis-sion of labour and capital intensity-of-utilisation variables - such as hours ofwork per employees and hours of operation per machine; problems in capitalstocks construction (changes in the accounting normative, choice of depreciationrates); lack of distinction between blue and white collars in the labour input;lack of firm-specific prices. Noticeable is the fact that GMM methods are usu-ally applied on first differenced equations using appropriately lagged levels ofexplanatory variables as instruments, with lag-depth truncation at t-3 (Mairesseand Hall [1996] for France and US; Mairesse and Jaumandreu [2005] for Franceand Spain; Bontempi and Mairesse [2008] for Italy). The second motivation is thatour data-set is a large unbalanced panel with a considerable temporal span andour specification model includes three endogenous explanatory variables. Sincethe number of available instruments depends on the length of the panel and on thenumber of endogenous explanatory variables, and it changes from cross-sectionto cross-section, the GMM estimation procedures become very complex, callingfor a fruitful use of PCIVR techniques in reducing overfitting problems. Table 10shows the by-year and by-industry sample composition. Data are drawn fromthe CADS (Company Accounts Data Service of Centrale dei Bilanci), which ishighly representative of the population of Italian companies, covering over 50%of the value-added produced by those companies included in the Italian CentralStatistical Office’s Census (further details, cleaning rules and definitions of vari-ables are in Bontempi and Mairesse [2008]). The total number of observations,more than 717,000, is roughly equally splitted between services and manufac-turing companies; the total number of individuals is 73,072, with the availabilityof minimum 4 years and of maximum 29 years. In order to produce estimationresults in line with those of the literature on production function estimates andto preserve the handiness of the empirical framework, we proceed with only themanufacturing companies. We also split the temporal span in two periods, 1982-1993 and 1995-2010, so that we can check the robustness of our findings tochanges in the macroeconomic context.17
17It is worthy to be noted the change of the accounting standards - particularly for the capitalstock - following the implementation of the Fourth European Commission Directive since 1993.
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The standard model proposed by the literature is the Cobb-Douglas produc-tion function with multiplicative specification of the total capital and constant(but non-unity) elasticity of substitution:
Qit = AiBtLβitCαitK

γ
iteεit (19)

where Q indicates the value added; the terms Ai and Bt respectively captureefficiency (unmeasurable firm-specific characteristics, like management ability)and the state of technology (the macroeconomic events that affect all companies,like business cycle and “disembodied technical changes” i.e. changes over time inthe rates of productivity growth); labels C , K and L are tangible and intangiblecapital stocks and labour, respectively, with the associated parameters measuringthe output elasticity to each input; εit is the usual idiosyncratic shocks, allowedto be heteroskedastic and within-firm autocorrelated.18By taking the logarithms of equation 19, and defining all the variables peremployee, the multiplicative production function specification becomes:
(qit − lit) = ai + bt + (µ− 1)lit + α(cit − lit) + γ(kit − lit) + εit (20)

where lower-case letters denote logarithms; ai and bt are the usual individualand time effects. Table 11 reports, over the columns, the main statistics of thevariables in model 20. In line with the Italian manufacturing division, the data-setis mainly characterized by small and medium-sized firms (with a median numberof employees equal to 46 units; about 113 units on average).19 Input variablesare characterized by outliers causing departures of non-parametric measures ofspread (inter-quartile range, iqr) from parametric ones (standard deviation, sd).This is particularly evident in intangible capital stock, suggesting that large in-tangible stocks are concentrated in relatively few companies, and that zeros moreprevail here than in the other two inputs. The decomposition of standard deviationin its between, within and residual components shows that the across companiesvariability prevails, with shares higher than 60% (in line with the findings inGriliches [1988]). Table 12 presents correlations among the variables of equation20 and tangible and intangible gross investments (inv and iinv , respectively);we shall return to this point below, in discussing the role of “internal” (lags ofendogenous explanatory variables) and “external” (variables not included in the
18Note that we assume a one-period gestation lag before intangible and tangible stocks becomefully productive; beginning-of-period capital measures avoid the simultaneous correlation betweencapital inputs and the disturbance term.19The average Italian limited liability company employs 44 workers.
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equation of interest but suggested by the economic structure of the problem athand) instruments in GMM applications. For now, we note that investments arehighly correlated with the endogenous variables of equation 20.Table 13 presents estimation results for the sub-period 1982-1993. The firstthree columns report, as benchmarks, pooled OLS estimates (biased by the omis-sion of firm-specific effects, correlated with explanatory variables), and withinand first-differences estimates, both accounting for cross-sectional heterogeneity.The first-differences estimates are affected by random year-by-year noise thathides the signal of data (Griliches and Hausman [1986]); its effect is particularlyevident in the elasticity of labour, and produces disappointing decreasing returnsto scale. The following five columns of Table 13 compare DIF GMM estimateswith usual “internal” instruments: it is noticeable the lack of robustness in esti-mation results accordingly to the different technique used to reduce the number ofmoment conditions and the rejection of overidentifying restrictions by the Hansentest; PCIVR and PCIVRT produce the best results. Estimates further improve aswe move towards the last five columns of the Table, in which “external” instru-ments are used: particularly in the case of PCIVRT, overidentifying restrictionsare not rejected and, at least, elasticities of the output to the capital stocks goin the direction of more sensible results. We prefer the “external” instrument tothe “internal” ones, for at least one reason: the lags of the explanatory variablesmay be affected by the same measurement error (possibly correlated over time)that we are trying to tackle. In general, however, the difficulty with DIF GMMestimates is that the past levels of variables are poor instruments for the currentdifferences of the explanatory variables; this even in a large cross-sectional di-mension, as in our case, see Bound et al. [1995]. Under covariance stationarityassumptions of the variables in equation 20 we use past differences of investmentas (“external”) instruments for the levels of productive inputs; accordingly to theabove cited literature, LEV GMM - more than DIF GMM - keeps the relevantinformation in the variables of interest. Results are presented in Table 14 forthe two 1982-1993 and 1995-2010 sub-periods. The estimates are encouraging,because robust to changes in the sample periods and in the temporal span, with anon-rejection by the Hansen test that is more evident in the most recent period;moreover, previous disappointing decreasing returns to scale have vanished infavour of constant returns to scale (from an economic point of view, in the firstperiod, or both in economic and statistical terms in the second period).20. It is
20These estimates of elasticities of output with respect to inputs are consistent with evidence forother countries obtained by using constrained models - like the total factor productivity approach- to avoid endogeneity and GMM estimating problems
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also remarkable the good performance of PCIVRT in an economic context in whichthe reduced form behind the production function contemplates the possibility ofcomplementarities among productive inputs (which are magnified by the principalcomponents extraction when the instruments and their lags are putted together).Compared to PCIVR, collapsing and lag truncation present worse results: esti-mated elasticities for some inputs are less in line with not-reduced GMM andPCIVR, and present lower precision. The not-convincing result obtained withlag-depth truncation of the instrument set should be paid a particular attention,as this reduction strategy is commonly adopted in the literature on productivity.
5 Conclusions

This paper introduces a new strategy to reduce the number of instruments inthe GMM estimation of dynamic panel data, namely the extraction of principalcomponents from the instrument matrix (PCIVR), and compares the alternativeinstrument reduction techniques through Monte Carlo simulations and empiricalapplications.First, we discussed the rationale of applying the PCA on the instrumentmatrix stressing that it involves a purely data-driven procedure which does notrequire particular assumptions on the coefficient of the matrix: it is instead themost information-preserving technique among those we discuss here.Secondly, we both use empirical applications and run extensive Monte Carlosimulations of multivariate DPD model with endogenous variables additional tothe lagged dependent one. We found that the extraction of principal componentsfrom the instrument matrix tends to improve GMM results when the assumptionsunder DIF or LEV/SYS GMM are valid.In the light of the previous findings, we are able to suggest some indicationsfor applied research and to sketch some potential extensions of this work.Overall, the extraction of principal components from the instrument set seemsto be a promising approach to the issue of instrument proliferation: in fact itappears reasonable to exploit the correlations between the instruments to sum-marize the original information. Our results confirm that PCIVR is a general,data-driven technique to reduce overidentification problems that can be fruit-fully applied to any overidentified GMM problem. We suggest the researcheron always reporting the number of instruments and not to adopt an instrumentreduction technique a priori, as every strategy could have serious drawbacks ifsome assumptions do not hold.
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Proper procedures to extract principal components from the instrument matrixhave been programmed by the authors in the software Stata: these are based onthe preliminary construction of the instrument matrices. This availability couldfacilitate the researchers in presenting the estimates obtained with alternativeGMM estimators with and without data-driven instrument reduction techniques.Further developments can go in the direction of merging our PCIVR withstatistical tests on the validity of the moment conditions. The reduction in thenumber of overidentifying restrictions should improve the reliability of tests oninstruments’ validity. In particular, we are going in the direction of multi-stepprincipal components analysis, which involves the identification of “reference”matrices of instruments that enlighten aspects of the data at hand that are pro-blematic for the validity of the instruments; among these, the characteristics ofpersistence of the instruments.

20



Table 1: BB98 model: comparison between GMM DIF estimates
Variable DIF DIFc DIFl DPCIV100 DPCIV90 DPCIVT90
n coeff

se

p

w coeff

se

p

wt−1 coeff

se

p

k coeff

se

p

kt−1 coeff

se

p

0.707 0.840 0.787 0.707 0.802 0.5080.084 0.107 0.120 0.084 0.126 0.1790.000 0.000 0.000 0.000 0.000 0.005-0.709 -0.971 -0.662 -0.709 -0.862 -0.6750.117 0.290 0.193 0.117 0.210 0.2690.000 0.001 0.001 0.000 0.000 0.0120.500 0.632 0.617 0.500 0.222 0.3150.111 0.163 0.130 0.111 0.294 0.2350.000 0.000 0.000 0.000 0.450 0.1790.466 0.632 0.479 0.466 0.578 0.6540.101 0.215 0.139 0.101 0.225 0.2090.000 0.003 0.001 0.000 0.010 0.002-0.215 -0.547 -0.438 -0.215 -0.411 -0.2000.086 0.192 0.111 0.086 0.195 0.2360.012 0.004 0.000 0.012 0.035 0.397
Hansen 88.797 14.622 35.693 88.797 23.432 17.197
Hansenp 0.211 0.553 0.389 0.211 0.136 0.102
Hansen df 79 16 34 79 17 11
ar1p 0.000 0.000 0.000 0.000 0.001 0.055
ar2p 0.891 0.901 0.929 0.891 0.544 0.547
Obs. 751 751 751 751 751 751
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Table 2: BB98 model: comparison between GMM SYS estimates
Variable SYS SYSc SYSl SPCIV100 SPCIV90 SPCIVT90
n coeff

se

p

w coeff

se

p

wt−1 coeff

se

p

k coeff

se

p

kt−1 coeff

se

p

0.811 0.777 0.841 0.809 0.902 0.8570.058 0.068 0.059 0.058 0.048 0.0680.000 0.000 0.000 0.000 0.000 0.000-0.795 -0.875 -0.784 -0.796 -0.742 -0.7240.097 0.260 0.148 0.097 0.154 0.1500.000 0.001 0.000 0.000 0.000 0.0000.550 0.693 0.560 0.547 0.464 0.5600.152 0.255 0.179 0.153 0.195 0.1800.000 0.007 0.002 0.000 0.017 0.0020.429 0.604 0.506 0.429 0.534 0.5400.076 0.210 0.078 0.076 0.096 0.0980.000 0.004 0.000 0.000 0.000 0.000-0.280 -0.434 -0.380 -0.280 -0.441 -0.4140.078 0.246 0.079 0.078 0.103 0.0970.000 0.078 0.000 0.000 0.000 0.000
Hansen 115.726 17.997 70.504 115.347 57.597 42.518
Hansenp 0.135 0.523 0.078 0.140 0.022 0.022
Hansen df 100 19 55 100 38 26
ar1p 0.000 0.000 0.000 0.000 0.000 0.000
ar2p 0.934 0.975 0.920 0.931 0.785 0.905
Obs. 891 891 891 891 891 891
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Table 3: BB98 model: comparison between GMM LEV estimates
Variable LEV LEVc LEVl LPCIV100 LPCIV90 LPCIVT90
n coeff

se

p

w coeff

se

p

wt−1 coeff

se

p

k coeff

se

p

kt−1 coeff

se

p

0.944 0.893 0.934 0.944 0.944 0.9270.022 0.091 0.033 0.022 0.027 0.0260.000 0.000 0.000 0.000 0.000 0.000-0.606 -0.730 -0.809 -0.606 -0.776 -0.7230.167 0.239 0.166 0.167 0.162 0.1580.000 0.002 0.000 0.000 0.000 0.0000.500 0.725 0.552 0.500 0.609 0.6120.177 0.221 0.175 0.177 0.159 0.1640.005 0.001 0.002 0.005 0.000 0.0000.522 0.831 0.500 0.522 0.516 0.5650.062 0.126 0.068 0.062 0.065 0.0600.000 0.000 0.000 0.000 0.000 0.000-0.477 -0.763 -0.444 -0.477 -0.468 -0.5100.068 0.161 0.074 0.068 0.070 0.0660.000 0.000 0.000 0.000 0.000 0.000
Hansen 86.805 17.657 49.700 86.805 62.608 60.454
Hansenp 0.257 0.344 0.040 0.257 0.455 0.148
Hansen df 79 16 34 79 62 50
ar1p 0.135 0.380 0.037 0.135 0.018 0.092
ar2p 0.912 0.543 0.080 0.912 0.232 0.487
Obs. 891 891 891 891 891 891
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0.089
0.137

0.091
0.100

0.169
p5

-0.38
4

-1.35
7

-1.26
8

-1.40
0

-1.67
5

0.850
0.808

0.851
0.869

0.709
p9

5
0.737

1.061
0.273

0.894
1.105

1.145
1.178

1.157
1.189

1.262
H

p
me

an
0.385

0.465
0.413

0.461
0.469

0.380
0.481

0.431
0.443

0.443
mi

n
0.000

0.000
0.000

0.001
0.000

0.000
0.000

0.001
0.000

0.000
ma

x
0.997

0.998
0.999

1.000
0.999

0.994
0.999

0.997
0.997

0.997
H

df
ra

ng
e

40
10

20
10-11

6-8
52

12
32

22-23
16-18
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Table
7:M
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Carlo

result
s,T=

8,ρ=
0.95,

β
=

1,N
=

500,R
=

1000
DIF

DIFc
DIFl

DPCI
V90

DPCI
VT

SYS
SYSc

SYSl
SPCI

V90
SPCI

VT

α=0.
5

α
me

an
0.480

0.491
0.451

0.403
0.024

0.512
0.499

0.512
0.502

0.497
sd

0.029
0.034

0.049
0.130

0.581
0.018

0.020
0.020

0.023
0.034

p5
0.433

0.437
0.374

0.189
-0.85

6
0.482

0.465
0.481

0.466
0.439

p9
5

0.528
0.550

0.530
0.607

0.923
0.542

0.531
0.544

0.541
0.552

β
me

an
0.762

0.867
0.101

0.140
-0.59

0
1.052

1.002
1.055

1.083
1.106

sd
0.305

0.462
0.870

1.201
3.188

0.049
0.108

0.052
0.084

0.127
p5

0.276
0.115

-1.29
1

-1.89
2

-6.07
9

0.966
0.832

0.964
0.944

0.902
p9

5
1.282

1.624
1.525

2.000
3.774

1.125
1.126

1.135
1.219

1.310
H

p
me

an
0.449

0.483
0.464

0.472
0.537

0.349
0.476

0.385
0.416

0.424
mi

n
0.000

0.000
0.000

0.001
0.001

0.000
0.000

0.000
0.000

0.000
ma

x
0.995

1.000
0.999

1.000
0.999

0.999
1.000

0.999
0.998

1.000
H

df
ra

ng
e

40
10

20
8

3
52

12
32

20
13-14

α=0.
95

α
me

an
0.808

0.815
0.777

0.775
0.573

0.958
0.951

0.958
0.959

0.959
sd

0.062
0.111

0.088
0.136

0.416
0.004

0.014
0.004

0.005
0.006

p5
0.697

0.612
0.624

0.529
-0.23

7
0.952

0.933
0.951

0.950
0.950

p9
5

0.904
0.978

0.915
0.971

1.101
0.964

0.966
0.964

0.966
0.968

β
me

an
-1.48

8
-1.41

5
-2.06

7
-2.00

5
-2.70

0
0.980

0.975
0.983

0.977
0.966

sd
1.083

1.984
1.543

2.311
3.773

0.038
0.191

0.042
0.053

0.065
p5

-3.45
5

-5.03
2

-4.60
1

-6.09
1

-8.54
8

0.922
0.852

0.918
0.895

0.866
p9

5
0.186

1.503
0.402

1.335
3.201

1.045
1.115

1.054
1.066

1.072
H

p
me

an
0.472

0.515
0.512

0.532
0.590

0.463
0.495

0.484
0.486

0.492
mi

n
0.001

0.002
0.001

0.000
0.002

0.000
0.000

0.002
0.000

0.002
ma

x
0.998

1.000
1.000

1.000
0.999

0.999
1.000

1.000
1.000

0.999
H

df
ra

ng
e

40
10

20
8

3
52

12
32

20
13
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s,T=

20,ρ
=

0.5,β
=

1,N
=

500,R
=

100
DIF

DIFc
DIFl

DPCI
V90

DPCI
VT

SYS
SYSc

SYSl
SPCI

V90
SPCI

VT

α=0.
5

α
me

an
0.480

0.492
0.486

0.483
0.485

0.502
0.494

0.514
0.518

0.521
sd

0.014
0.021

0.020
0.026

0.065
0.014

0.017
0.018

0.017
0.020

p5
0.455

0.459
0.457

0.436
0.388

0.476
0.468

0.488
0.490

0.489
p9

5
0.500

0.528
0.518

0.528
0.591

0.524
0.521

0.544
0.546

0.554
β

me
an

0.813
0.955

0.890
0.929

0.947
0.925

0.966
1.060

1.068
1.047

sd
0.060

0.095
0.109

0.099
0.110

0.070
0.088

0.107
0.089

0.092
p5

0.715
0.797

0.731
0.775

0.773
0.823

0.823
0.918

0.916
0.907

p9
5

0.907
1.126

1.096
1.091

1.148
1.041

1.121
1.234

1.209
1.213

H
p

me
an

0.376
0.490

0.499
0.522

0.518
0.411

0.519
0.462

0.477
0.464

mi
n

0.065
0.007

0.020
0.017

0.024
0.081

0.040
0.017

0.025
0.024

ma
x

0.803
0.994

0.993
0.982

0.965
0.845

0.981
0.957

0.941
0.951

H
df

ra
ng

e
340

34
68

43-50
31-45

376
36

104
77-84

61-75

α=0.
95

α
me

an
0.854

0.752
0.574

0.863
0.687

0.974
0.946

0.978
0.978

0.979
sd

0.027
0.124

0.133
0.063

0.166
0.005

0.024
0.005

0.005
0.006

p5
0.803

0.546
0.381

0.758
0.389

0.967
0.899

0.971
0.969

0.968
p9

5
0.897

0.946
0.790

0.959
0.954

0.984
0.982

0.987
0.987

0.989
β

me
an

0.704
0.566

0.137
0.793

0.466
0.917

0.978
1.001

1.021
0.982

sd
0.068

0.271
0.303

0.153
0.425

0.061
0.091

0.089
0.079

0.135
p5

0.585
0.095

-0.30
9

0.573
-0.34

7
0.831

0.823
0.872

0.898
0.793

p9
5

0.805
0.971

0.646
1.019

1.201
1.021

1.112
1.159

1.150
1.176

H
p

me
an

0.357
0.521

0.432
0.474

0.535
0.365

0.540
0.390

0.432
0.422

mi
n

0.088
0.014

0.007
0.040

0.019
0.080

0.012
0.010

0.049
0.007

ma
x

0.826
0.983

0.941
0.999

0.988
0.784

0.986
0.988

0.953
0.962

H
df

ra
ng

e
340

34
68

40-46
20-25

376
36

104
74-80

50-55
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result
s,T=

20,ρ
=

0.95,
β
=

1,N
=

500,R
=

100
DIF

DIFc
DIFl

DPCI
V90

DPCI
VT

SYS
SYSc

SYSl
SPCI

V90
SPCI

VT

α=0.
5

α
me

an
0.493

0.498
0.480

0.403
0.428

0.509
0.499

0.507
0.512

0.501
sd

0.011
0.014

0.020
0.151

0.239
0.010

0.012
0.013

0.013
0.016

p5
0.473

0.474
0.445

0.107
-0.00

1
0.491

0.478
0.485

0.491
0.475

p9
5

0.509
0.523

0.512
0.609

0.791
0.524

0.519
0.527

0.532
0.529

β
me

an
0.927

0.977
0.531

0.649
0.643

1.089
1.012

1.129
1.117

1.170
sd

0.053
0.115

0.416
0.559

1.026
0.033

0.093
0.041

0.040
0.054

p5
0.838

0.780
-0.15

6
-0.42

6
-1.31

7
1.042

0.869
1.061

1.053
1.070

p9
5

1.008
1.147

1.064
1.396

2.006
1.140

1.137
1.197

1.174
1.250

H
p

me
an

0.392
0.544

0.483
0.539

0.537
0.372

0.527
0.314

0.368
0.406

mi
n

0.062
0.089

0.020
0.013

0.020
0.078

0.044
0.001

0.004
0.008

ma
x

0.831
0.990

0.970
0.996

0.999
0.808

0.986
0.857

0.979
0.970

H
df

ra
ng

e
340

34
68

24
11

376
36

104
58

41-42

α=0.
95

α
me

an
0.909

0.938
0.867

0.891
0.722

0.957
0.951

0.958
0.958

0.960
sd

0.013
0.020

0.044
0.056

0.226
0.002

0.006
0.002

0.002
0.002

p5
0.889

0.905
0.794

0.797
0.277

0.954
0.943

0.954
0.954

0.955
p9

5
0.931

0.970
0.932

0.979
1.014

0.959
0.963

0.960
0.961

0.963
β

me
an

0.443
0.822

-0.31
6

0.358
-0.74

8
0.999

1.000
0.991

0.988
0.959

sd
0.179

0.273
0.705

0.636
1.849

0.028
0.071

0.032
0.034

0.041
p5

0.123
0.379

-1.52
7

-0.80
0

-3.87
4

0.948
0.892

0.938
0.933

0.895
p9

5
0.735

1.306
0.702

1.305
1.831

1.041
1.110

1.037
1.043

1.028
H

p
me

an
0.372

0.529
0.475

0.500
0.621

0.391
0.531

0.435
0.394

0.429
mi

n
0.108

0.009
0.007

0.004
0.009

0.096
0.018

0.014
0.026

0.046
ma

x
0.863

0.993
0.929

0.998
0.999

0.826
0.994

0.945
0.965

0.979
H

df
ra

ng
e

340
34

68
24

11
376

36
104

58
41

29



Table 10: Production function: sample size
Year Serv . Manuf . Total Year Serv . Manuf . Total1982 5,146 10,122 15,268 1997 14,075 15,749 29,8241983 5,101 9,553 14,654 1998 13,786 15,398 29,1841984 6,371 11,421 17,792 1999 14,251 15,532 29,7831985 7,286 12,288 19,574 2000 14,394 15,331 29,7251986 8,084 12,999 21,083 2001 14,138 14,456 28,5941987 8,490 13,225 21,715 2002 13,276 13,716 26,9921988 9,044 13,420 22,464 2003 16,469 16,173 32,6421989 9,922 14,053 23,975 2004 16,875 16,365 33,2401990 10,563 14,546 25,109 2005 15,929 14,824 30,7531991 10,421 14,389 24,810 2006 15,088 13,676 28,7641992 10,328 14,268 24,596 2007 14,115 12,709 26,8241993 9,275 12,155 21,430 2008 13,226 12,136 25,3621994 13,216 14,259 27,475 2009 11,958 11,179 23,1371995 11,198 12,864 24,062 2010 10,529 10,081 20,6101996 8,111 9,966 18,077 Total 330,665 386,853 717,518
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Table 11: Production function: statistics
mean p50 sd iqr between within residual N T

ql 3.797 3.791 0.53 0.593 60.34 2.78 36.88 386853 10.13
cl 3.458 3.488 1.032 1.294 79.54 3.66 16.8 284433 7.54
kl 0.215 0.246 1.537 1.931 67.17 0.34 32.49 284433 7.54
l 3.908 3.829 1.06 1.242 91.59 0.62 7.8 386853 10.13

Table 12: Production function: pairwise correlations
ql cl kl l inv iinv

ql 1
cl 0.3612* 1
kl 0.1622* 0.0941* 1
l -0.0978* -0.0687* -0.0626* 1
inv 0.1428* 0.3281* 0.0479* -0.0760* 1
iinv 0.1114* 0.0311* 0.3425* -0.0316* 0.1117* 1
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ndD
IFGM

Mes
timate

s198
2-199

3
Intern

alIVs
Exter

nalIV
s

Va
r.

OLS
WI

FD
DIF

DIFc
DIFl

DPCI
V90

DPCI
VT90

DIF
DIFc

DIFl
DPCI

V90
DPCI

VT90
c l

0.153
0.104

0.076
0.053

0.103
0.007

0.138
0.146

0.060
0.067

0.028
0.070

0.092
se

0.003
0.004

0.004
0.031

0.039
0.037

0.037
0.059

0.052
0.049

0.052
0.050

0.052
t

51.0
26.7

18.1
1.7

2.6
0.2

3.8
2.5

1.2
1.4

0.5
1.4

1.8
k l

0.032
0.004

0.006
0.047

-0.13
2

0.008
-0.00

2
-0.00

9
0.014

0.011
0.010

0.013
0.012

se
0.002

0.002
0.002

0.041
0.098

0.056
0.050

0.065
0.006

0.006
0.006

0.006
0.006

t
18.8

2.4
2.7

1.2
-1.3

0.1
0.0

-0.1
2.2

1.8
1.6

2.1
1.9

l
-0.02

7
-0.21

2
-0.54

8
-0.43

5
-0.69

6
-0.64

0
-0.39

9
-0.37

8
-0.68

2
-0.60

3
-0.75

4
-0.66

7
-0.63

1
se

0.003
0.008

0.009
0.079

0.178
0.106

0.093
0.115

0.144
0.176

0.168
0.146

0.149
t

-10.8
-26.5

-60.2
-5.5

-3.9
-6.0

-4.3
-3.3

-4.7
-3.4

-4.5
-4.6

-4.2
H

-
-

-
211.7

63.9
113.6

108.0
92.9

115.5
24.3

55.7
70.2

82.6
H

p
-

-
-

0.000
0.000

0.000
0.001

0.001
0.031

0.110
0.008

0.537
0.126

H
df

-
-

-
142

25
50

66
53

89
17

33
72

69
N

10973
8

10973
8

79519
79519

79519
79519

79519
79519

79519
79519

79519
79519

79519
T

5.07
5.07

4.16
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4.16

32



Table
14:P

roduc
tionf

unctio
n:LE

VGM
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swith
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LEV
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LEVl
LPCI

V90
LPCI

VT90
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LEVl

LPCI
V90

LPCI
VT90

c l
0.207

0.208
0.254

0.210
0.214

0.226
0.244

0.231
0.227

0.214
se

0.016
0.017

0.019
0.016

0.016
0.037

0.064
0.062

0.045
0.041

t
13.2

12.2
13.2

13.2
13.5

6.1
3.8

3.8
5.1

5.2
k l

0.041
0.040

0.041
0.040

0.038
0.031

0.030
0.032

0.032
0.028

se
0.005

0.005
0.005

0.005
0.005

0.011
0.019

0.018
0.013

0.012
t

8.7
8.9

8.2
8.5

8.3
2.8

1.6
1.8

2.4
2.3

l
0.034

0.036
0.041

0.034
0.039

0.025
0.026

0.019
0.022

0.033
se

0.016
0.014

0.016
0.016

0.016
0.028

0.049
0.046

0.033
0.031

t
2.2

2.5
2.6

2.2
2.5

0.9
0.5

0.4
0.7

1.1
H

118.7
38.4

42.5
106.9

97.8
198.3

32.9
67.2

157.0
155.6

H
p

0.019
0.002

0.124
0.014

0.034
0.180

0.132
0.043

0.154
0.145

H
df

89
17

33
77

74
181

25
49

140
138

N
10973

81
09738

10973
8

10973
8

10973
815

6241
15624

11
56241

15624
1

15624
1

T
5.07

5.07
5.07

5.07
5.07

6.00
6.00

6.00
6.00

6.00
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Appendix

The principal component analysis (PCA)The PCA is a statistical tool which is used for data reduction according to adata-driven procedure. Intuitively, what PCA does is to find several orthogonallinear combinations of the original variables ordering them on the basis of theportion of the variance in the original data they account for. A principal compo-nent is therefore a linear combination of observed variables that is obtained byexploiting a set of optimal weights for each original variable. The first principalcomponent (PC) will be the linear combination of the original variables that hasthe largest variance among all the possible linear combinations of the originalvariables. The second PC will be the linear combination, orthogonal to the firstPC, that accounts for the largest portion of the residual variance once the firstPC has been extracted, and so on. All the principal components taken togethercontain all the information conveyed by the original data.In other words, through PCA we aim at reducing the dimension of the datawhile retaining, at the same time, as much of the original variability in the dataas possible.More formally, if we define C as the p x p covariance or correlation matrixof the p original variables in the data, the k th principal component pck for k =1, 2, ..., p is obtained as
pck = u′kx (21)where x is the vector of the p variables in the sample, uk is the k th eigenvectorof C corresponding to the k th largest eigenvalue λk subject to the normalizationconstraints:

uk
′uk = 1 (22)

uk
′uj = 0 for i 6= j . (23)

pc1 = u′1x is therefore the linear combination of the p variables orthogonal to allother combinations that, subject to the above constraints, has the maximum vari-ance. Similarly pc2 is the linear combination, orthogonal to pc1, that maximizesthe residual variance.In matrix notation, we can interpret the principal components in the lightof the eigenvalue-eigenvector decomposition of the correlation or the covariancematrix C:
C = VΛV′ =

p∑
i=1 λiviv

′
i (24)
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where V is the matrix consisting of the eigenvectors (principal components) of C, Λis the diagonal matrix that has as element kk the eigenvalue λk corresponding tothe eigenvector vk . The elements vkj of the eigenvector vk , namely the coefficientsof each linear combination, are the loadings, that represent the contribution ofeach original value to the PC: in other words, they can be interpreted as theweights of the j th variable in pck .Subject to the conditions in equations (23) and (13), that is if uk is such tohave unit length, the variance of the k th principal component, var(pck ), is givenby λk . The total variance of all the principal components will be equal to thevariance of the original variables so that:
p∑

k=1 λk = tr(C). (25)
As a consequence, each principal component will account for a portion of thevariance of the original data equal to:

Pk =
λktr(C) . (26)

By multiplying each original variable by its loading in each PC, we obtainthe matrix of the principal component scores defined as follows:
S = XV (27)

where X is the original data matrix and V is the same as above. In other terms,the scores sj indicate the influence of a PC on a specific sample. The matrix Scan be used in the analysis in the place of X: in fact, the matrix S contains theoriginal data matrix in a rotated coordinate system. Clearly the original matrixof data can be written as:
X = V′S (28)where V and S are orthogonal.The number of eigenvalues and eigenvectors, and thus of the principal com-ponents, obviously equals the number of variables in the original data.As the aim of PCA is a reduction of the data dimension through a maxi-mization of the variance explained by the first components and the eliminationof multicollinearities in the data, that imply potential problems in inverting theoriginal matrix, we will want to select and keep a number of components q whichis smaller than p: we will therefore select the q eigenvectors corresponding to
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the q largest eigenvalues of C such that they explain most of the variability in thedata. The q largest principal components will account for the following portionof the original variance: ∑q
k=1 λktr(C) . (29)

Accordingly, in the matrix V only q eigenvectors will be retained and the scoreswill be computed form the reduced V matrix.It is then possible to exploit directly the scores from the PCA by using theminstead of the original variables.A relevant issue is how to choose the the q principal components to beretained in the analysis. Two criteria are generally adopted in the literature: thefirst implies that only the components that explain a given predetermined portion,usually between 70% and 90%, of the original variance are to be retained; thesecond one keeps only the components whose eigenvalues are larger than theaverage eigenvalue which obviously is the average variance in the original data.
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