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Abstract

Gale and Shapley (1962) proposed that there is a similar game to the mar-

riage problem called "the roommate problem". And, they showed that unlike

the marriage problem, the roommate problem may have unstable solutions. In

other words, the stability theorem fails for the roommate problem.

In this paper, we propose a new mechanism for the roommate problem. The

mechanism is successful in determining the reason of instability in our game

scenario. And, we show that our mechanism implements the full set of stable

matchings in the existence of stability, and it ends up with Pareto Optimal

matching in the instance of instability.
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1 Introduction

In their seminal paper, Gale and Shapley (1962) described the well known

roommate problem. In the problem, there are even number of college boys and

dormitory rooms for the pairs of boys. Each boy has a preference ordering

over the other boys. The objective is to allocate the boys to these rooms in

pairs. Gale and Shapley showed that the stability theorem does not hold for

the roommate problem by giving a counter-example in their paper.

Knuth (1976) showed that multiple solutions could exist for the roommate

problem, like in the marriage problem. In his 12 famous questions, which he

raised during the lectures at the University of Montréal in 1976, he asked for an

e¢ cient algorithm to �nd a stable solution for the roommate problem.

Irving (1985) proposed an algorithm for the roommate problem. The algo-

rithm has two phases. The �rst one is similar to Gale and Shapley�s algorithm.

Instead of simulaneously, the proposals are made sequentially. At end of the

�rst phase, a deletion process takes place. Basically, the unachievable agents

for the proposers and the worse agents for the deciders than the current mates

are deleted from the preference lists of all agents. Whether the original prefer-

ence pro�le has no stable solution or has one or more stable solutions could be

determined from this reduced form of the preference pro�le. If there exists a

preference list without any agent, then it means that for the original preference

pro�le there is no stable solution. If all the lists contain only one agent, then

the pro�le has a unique stable solution. If some preference lists contain more

than one agent, the algorithm proceeds with the second phase which involves

further deletions. The second phase ends up with a unique stable matching, in

the existence of multi stability, since the algorithm breaks the cycles among the

agents. Thus, his algorithm tells whether a given pro�le has a stable solution

or not and if there exists some, the algorithm �nds one.
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Tan (1991) proposed a criterion which is a necessary and su¢ cient condi-

tion for the existence of stability; namely, as he calls, the non-existence of odd

party. He showed that the existence of the so-called odd party is the reason of

instability for the roommate problem. He also proposed an algorithm which is

a modi�ed version of Irving (1985). The �rst phase is again a propose-reject

process. After the deletion of impossibility agents at the end of the �rst phase,

if every person has zero or one entry on the lists, then this leads to a unique

stable matching. If there exists a person having more than one agent in his

list, the algorithm proceeds to the second phase. The second phase continues

with the elimination of the cycles. If the elimination of a cycle makes some lists

emtpy, it indicates an old party, which signals an instability solution for the

original preference pro�le.

Tan and Hsueh (1995) proposed a new algorithm to the problem. In their

paper, the preference orderings are allowed to expand. In their model, they

make the analysis of a new comer to the game or a leave of an agent on the

existence of, as Tan (1991) calls, the stable partitions and how to �nd one (stable

matching). When there is a new comer, he proposes to the agents according to

his preference orderings. They describe the proposal sequence, the positions of

the new comer(s) (one by one in an order) among the old agents and the number

of new members to maintain the stability of the preference pro�le. Stability is

maintained as long as there is no new "odd parties" if the initial pro�le does

not have any or all the odd parties are eliminated if starting preference pro�le

has some.

Cechlarova and Fleiner (2005) proposed a model for the roommate problem

with parallel edges. That is two agents are matched with di¤erent issues at the

same time. They show an equivalence with this model to the original roommate

problem and they proposed an extension of Irving (1985) to seek stability. The
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main di¤erence is that after the algortihm eliminates the rotations in the second

phase, it returns back to the �rst phase. So, it has more complexity than the

original algortihm of Irving (1985).

In this paper, we propose a simple mechanism for the rommate problem for

strict preferences. We simply extend the mechanism proposed in Evci (2014).

The problem here is that his mechanism is designed for the two-sided matching

games. But, the roommate problem has a one-sided framework. Hence, �rstly

we convert the model of the roommate problem into a two-sided game by using

auxiliary functions, and then we apply the mechanism by Evci (2014) to this

modi�ed market. We show that the mechanism �nds a/the stable matching

in the existence of stability and ends up with Pareto optimal matching in the

absense of stability. And, we also describe the method to the multi stability

case by using our mechanism. In other words, we show how to fully implement

the set of stable matchings for any preference pro�le in the existence of stability.

There is a literature on the domain restrictions to obtain stability for any

preference pro�le and also a literature analyzing the restrictions on the collegues

for the two-sided matching markets. But, these are out of the scope of this paper.

The paper is organized as follows. Section 2 introduces the preliminaries.

In Section 3, we present the mechanism of Evci and our re�nement with its

stability analysis. Section 4 concludes.

2 Basics and Examples

"The Roommate Problem" is one of the most interesting examples of match-

ing theory. The problem was proposed �rstly by Gale and Shapley (1962). In

the roommate problem, we have two �nite sets; there are 2n college boys and n

dormitory rooms. Each boy has a preference ordering over the other (2n � 1)

boys. The objective is to allocate these boys to the rooms in pairs.
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Let B = fb1; :::; bkg be a non-empty sets of agents (e.g. college boys). Each

agent has a strict preference ordering R over the other agents of the set; for

example Rbi is the preference ordering of bi 2 B over B=fbig. For any bi; bj ; bk 2

B, bjRbibk means bi prefers bj over bk. A Preference Pro�le R = RB = (Ri)i2B

is a set of preference orderings, one for each agent in the model. Let < be the

set of all preference pro�les.

rbj (bi) is the rank of agent bi 2 B in the preference ordering of agent bj 2 B.

For example, rbj (bi) = k means that bi is the k
th best roommate for bj .

A (one-sided) matching � : B ! B is an injection. For any bi; bj 2 B,

�(bi) = bj means that bj is the match of bi and vice versa. Here we explicitly

assume that no agent remains single in the matching; that is @bi 2 B such that

�(bi) = bi. �B is the set of all matchings among the agents of B.

Let �x; �y 2 �B be two matchings and bi 2 B. We can rank matchings, from

the point view of agent bi, according to how bi ranks the agents he is macthed

with. If �x(bi)Rbi�y(bi), then we say that for agent bi, �x Pareto Dominates

�y: If �x(bi) = �y(bi), then bi is indi¤erent between �x and �y and we denote

this by �xIbi�y. (In this model, we work under strict preferences).

For any preference pro�le R = RB = (Ri)i2B and a matching �, for any

bi; bj 2 B, (bi; bj) =2 � is called a blocking pair, if bjRbi�(bi) and biRbj�(bj). If

there is no blocking pair for �, then we say � is stable; otherwise, it is unstable.

A Matching Mechanism 
 is a procedure to select a matching from every

preference pro�le. Formally


 : < �! �B .

In their paper, Gale and Shapley (1962) give a counter example which shows

that the stability theorem, which holds for the marriage problem, fails for the

roommate problem. They say "...consider boys �, �, 
 and �, where � ranks

� �rst, � ranks 
 �rst, 
 ranks � �rst, and �, � and 
 all rank � last. Then
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regarless of ��s preferences there can be no stable pairing, for whoever has to

room with � will want to move out, and one of the other two will be willing to take

him in...". We shall demonstrate their example with the following preference

pro�le R1,

R1 =

a b c d

b c a c

c a b b

d d d a

where N = fa; b; c; dg be the set of boys and �N = f�1; �2; �3g be the set

of all possible matchings, where

�1 = f(a; b); (c; d)g,

�2 = f(a; c); (b; d)g,

�3 = f(a; d); (b; c)g.

None of these matchings is stable for R1; �1 is blocked by (b; c), �2 is blocked

by (a; b) and �3 is blocked by (a; c). So, in this one-sided game, we observe

unstable solutions as well as the stable ones.

3 The Mechanism

In this section, we present our mechanism which is basically a re�nement

of the mechanism by Evci (2014).

3.1 The Dynamic Mechanism by Evci(2014)

Evci (2014) proposed a dynamic mechanism for the two-sided matching

markets under strict preferences.

Let M = fm1; :::;mkg and W = fw1; :::; wlg be two non-empty, �nite and

disjoint sets of agents (e.g. men and women).
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The mechanism is designed for, as he calls, the semi-centralized market form.

While the matching process is centralized for one side of the maket, it is decen-

tralized for the other.

For a given matching game R = (Ri)i2M[W , one side is assigned as the

Restricter, and the other side as the Chooser. The preferences restricters are

regarded as the restrictions or the priorities on the chooser side. The choosers

make decisions simultaneously at the preferences of the restricter side.

Without loss of generality, he assigns M as the restricter and W as the

chooser sides and he shows that set of the outcomes does not depend on which

set is the restricter or the chooser side.

We start with the best women in view of some men. These women are called

to decide; either to say "yes" or "no" to men who propose to them. If a woman

says "yes" to a man and accepts his o¤er, then they form a pair and both of

them are deleted from the pro�le; if she says "no", she loses that man forever

and waits for her turn for other men. At the end of the �rst step, all agents are

informed about the results.

The second step continues with same scenario. And, so on.

Now we give the game scenarios of his mechanism.

De�nition 1 Let w 2 W be any chooser agent and mi;mj 2 M be any two

restricter agents with rmi
(w) > rmj

(w) and wiRmwj. If at the step k = rmj
(w)

non of mi and mj have been taken by other choosers yet, then we say the agent

w experiences a con�ict between agents mi and mj.

The de�nition says that for a chooser if the o¤er of a restricter comes before

any better one, then the chooser agent experiences a con�ict.

De�nition 2 If a chooser agent w 2 W does not experience any con�ict, then

we say w has a smooth game.
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The focus of his paper is for the special case of the con�icts.

De�nition 3 Let fm1; :::;mrg �M be a set of restricters and fw1; :::; wrg �W

be a set of choosers. If we have such a case;

� w1Rm1
w2, w2Rm2

w3,...,wrRmr
w1;

� m1Rw2m2,...,mr�1Rwrmr;mrRw1m1;

� rm1
(w1) = rm2

(w2) = ::: = rmr
(wr) = k (for at least one side),

Then, agents of fw1; :::; wrg experience a cyclical con�ict with each other

for the agents of set fm1; :::;mrg at step k.

His �rst existence result is on the relationship between the cycles and multi

stability.

Theorem 4 For any given preference pro�le R = (Ri)i2M[W , there exists only

a unique stable matching if and only if there exists no cyclical con�ict for the

choosers.

This theorem explains the reason of multi stability for any preference pro�le.

He then presents the types of cycles under his game scenarios in a preference

pro�le. In the proof of theorem, he also showed that Nash Equilibria for a single

cycle generates two stable matchings.

De�nition 5 Let M and W be the sets of restricters and choosers, respectively.

Let W1;W2 �W be the set of the agents of two cycles. If W1\W2 = ;, then we

say that the cycles are independent. Otherwise, they are (inter) dependent.

His next result is on the relationship between the number of stable matchings

and the number of cycles in a pro�le.
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Proposition 6 Two (inter) dependent cycles generate three stable matchings.

From Proposition 6, the idea saying that "each cycle produces two stable

matchings" fails. Unfortunately we cannot know further about this relationship

between the number of cycles and the number of stable matchings, because of

the common agents in the existence of several dependent cycles for a preference

pro�le.

And, �nally next theorem explains the "partial order structure" of stable

matchings.

Theorem 7 For any preference pro�le, there exist independent cyclical con�icts

which occur at the same step k if and only there exist incomparable stable

matchings.

His next theorem is on the implementation of stable matchings.

Theorem 8 If Nash Equilibria of the cycles are chosen, mechanism 
 imple-

ments the full set of stable matchings for any preference pro�le. In other words,

we always end up with one of the stable matchings for any pro�le.

He also shows that truth telling is weakly dominant for the choosers.

3.2 The Re�nement of the Mechanism

Mechanism 
 in Evci (2014) is designed for the two-sided matching mar-

kets. Therefore, we should modify either the mechanism or the structure of the

roommate problem. In this paper, we stick to the mechanism and we convert

the roommate problem into a two-sided matching problem. Thus, we need a

method to separate the set of boys N into two disjoint sets. For this purpose,

we bene�t from a well-known social welfare function.
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De�nition 9 Let A be a set of alternatives, with Card(A) = m, and N be a

set of agents, with Card(N) = n. Each agent has a strict preference ordering

R over A, e.g. 8i 2 N , Ri is the (strict) preference ordering of agent i over the

set of alternatives A. Let R = RN = (Ri)i2N be a preference pro�le and < be

the set of all preference pro�les.

A Social Welfare Function (SWF) f : R �! R gives the social preference of

the society N over the alternative set A, where R 2 <.

This is the usual de�nition of a social welfare function. Next, we give the

de�nition of a famous SWF, which is one of the Scoring Rules.

De�nition 10 In a preference pro�le, the Borda Score BS(a) of an alternative

a 2 A is BS(a) =
P
i2N

[(m+ 1)� ri(a)]. In a voting system, the Borda Rule as

a SWF, ranks the alternatives according to their Borda Scores. We allow weak

orders in the social preference.

And, this is the usual the Borda Rule de�nition. In the roommate problem,

since there is no alternative set, we modify the de�niton of the Borda Rule to

this game. Now, we will show this modi�cation with an example.

Example 11 Let N = fa; b; c; d; e; fg be the set boys with preference pro�le R2,

R2 =

a b c d e f

b c d a a b

c d a b b a

d a b c c c

e e f f d d

f f e e f e

5 points

4 points

3 points

2 points

1 point
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Now, we shall compute the Borda scores of the agents.

B(a) = 0 + 3 + 4 + 5 + 5 + 4 = 21

B(b) = 5 + 0 + 3 + 4 + 4 + 5 = 21

B(c) = 4 + 5 + 0 + 3 + 3 + 3 = 18

B(d) = 3 + 4 + 5 + 0 + 2 + 2 = 16

B(e) = 2 + 2 + 1 + 1 + 0 + 1 = 7

B(f) = 1 + 1 + 2 + 2 + 1 + 0 = 7

From these scores, we get the Borda ranking of the set of boys and together

with the preference pro�le we have,

R�2 =

a b c d e f B(R2)

b c d a a b ab

c d a b b a c

d a b c c c d

e e f f d d ef

f f e e f e

Since the mechanism in Evci (2014) is called 
, we shall denote ours by �.

� is de�ned over any preference pro�le R and its Borda ranking B(R) into the

set of matchings �N . Formally,

� : (R; B(R)) �! �N .

Now, we describe how our mechanism works here. We use the Borda ranking

of the preference pro�le to convert the game into two-sided case; that is we use

it to generate two sides of the market. The Borda ranking gives the order of

the agents that will be the restricters in all successive stages of the game.

We assign the �rst agent in the Borda ranking as the restricter of the �rst

stage. Then, all the other agents take place in the chooser side. If there is more
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than one agent at the top of the Borda ranking, we randomly break the tie and

assign the top agent as the restricter. Then, we run mechanism 
.

Claim 12 At the end of the �rst stage, we get a pair which consists of the

restricter and one of the choosers.

Proof. The proof is easy. Since the restricter is (one of) the top agent(s) in

the Borda ranking, he is (one of) the favorite agent(s). If there exists a chooser

agent whose best agent is the restricter, then they form a pair which is trivial

to show.

So, let us assume that there is no agent whose best agent is this restricter.

This is possible under the Borda rule. If all the choosers reject, then we get an

unstable matching (in the existence of stability) which is against the rationality

of the agents. Since there is only a single ordering, the choosers do not confront

any con�ict or cyclical con�ict as they do in the games for 
 under two-sided

framework. Thus (that is for serial dictatorship), it is easy to show that in

subgame perfect Nash equilibrium there exists a chooser that accepts the o¤er

because the better alternatives than this restricter agent are not achievable for

him.

Then, we delete the agents of this pair from the preference pro�le and the

Borda ranking. In the second stage of the game, we assign the best agent among

remains in the Borda ranking as the restricter. Then, we run our mechanism.

And, so on.

Now, we demonstrate the mechanism � with an example.
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Example 13 We will study R2 in Example 11.

R�2 =

a b c d e f B(R2)

b c d a a b ab

c d a b b a c

d a b c c c d

e e f f d d ef

f f e e f e

Since there is tie between a and b, we randomly choose one of them.

Firstly, let us pick a as the restricter. Firstly, b is called to make a choice. If

he accepts the o¤er, then he forms the pair (a; b). In the second stage c becomes

the restricter. d is called for an o¤er and d accepts the o¤er since a and b are

deleted from the pro�le and so there is no better mate remained. Then, he forms

the pair (c; d). The �nal pair (e; f) is automatically formed. Now, let us assume

that b rejects the o¤er in the �rst step of the �rst stage. Then, in the second

step of the �rst stage a o¤ers to c. If c rejects the o¤er, then d will be called

in the third step and surely he will accept the o¤er which means c will loose his

chance for both of a and d. So, c accepts the o¤er and forms the pair (a; c).

In the second stage, b will be the restricter and he o¤ers to d. d will de�nitely

accept and form the pair (b; d). And, the last pair is (e; f). Now, let us back

to the beginning of the �rst stage. If b accepts the o¤er of a, he forms the pair

(a; b). If he rejects a�s o¤er, then he forms the pair (b; d). Since, b prefers d

over a, he rejects the o¤er of a at the �rst stage and so we end up with matching

� = f(a; c); (b; d); (e; f)g, which is the only stable matching for R2.

Secondly, let us pick b as the restricter of the �rst stage. It is easy to show

that for c rejecting b�s o¤er is a dominant strategy and we end up with the same

matching �.
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Example 13 showed that mechanism � �nds a stable matching for R2. From

Theorem 8 in section 3:1, this result is not unexpected. R2 has a stable matching

and our mechanism �nds it.

But, what about R1, the example described by Gale and Shapley? What do

we observe if we apply our mechanism to some pro�le that does not have any

stable matching?

Example 14 We will study R1.

R�1 =

a b c d B(R1)

b c a c c

c a b b b

d d d a a

d

In the �rst stage, c will be the restricter. a is called to make a decision.

If a accepts the o¤er, he forms the pair (a; c). Then, the other pair will be

(b; d). If a rejects, then b will be called. De�nitely b accpets the o¤er and forms

(b; c). Then, the other pair will automatically be (a; d). So, at the beginning of

the stage, if a accepts the o¤er, then he matches with c. If a rejects, then his

mate will be d. Since a prefers c over d, he accepts the o¤er of c at the �rst

stage of the game. Then, we end up with matching �2 = f(a; c); (b; d)g, which

is unstable.

We applied mechanism � to R1 and we ended up with an unstable matching.

This result is not a surprise; we knew that there is no stable matching for this

pro�le. The unexpected point is the behaviour of our mechanism. In section

3:1, Theorem 8 (Theorem 13 in Evci (2014)) shows that 
 is a stable mechanism;

it always �nds a stable matching. The surprise part is that as if there was some

stable matching for R1, the procedure was very smooth. But, it gave an ustable
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matching in the end. Then, what is the mystery of R1? We will answer this

question later in this section.

Now, we shall work on another example.

Example 15 Let N = fa; b; c; d; e; fg be the set boys with preference pro�le R3,

R�3 =

a b c d e f B(R3)

c c d a a b a

b d a c b a c

d a b b c c b

e e f f d d d

f f e e f e ef

In the �rst stage, a will be the restricter. c is called to make a decision.

If c accepts the o¤er, he forms the pair (a; c). In the second stage b becomes

the restricter. d is called for an o¤er and d accepts the o¤er since a is deleted

from the pro�le and so there is no better mate remained. Then, he forms the

pair (b; d). The �nal pair (e; f) is automatically formed. And, we end up with

matching �x = f(a; c); (b; d); (e; f)g.

Now, let us assume that c rejects the o¤er in the �rst stage. Then, a o¤ers

to b in the second step of the �rst stage. If b accepts the o¤er, he forms the

pair (a; b). In the second stage c becomes the restricter. Then, c o¤ers to d

and d accepts the o¤er since a is deleted from the pro�le. Then, he forms the

pair (c; d). The �nal pair (e; f) is automatically formed. Then, we end up with

matching �y = f(a; b); (c; d); (e; f)g.

If b rejects the o¤er in the second step of the �rst stage, then d will be called

and surely he will de�nitely accept the o¤er and forms the pair (a; d). In the

second stage c becomes the restricter. Then, c o¤ers to b and b de�nitely accepts

the o¤er. Then, he forms the pair (b; c). The �nal pair (e; f) is automatically

formed. Then, we end up with matching �z = f(a; d); (b; c); (e; f)g.
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In the second step of the �rst stage (after c rejects a�s o¤er), if b accepts

a�s o¤er, we end up with �y. If he rejects a�s o¤er, we end up with �z. Since

�zRb�y, b rejects the o¤er of a.

In the �rst step of the �rst stage, if c accepts a�s o¤er, we end up with �x.

If c rejects a�s o¤er, we end up with �z. Since �xRc�z, c accepts the o¤er by a.

Hence, we end up with matching �x, which is unstable for R3 since it is

blocked by (c; d).

We applied our mechanism � to R3 and we got an unstable matching. Is R3

one of the preference pro�les which do not have any stable solution?

The answer is "No!". R3 has absolutely and only one stable matching and

it is �y.

As Evci (2014) has stated and proved, the mechanism 
 is stable. � is

stronger than 
, since there is only one queue and the chooser agents never

experience any con�ict. Then, why cannot � end up with a/the stable matching

while there exist some?

The de�nition below will help us to �gure out the reason.

De�nition 16 Let N be a set of agents. Let R be a preference pro�le and B(R)

is the corresponding Borda ranking. Let M � N be a proper subset of N . The

preference pro�le R̂ of M is constructed by deleting the agents i 2 N=M in

R. Namely, R̂ is the pro�le of M Puri�ed from Irrelevant Alternatives

(PIA) of N=M and B(R̂) is the corresponding Borda ranking.

In the next example, we will examine R3 with puri�ed Borda ranking.
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Example 17 R̂3 =

a b c d e f B(R3) B(R̂3)

c c d a a b a c

b d a c b a c ad

d a b b c c b b

e e f f d d d ef

f f e e f e ef

In R3, agents e and f are the worst alternatives for the rest of the society

and for each other they are same. If we purify R3 by excluding e and f , we get

the relationships of fa; b; c; dg with each other, as seen in pro�le Rfa;b;c;dg3 below,

Rfa;b;c;dg3 =

a b c d B(R̂fa;b;c;dg3 )

c c d a c

b d a c ad

d a b b b

The comparison of B(R3) and B(R̂3) tells us that eventhough a is not the

most favorite member of the set fa; b; c; dg, the support from an "irrelevant" set

fe; fg makes him the best of the pro�le, which falsi�es the result of the game.

The fake position of a makes him get a better mate which leads the game to an

unstable solution.

If we start the game with a, then we get �x = f(a; c); (b; d); (e; f)g. On the

other hand, starting the game with c gives �y = f(a; b); (c; d); (e; f)g, which is

the only stable matching for R3.

Now, we will check the case for R2 with puri�ed ranking.
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Example 18 R̂2 =

a b c d e f B(R2) B(R̂2)

b c d a a b ab abcd

c d a b b a c ef

d a b c c c d

e e f f d d ef

f f e e f e

Since B(R2)�s top cycle fa; bg is included by the one fa; b; c; dg of B(R̂2),

R�2 with unpuri�ed Borda ranking gave the stable matching. It is easy to show

that starting the game with c or d would give the same (only) stable matching.

Now, we will examine pro�le R1, the example described by Gale and Shapley,

but with puri�ed orderings.

Example 19 R̂1 =

a b c d B(R1) B(R̂1)

b c a c c abc

c a b b b d

d d d a a

d

Since there is a cycle between fa; b; cg, we randomly pick one of the agents

and assign him as the restricter. If we start with a, we end up with �1 =

f(a; b); (c; d)g: Starting with b gives �3 = f(a; d); (b; c)g. And, �nally if c is the

restricter of the �rst stage, the game reaches �2 = f(a; c); (b; d)g. As we have

already said, none of them is stable.

From above example, the following question arises; what is the stability

condition of the roommate problem (in terms of �)?

Tan (1991) already stated the stability condition for the roommate problem.

The following theorem provides the necessary and su¢ cient condition of stability

in our game scenario.
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Theorem 20 Let N be a society and R̂ be their preference pro�le with puri�ed

ordering. The pro�le R does not have any stable matching if and only if in the

game for R̂, mechanism � confronts a top cycle with odd number of agents in a

subgame.

Proof. ((=). Let M � N be a set of agents of a cycle with odd number of

cardinality (2k� 1). Every agent prefers other agents in the cycle to the agents

outside of the cycle. From the structure of the game and the cycles, (2k � 2)

number of agents of M match with each other. So, one of them forms a pair

with an agent from the bottom set. The existence of an agent in the bottom

set is guaranteed by the number of agents in the set N , that is Card(N) = 2n.

Let i 2 M be that agent and j 2 N=M be his mate. From the de�nition of a

Borda top cycle, it is clear lRij where 8l 2M=fig . And, again from de�nition

of a cycle, there is an agent k 2 M=fig such that iRk�(k). Otherwise, agents

of M would not construct a full cycle. So, the pair (k; i) blocks the matching.

(=)). We suppose that R does not have any stable matching and there is

no cycle with odd number of agents in any subgame of �. We will show that

this leads to a contradiction.

Firstly, let us assume that there is no cycle at all. So, B(R̂) is a one-ranking

sequence of agents. Let (i; j) be a blocking pair. Without loss of generality,

let us assume i has a higher ranking than j does in B(R̂). Since (i; j) blocks

the matching, i has a mate k such that jRik and also j has a mate l such that

iRj l. (i; j) being a blocking pair means that until j�s turn, i has not been taken.

Since, we have (j; l), j has not chosen any agent until his turn for i, because

better agents are not achievable for him. And, �nally, when it is his turn, he

does not choose i and in a later stage he matches with l. Eventhough j has a

chance, he does not choose i, which contradicts to the rationality axiom.
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Secondly, let us assume that the game consists of cycle(s) with even number

of agents. From the game scenario of 
 and the de�nition of a (top Borda) cycle,

in such cycles agents match with other in the same cycle in the way the tie is

broken. This contradicts to instability.

Finally, if the game is combination of two above cases, same arguments work.

The �nal topic of this paper is multi stability. As Knuth (1976) showed that

for the roommate problem some preference pro�les have more than one stable

matching like for the marriage problem. In the following pages we will analyze

multi stability.

Next example is on a pro�le with multi stability and the outcome of mech-

anism � for this pro�le.

Example 21 Let N = fa; b; c; dg be any set of boys with the pro�le R4,

R̂4 =

a b c d B(R4) B(R̂fa;b;cg4 ) B(R̂fa;b;dg4 ) B(R̂fa;c;dg4 ) B(R̂fb;c;dg4 )

b d a c abcd a b c d

c a d b b d a c

d c b a c a d b

�N = f�1; �2; �3g be the set of all possible matchings, where

�1 = f(a; b); (c; d)g,

�2 = f(a; c); (b; d)g,

�3 = f(a; d); (b; c)g.

As seen from the table above, pro�le R̂4 has no �xed puri�ed Borda ranking

like R̂3 does. So, any agent could be the restricter of the �rst stage.

For pro�le R4, the set of stable matchings is f�1; �2g. It is easy to show that

if we start the game with b or c, we end up with matching �1. On the other
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hand, starting with a or d gives us matching �2. This is because of the cycle

con�ict between the sets fa; dg and fb; cg.

In the existence of multi stability, we need to run the mechanism for di¤erent

(all) puri�ed orderings in order to �nd all of stable matchings for the prefer-

ence pro�le. Giving priorities in Borda ranking to di¤erent agents changes the

outcome from one stable solution to another.

The reason of multi stability is, not surprisingly, the existence of the cyclical

con�icts between two disjoint sets of agents. We refer to Evci (2014) for an

exhaustive analysis of cycles.

In the game scenario of 
 of Evci (2014), choosers have to decide simulta-

neously at the same step. Having the same decision of the agents in a cycle

generates two stable matchings. At such nodes, Nash equilibrium is a binding

criterion for the choosers in cycles.

In the game scenario of � on the other hand, cyclical con�icts are broken

since the game path (tree) has only one single ranking. The choosers are called

one by one to make a decision and so they do not experience any cyclical con�ict.

Therefore, � generates a bias for the chooser agents and the outcome is always

chooser-optimal, as also seen in Example 21.

Evci (2014) also proposed a re�nement mechanism � of his original mech-

anism 
. While 
 implements the full set of stable matchings for any given

preference pro�le, � partitions the full domain of preference pro�les. For some

pro�les the mechanism implements the full set of stable matchings; for some

pro�les, it gives a proper subset of stable matchings and for some of them, it

induces (Chooser-Optimal) Gale and Shapley�s algorithm. Thus, while mecha-

nism � generates "partial bias" for the chooser side as compared to mechanism


, mechanism � generates "full bias".

Now, we state our most general result.
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Theorem 22 Let N be a set of agents and R be their preference pro�le. Let

B(R̂) be the corresponding puri�ed ordering(s). The mechanism � de�ned over

R̂ and B(R̂), formally

� : (R; B(R̂)) �! �N ,

implements the full set of stable matchings in the existence of stability and

gives a Pareto E¢ cient matching for the instances of instability.

Proof. The stability part has been proved by the examples, claims, proposition

and theorems so far.

Pareto e¢ ciency is proved from the de�nition of a cycle with odd number

of agents. In a cycle, increasing the "payo¤" of an agent, not a member of the

blocking pair, reduces the payo¤ of another agent.

Secondly, we shall speci�cally analyze the blocking pair. Let (i; j) be the

blocking pair such that i is matched with agent k from the bottom set. Re-

matching of agents in a way that in the new matching we have (i; j), such that

jRik and j is a member of the top cycle, generates a new blocking pair since an

another agent, say l, who is another member of the top cycle, will be matched

with k. And, this means the payo¤ of agent l reduces. Hence, the matching

from the procedure is Pareto e¢ cient.

4 Conclusion

In this paper, we propose a simple mechanism for the roommate problem. The

mechanism is a re�nement of the mechanism described in Evci (2014). While

applying his mechanism to this problem, we bene�t from a famous Social Choice

Rule (SCR), the Borda rule in welfare function form. Then, we analyze the

e¤ect of this SWF in two scenarios by simply seperating the raw and puri�ed

orderings.
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First of all, as we show, the mechanism � is quite successful under the

puri�ed orderings in checking stability for any given preference pro�le. The

success of � for the raw orderings depends on whether it coincides with the

puri�ed orderings or not. As long as the top set of the raw orderings is a subset

of the one generated under puri�ed orderings, we end up with a/the stable

matching.

We have showed that in the absence of stability, the mechanism � ends up

with a Pareto e¢ cient matching.

And �nally, we have showed that � is also an easy and strong mechanism to

�nd all stable matchings for a given preference pro�le in the existence of multi

stability.
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