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ABSTRACT 
A single ferrite/dielectric interface (incidence from ferrite side), with the bias direction transverse to the direction of 
propagation is analysed. Reflection and transmission coefficient expressions are obtained and plotted with respect to 
frequency and angle of incidence. 

INTRODUCTION 
 
Waveguides with ferrite and dielectric loading are frequently used to build isolators. For many years various structures 
have been developed to obtain better isolation with wider bandwidths at higher frequencies. A key aspect of the 
behaviour of any configuration is reflection and refraction of waves at a single ferrite_dielectric interface. Therefore the 
interface problem is worthy of further study.  
 
 
Figure 1 shows four of the 16 possible situations that can be met in the general case of oblique incidence on a single 
ferrite/dielectric interface. These 16 apparently different situations arise by changing the direction of bias and the 
incident side of the interface: 8 for incidence from dielectric side and 8 for incidence from ferrite side. However, each 
set of 8 contains 2 sets of identical solutions and therefore for any given set of parameters there is only two problems to 
be solved. The problem of a wave incident from the dielectric side [Figs 1(a)(c)] has been discussed in [1] and 
references therein. So this paper is concerned with the second problem, that is the waves incident from the ferrite side, 
Figs 1(b)(d). This case is of particular interest for explaining fundamental structures such as ferrite loaded waveguides 
or grounded ferrite slabs. The TE modes are chosen here because this mode provides the best use of precessional 
motion of ferrite dipoles in nonreciprocal ferrite image guide structures. It is also well known that TE modes in 
grounded ferrite slabs biased in the plane in a direction transverse to the direction of propagation exhibit nonreciprocal 
behaviour. [2] But the physical insight to this problem had never been studied in the literature before. Fig. 2 (equivalent 
to Fig. 1(b)) shows a TE wave travelling in the x-z plane incident from the ferrite side obliquely incident on an interface 
at z=0. The permeability tensor of a ferrite biased in +y direction is given by; 
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where µ and κ are as defined in [3]. Using Maxwell’s equations and boundary conditions, a modified version of Snell’s 
Law (including the frequency dependence of [µ]) and the reflection and transmission coefficients can be found by (2-4). 
 

tie θβθβ sinsin 1=      (2) 
where  

2εµωβ effe =  and 111 εµωβ =     (3) 

 
and βe and β1 are propagation constants in ferrite and dielectric regions respectively. 
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where η1=(µ1 / ε1)1/2 and η2=(µeff / ε2)1/2 are the intrinsic impedances of the dielectric and ferrite regions respectively. 
The solution to Fig.1 (d) can be found by using negative values of θi or by reversing the bias, which can be taken into 
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account by using -κ instead of +κ. Magnitude of reflection coefficient |Γ|, corresponding to Fig. 1(b), is shown in Fig 3, 
as a function of frequency and angle of incidence. The following data were used: ε1=1, ε2=12.7, µ1=µ0, Ho=500 Oe, 
4πMs=2150 G. When the case in which the bias in Fig 1b is reversed is examined, (or as in Fig 1(d) or Fig1(b) with 
negative going wave) it can be seen that although the magnitude of the reflection coefficient does not change, the phase 
does change and this results in a different transmission coefficient graph. A careful examination of these graphs will 
explain the nonreciprocal behaviour of ferrite in various isolator designs. 
 
The analysis and 3D plots of reflection and transmission coefficients at a ferrite/dielectric interface are potentially 
confusing. The excessive amount of information in these graphs makes it possible to lose simple but important points. 
However the key features of the behaviour, can neatly be summarised, in a way not found in textbooks, by plotting the 
complex reflection coefficients on the complex plane. In order to discuss this it is helpful to note the three regions of the 
µeff characteristics shown in Fig 4. In Region I, 1<µeff <∝ ; In Region II, -∝ <µeff <0; In Region III, 0<µeff <1. If the wave 
is normally incident, θ=0, the variation of complex Γ vs f is shown in Fig 6. The impedance of two medium at f=0, are 
377Ω(air) and 243.54Ω (ferrite), giving a reflection coefficient of 0.215. As the frequency increases, wave sees a 
matched second medium when the locus of Γ passes from origin. This is where the numerical value of µeff is equal to 
that of ε2. Then |Γ| becomes 1 with a phase of 180° and the second medium behaves inductive until µeff curve reaches 
Region III. If the wave is obliquely incident on the ferrite/dielectric interface, the nonreciprocal behaviour of Γ 
(discussed in association with Eqn(4)) is shown for a frequency of 15 GHz in region III in Fig 7. Realise that the phase 
of the reflection coefficient is different for positive and negative bias cases. (Negative bias case sees an open circuit but 
positive bias case does not) 
 
 
The ferrite/dielectric interface problem is associated with the guidance of waves by ferrite slabs,  occurs due to multiple 
reflections at the interfaces. A TE wave travelling in a single transversely magnetised slab in a homogeneous dielectric 
medium exhibits reciprocal propagation coefficients, but the two F/D interfaces are nonreciprocal. The propagation is 
reciprocal because the interfaces are symmetrically exchanged when the propagation is reversed. When the two media 
external to the slab are different, the slab exhibits nonreciprocal propagation coefficients. Based on this concept, a 
ferrite image guide isolator has been designed [8]. 
 

CONCLUSION 
It has been shown that a single ferrite/dielectric interface has different reflection and transmission coefficients that 
depend upon the direction of propagation or the direction of bias (bias being transverse to the direction of propagation). 
Physical insights to this problem have assisted the understanding of the non-reciprocal behaviour of various ferrite 
structures and have suggested the possibility of new novel isolator structures working at millimetre wavelengths.  
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(a)       (b)             (c)  (d)     Fig. 2 A ferrite-dielectric interface 
Fig 1 Schematic representation of 4 cases of reflection at a single  

ferrite-dielectric interface 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Variation of the magnitude of reflection coefficient at a ferrite-dielectric (air) interface, with both frequency and 

angle of incidence. ε1=1, ε2=12.7, µ1=µ0, Ho=500 Oe, 4πMs=2150 G. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4 Schematic representation of µeff vs f 
 

Fig 5. Transversely biased ferrite slab of thickness d in a homogeneous dielectric region  
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Fig 6 The variation of complex Γ vs f. ε1=1, ε2=12.7, µ1=µ0, Ho=500 Oe, 4πMs=2150 G. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

positive bias 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

negative bias 
Fig 7 The variation of complex Γ vs angle of incidence for positive and negative bias cases at f=15 GHz 

0 1 2 3 4

x 1010

0

0.2

0.4

0.6

0.8

1

|re
fle
ct
io
n 
co
ef
|

0 1 2 3 4

x 1010

0

50

100

150

200

ph
as
e 
of
 re
fl 
co
ef

0 1 2 3 4

x 1010

0

0.5

1

1.5

2

|tra
ns
m
si
on
 c
oe
f|

0 1 2 3 4

x 1010

0

20

40

60

80

100

ph
as
e 
of
 tr
an
s 
co
ef

0 50 100
0.6

0.7

0.8

0.9

1

|re
fle
ct
io
n 
co
ef
|

0 50 100
-50

0

50

100

150

200

ph
as
e 
of
 re
fl 
co
ef

0 50 100
0

0.5

1

1.5

2

|tra
ns
m
is
si
on
 c
oe
f|

0 50 100
-50

0

50

100

ph
as
e 
of
 tr
an
s 
co
ef

0 50 100
0.6

0.7

0.8

0.9

1

|re
fle
ct
io
n 
co
ef
|

0 50 100
0

50

100

150

200

ph
as
e 
of
 re
fl 
co
ef

0 50 100
0

0.5

1

1.5

2

|tra
ns
m
is
si
on
 c
oe
f|

0 50 100
0

20

40

60

80

100

ph
as
e 
of
 tr
an
s 
co
ef


	MAIN INDEX
	ABSTRACT
	INTRODUCTION
	CONCLUSION
	REFERENCES

