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Abstract

This paper aims at participating in the long-lasting debate about the ana-
lytical foundations of the Cournot equilibrium. In a homogeneous oligopoly,
under standard regularity conditions, we prove that Cournot-Nash emerges
both under (i) price competition and Cournot conjectures; and (ii) supply
function competition with ex post market clearing. We demonstrate both
results within a model of exogenous product di¤erentiation.
JEL Codes: D43, L13
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1 Introduction

One of the key aspects of the debate around Cournot and Bertrand models
lies in the widespread opinion according to which the former model needs
an auctioneer.1 The auctioneer, indeed, might represent the answer to the
central question arising under quantity competition in oligopoly about what
mechanism is the market price established. Hence, in modelling homogeneous
oligopolies, one seems facing a dilemma which is well summarised by Fried-
man (1977, p. 39): �one is faced with a choice between Cournot�s version in
which �rms use the �wrong�variable and the model behaves reasonably, and
Bertrand�s version in which �rms use the �correct�variable and the model
behaves absurdly�.
In an in�uential paper, Kreps and Scheinkman (1983) have proposed a

way out from the impasse. They show that a capacity-constrained price-
setting game yields the Cournot equilibrium. However, for a subset of ad-
missible capacity levels, the use of mixed strategies at the price subgame is
required. Moreno and Ubeda (2006) circumvent this di¢ culty by using the
notion of reservation price to de�ne a �rm�s supply curve as best reply to
the rivals�aggregate supply, in such a way that a pure-strategy equilibrium
always exists and coincides with Cournot.
In this paper we show that the Cournot equilibrium may result from

either (i) Bertrand competition coupled with Cournot-Nash conjectures, or
(ii) supply function competition with ex post market clearing. As for (i),
we use the same approach as in Novshek (1980) and rely on the invertibility
of the demand function, which, coupled with the Cournot-Nash conjecture
(whereby the e¤ects on price of a change in individual and aggregate output
coincide), implies the attainment of the Cournot outcome at equilibrium.
As for (ii), we assume �rms compete in supply functions as in Klemperer
and Meyer (1989) and the related growing literature,2 except that we do
not impose market clearing before �rms solve for the Nash equilibrium, but
after. We show that the resulting equilibrium coincides with Cournot. We
prove both results with homogeneous as well as (exogenously) di¤erentiated

1See Lambertini and Mosca (2014) for an updated account.
2See, for instance, Bolle (1992), Gilbert and Newbery (1992), Delgado and Moreno

(2004), Ciarreta and Gutierrez-Hita (2006), Vives (2011), Bolle et al. (2013) and Holmberg
et al. (2013). In particular, Bolle (1992) and Gilbert and Newbery (1992) are among the
�rst to apply supply function competition to wholesale electricity markets.
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products3 relying on single-stage games generating pure-strategy equilibria
only. Our approach looks then simpler than that requiring an upstream stage
modelling the choice of capacity, followed by either price competition (Kreps
and Scheinkman, 1983) or supply competition based on reservation prices
(Moreno and Ubeda, 2006).
The paper is organised as follows. In section 2, we set up a general model

of homogeneous oligopoly and prove the Kreps and Scheinkman result in
a simple single-stage price game. In section 3, we investigate the supply
function equilibrium. Under the standard ex ante market clearing condition,
we rank such equilibrium between Bertrand and Cournot in a simpler way
than Klemperer and Meyer (1989). Moreover, we establish there our cen-
tral result: competition in supplty functions under ex post market clearing
yields the Cournot-Nash equilibrium. In section 4, we use Singh and Vives�s
(1984) model to extend our main results to di¤erentiated oligopoly. Section
5 concludes.

2 Price competition with Cournot conjectures

We consider an oligopolistic market where a population of single-product
�rms N = f1; 2; 3; :::; n� 1; ng produces a homogeneous good whose inverse
demand function is p (Q) ; where p is price and Q is total output. We assume
that p (Q) is invertible for all Q � 0, with

i] p (0) > 0;

ii] @p (Q) =@Q � p0 (Q) < 0 for all Q � 0;

iii] @2p (Q) =@Q2 � p00 (Q) � 0 for all Q � 0:

Production entails a cost function Ci (qi) > 0 for all qi > 0; with the
following properties for all i:

3To the best of our knowledge, ours is the �rst attempt at modelling supply function
competition in a di¤erentiated oligopoly, Indeed, since Grossman (1981) and Klemperer
and Meyer (1989), supply function competition has always been investigated in homoge-
neous oligopolies. It is worth stressing from now that, while under homogeneous goods
the market clearing condition is unique, under product di¤erentiation there exist as many
market clearing conditions as the number of varieties being marketed, irrespective of the
number of �rms. For more on this, see section 4 below.
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iv] Ci (0) = 0;

v] @Ci (qi) =@qi � C 0i (qi) > 0 for all qi � 0;

vi] @2Ci (qi) =@q2i � C 00i (qi) � 0 for all qi � 0:

The individual pro�t function of �rm i is then �i = p (Q) qi � Ci (qi).
Competition in output levels yields the well known Novshek (1980) �rst

order condition (FOC):

@�i
@qi

= p (Q) + qip
0 (Q)� C 0i (qi) = 0 (1)

which, using the Cournot-Nash conjecture whereby p0 (Q) = @p (Q) =@qi; can
be rewritten as follows:

p (Q)

�
1 +

qip
0 (Q)

p (Q)

�
= C 0i (qi) : (2)

On the other hand, if �rms compete in prices, the expression of individual
pro�ts becomes �i = pqi (p)�Ci (qi (p)). Accordingly, the e¤ect of a variation
in price on �rm i�s pro�ts is described by

@�i
@p

= qi (p) + [p� C 0i (qi (p))] q0i (p) : (3)

Now, observe that solving (2) w.r.t. qi; one obtains:

q�i =
C 0i (qi)� p (Q)

p0 (Q)
(4)

which implicitly identi�es the unique optimal quantity in the Cournot model.
Let�s go back to (3). For a moment, suppose �rms sell di¤erentiated

varieties, in such a way that �rm i�s demand function is qi (pi;p�i) ; where
p�i is the vector of the n� 1 prices of i�s rivals. Assume that

@qi (�)
@pi

< 0 ;
@qi (�)
@pj

> 0����@qi (�)@pi

���� > @qi (�)
@pj

(5)
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for all j 6= i, i.e., the direct e¤ect prevails on the cross e¤ect. The pro�t
function of �rm i is

�i = piqi (pi;p�i)� Ci (qi (pi;p�i)) (6)

and the relevant FOC is

@�i
@pi

= qi (pi;p�i) + [pi � C 0i (qi (pi;p�i))] q0i (pi;p�i) (7)

where q0i (pi;p�i) = @qi (pi;p�i) =@pi. To come back to the homogeneous
good case, one has to take the limit of (6-7), and consider that, as varieties
become identical, the price is unique. Hence, (7) becomes:

@�i
@p

= qi (p) + [p� C 0i (qi (p))] q0i (p) (8)

with q0i (p) < 0. Seen with the eyes of a Cournot player, q
0
i (p) is the inverse

of p0 (Q) = @p=@qi; which measures the e¤ect on price of an output variation
along the demand curve. Therefore, since [p� C 0i (qi (p))] q0i (p) < 0 for all
p > C 0i (qi (p)) ; we obtain:

@�i
@p

= 0, qi =
C 0i (qi)� p (Q)

p0 (Q)
� q�i (9)

while
@�i
@p

= qi > 0 (10)

if p = C 0i (qi). We may therefore claim:

Lemma 1 Under assumptions [i-vi], the invertibility of the demand function
and Cournot-Nash conjectures yield @�i=@p = 0 in correspondence of the
Cournot-Nash output level.

The claim in Lemma 1 can be interpreted as follows. Jointly, (9-10) show
two related facts:

� If a �rm calculates the impact of a change in price on its pro�ts and
then adopts the Cournot-Nash conjecture, then the �rst derivative of
�i w.r.t. market price is nil in correspondence of the optimal output
implicitly identi�ed by (1) in the Cournot game. That is, imposing
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@�i=@p = 0 and solving for qi in the Bertrand game yields the Cournot
outcome as in Kreps and Scheinkman (1983), as long as the interplay
between price and individual output is evaluated along the demand
function. In turn, referring to the capacity-building game examined by
Kreps and Scheinkman, this amounts to saying that if �rms look for
the output level at which they should stop accumulating capacity, they
may just examine the e¤ect of a variation of price on individual pro�ts,
impose Cournot conjectures and nullify the relevant derivative.

� When price equals marginal cost, the �rst derivative of the pro�t func-
tion w.r.t. price is not vanishing. This involves marginal cost pricing
being a corner solution, Pareto-ine¢ cient for �rms, as they would like
to escape from it by shrinking output levels and raising market price.

3 Supply function competition

Let us now consider competition in supply functions. Following Klemperer
and Meyer (1989), we de�ne the supply function of �rm i as Si (p) ; with
S 0i (p) > 0 and S

00
i (p) � 0 for all i = 1; 2; 3; :::; n; so that the pro�t function

becomes �i = pSi (p) � Ci (Si (p)) : Then, assuming that there is a unique
market clearing price and imposing the market clearing condition according
to which total demand D (p) must equal industry supply S (p) =

Pn
i=1 Si (p),

�rm i�s maximization problem can be written as

max
p
�i = p [D (p)� S�i (p)]� Ci (D (p)� S�i (p)) (11)

where S�i (p) �
P

j 6=i Sj (p) and the resulting FOC

@�i
@p

= D (p)�S�i (p)+[p� C 0i (D (p)� S�i (p))]
�
D0 (p)� S0�i (p)

�
= 0 (12)

delivers:
S0�i (p) =

qi
p� C 0i (qi)

+D0 (p) (13)

in which qi � D (p) � S�i at the market-clearing price (cf. Klemperer and
Meyer, 1989, p. 1248). In order to carry out a comparison of the di¤er-
ent equilibria, we can consider the situation where all �rms are symmetric,
whereby qi = q; S0�i (p) = (n� 1)S 0 (p) ; and C 0i (qi) = C 0 (q).
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Compare �rst Cournot and supply function competition and plug q� into
the r.h.s. of (12) to obtain

C 0 (q)� p (Q)
p0 (Q)

+ [p� C 0i (D (p)� S�i (p))]
�
D0 (p)� S0�i (p)

�
(14)

=
C 0 (q)� p
p0 (Q)

+ [p� C 0 (q)]S 0 (p)

since D0 (p) = n � S 0 (p) and S0�i (p) = (n� 1) � S 0 (p) at the market-clearing
price. For competition in supply function to yield higher output and lower
pro�ts than Cournot competition, (14) must be positive (recall that under
supply function equilibria the FOC is taken on price). Indeed, so it is, since
[C 0 (q)� p] =p0 (Q) = q� > 0, p > C 0 (q) and S 0 (p) > 0:
The comparison between Bertrand and supply function equilibria is straight-

forward, since at the Bertrand-Nash equilibriummarginal cost pricing obtains
and consequently (3) reduces to @�i=@p = q > 0 for any q including that im-
plicitly identi�ed by (13). Hence, the Bertrand equilibrium delivers higher
output and lower pro�ts than supply function competition.
The foregoing analysis amounts to a di¤erent, arguably simpler, proof of

a result already attained by Klemperer and Meyer (1989, pp. 1258-60):

Proposition 2 Under assumptions [i-vi], the individual and industry out-
put and price emerging at the supply function equilibrium are intermediate
between those generated by price and quantity competition.

Now, still assuming that a unique market clearing price exists, we exam-
ine what happens under supply function competition without imposing the
market clearing condition ex ante. To do so, we introduce the concept of
notional price bp = f (Si (p) ;S�i (p)) ; which is the price that all �rms expect
to prevail as a function of the vector of their supplies, in such a way that
in the unique equilibrium their expectation must be con�rmed and the no-
tional price and the market clearing price coincide. As a consequence, �rm
i�s maximisation problem becomes

max
p
�i = bp (�)Si (p)� Ci (Si (p)) (15)

and the relevant FOC is

@�i
@p

= bp (�)S 0i (p) + Si (p) bp0 (�)S0 (p)� C 0i (Si (p))S 0i (p) = 0 (16)
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In order to impose market clearing ex post, we require bp (�) = p. This,
together with symmetry across �rms, allows us to rewrite (16) as follows:

@�

@p
= pS 0 + Sp0S0 � C 0S 0 = 0 (17)

The last step amounts to noticing that, at equilibrium, p0S0 = 1 and therefore
the solution to the above equation is

p =
C 0S 0 � S
S 0

(18)

which coincides with the Cournot equilibrium price p� = [C 0 (q) q0 � q] =q0 as
S = q at the market clearing price.
The above discussion proves our central result:

Proposition 3 Under assumptions [i-vi], imposing ex post market clearing
under supply function competition yields the Cournot equilibrium.

There is an interesting implication of the above result as for the long-
standing debate initiated by Bertrand�s critique to the Cournot assumption
of �rms setting quantities, and the seeming lack of an auctioneer. The core
issue is not the need of a third agent (other than �rms or consumers) in
charge of setting the price, but rather whether �rms impose market clearing
before or after taking FOCs w.r.t. the relevant market variable.
Lemma 1 and Proposition 3 jointly imply:

Corollary 4 Under Cournot-Nash conjectures, both Bertrand competition
and supply function competition (with ex post market claering) collapse into
the Cournot equilibrium.

4 Product di¤erentiation in oligopoly

In this section, we illustrate the extension of the above results when product
di¤erentiation enters the picture. To this end, we use the di¤erentiated
oligopoly version of the duopoly model introduced by Singh and Vives (1984).
The utility function of the representative consumer is

U = a
nX
i=1

qi �
1

2

 
nX
i=1

q2i + 2�
X
j 6=i

qiqj

!
(19)
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where a > 0 and parameter � 2 (0; 1] measures the degree of product sub-
stitutability, i.e., � is an inverse measure of product di¤erentiation. When
� = 1; the product is homogeneous.4 The direct demand functions resulting
from the constrained maximisation problem are:

qi = max

�
0;

a

1 + � (n� 1) �
pi [1 + � (n� 2)]� �

P
j 6=i pj

(1� �) [1 + � (n� 1)]

�
8 i = 1; 2; :::; n:

(20)
System (20) can be inverted to yield the demand system needed to model
Cournot competition:

pi = a� qi � �
X
j 6=i

qj 8 i = 1; 2; :::; n: (21)

Note that (20) satis�es the properties in (5).
On the supply side, all single-product �rms operate with the same tech-

nology summarised by the convex cost function Ci = cq2i =2; i = 1; 2; :::; n,
with c > 0:
We set out with Cournot competition. The problem of �rm i is

max
qi
�i =

 
a� qi � �

X
j 6=i

qj

!
qi �

cq2i
2

(22)

The optimal individual output in the symmetric Cournot-Nash (CN) equi-
librium is

qCN =
a

2 + c+ � (n� 1) (23)

the corresponding price is

pCN =
a (1 + c)

2 + c+ � (n� 1) (24)

and pro�ts are

�CN =
a2 (2 + c)

2 [2 + c+ � (n� 1)]2
(25)

4If � = 0, the two varieties do not interact and �rms are separate monopolists. We also
disregard the range � 2 [�1; 0) ; where products are complements.
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Under price competition, the relevant demand system is (20). Bertrand-
Nash (BN) equilibrium magnitudes are:

pBN =
a [(1 + c) (1 + � (n� 2))� �2 (n� 1)]

c [1 + � (n� 2)] + [2 + � (n� 3)] [1 + � (n� 1)] (26)

qBN =
a [1 + � (n� 2)]

c [1 + � (n� 2)] + [2 + � (n� 3)] [1 + � (n� 1)] (27)

�BN =
a2 [1 + � (n� 2)] [(2 + c) (1 + � (n� 2))� 2�2 (n� 1)]
2 [c [1 + � (n� 2)] + [2 + � (n� 3)] [1 + � (n� 1)]]2

(28)

We now consider competition in supply functions. We con�ne our at-
tention to the case of linear supply functions, adopting the procedure sug-
gested by Ciarreta and Gutierrez-Hita (2006). The supply function of �rm i
writes Si = �ipi; and the ex ante market clearing condition is Si = qi for all
i = 1; 2; :::; n; where qi is de�ned as in (20). The presence of n varieties re-
quires imposing n market-clearing conditions, one for each variety. Consider
the individual demand function de�ned in (20). Whenever qi > 0; market
clearing requires �ipi = qi:

�ipi =
a

1 + � (n� 1) �
pi [1 + � (n� 2)]� �

P
j 6=i pj

(1� �) [1 + � (n� 1)] (29)

Solving the system of n equations de�ned by (29) delivers the market-clearing
price for each variety i = 1; 2; :::; n:

pi =
a
�
1 + (1� �) �j

�
1 + �i + [1 + (n� 2)�] �j + (1� �) [1 + (n� 1)�] �i�j

(30)

where, to simplify the exposition, we have set
P

j 6=i �j = (n� 1) �j. The
pro�t function of �rm i is de�ned as

�i = piSi �
cS2i
2
= �ip

2
i �

c�2i p
2
i

2
(31)

where pi is (30). Maximising �i w.r.t. �i and solving the resulting FOC
under the symmetry condition �j = �i delivers:

�SFea =
(n� 2)� � c+

p
(2 + c) [2 + c+ 2 (n� 2)�] + [n (n� 8) + 8]�2

2 [c (1 + (n� 2)�) + (1� �) (1 + (n� 1)�)]
(32)
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where superscript SF mnemonics for supply function and subscript ea stands
for ex ante. Note that �SFea 2 R+ for all n � 2. The equilibrium supply
function is:

SSFea =
2a

2 + c+ n� +
p
(2 + c) [2 + c+ 2 (n� 2)�] + [n (n� 8) + 8]�2

(33)

Using the above expression one can easily obtain the corresponding equilib-
rium pro�ts �SFea .
We now turn to ex postmarket clearing. Not to impose the ex ante market

clearing condition (29) entails substituting qi = �ipi into the individual pro�t
function, which therefore becomes:

�i =

 
a� �ipi � �

X
j 6=i

�jpj

!
�ipi �

c�2i p
2
i

2
(34)

Taking the FOC on �i and imposing symmetry across ��s (but not yet across
prices), one obtains the equilibrium level of the slope of the supply function:

�� (pi;p�i) =
a

(2 + c) pi + �
P

j 6=i pj
(35)

where p�i is the vector of the prices set by the n�1 rivals of �rm i. Imposing
now symmetry across prices entails that �� = a= [2 + c+ � (n� 1)] ; and
solving the ex post market clearing condition

p = a� ��p [1 + � (n� 1)] (36)

we obtain

pSFep =
a (1 + c)

2 + c+ � (n� 1) (37)

where subscript ep mnemonics for ex post market clearing. Now we can
simplify all of the relevant equilibrium expressions, which can be written as
follows:

�SFep =
1

1 + c
; qSFep =

a

2 + c+ � (n� 1)

�SFep =
a2 (2 + c)

2 [2 + c+ � (n� 1)]2
(38)
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and it is apparent that pSFep = p
CN , qSFep = qCN and �SFep = �

CN . Hence, we
have proved that supply function competition with ex post market clearing
yields Cournot equilibrium also in a di¤erentiated oligopoly.
The next step consists in showing that Lemma 1 holds true also under

product di¤erentiation. To this aim, we have to model the equivalent of
Cournot conjectures in the di¤erentiated Bertrand model based upon (20).
We proceed as follows. If a price-setting �rm, say i, anticipates that, in
equilibrium, all prices must coincide, then (20) rewrites as

qijpj=pi =
a� pi

1 + � (n� 1) (39)

If the anticipation, generating (39), is plugged into the inverse demand func-
tion (21), the latter rewrites as

pi = a� qijpj=pi � �
X
j 6=i

qjjpk=pj = a�
a� pi

1 + � (n� 1) � �
X
j 6=i

a� pj
1 + � (n� 1)

(40)
Using (39-40), the pro�t function of �rm i becomes

�i = qijpj=pi

 
a� qijpj=pi � �

X
j 6=i

qjjpk=pj

!
�
c
�
qijpj=pi

�2
2

= (41)

a� pi
1 + � (n� 1)

 
a� a� pi

1 + � (n� 1) � �
X
j 6=i

a� pj
1 + � (n� 1)

!
� c (a� pi)2

2 [1 + � (n� 1)]2

The relevant FOC w.r.t. pi is

@�i
@pi

=
a (1 + c)� (2 + c) pi � �

P
j 6=i pj

[1 + � (n� 1)]2
= 0 (42)

Imposing symmetry across prices and solving the above equation one obtains
the equilibrium price

p� =
a (1 + c)

2 + c+ � (n� 1) = p
CN (43)

The remaining equilibrium magnitudes con�rm the coincidence between this
equilibrium outcome and the Cournot-Nash one.
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5 Concluding remarks

What we have shown is that the Cournot equilibrium can be reached along
three alternative routes. The �rst and obvious is the game in the output
space, by the book. The remaining two emerge from settings which are
seemingly more competitive, wherein �rms must be explicitly concerned with
the equilibrium levels of price(s), something they are not required to do in
the Cournot model without an auctioneer. The �rst new route we have
explored consists in imposing Cournot conjectures in the price-setting game,
which also reproduces Kreps and Scheinkman�s (1983) result in a single-stage
model. The second route amounts to impose ex post market-clearing in the
game where �rms compete in (linear) supply functions. All of this holds true
irrespective of the degree of product di¤erentiation.
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