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A baseband predistorter is presented. Key features of the predistorter resides in the use of cubic splines 
interpolation to generate predistorted input data to the power amplifier, resulting in a reduction of 
computational effort with respect to traditional polynomial interpolators. Simulated behaviour of the 
proposed scheme is presented, demonstrating the effectiveness of the approach. 
 
 
INTRODUCTION 
 
The widespread diffusion of radiocommunication 
systems naturally requires high spectral efficiency 
modulation schemes. Linear modulations can achieve 
the required efficiency performances, but the resulting 
non-constant envelope is not well-suited to cope with the 
stringent requirements requested to transmitter stage 
power amplifiers (PAs). A non constant envelope signal 
passing through a non linear high power amplifier 
results in a distorted output suffering from spectral 
regrowth and intermodulation effects. In order to avoid 
the expensive solution of operating the transmitter with a 
high back-off level, several linearisation techniques can 
be adopted, operating both at microwave and baseband 
frequencies. In this work the attention is focused in a 
digital realization of baseband predistorter. The task of 
such a digital predistorter is to modify the signal, before 
its upconversion, to compensate for the subsequent 
power amplifier distortion. The resulting output signal 
emerges therefore simply delayed and amplified. 
 
DESIGN APPROACH 
 
Assuming the PA as a memoryless non-linear device and 
a band-limited input signal, it is possible to analyse its 
non linear behaviour considering two particular transfer 
characteristics, namely the AM/AM compression and the 
AM/PM conversion curves. Under this assumption, an 
equivalent model of the rf-PA is derived, considering the 
latter as operating in the domain of the complex 
envelope: every point in the input complex plane is non 
linearly mapped into a complex plane by the PA. In this 
picture, the predistorter modifies the complex envelope 
of the original input signal so that the output is simply 
obtained by the product between a real constant quantity 
(gain) and the input complex envelope. In this work a 
digital baseband lineariser is proposed, operating the 
necessary predistortion by means of a cubic spline 
numerical approximation. 
Simple equations for the predistortion procedure are 
derived, and a new way to execute the predistortion, 
with a direct calculation in order to simplify the 
computational complexity, is proposed. The cubic 
splines as tool for obtaining the predistorsion 
coefficients without the need of Cartesian to polar 
coordinates transformations [1] are introduced. At the 
same time, the need of higher order polynomial fitting 
[2] is avoided by a third order polynomial computation 

and predistortion is achieved with minor computational 
effort. With a multistage implementation it’s also 
possible to filter the noisy data [3]. 
A typical AM/AM compression curve, drawn using the 
normalized Saleh [4] model, is reported in figure 1.  
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Fig. 1. AM/AM compression and ideal curve 

Operating in the non linear region in order to obtain an 
output signal corresponding to an input signal passing 
through a linear amplifier (point A on line r1), the PA 
needs to be overdriven until point B. Let us assume the 
gain of the amplifier to be complex in order to take into 
account for phase in-out relationship. If an input vector 

0j
0r e ϑ⋅  is assumed, the actual output vector can be 

expressed as: 0 0
0

j[ ( r )]
( r )A e ϑ +φ⋅ , while the desired ideal 

output is expressed by : 0 1j[ ]
1 0G r e ϑ +φ⋅  where 1j

1G e φ  is 
the PA linear gain. 
Such in-out relationship can be rewritten in the form: 

j j[ ( r )]
( r )r e A eϑ ϑ+φ⋅ → ⋅  and the PA complex gain 

becomes therefore ( r ) j ( r )
A( r )

A
G e

r
φ= ⋅ . Given a generic 

input 0j
0r e ϑ⋅ it is possible to compute the predistorted 

input signal pj
pr e ϑ⋅ such that the output is as in the 

linear case, i.e. : 
 
 

 (1) 
 

                    

p 0 1
p

j j( )
p A ( r ) 1 0r e G G r eφ ϑ +φ⋅ = ⋅



If 
p p pA( r ) A( r ) A( r )R j I 1 G+ =  is a complex attenuation, 

the previous expression can be put in the form: 
 

( )p 0 1
p p

j j( )
p A ( r ) A ( r ) 1 0r e R j I G r eφ ϑ +φ= + ⋅ ⋅            (2) 

 
The complex attenuation of the PA can be separated into 
its real and imaginary parts and then interpolated with 
cubic splines, once the breakpoints have been properly 
selected. We choose to calculate the predistorted sample 
directly, without the need to index a LUT[4]. In order to 
reduce the computational effort an interpolation based 
on the modulus squared of the sample has been used. 
The PA model used in the simulation is obtained from a 
real K-Band TWTA, characterized by the AM/AM 
compression curve as in fig.2  
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Fig. 2. TWTA AM/AM compression 

 
And an AM/PM distorsion curve as in fig. 3 
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Fig. 3.TWTA AM/PM distortion curve 

 
In fig.4 a block diagram of the predistorter is shown.  
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Fig. 4. Predistorster and PA block diagram 

 
A 16-QAM constellation has been used and the resulting 
system has been simulated by [5]. The pulse shaping 
filter box applies two independents square root raised 
cosine FIR filter to the data with a 8X oversampling rate 
[6]. The signal is fed into the predistortion block and 
during the learning phase predistortion is obviously not 
applied, since PA characteristics are unknown at the 
moment. Complex samples are stored in a random 
access memory (RAM) and applied to a couple of DACs 
and reconstruction filters. A quadrature modulator and 
the PA complete the schematic. 
During the learning phase the entire range of 
input/output values has to be swept. A sample of the 
amplified signal is demodulated (by a quadrature 
demodulator) and then fed into a pair of anti-aliasing 
filters and ADCs. Digital samples are stored in a RAM 
to be processed at the end of the learning phase. In the 
case here reported a number N=1000 of samples has 
been used for delay compensation. When the above N 
samples have been acquired by the system, the 
adaptation algorithm begins by sorting the vector of 
stored data. The DSP generates M breakpoints and 
proceeds to build the interpolators for the complex 
attenuation. M sets of 4 coefficients describing each a 
cubic spline are therefore generated. We used five 
equally spaced breakpoints in order to build the natural 
cubic spline interpolators. The synthetic reconstruction 
of the real and imaginary part of the complex attenuation 
starts with the building of the second derivatives matrix 
[A] considering n+1=5 breakpoints: 
 
   

(3) 
 
 
Where hi is the subinterval amplitude, Mi is the second 
derivative at the breakpoint i and yi the ordinates. Since 
the breakpoints are equally spaced hi=h, we solve for the 
linear system:  
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With M0=M4=0. Next we compute the integration 
constants Bi and Ci as : 

   
  

(5) 
 
 
 
 
So the final form for each cubic spline interpolator Fi(x) 
between each couple of breakpoints becomes : 
 

   
 (6) 

 
The predistortion phase starts computing the squared 
magnitude of the complex vector entering the PD (thus 
requiring 1 elementary sum and 2 products). A very 
simple test must be executed at this time to determine 
the right set of polynomial coefficients and successively 
the calculation starts, involving about 3+6 floating point 
(3 sums and 3 products) operations per sample per 
channel (I & Q). 
The operations involved are quite simple but other 
complex tasks must be done at the same time. One of 
this is to compensate for the delay between the generated 
and demodulated data: this is accomplished using the 
correlation function between of the squared modulus of 
the original data and the demodulated data. In order to 
increase resolution the demodulated data are filtered 
with an upsampler [7][8]. 
Finally, the complex product of the interpolated output 
data and the input vector is performed: this task implies  
4 products and 2 sums per sample to generate the output. 
If only one DSP is used, the computational effort is 
estimated to be about 21 Floating point 
operations/sample, but the task can be easily 
parallelised. For a 16-QAM modulation scheme and a 
source bit rate of 1 Mbit/s, the symbol rate is about 
250Ksymb/s. Taking into account an oversampling rate 
of 8X this results in a sample rate of 2Msample/s. The 
single DSP solution leads to 42 MFLOPS. If the sample 
rate is too high for a single DSP, other faster calculus 
devices as FPGAs can be adopted. 
Considering an oversample rate of 8X we obtain 
different floating point operations per sample according 
to the data rate and the M-QAM modulation levels, as 
indicated in tab.1 

 
Tab.1 MFLOPS vs. data rate & M-QAM levels 

 
RESULTS 
 
The algorithm proposed in this contribution has been 
tested using a model of a TWTA from Thomson Tubes. 
The simulations have been performed in the baseband 
domain, varying the power level of the signal fed into 
the amplifier in order to demonstrate the predistortion 
benefits. In fig.5 the simulated output spectra of the 
linearly amplified input signal, together with the PA 
output, with and without predistortion are reported.  
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Fig. 5 Spectrum of scaled input signal (--x--), PA 

output with PD (--o--) and without PD (--••••--) 
 
Without predistortion a visible spectral regrowth is 
present while using the proposed baseband predistortion 
the input and output spectra appropriately scale by a 
constant factor. The PA has been driven near the 
saturation (2 dB compression) and the eye diagram and 
scatter plot of the received 16-QAM constellation 
without PD and with PD are reported in Fig.6 and Fig.7 
respectively. As clearly visible from the figures the 
presence of the PD improve the eye opening thus 
reducing symbols spreading. 
 

DATA
RATE 
(kbps) 

4-QAM 
(MFLOPS)

16-QAM 
(MFLOPS) 

64-QAM 
(MFLOPS)

256-QAM 
(MFLOPS)

100,0 8,40 4,20 2,80 2,10 
200,0 16,80 8,40 5,60 4,20 
300,0 25,20 12,60 8,40 6,30 
400,0 33,60 16,80 11,20 8,40 
500,0 42,00 21,00 14,00 10,50 
600,0 50,40 25,20 16,80 12,60 
700,0 58,80 29,40 19,60 14,70 
800,0 67,20 33,60 22,40 16,80 
900,0 75,60 37,80 25,20 18,90 

1000,0 84,00 42,00 28,00 21,00 
1100,0 92,40 46,20 30,80 23,10 
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Fig. 6 eye diagram and scatter plot of a 16-QAM with 

the PA driven near saturation point without PD 
 

 
Fig. 7 eye diagram and scatter plot of a 16-QAM with 

the PA driven near saturation point with PD 

In figure 8 is reported the power spectral density of a of 
a synthetic two-tone test at 19 and 23 KHz without 
predistorsion, it’s clearly visible the intermodulation and 
distorsion introduced by the PA. 
 

 
Fig. 8. Power Spectral Density of a two-tone test w/o 
predistorsion 

When the predistorter is turned on we obtain the power 
spectrum reported in figure 9 
 

 
 

Fig. 9. Two-tone test with predistorsion 
 

From fig.9 is clearly visible the effect of the predistorter, 
it’s also clear a very little residual quantization noise 
floor. 
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