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ABSTRACT 

Bilateral trade flows traditionally have been analysed by means of the spatial interaction gravity 
model. Still, (auto)correlation of trade flows has only recently received attention in the 
literature. This paper takes up this thread of emerging literature, and shows that spatial filtering 
(SF) techniques can take into account the autocorrelation in trade flows. Furthermore, we show 
that the use of origin and destination specific spatial filters goes a long way in correcting for 
omitted variable bias in an otherwise standard empirical gravity equation. For a cross-section 
of bilateral trade flows, we compare an SF approach to two benchmark specifications that are 
consistent with theoretically derived gravity. The results are relevant for a number of reasons. 
First, we correct for autocorrelation in the residuals. Second, we suggest that the empirical 
gravity equation can still be considered in applied work, despite the theoretical arguments for 
its misspecification due to omitted multilateral resistance terms. Third, if we include SF 
variables, we can still resort to any desired estimator, such as OLS, Poisson or negative binomial 
regression. Finally, interpreting endogeneity bias as autocorrelation in regressor variables and 
residuals allows for a more general specification of the gravity equation than the relatively 
restricted theoretical gravity equation. In particular, we can include additional country-specific 
push and pull variables, besides GDP (e.g., land area, landlockedness, and per capita GDP). A 
final analysis provides autocorrelation diagnostics according to different candidate indicators. 
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1. Introduction 

 

During the past two decades, scholars have shown renewed interest in the theoretical 

foundations and estimation of the gravity model for bilateral trade (e.g., Deardorff 1998; 

Anderson and van Wincoop 2003). The interest in modelling trade flows has increased with 

questions about the effectiveness of trade agreements (Baier and Bergstrand 2009) and the 

persistence of border and distance effects and largely unobserved trade costs (Anderson and 

van Wincoop 2004). The developments have re-affirmed the importance of accounting for 

relative trade costs in explaining patterns of trade. Yet, empirical application of the resulting 

gravity model framework that incorporates theoretically motivated multilateral resistance (MR) 

is not straightforward. The system of equations for MR involves non-linearities in the 

parameters and requires custom programming (Feenstra 2004). 

An alternative specification that circumvents the need to consider the full system of equations 

includes country-specific effects to control for omitted country-specific MR variables. 

However, both the system approach and the alternative using fixed effects impose restrictions 

on the empirical specification of the gravity model. They allow identification of the impact of 

bilateral trade barriers, but preclude (at least in a cross-section) the analysis of country-specific 

covariates that may affect patterns of trade. 

This paper aims to contribute to the literature in providing an alternative solution to deal with 

omitted MR, which allows for parameter identification for country-specific covariates in a 

cross-section analysis of trade patterns. This solution hinges on the interpretation of spatial 

autocorrelation (SAC)1 in trade flows as reflecting unobserved country-specific heterogeneity 

due to MR. Our approach is complementary to a related recent strand of literature that starts 

from the same interpretation in that we offer an alternative methodology to deal with SAC in 

trade flows, called spatial filtering (SF) estimation. 

The literature review about trade costs by Anderson and van Wincoop (2004) suggests that 

the application of spatial econometric techniques in modelling origin-destination trade flows 

needs further exploration, to take into account the (auto)correlation in trade flows. Although 

the gravity model is essentially a model of spatial interaction, little attention has been paid to 

                                                 
1  Spatial autocorrelation is the correlation that occurs among the values of a georeferenced variable, and that can 

be attributed to the proximity of the units. The concept of SAC can be related to the first law of geography, 

stating that ‘everything is related to everything else, but near things are more related than distant things’ (Tobler 

1970, p. 236). 
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flows autocorrelation in the trade literature (Porojan 2001, is an exception). In part, this lack of 

attention was due to technical reasons. Spatial econometric modelling of origin-destination 

flows is complex and computationally taxing. Estimation of spatial lag and spatial error models 

in this context has long been impossible due to computing power limitations. Applications of 

spatial interaction modelling in regional science have recently made progress on this issue (see 

Fischer and Griffith 2008; LeSage and Pace 2008; Sellner et al. 2013). Applications in empirical 

trade and FDI modelling have followed shortly thereafter (see Baltagi et al. 2007; Behrens et 

al. 2012). These contributions show the relevance of autocorrelation in trade flows. However, 

spatial econometric origin-destination flow models remain complex and relatively taxing to 

apply empirically. In response to these concerns, several studies have applied an alternative 

spatial econometric technique, SF, which deals with autocorrelation in a different but equally 

effective way. The technique of SF has recently been applied to the origin-destination flow 

context in other fields, such as commuting and patent citations (Fischer and Griffith 2008; 

Griffith 2009). Instead of accounting for autocorrelation by spatial modelling, SF estimation 

deals with it by filtering the residuals. Because only an origin-specific and a destination-specific 

filter are needed in order to account for autocorrelation, the dimensionality of estimation is 

much less demanding than in the case of a spatial lag or spatial error origin-destination model. 

This paper follows up on this development by applying SF estimation to bilateral trade flows. 

We argue that the application of origin-specific and destination-specific filtering of residuals 

corresponds well to the theoretically expected importance of omitted origin-specific and 

destination-specific MR terms. Empirical results show that SF estimation can account well for 

autocorrelation in trade flows. 

Moreover, SF estimation of an otherwise standard empirical gravity equation appears to go a 

long way in correcting for bias due to the origin- and destination-specific omitted variables 

predicted by the theoretical gravity model. The regression coefficients are close to the 

benchmark values in a specification using origin- and destination-specific indicator variables. 

This implies that SF estimation provides a relatively simple alternative to spatial econometric 

origin-destination flow models and custom-programmed non-linear estimation of the 

theoretical gravity model, which can be estimated using standard techniques such as ordinary 

least squares (OLS) or Poisson regression.2 

                                                 
2  The estimates presented in this paper have been carried out with the R statistical software (R Core Team 2015). 

The script necessary for running the SF estimations is available for download from the first author’s personal 

homepage. 
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Finally, the SF approach allows for a greater flexibility in the empirical specification of the 

gravity equation. Unlike the specification using indicator variables, we can include country-

specific variables – so called push and pull factors – in the model. Moreover, a SF model is a 

significant improvement in terms of parsimony and efficiency compared to the indicator 

variables model. Compared to the theoretical gravity framework, we can relax the assumption 

that total trade depends exclusively and proportionately on the gross domestic product (GDP) 

of the trading countries. Other potential push and pull factors, such as landlockedness, land 

area, or per capita income can be included as well, and we do not have to assume a proportional 

relation between trade and GDP. Thus, SF estimation entails greater flexibility in specification 

choice compared to the stylized theoretical gravity model. 

The paper proceeds as follows. In Section 2, we specify a theoretical gravity model following 

Anderson and van Wincoop (2003) and discuss some practical limitations of applying the 

theoretical framework. In Section 3, we illustrate the link between theoretical gravity and 

autocorrelation in trade flows. We present the approach of SF estimation to control for 

autocorrelation, and motivate that it allows controlling for unobserved MR. Section 4 outlines 

the empirical specifications and estimators that we compare, while Section 5 discusses the SAC 

tests that we use for post-estimation diagnostics. In Section 6, after an overview of data used, 

we turn to the estimation results and diagnostics. Section 7 concludes the paper. 

 

 

2. The Gravity Model and Autocorrelation 

 

We can divide the discourse over trade gravity modelling in two parts, regarding the theoretical 

and empirical approaches to the problem, respectively. The following sections attempt to 

provide such a discussion. 

 

2.1 Theoretical gravity 

Gravity equations for analysing bilateral trade flows have been estimated since the 1960s (e.g., 

Tinbergen 1962; Pöyhönen 1963). The model describes the volume of bilateral trade as a 

function of push and pull factors, such as economic size of origins and destinations, and 

transactional distance between trade partners. It has been deployed for various purposes, such 

as analysing the determinants of trade patterns, testing trade theories, forecasting future flows 

or estimating missing data, and comparative static analysis of changes in trade costs. Recent 

applications increasingly emphasize the importance of estimating a gravity equation that is 
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consistent with theoretical gravity (e.g., Anderson and van Wincoop 2003; Baier and 

Bergstrand 2009). The theoretical framework that is most influential has been developed by 

Anderson and van Wincoop (2003), in their paper on consistent estimation and assessment of 

the border effect in U.S.-Canadian regional trade flows.3 

 Anderson and van Wincoop derive a reduced-form gravity equation, assuming an N-country 

endowment economy, constant elasticity of substitution (CES) preferences, and symmetric 

bilateral trade costs. Their model explicitly takes into account the role played by country-

specific price indices (MR terms). The gravity equation that results is specified as: 

 

 

1 σ

,i j ij
ij

w i j

y y t
x

y P

−
 

=   Π 
 (1) 

 

where xij is the value of the flow of goods from country i to country j, y is GDP (w stands for 

world) and tij is the bilateral trade cost factor. Finally, two variables enter that we discuss in 

greater detail later. Πi measures outward MR of country i, and Pj measures inward MR of 

country j. The term σ is the elasticity of substitution (σ > 1). 

Equation (1) shows that bilateral exports would be proportional to the size of the exporting 

market and the share of the import market in total demand, in the absence of bilateral trade costs 

(tij). Trade costs are of the iceberg cost type, and we define trade costs as a mark-up on the ‘mill 

price’ pi (tij ≥ 1). Hence, (tij – 1) is the ad-valorem tariff equivalent of bilateral trade costs. The 

bilateral delivered prices (pij) then equal: 

 

 .ij ij ip t p= ⋅  (2) 

 

A wide variety of covariates in the literature is used to represent bilateral trade costs. We include 

some of the most common bilateral explanatory variables. A multiplicative formulation of 

bilateral trade costs (see Deardorff 1998; Anderson and van Wincoop 2004) yields: 

 

 ( ) ( ) ( ) ( )2 3 4 51
β 1 β 1 β 1 β 1β ,ij ij ij ijCB CL CH FTA

ij ij ijt D e e e e b
⋅ − ⋅ − ⋅ − ⋅ −= ⋅ ⋅ ⋅ ⋅ ⋅  (3) 

 

                                                 
3  Related theoretical derivations of a gravity equation for trade can be found in earlier literature as well, such as 

Bergstrand (1985) and Bröcker (1989). 
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where D stands for geographical distance; CB stands for an indicator variable equal to 1 if two 

countries share a (land) border (and zero otherwise); CL, CH and FTA are a set of similar 

indicator variables indicating whether or not two countries share a common official language, 

common colonial history, and/or common free-trade agreement. The parameter bij reflects the 

impact of all remaining bilateral trade barriers on the bilateral trade cost factor, assumed 

independent from the included covariates. Based on economic intuition, we expect positive 

parameters for the covariates in the trade cost function.  

Bilateral export does not depend on only bilateral trade cost and the (exogenously given) size 

of the trading economies. It also depends on the weighted average trade costs that an exporter 

and importer face in their export and import market, respectively. This is reflected by the MR 

terms entering the denominator of equation (1). Anderson and van Wincoop (2003) derive the 

set of equations for the MR terms Πi and Pj , 
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where θ , .i i wy y i= ∀  

Note that the outward (inward) resistance term includes the GDP-share-weighted average of 

bilateral trade costs relative to the inward (outward) resistance terms across destinations 

(origins). Given bilateral trade costs tij, a high value for MR implies that other countries k are 

less attractive trading partners. Hence countries i and j will trade more with each other, as shown 

in equation (1). 

 

2.2 Practical Gravity 

The theoretical gravity model conveys an important message. Trade flows are not mutually 

independent. For a consistent econometric estimation of the parameters in the model, problems 

emerge if the regressor variables are correlated with the residuals. The theoretical model shows 

that this endogeneity bias is likely to emerge if we do not control for country-specific MR. 

Despite the prominent position of this theoretical framework over the past years, many 

empirical studies continued to rely on a more pragmatic empirical gravity equation instead. 

Several plausible explanations for this come to mind. Estimating a theoretically consistent 
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gravity equation involves dealing with Equations (4) and (5), which are nonlinear in parameters. 

Developing the required estimation procedures involve some restrictive assumptions (see 

Baldwin and Taglioni 2006; Balistreri and Hillberry 2007), and work on deriving an analytical 

solution has only recently emerged (e.g., Straathof 2008).  

Furthermore, the theoretical framework puts restrictions on the empirical specification that 

follows from the stylized model rather than from practical considerations. In fact, trade depends 

proportionately on the GDP of an origin and destination. Moreover, GDP variables are the only 

push and pull factor in the model to explain total external trade. While the theoretical model 

requires total exports to sum to an exporter’s GDP, and total imports to sum to an importer’s 

GDP, these constraints do not hold in practical applications.4 First, trade and GDP are measured 

in different units. While trade is measured in gross output values, GDP is a measure of value 

added. Moreover, the model includes intranational trade while most practical applications only 

consider international trade flows in estimating the gravity equation, due to data limitations. 

This context implies that theoretically imposed constraints in the model are not generally valid 

in estimation. Second, the share of external trade in total expenditure and gross output may be 

different from the predictions in the theoretical model. The theoretical gravity model predicts 

that larger economies are less open to international trade and allocate a larger share of their 

expenditure on intranational trade, but the share of international trade on GDP is often 

constrained to a constant by imposing proportionality between the former and the latter. 

Hence, practical considerations may provide a valid motivation to choose an unconstrained 

empirical gravity equation, which allows more flexibility in specification. An empirical gravity 

equation can include additional push and pull factors to capture variation in openness to 

international trade. For example, we may think of per capita income, landlockedness, and land 

area as factors determining a country’s openness to international trade. Many of these variables 

have been used in empirical specifications of the gravity model for international trade (e.g., 

Frankel 1997; Raballand 2003; De Groot et al. 2004). 

Taking theoretical and practical insight seriously, ideally we would need to combine the 

flexibility of the empirical gravity equation and the insights about omitted variable bias due to 

MR of the theoretical foundation of gravity. An often used practical solution to deal with 

country-specific omitted variable bias is to include country-specific indicator variables in the 

                                                 

4  The MR terms obtained impose the constraints: ij ji
x y=∑ and 

.ij ij
x y=∑  In similar applications of the model 

in regional science, this type of specification is known as a doubly-constrained gravity model (e.g., Wilson 1970; 

Fotheringham and O'Kelly 1989). 
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gravity equation (Bröcker and Rohweder 1990). As argued by Feenstra (2004), a model 

specification that includes origin- and destination-specific intercepts is consistent with 

theoretical concerns. Moreover, this solution has been widely applied in regional science to deal 

with the practical problems of estimating a gravity equation in which the total flows are not 

known (Sen and Smith 1995).5 This solution is not completely satisfactory, though. It is rather 

drastic medicine to cure the patient. First, including origin- and destination-specific indicator 

variables reduces the statistical efficiency of econometric estimation. Second, it precludes the 

analysis of country-specific determinants of trade, which are interesting for empirical 

applications, bthey explain cross-country variation in openness to international trade.  

 

2.3 Consistent Estimation and Autocorrelation 

The main insight from theoretically derived gravity is that regressor variables and residuals in 

the unconstrained gravity equation are likely to be correlated, because bilateral trade barriers 

also appear in the omitted MR terms. In empirical estimations, failure to control for MR might 

result in omitted variable bias in the parameter estimates of the bilateral regressors.  

This paper proposes an alternative estimation approach that allows for the estimation of an 

unconstrained empirical specification of the gravity model, including push and pull factors, 

while offering a correction for origin- and destination-specific omitted variable bias. The 

approach starts from a specific interpretation of endogeneity bias as resulting from 

autocorrelation in trade flows. The argument for this interpretation has been made before in 

Behrens et al. (2012) and in Koch and LeSage (2009), and more generically relates to the recent 

revival in modelling SAC in bilateral flow data in the previously mentioned regional science 

literature. To the best of our knowledge, however, this paper is the first to link the theoretical 

MR effects to origin- and destination-specific filters, and to make use of SF techniques to 

accommodate autocorrelation in trade flows. 

The argument starts by inspecting Equations (4) and (5). We propose that countries located 

in close spatial proximity tend to have similar MR. Similar geographical location implies 

similar geographical distance to trade partners across the world and a higher probability of 

shared neighbours. Likewise, shared languages tend to be more similar for countries closely 

                                                 
5  Although total international trade by country is generally known, or can be proxied by summing available 

bilateral flows, we do not have comparable direct observations for intranational trade. Hence, we would need to 

proxy for openness to trade of each country in estimating the gravity equation. This can be done either by 

including (additional) push and pull factors in the specification, or by using country-specific intercepts. 



 

9 
 

located in space. Also, the logic of regional integration implies a higher likelihood of proximate 

countries being part of shared trade agreements with surrounding countries. This context 

implies that these spatial patterns in MR would induce autocorrelation in the residuals of the 

unconstrained gravity equation. As a result, the residuals and the bilateral trade cost variables 

are correlated, because similar reasoning to the preceding discussion suggests SAC would be 

in the regressor variables distance, contiguity, language and trade agreement. Omitted variable 

bias would result. 

 

 

3. Recent Developments in Estimating the Theoretical Gravity Model of Trade 

 

The theoretical gravity model shows that consistent estimation of the parameters requires us to 

take into account the price indices. As discussed in Feenstra (2004), the computational 

complexity of the non-linear estimation procedure has prevented its widespread use in the 

applied international trade literature. Still, Anderson and van Wincoop (2003) show that 

estimation of the more traditional empirical gravity equation (omitting the MR terms) yields 

inconsistent parameter estimates for the key regressor variables. A simple solution that results 

in consistent parameter estimates is to use a set of country-specific indicator variables for the 

exporting and importing countries (Bröcker and Rohweder 1990; Feenstra 2004). The indicator 

variables capture the country-specific MR terms, and control for omitted variable bias related 

to the country-specific intercepts. The main advantage of this formulation is that the resulting 

specification can be estimated by familiar methods such as OLS or Poisson regression. 

However, the disadvantage of this solution is that the parameters of country-specific 

determinants of trade cannot be estimated. Variables such as GDP, per capita income, 

landlockedness, and land area are captured by the country-specific indicator variables. Still, 

empirical estimation of the effect of these variables may be relevant depending on the topic 

under investigation. Hence, a solution that would share the basic simplicity of estimation with 

the indicator variable specification, while allowing retention of the country-specific regressors, 

is needed. 

Several recent developments in the trade gravity model literature focus on combining 

consistent estimation and flexibility in the specification of the gravity equation. Egger (2005) 

argues that a Hausman-Taylor approach, which allows for country-specific covariates, is 

consistent even if unobserved country-specific heterogeneity exists. This formulation provides 

an alternative to the indicator variables specification that controls for omitted variable bias due 
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to omitted MR terms, and allows for the estimation of the parameters related to the country-

specific variables. The method is based upon an approach similar to instrumental variables, 

which relies on instruments from inside the model. 

In contrast, Baier and Bergstrand (2009) log-linearize the MR terms using a first-order Taylor 

series approximation. This yields exogenous bilateral multilateral-world-resistance (MWR) 

variables that proxy the endogenous country-specific MR variables in Anderson and van 

Wincoop (2003). The resulting reduced-form gravity equation can be estimated with OLS. This 

method is termed bonus vetus (‘good-old’) OLS (BV-OLS). The approach yields log-linear 

approximations of the MR terms, using Taylor series expansion around a centre of identical and 

symmetric trade costs, tij = t, but differing economic sizes (θi = yi/yw).  

Starting from a reformulated Equation (1): 

 

 ( ) ( ) ( )ln ln ln ln σ 1 ln σ 1 ln σ 1 ln ,ij w i j ij i jx y y y t P P= − + + − − + − + −  (6) 

 

the equation that Baier and Bergstrand derive is: 
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1 1 1
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t t

= = =

= = =

    
= − + + − − + − −    

     

   + − −   
    

∑ ∑∑

∑ ∑∑

 (7) 

 

The terms in square brackets are the MR terms. They contain a first component that captures 

multilateral trade frictions for each exporting or importing country, relative to a second part that 

reflects world trade costs. 

A third approach to the consistent cross-sectional estimation of the gravity model is proposed 

in Behrens et al. (2012). Their approach is closely related to our approach. Starting from the 

Anderson and van Wincoop formulation of the theoretical gravity equation, they show that the 

MR terms can be shown to reflect a correlation structure between trade flows that can be 

modelled similarly to SAC. They suggest a spatial-autoregressive moving-average specification 

for the gravity model, which results in consistent estimates of the standard gravity equation 

parameters. At the same time, they argue that the baseline fixed-effects specification discussed 

previously does not fully succeed in capturing the MR dependencies in the error structure 
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introduced by the general equilibrium nature of trade patterns modelling, and that its residuals 

still show a significant amount of autocorrelation (Behrens et al. 2012). 

We now proceed to discuss the methodology followed in this paper. The alternative we 

propose, SF, combines two attractive features. First, it is fairly simple to apply, much like OLS 

with indicator variables; second, it takes into account the general equilibrium interdependence 

of trade flows that can be modelled as SAC, like spatial econometric origin-destination 

specifications. 

 

 

4. Proposed Methodology: Spatial Filtering Estimation 

 

The theoretical gravity model includes origin- and destination-specific MR variables that reflect 

the export and import accessibility of countries. Omitting these endogenous MR variables from 

the specification results in potential omitted variable bias, both for the trade cost variables and 

for the size variables in the gravity equation. Consistent estimation requires some way to 

capture the endogeneity between MR terms and standard regressors. We propose to make use 

of the fact that this dependency structure is likely to manifest as SAC in the residuals of the 

traditional specification of the gravity model. The reasoning is that many trade cost variables, 

such as geographical distance, adjacency, trade agreements, and common language, are 

spatially correlated: countries close in space are more likely to share the same (or similar) 

characteristics. This context likewise implies that both inward and outward accessibility are 

spatially correlated: close countries are likely to have more similar accessibility. We deal with 

SAC by using an origin- and a destination-specific spatial filter, which serve to capture the 

spatially autocorrelated parts of the residuals. 

When including these spatial filters as additional origin- and destination-specific regressors 

(much like the origin and destination specific MR variables), the model can be estimated by 

standard regression techniques, such as OLS or Poisson regression, which are common in the 

literature about spatial interaction patterns. The parameters of the standard regressor variables 

are unrelated to the remaining residual term, and standard estimation yields consistent 

parameter estimates as a result. We refer to this estimation method as SF estimation of origin-

destination models (see Griffith 2007; Fischer and Griffith 2008). 

Basically, SF estimation of georeferenced data regressions (such as international trade) can 

reduce to defining a geographically varying mean and a variance on the basis of an exogenous 

spatial weights matrix. In other words, the spatially correlated residuals from an otherwise non-
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spatial regression model are partitioned into two synthetic variables: (i) a spatial filter which 

captures latent SAC; and, (ii) a non-spatial variable (free of SAC), which will be the newly 

obtained residuals. The workhorse for this SF decomposition is a transformation procedure 

based upon eigenvector extraction from the matrix 

 

 (I – 11T/n) W (I – 11T/n), (8) 

 

where W is a generic n x n spatial weights matrix; I is an n x n identity matrix; and, 1 is an n x 

1 vector containing 1s. The spatial weights matrix W defines the relationships of proximity 

between the n georeferenced units (e.g., points, regions, and countries). The transformed matrix 

appears in the numerator of Moran’s coefficient (MC), which is a commonly used measure of 

SAC (see Section 5). 

The eigenvectors of Equation (8) represent distinct map pattern descriptions of SAC 

underlying georeferenced variables (Griffith 2003). Moreover, the first extracted eigenvector, 

say e1, is the one showing the highest positive MC that can be achieved by any spatial 

recombination induced by W. The subsequently extracted eigenvectors maximize MC while 

being orthogonal to and uncorrelated with the previously extracted eigenvectors. Finally, the 

last extracted eigenvector maximizes negative MC. 

Having extracted the eigenvectors of Equation (8), a spatial filter is constructed by judiciously 

selecting a subset of these n eigenvectors. In detail, for our empirical application, we select a 

first subset of eigenvectors (which we will call ‘candidate eigenvectors’) by means of the 

following threshold: MC(ei)/MC(e1) > 0.25. This threshold yields a spatial filter that 

approximately replicates the amount of variance explained by a spatial autoregressive model 

(SAR) (Griffith 2003).6 Subsequently, a stepwise regression model may be employed to further 

reduce the first subset (whose eigenvectors have not yet been related to the data) to just the 

(smaller) subset of eigenvectors that are statistically significant as additional regressors in the 

model to be evaluated. The resulting group of eigenvectors is what we call our ‘spatial filter’. 

This estimation technique has been applied, both in autoregression and in traditional modelling 

terms, to various fields, including labour markets (Patuelli 2007), innovation (Grimpe and 

Patuelli 2011), economic growth (Crespo Cuaresma and Feldkircher 2013) and ecology 

(Monestiez et al. 2006). 

                                                 
6  Ongoing research by Griffith and collaborators is looking into formulating an estimation equation, based on 

residual SAC, to predict the ideal size of the candidate set. 
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The added challenge, with regard to the case at hand, is that trade data do not represent points 

in space, but flows between points. Therefore, the eigenvectors are linked to the flow data by 

means of Kronecker products: the product EK ⊗ 1, where EK is the n x k matrix of the candidate 

eigenvectors, may be linked to the origin-specific information (for example, GDP per exporting 

countries), while the product 1 ⊗ EK may be linked to destination-specific information (again, 

for example, the GDP of importing countries) (Fischer and Griffith 2008). As a result, we have 

two sets of origin- and destination-specific variables, which aim to capture the SAC patterns 

commonly accounted for by the indicator variables of a doubly-constrained gravity model 

(Griffith 2009), therefore avoiding omitted variable bias. 

The main advantages of the proposed estimation method are: (a) this approach can be applied 

to any type of regression, including simple OLS and generalized linear models (GLMs) such as 

Poisson or negative binomial regressions (although auto-Poisson and auto-negative binomial 

specifications cannot describe positive spatial dependence), for which usually dedicated spatial 

econometric applications do not exist; (b) by avoiding the use of indicator variables, we are 

able to save degrees of freedom, and, (c) the approach can be used to estimate regression 

parameters for origin- and destination-specific variables, such as GDP or trade agreements 

indicators. 

For our case study, because of the nature of trade data, as suggested by Santos Silva and 

Tenreyro (2006), we estimate a count data model. While the natural choice would be Poisson 

regression, in order to take into account overdispersion in the data due to unobserved 

heterogeneity (which results in a sample variance which is much greater than the sample mean), 

we estimate a negative binomial model, which can explicitly account for such overdispersion 

by iteratively estimating the dispersion parameter. In subsequent comparisons regarding 

residual spatial autocorrelation, we consider, for the SF models, quasi-Poisson estimations as 

well. 

 

 

5. Spatial Autocorrelation Diagnostics 

 

When employing GLMs, traditional SAC indices may not be appropriate, as discussed below. 

In this section, we review the available alternatives. 

In linear regression contexts, when analysing model residuals, an adapted Moran test (Cliff 

and Ord 1972; 1981) is commonly used, under a standard assumption of normality. A t test can 



 

14 
 

be used to test the null hypothesis of spatial randomness of the residuals. The formula for the 

MC computed on the residuals is the following: 

 

 ,
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where wij is the (i,j) element of a chosen spatial weight matrix W, εi and εi are the related model 

residuals, and S0 is the sum of all elements of W. The expected value of this index is: 
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where A = (XTX)–1XTWX corresponds to the factor that accounts for the effect of the 

independent variables. X is the n x k matrix containing the values of the k independent variables 

included in the regression model.  

A permutation-based Moran test has also been proposed (Cliff and Ord 1981) in order to 

improve the results of the approximate t test and to gain insights in its sampling distribution 

under spatial randomness. 

Because the Moran test has been developed for linear models and normally distributed 

residuals, the use of MC calculated on the residuals of count data (Poisson, negative binomial) 

regression models is questionable (Schabenberger and Gotway 2005, p. 377), despite recent 

literature agrees that it possesses good power against a wide array of autoregressive models and 

different distributions of the residuals (Anselin and Rey 1991). 

Griffith (2010) studies the behaviour of the MC for non-normal random variables, and shows 

that, above moderate values of n (25–100), the MC is a suitable indicator in these cases as well. 

However, Griffith does not study the case of SAC diagnostics for regression residuals, in which 

we can consider the effect of the independent variables in the model. 

Further, Moran’s test may not be properly applied to the residuals of Poisson or negative 

binomial regression, whose distributional properties are not well known. In addition, because 

the test does not consider the heterogeneity of observations, its standard moments may not be 

appropriate under heteroscedasticity.  For more details, one can refer to Oden (1995), who 

discusses this problem. 

Lin and Zhang (2007) suggest that the MC can be used to test the residuals of a Poisson model 

by employing Pearson or deviance residuals under an asymptotic normality assumption. This 
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approach is followed, among others, by Scherngell and Lata (2013), which employ a panel SF 

modelling approach. However, this permutation test once again does not incorporate the effect 

of the independent variables of the model in constructing a reference distribution. 

Fortunately, the standardized t statistic of Jacqmin-Gadda et al. (1997) can be applied in this 

context. This t statistic can be considered as an extension of standard SAC statistics into the 

domain of GLMs. It is derived in an analogous way to a score test based on generalized 

estimating equations (Prentice and Zhao 1991). As the condition of validity of the above test 

does not always hold, since the computation is intractable for large samples, a test based on the 

permutation distribution has been also proposed by the same authors. 

Under the null hypothesis of no spatial autocorrelation, the t statistic is defined as: 
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or, in matrix notation: 

 

 ),ˆ()ˆ( μYWμY −−= Tt  (12) 

 

where Y is the n x 1 vector of the observations of the dependent variable, and μ̂  is the n x 1 

vector of the estimated means. 

Using a first-order Taylor series expansion for the deviation of estimated means from the true 

means, Jacqmin-Gadda et al. (1997) show that the index’s expectation and variance are as 

follows: 

 

 E(t) = tr(RD); (13) 

 

 2 2
(4) (2)1

var( ) (μ μ ) 2tr( ),
n

ii i ii
t R

=
= − +∑ RDRD  (14) 

 

where R = MTWM, M = I – DX(XTDX)-1XT, and D is the diagonal matrix whose elements are 

the variance of each observation. Consequently, 2
iiR  is the ith diagonal element of matrix R, 

while µi(2) and µi(4) are the second and the fourth central moments of the ith observation, 

respectively. Jacqmin-Gadda et al. (1997) show that the standardized t statistic asymptotically 

follows the standard normal distribution. 
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The Jacqmin-Gadda (JG) test is a development of the statistic developed by le Cessie and van 

Houwelingen (1995), similarly derived as a score test in the spirit of Prentice and Zhao (1991), 

but not accounting for the effect of the independent variables. In fact, referring to Equation (13)

, the component R in the le Cessie (LC) test is reduced to R = WTW, while D = cov(Y). In other 

words, the LC test does not incorporate the adjustment of estimating parameters, that is, the 

effect of independent variables is not considered in constructing a reference distribution. In 

summary, using the JG standardized t statistic, a test for spatial autocorrelation in the context 

of GLMs can be carried out. 

 

 

6. Empirical application 

 

We apply the SF estimation to a cross-section of bilateral trade flows between 64 (major 

trading) countries for the year 2000 (a full list of countries is provided in the Appendix, Table 

A.1). In this section, we discuss the empirical specification, data and the estimation results. 

 

6.1 Data and Model Specification 

For estimation, we follow a standard specification of the gravity equation of bilateral trade. 

Starting from the trade costs variables identified in equation (3), we further extend the 

specification with additional variables commonly mentioned in the literature (see, e.g., Frankel 

1997; Raballand 2003). We use the following standard specification of the gravity equation: 
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where GDPCAP represents per capita GDP, ISL is an indicator variable that equals 1 if the 

country is an island, Area is the land area of a country, and LL equals 1 for landlocked countries, 

and in which: 
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and likewise for the remaining MWR variables. The other variables are as defined earlier. The 

product of origin and destination GDPs is used as an offset variable. 

The data for trade are from the World Trade Database compiled on the basis of COMTRADE 

data by Feenstra et al. (2005). GDP and per capita GDP data are from the World Bank’s WDI 

database. Distance, language, colonial history, landlocked countries, and land area data are from 

the CEPII institute.7 Whether pairs of countries take part in a common regional integration 

agreement (FTA) has been determined on the basis of OECD data about major regional 

integration agreements.8 A dummy variable indicates whether a pair of countries has 

(membership in) at least one common FTA. Data on island status have been kindly provided by 

Hildegunn Kyvik-Nordas (from Jansen and Nordås 2004). 

We first estimate Equation (15) using negative binomial regression including country-specific 

indicator variables. GDP is used as an offset, which implies we move the log-sum of GDP to 

the left handside, assuming it has a proportional effect on trade with elasticity equal to 1 

(Anderson and van Wincoop 2003). This is our first benchmark model, which, according to 

Feenstra (2004), yields consistent parameter estimates, but is criticized by Behrens et al. (2012). 

Secondly, we estimate Equation (15), extending it with approximations of MR terms obtained 

using the Taylor series approximation proposed by Baier and Bergstrand (2009). This is our 

second benchmark model. These results, as well as the ones for the SF approach, are discussed 

in Section 6.2. 

 

6.2 Estimation Results: Spatial Filtering and Benchmark Models 

The first benchmark model includes origin- and destination-specific indicator variables. As 

shown in Anderson and van Wincoop (2003) and Feenstra (2004), this specification accounts 

for MR terms, and yields consistent parameter estimates. The disadvantage is that country-

specific variables cannot be included, as their effect cannot be identified separately. This 

implies that explanatory variables that are potentially relevant for explaining variation in 

bilateral trade patterns, such as GDP per capita, land area and landlockedness, cannot be 

investigated empirically (if not ex post, by, e.g., regressing the indicator variable coefficients 

on them). A second disadvantage is the loss of degrees of freedom for estimation, because a 

substantial number of indicator variables (2n – 2) is needed. Usually, however, the degrees of 

freedom remain large enough, since observations are bilateral (i.e., n2 – n). 

                                                 
7  See http://www.cepii.fr. 
8  See http://www.oecd.org/dataoecd/39/37/1923431.pdf. 
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The second benchmark model is the specification developed in Baier and Bergstrand (2009), 

which includes first-order Taylor series approximations of the MR terms. This specification 

follows from Equation (6). Further manipulation [substituting Equation (3) for bilateral trade 

costs] allows us to combine both terms between square brackets into a set of bilateral variables, 

one for each bilateral trade costs variable determining trade costs (such as geographical 

distance). The reduced-form double-log gravity equation is as follows: 
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Baier and Bergstrand (2009) show that theory imposes the restrictions δk = –βk for each k. 

The equations specify the model in double-logarithmic transformation. We estimated the 

benchmark models multiplicatively, using negative binomial regressions, aside from the BV 

model, which is estimated linearly. This method allows a direct treatment of the non-negative 

values of trade flows and of the zeros, and enables us to correct for overdispersion of trade 

flows (see Santos Silva and Tenreyro 2006). 

The empirical estimation results are presented in Table 1. Model (1) presents the regression 

results for the first benchmark model, including country-specific indicator variables. Following 

Anderson and van Wincoop (2003), we estimate the model using GDP as an offset variable 

(i.e., restricting the coefficient of GDP variables to equal 1). The parameter estimates are in line 

with the findings elsewhere in the literature (see, e.g., Anderson and van Wincoop 2004; Disdier 

and Head 2008). Geographical distance has a negative effect on trade, with an estimated 

elasticity of –1.30. The effect of proximity on trade is reinforced by a positive and (marginally) 

significant effect of contiguity on trade. Proximity in terms of language and colonial links also 

positively affects bilateral trade, while preferential trade policy (i.e., enjoying common FTAs), 

appears to have a counterintuitive negative effect. These results – with the exception of the 

latter – confirm previous findings about the importance of these dimensions of transactional 

distance on trade (e.g., Obstfeld and Rogoff 2000; Loungani et al. 2002). 

Model (3) compares these findings with the regression outcomes for the second benchmark 

model, the Baier-Bergstrand estimation. This method proxies for the endogenous and 

unobserved MR terms by including exogenous linear approximations based upon bilateral trade 

costs variables. Provided that the approximation is sufficiently adequate, this specification 
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results in consistent estimates (Baier and Bergstrand 2009). Once again, GDP has been used as 

an offset variable, and the model is estimated by OLS. The obtained parameter estimates are 

comparable to the estimates for the first benchmark model [Model (1)], including the negative 

effect found for free-trade blocs. Additionally, on the one hand, the Baier-Bergstrand 

specification has an advantage, because it enables us to include country-specific regressors 

explicitly; on the other hand, the results do not always appear to be satisfactory. 

 

Table 1. Estimation results 

 (1)  (2)  (3)  (4)  
 Fixed effects  

(GDP offset)  
Spatial filter  BB-estimation  

(GDP offset)  
BB-estimation  

Distance   –1.30***    –1.23***    –1.25***    –1.22***  

Common border     0.24*     0.33**       0.23     0.25 

Common language     0.36***      0.33***      0.32***      0.37***  

Common history     0.86***      0.71***      0.79***      0.80***  

Free trade   –0.14**      0.41   –0.27***    –0.22**  

GDP exporter –     0.75***  –     0.91***  

GDP importer –     0.92***  –     1.15***  

GDP per cap. exporter –     0.13***    –0.06**      0.02 

GDP per cap. importer –     0.12***    –0.04*   –0.16***  

Island exporter –   –0.41***    –0.29***    –0.28***  

Island importer –   –0.31***      0.08     0.20* 

Area exporter –   –0.00   –0.11***    –0.07***  

Area importer –   –0.17***    –0.22***    –0.28***  

Landlocked exporter –     0.23*     0.30**      0.26**  

Landlocked importer –   –0.58***      0.07     0.19* 

Constant –29.60***  –27.42***  –34.01***  –34.97***  

AIC 101,713 47,805 102,485 102,436 

Observations 4032 4032 4032 4032 

Notes: BB stands for Baier-Bergstrand, and AIC for Akaike information criterion. *** , ** , * 

denote parameter estimates statistically significant at 1%, 5% and 10%, respectively. 
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Closer inspection of the Baier-Bergstrand estimation, dropping the offset assumption on the 

product of exporter and importer GDP in Model (4), yields qualitatively similar –and in some 

cases more plausible (e.g., for landlocked importers) – results, and a slightly better fit. For 

example, although a negative effect of GDP per capita variables on trade is not uncommon in 

some specifications (see, e.g., Anderson and Marcouiller 2002), the effect in Model (3) seems 

to be driven mainly by offsetting GDP, which imposes a GDP elasticity of trade (of 1), which 

empirically is too high. 

Summarizing, the two benchmark models yield somewhat different results. Although, as 

mentioned, some effects may be more plausible in the Baier-Bergstrand estimation results, the 

more traditional specification using country-specific indicator variables results in a slightly 

better model likelihood, as shown by the Akaike information criterion (AIC). The disadvantages 

of this model, though, are the loss of country-specific variables, and a diminished precision in 

the determination of the significance of variables, resulting from the loss of degrees of freedom 

in the model estimation. 

Results emerging from the SF estimation of the gravity model, which combines the consistent 

estimation of the first benchmark model with the flexibility of specification of the second 

benchmark model, are shown for Model (2) in Table 1. The results presented here are obtained 

for a simmetrized k-nearest neighbours9 spatial weights matrix C, and for a negative binomial 

estimation, employed in order to cope with overdispersion in the trade flows. With regard to 

the coefficients of bilateral resistance variables, we note that with the exception of the one for 

FTA, they are highly significant, and their values are consistent with the ones found for Model 

(1). The FTA coefficient not being significantly negative anymore might be seen as a result that 

is more consistent with theoretical expectations. With regard to the importer- and exporter-

specific variables, we are able to identify highly significant and positive coefficients for GDP, 

and GDP per capita is now significant and positive as well in both cases. This result is in contrast 

with the ones for the Baier-Bergstrand benchmarks [Models (3) and (4)], in which the same 

variable is either not significant or significantly negative. The SF estimation also allows us to 

estimate significant parameters for the variables identifying the geographical characteristics of 

importer and exporter countries. The signs obtained are mostly consistent with the ones found 

                                                 
9  For the k-nearest neighbours definition of proximity, each country’s neighbours are defined by selecting the k 

closest countries. Distance between the geographical centroids of the countries was used (Great Circle), setting 
k = 3 and forcing, for computational reasons, symmetry of the spatial weights matrix. As a result, the minimum 
number of neighbours per country is 3, while the maximum number is not constrained. Alternative definitions 
of proximity based upon, for example, simple rook contiguity or distance decay could be tested in order to assess 
the sensitivity of the model to the choice of spatial specification. 
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for the Baier-Bergstrand benchmarks. They show that larger and both landlocked and island 

countries tend to trade less. Noteworthy differences between the SF model and the benchmarks 

regard the negative and significant coefficients obtained for the importing patterns of island and 

landlocked economies (it was marginally positive or non-significant for the benchmarks). For 

islands, it may seem counterintuitive to find this result, although it should be considered that 

the sample of countries used excludes, because of non-reporting, most micro-island countries, 

while includes all large island countries like the UK or Japan. In contrast, in the case of 

landlocked countries, a negative importing coefficient is more consistent with theoretical 

expectations. 

Finally, the AIC of the SF model appears to vastly improve on the ones of the benchmark 

models, because of the high amount of variance explained by the origin- and destination-

specific spatial filters, which are also highly significant from a statistical viewpoint (not shown 

in Table 1). In summary, the proposed SF approach to the estimation of a gravity model of trade 

allows identification of the regression parameters related to the bilateral variables, as well as 

those related to the origin- and destination-specific variables. Moreover, the model has a better 

likelihood (leading to improved AIC) than the competing models tested, and uses a limited 

number of degrees of freedom. 

 

6.3 Testing for Spatial Autocorrelation 

In Section 5, we discussed SAC statistics based on the score test [by le Cessie and van 

Houwelingen (1995) and Jacqmin-Gadda et al. (1997)], which are  alternative to the traditional 

MC in case of GLMs, since the MC statistical distribution theory has been developed under 

linear regression assumptions. 

Having an n2 x n2 spatial weight matrix (obtained as W ⊗ W) and the t statistic by Jacqmin-

Gadda et al. (1997), residual SAC in Poisson and negative binomial regressions can be modelled 

by eigenvector SF within the same framework as standard spatial autocorrelation in regression 

residuals. The eigenvectors employed in Model (2) (see preceding section) represent a certain 

level of SAC, given a spatial connectivity pattern, and by including them as proxy variables for 

such spatial autocorrelation, SAC that is not explained by independent variables is expected to 

be filtered out (at least partially) of the residuals, and transferred to the mean response. 

Because eigenvectors are introduced as independent variables in a (forward or backward) 

stepwise manner, the adjustment of estimating parameters for independent variables developed 

in the Jacqmin-Gadda test seems to be desirable. Chun (2008) performs the test to evaluate SAC 

in a Poisson model in an analysis of migration flows. To the best of our knowledge, no one so 
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far has used the test on a negative binomial model. We performed both the aforementioned 

score tests described in Section 5 to empirically detect the presence (or the absence) of SAC. 

We compare the tests on the model augmented with selected SF variables with the ones on the 

non-filtered model to verify if the introduction of the selected spatial filters lets the SAC be 

filtered out of the residuals. The tests are calculated on both quasi-Poisson10 and negative 

binomial model residuals (estimating or offsetting GDP benchmark variables). 

A further relevant question is whether adjusting the test for the presence of independent 

variables considerably changes SAC detection outcomes, or if this correction has just marginal 

effects. Table 2 presents the results for the different SAC tests. We start by reporting, in the 

first and second row of the table, the value of MC computed on the residuals as developed by 

Cliff and Ord for linear models. In the first row, we show the results of the basic, stand-alone, 

MC, while in the second row, the test accounts for the effect of independent variables. The 

presence of SAC is never rejected, even when we introduce the spatial filters in the model 

(despite the scores decreasing). Performing also the discussed MC permutation test, our 

findings do not change: the permutation score decreases adding the spatial filters, but we never 

reject the SAC hypothesis.11 In the third and the fourth rows of Table 2, the values for the LC 

and JG tests are reported. Using these tests, developed for GLMs, we can note how the SAC is 

effectively filtered out by the introduction of the selected spatial filters. The tests show 

significant SAC in the baseline model, which is filtered out by the spatial filter eigenvectors, 

especially when using negative binomial regression, for which the p-value stands to 0.239 

(0.230 with offsets). Moreover, the results from LC and JG are quite similar, highlighting that 

the introduction of the correction for the independent variables in JG test does not considerably 

change the test results. The general increase in t-scores obtained when the right-hand-side 

variables are taken into account may be explained by the fact that their inclusion pulls expected 

values slightly to the left (towards negative values). 

These results seem to be comforting, and they lead to a positive confirmation of the initial 

theorized idea that we can account for spatial autocorrelation in the model by filtering out the 

                                                 
10 Quasi-Poisson models are equivalent to standard Poisson models in terms of coefficient estimation, but because 

a dispersion parameter is estimated from the data, inference differs. For the purposes of eigenvector selection, 

AIC- or BIC-based selection is not possible (quasi-Poisson models have no likelihood), so it is manually 

performed by backward eliminating (iteratively) the eigenvector with the highest p-value. 
11 Results of the Moran permutation tests are available upon request. 
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residual spatial component by means of the selected spatial filters, and that this is detectable 

only using correct SAC test (specifically designed for GLMs). 

 

Table 2. SAC with different statistics, for different models 

  Quasi-Poisson Negative binomial Negative Binomial (offset) 

  Non-spatial Spatial filter Non-spatial Spatial filter Non-spatial Spatial filter 

MC Score 0.212 0.129 0.185 0.043 0.158 0.035 

t 39.99 24.61 34.93 8.08 30.06 6.74 

p-value <2.2e–16 <2.2e–16 <2.2e–16 <2.2e–16 <2.2e–16 8.09e–12 

MC 

(res.) 

Score 0.168 0.119 0.429 0.277 0.375 0.283 

t 31.206 21.853 79.823 54.496 72.249 55.086 

p-value < 2.2e–16 < 2.2e–16 < 2.2e–16 < 2.2e–16 < 2.2e–16 < 2.2e–16 

LC t 4.962 1.971 3.218 0.652 4.601 0.683 

p-value 3.49e–07 0.024 0.001 0.257 2.10e–06 0.247 

JG t 5.125 2.111 3.336 0.708 4.766 0.737 

p-value 1.49e–07 0.017 < 0.001 0.239 9.41e–07 0.230 

Notes: MC stands for the standalone Moran’s I test, MC (res.) for the Moran’s I test on 

regression residuals, LC for the le Cessie test, and JG for the Jacqmin-Gadda test. 

 

 

7. Conclusions 

 

Recent contributions to the modelling of bilateral trade have shown the importance of sound 

theoretical underpinnings for obtaining consistent parameter estimates for the determinants of 

trade in the gravity model of bilateral trade. This paper addresses the issue of how to achieve 

empirical consistency without the need to estimate a full general equilibrium system of 

equations, and without the loss of specification flexibility that results from the use of origin- 

and destination-specific indicator variables. We argue that endogeneity of regressors and 

residuals – due to omitted MR variables in the traditional gravity model – is likely to manifest 

in the form of autocorrelation in both regressors and residuals. By including an origin-specific 

and a destination-specific spatial filter as additional regressors, SF estimation of the gravity 

equation enables us to filter SAC out of the residuals, as demonstrated by the results obtained 

implementing appropriate SAC tests for nonlinear models. As a result, the residuals and the 

regressors are no longer correlated, and standard estimation methods can be applied to obtain 

consistent parameter estimates for the determinants of bilateral trade. We demonstrate the use 



 

24 
 

of SF estimation in a negative binomial estimation of the gravity equation of bilateral trade. 

The comparison with two benchmark models, which are theoretically consistent in estimation, 

reveals that SF yields results that are highly comparable to the estimation using country-specific 

indicator variables. Moreover, SF estimation does not suffer from the drawbacks of using 

indicator variables. It allows explicit estimation of the effect of country-specific variables that 

are potentially important determinants of bilateral trade, such as GDP, per capita GDP and 

landlockedness. 

Further analyses aimed at measuring the extent to which SAC is filtered out in SF estimation. 

We tested three different SAC tests, either from the linear modelling tradition (Moran’s I tests) 

or specifically developed for GLMs (the le Cessie and Jacqmin-Gadda tests) on both quasi-

Poisson and negative binomial model estimations. Our results confirm the ‘filtering’ effect of 

the spatial filters on the residuals. Such finding is mostly evident on the GLM tests, which can 

be expected to be more suitable for analysing our models’ residuals. On the other hand, the 

inclusion of right-hand-side variables in the computation of the SAC tests does not appear to 

considerably change our findings. 

Future research should focus, on the methodological side, on expanding the analyses above 

to the SF network-autocorrelation approach first suggested by Chun (2008) and further 

employed in a panel framework (see, e.g., Scherngell and Lata 2013). Furthermore, quasi- or 

pseudo-Poisson estimation could be considered more extensively (as suggested in Section 7.3), 

by employing stepwise selection criteria which do not require likelihood-based indicators. In 

this regard, Krisztin and Fischer (2015) have very recently applied network-autocorrelation SF 

to a trade model, by including, among others, zero-inflated specifications. On the empirical 

side, it would be desirable to exploit the methodology proposed toward investigating specific 

research questions in the trade field, while a simulation study could help further extend the 

presented evidence on the adequacy of the SF approach for cross-sectional spatial 

interaction/gravity models. 
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Appendix 

 

Table A.1. List of the countries used in the empirical application 

Algeria Angola Argentina 

Australia Austria Belgium 

Brazil Bulgaria Canada 

Chile China Colombia 

Czech Republic Denmark Dominican Republic 

Ecuador Finland France 

Germany Greece Hungary 

India Indonesia Iran 

Ireland Israel Italy 

Japan Kazakhstan Kuwait 

Libya Malaysia Mexico 

Morocco Netherlands New Zealand 

Nigeria Norway Oman 

Pakistan Peru Philippines 

Poland Portugal Qatar 

Romania Russia Saudi Arabia 

Singapore Slovakia Slovenia 

South Africa South Korea Spain 

Sweden Switzerland Thailand 

Tunisia Turkey United Arab Emirates 

United Kingdom United States Venezuela 

Vietnam 

 

 



 


