

Alma Mater Studiorum - Università di Bologna DEPARTMENT OF ECONOMICS

A Fine Rule From a Brutish World?
An Experiment on Endogenous
Punishment Institution and Trust

Huojun Sun Maria Bigoni

Quaderni - Working Paper DSE N°1031

A Fine Rule From a Brutish World?

An Experiment on Endogenous Punishment Institution and Trust

Huojun Sun[†], Maria Bigoni[‡]

Abstract. By means of a laboratory experiment, we study the impact of the endogenous adoption of a collective punishment mechanism within a one-shot binary trust game. The experiment comprises three games. In the first one, the only equilibrium strategy is not to trust, and not to reciprocate. In the second we exogenously introduce a sanctioning rule that imposes on untrustworthy second-movers a penalty proportional to the number of those who reciprocate trust. This generates a second equilibrium where everybody trusts and reciprocates. In the third game, the collective punishment mechanism is adopted through majority-voting. In line with the theory, we find that the exogenous introduction of the punishment mechanism significantly increases trustworthiness, and to a lesser extent also trust. However, in the third game the majority of subjects vote against it: subjects seem to be unable to endogenously adopt an institution which, when exogenously imposed, proves to be efficiency enhancing.

Keywords: Coordination, Majority Voting, Social Sanctions, Trust Game

JEL codes: C72, C92, D72

⁻

[†] Department of Economics, University of Bologna, piazza Scaravilli 2, Bologna, 40126, Italy. E-mail: huojun.sun@edle-phd.eu

[‡] Corresponding Author. Department of Economics, University of Bologna, piazza Scaravilli 2, Bologna, 40126, Italy. Telephone: +39 051 209 8122. E-mail: maria.bigoni@unibo.it

1. Introduction

At least since Aristotle's time, there has been a general consensus among legal scholars that the law defined as an obligation backed by powerful state coercion can create and maintain social order, such as enforcing property rights, adjudicating disputes, and providing an efficient level of public goods through adequately collecting a variety of taxes. Both theoretical and empirical studies have shown that a well-functioning and impartial legal system largely enhances societal trust, thereby promoting trade and economic development (Algan and Cahuc, 2013; Guiso, et al., 2008; Tabellini, 2008). Particularly in a standard contractual relationship, better enforcement, it is typically assumed, can increase the likelihood of contract performance by increasing the probability of the sanction and the cost of breach, naturally stimulating all manner of reliance investments that have specific value in the contractual relationship (Polinsky and Shavell, 2008). Nearly half of the world's governments, however, fail to provide a sufficiently strong system of contract enforcement (Leeson and Williamson, 2009), and even abuse their authority to engage in profit-seeking punishment, which is detrimental to the country's economic performance (Xiao, 2013). Therefore, it becomes of paramount importance to understand how people who lack the protection of an effective legal environment can establish private-order institutions (or norms) to facilitate mutually advantageous exchanges.

In his influential anthropological field study on the cattle-control norms in rural Shasta County, California, Ellickson (1986, 1991) shows that social norms may work as effective mechanisms of social control. He argues that, when the social fabric is sufficiently dense and connected, social norms might supersede the legal rules, even if transaction costs are high – or precisely for that reason, as it is argued. Social norms have long been recognized as having great influence on individual behavior in social sciences, such as economics (Elster, 1989), sociology (Hechter and Opp, 2001), social psychology (Cialdini, et al., 1990; Schultz et al., 2007) and legal studies (Posner, 1997; Posner and Rasmusen, 1999). Nonetheless, the definition of a social norm is still controversial. One can consider two different meanings of the concept of social norm: descriptive norm, and injunctive norm (Cialdini, et al., 2006). The former is often adopted by social scientists, and refers to what most people do, to the commonly observed behavior, in contrast to what deviants do. The latter, commonly adopted by philosophers, refers to what one ought to do in order to gain social approval and to be rewarded, or to avoid censure and informal punishment (Cooter, 1998).² While Cooter (1998) places more emphasis on the second type of concept, Bicchieri's (2006)

¹ Introducing a third-party intervention into an investment game, Charness et al. (2008) experimentally reveal that the incentives (i.e. sanctions or rewards) implemented by an independent third-party significantly increase trust and trustworthiness in the investment game.

² Krupka and Weber (2013) empirically show that differences in injunctive norms – which they elicit by means of a novel approach based on incentivized coordination games – may explain the observed behavioral differences that emerge across several previous experimental dictator games.

formal definition of "social norm" encompasses both aspects, by stating that a behavioral rule is a social norm if (i) people are aware of rule existing and know that it applies to the situation under analysis (contingency condition), (ii) they expect that the others will conform to the rule (empirical expectations condition), and (iii) they believe others to think that people ought to obey the rule (normative expectations condition). It will soon become clear that the second condition is the one playing the most crucial role in our study.

Anderlini and Terlizzese (2013) theoretically study the introduction of a social norm into a standard contractual relationship, by letting the promisor's behavior be constrained by the average behavior of other promisors in a society. More specifically, in their model they represent a bilateral contractual relationship in the absence of contract enforcement as a one-shot binary trust game. Think for instance of an investor and an agent, strangers to each other. The investor lends some money to the agent, who makes an investment, and this investment generates a surplus proportional to the invested sum. The agent then decides whether to cheat and keep the entire surplus, or to share it with the investor. Cheating entails a cost, characterized by two components: one component is idiosyncratic and depends on the exogenously given "type" of the agent, while the second component is socially determined and common to all agents, and depends on the total number of transactions in a society that go through without cheating.³ Hence, the stronger the norm of trustworthiness in a society, the higher the cost of cheating for the agents. Anderlini and Terlizzese (2013) note that the norm-driven component of the cheating cost can be interpreted as reflecting psychological remorse when the agent's action deviates from average behavior (Huang and Wu, 1994), or as resulting from a collective punishment mechanism, whose effectiveness depends on average behavior. Our experimental design adopts the second perspective, potentially inflicting a sanction on the dishonest agents. The introduction of this norm-driven component of the cost of cheating transforms the trust game into a coordination game with high-trust and low-trust equilibria, which are Pareto-ranked.

Existing experimental evidence indicates that norms of trustworthiness may differ across societies (Buchan et al., 2002), and such a difference might affect individual behavior, inducing the emergence of one or other of the equilibria. The issue of how social norms emerge in societies, however, remains largely unexplored. Anderlini and Terlizzese (2013) assume that the "social sensitivity" to the norm-driven component of the cheating cost is exogenously given. In this study we take a further step, and investigate the effects of the endogenous adoption of a collective punishment mechanism whose intensity is proportional to the strength of the norm of trustworthiness in society. More specifically, we investigate whether the adoption of such mechanism through majority voting can help a society in coordinating on an

³ Previous experimental studies have revealed that individuals involved in social dilemmas are heterogeneous in terms of social preferences (Blanco et al., 2011). Anderlini and Terlizzese (2013) assume that there are two types of agents, high-type and low-type agents, who differ in their preference for honesty and the magnitude of the psychological cost they suffer when abusing their partner's trust.

efficient equilibrium, characterized by high levels of trust and trustworthiness. Starting from a simplified version of Anderlini and Terlizzese's model, we theoretically show that most subjects, regardless of their preferences and expectations, vote in favor of the punishment mechanism, hence this mechanism will be endogenously introduced. As a consequence, a majority vote in favor of collective punishment cannot be interpreted as a signal of subjects' intentions, and it should not matter whether collective punishment is exogenously imposed or endogenously adopted. This theoretical prediction contrasts with the findings of recent experimental studies, which revealed that the endogenous adoption of institutions induces higher cooperation levels in social dilemma situations, relative to the case in which the same institutions are exogenously implemented; scholars refer to this phenomenon as "the dividend of democracy" (Dal Bo et al., 2010; Markussen et al., 2014; Sutter et al., 2010; Tyran and Feld, 2006).

The theoretical model informs our empirical analysis, which is based on a laboratory experiment. In our experiment, each subject plays three one-shot games with three different partners. The first game is a standard binary trust game. In the second game, a collective punishment mechanism is exogenously introduced, under which cheating is sanctioned with a severity that depends on the trustworthiness of the others. In the third part of the experiment they have to choose whether to play according to the rules of the first, or of the second game, by means of a majority voting mechanism. To reduce the risk of spillover effects, the outcomes of these three games are not revealed to the subjects until the end of the session. In half of the sessions the sequence of the first and the second game is reversed, to control for possible order effects. This design allows us to test whether subjects are willing to opt for having a collective punishment mechanism in place, and to study how the endogenous adoption of such mechanism affects individual beliefs and behavior.

We report four main findings. First, in line with the model, we find that the introduction of collective punishment induces a significant increase in the levels of trustworthiness, and to a lesser extent also of trust. Second, the endogenous introduction of the punishment mechanism by means of a majority-voting rule does not significantly change behavior, with respect to what is observed when the mechanism is exogenously imposed. Third, in contrast with our theoretical predictions, not all subjects seem to be able to anticipate the change in behavior induced by the introduction of collective punishment, and a majority of them vote against it. We also find that subjects with higher cognitive abilities and with a

⁴ In real world, we rarely observe that the norm is established through a voting mechanism. However, people in a community could publicly express their attitudes towards a specific norm (Kadens and Young, 2013). Therefore, we use the voting mechanism as a simple way to capture the essential dimension of the public expression of the norm.

⁵ Vollan et al. (2013) replicate Tyran and Feld's (2006) study using a sample of Chinese people. They observe that the cooperation rate is higher under an exogenously imposed institution than under a democratically selected rule. Their analyses show that this result is mainly driven by the fact that the Chinese culture attributes a high importance to obeying authorities.

background in statistics are more likely to vote in favor of the punishment mechanism. Finally, in an additional treatment, we provide information about the aggregate behavior with and without collective punishment; we find that on average this additional information does not increase the likelihood of the mechanism being adopted.

The paper has the following structure: Section 2 discusses how our work relates to the existing literature. Section 3 presents our theoretical model and testable predictions, and describes the experimental design and procedures; Section 4 illustrates the main results of the experiments; Section 5 concludes.

2. Related Literature

Our paper builds upon a considerable number of studies on the effects of informal institutional arrangements on individual behavior in social dilemma situations, in the absence of a powerful state (Ostrom, 1990). A variety of decentralized governance institutions have emerged in remarkably diverse environments (Bernstein, 1992, 2001; Greif, 2006).

In early trade, Greif (1989, 1993) portrays a well-defined and cohesive group based on Jewish religion and family origins in the Maghreb, the "Maghribi traders" who engage in long-distance, large-scale trading across the whole Muslim Mediterranean. Lacking effective legal institutions, these merchants rely on informal sanctions based on collective relationships within an exclusive coalition. Members of the Maghribi traders' coalition always recruit agents from their own coalition, convey information about their agent's misbehavior swiftly to other members, and collectively ostracize agents who abused their principal's trust, thereby successfully resolving the problem of commitment in one-shot bilateral contractual relationships, even in the absence of binding contracts. Similar social sanction institutions also proved to work well in Mexican California before the time of the gold rush in 1848-1949 (Clay, 1997; Clay and Wright, 2005) and in the practice of group lending in the developing countries (Besley and Coate, 1995).

These anthropological studies on informal sanctioning institutions emphasize the role of information-sharing among the investors in regulating the agents' behavior. By contrast, our research adopts an alternative approach: in our set-up, in order to gain the investors' trust, agents are allowed to adopt a collective punishment mechanism whose severity depends on the average behavior of all agents' in the society. Therefore, the effectiveness of our mechanism relies on the agents' and the investors' beliefs, rather than on information-sharing.

⁶ In Kimbrough and Rubin (2015), subjects play the trust game under a highly anonymous set-up, where the investors only know the group identity of their agents. When the investors are allowed to share their transaction experience with other investors, the groups with high percentages of dishonest agents are collectively boycotted, which secures the high efficiency of the market.

Secondly, our paper is also related to the literature on expressive law (Cooter, 1998; McAdams, 2000a, 2000b; Posner, 1998, 2000). The classic "law and economics" approach focuses on deterrence: a law enforced by a sanction increases the expected costs of the illegal activity and thereby induces compliance (Becker, 1968; Polinsky and Shavell, 2000). Despite its success in many cases, this view can hardly explain why most people obey legal rules even in a situation where they could improve their material payoffs if they violate an obligation (Tyler, 1990).

The expressive law theories provide several possible explanations. One potential reason is that the legitimate rules may influence individual preferences by letting people realize which behavior is legally prohibited. Another possible reason is that even though legal rules are mild, they may act as coordination devices that help people predict what others will do. Announcing an expressive legal rule that does not change the equilibrium is a form of "cheap talk". Despite being "cheap", some forms of talk, especially announced by a powerful authority or determined by a majority voting mechanism, have been found to actually coordinate individuals' behavior in social dilemma situations.⁷

These theories have increasingly gained momentum among theoretical scholars. However, only a handful of experimental studies have examined how mild rules actually influence individual behavior (Bohnet and Cooter, 2003; Galbiati and Vertova, 2008; McAdams and Nadler, 2005; Tyran and Feld, 2006). Our experimental study contributes to this literature in two aspects. First, the social sanction in our experiment is not always a deterrent but works only if the majority behaves honestly. Therefore, the socially shared beliefs are crucial to affect individual behavior. Second, instead of a powerful authority announcing the rule, the rule in our paper is determined by a voting mechanism, which enhances the legitimacy of the rule and may influence individual behavior through changing people's preferences or coordinating their beliefs. Our study is also related to the experimental literature on the trust game with punishment (Fehr and Rockenbach, 2003; de Quervain et al., 2004; Vollan, 2011), however, it departs substantially from that strand of literature, in that the activation and size of the punishment in our case depends on the behavior of the society as a whole, and not on the individual decision of a trustor, who may sanction an untrustworthy trustee.

A closer relation emerges between our work and the literature concerning the endogenous adoption of institutions. Recent experimental studies have revealed that an institution established endogenously (e.g. through a voting mechanism) can induce higher cooperation levels in social dilemma situations, compared to the same

⁷ In Kamei (2014), subjects are more likely to contribute to cooperation in the public good game when a mild sanction rule is collectively selected even without altering the equilibrium of full free riding. Unexpectedly, the author also finds that the positive effect of endogenous selection of the institution does not disappear even when subjects enter into an exogenous setting with an identical institution.

institution implemented exogenously on an otherwise identical group (Dal Bo et al., 2010; Markussen et al., 2014; Sutter et al., 2010; Tyran and Feld, 2006).

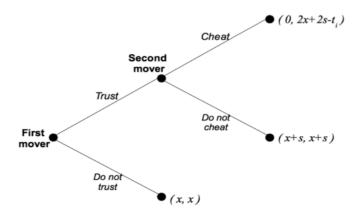
Broadly speaking, there are two approaches to endogenous institution formation. Under the first approach, groups are fixed, and members of each group are asked to vote for a specific scheme or to choose one from a broad menu of schemes (Kosfeld et al., 2009; Sutter et al., 2010). Previous experimental results indicate that the endogenous adoption of informal sanctioning (Tyran and Feld, 2006; Ertan et al., 2009) or rewarding (Sutter et al., 2010) institutions largely enhances the levels of cooperation, relative to the case in which the same institutions are imposed exogenously. In addition, subjects tend to converge on the most efficient institutions as they gain experience over a course of multiple votes (Putterman et al., 2011).

The second approach is the "voting by feet" mechanism in open communities (Gurerk et al., 2006, 2014; Fehr and Williams, 2013) where subjects can choose between different institutions and endogenously form groups with other members who also select the same institution. They find that prosocial individuals adopting efficient punishment institutions under endogenous selection quickly establish a cooperative culture. These institutions increasingly attract other types of subjects to migrate to these more cooperative groups and to comply with the prevailing norms. Therefore, endogenously chosen institutions induce the whole group to coordinate on high cooperation levels, so that in practice there is little or no need to recur to punishment.

Most experimental papers on endogenous formation of institutions are based on the framework of public good games, except Dal Bo et al. (2010) who use a prisoner's dilemma game. To the best of our knowledge, no existing empirical research addresses the effect of endogenous adoption of social sanction mechanisms on individual behavior in the trust game. Compared to the previous studies, our peculiar design, i.e. within-subject design without feedback across games, allows us to identify the important role of ex-ante beliefs of subjects in equilibrium selection. Furthermore, since subjects are exposed to the trust game with and without the collective punishment mechanism before voting for the preferred rule governing their interactions, we can investigate how different experiences of the effects of collective punishment affect individual's voting behavior. Finally, in line with what argued by Markussen et al. (2014), that "the dividend of democracy" is driven by the signaling function of voting which promotes coordination on high-contribution outcomes, our design also allows us to test whether the endogenous adoption of the punishment mechanism could be taken as signal of the general willingness to coordinate on a high trust and high trustworthiness equilibrium.

3. Materials and Methods

In this section, we first present the theoretical model that informs our experimental design, and derive the predictions, which will be empirically tested in Section 4. Then

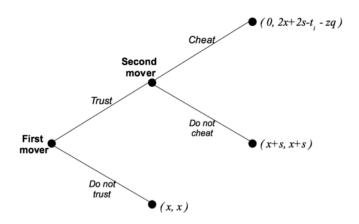

we describe the experimental design and procedures.

3.1 Theoretical model

As a baseline situation, we consider the binary investment (or trust) game depicted in **Figure 1**. Each player is initially given an endowment x > 0. The first mover decides whether to trust the second mover or not. If she chooses not to trust her partner, both of them keep their endowments and leave the transaction. If instead she chooses to trust and transfers her endowment, the second mover efficiently invests the money he received, together with his own endowment, to generate a total of 2x + 2s, with s > 0. The second mover now has to choose whether to cheat on the first mover, and keep the entire amount leaving the first mover with nothing, or to split it equally with her, so that each party gets x + s. We further assume that, in the society, all players face equal chances of playing the game in the role of the first or second mover.

Following the Anderlini and Terlizzese's (2013) approach, we assume that there are two types of players in the society, "high" (H) and "low" (L). H-type players have a preference for honesty and suffer a psychological cost $t_H > 0$ when abusing their partner's trust, and the idiosyncratic cost of cheating for the H-type players is so high that they will never cheat: $t_H > x + s$. L-type players instead are only interested in (expected) monetary payoffs (i.e. $t_L = 0$), so they will always cheat when in the role of second movers. For simplicity, we also assume that players are risk neutral.

Figure 1: the basic trust game.



At the beginning of the stage game, all players are randomly assigned to the role of first or second mover, and matched in pairs. Players choose their strategy before knowing their role, and the strategy determines their action both as the first and as the second mover. Let p represent the proportion of H-type players in the society, which is assumed to be common knowledge. It is straightforward to verify that, regardless of his type, a player will trust as a first mover if $p > \frac{x}{x+s}$. Let us denote this threshold Θ .

a). A collective punishment mechanism

Now consider the introduction of a collective punishment mechanism into the trust game, as depicted in **Figure 2**. In this new game, besides possibly suffering the psychological cost t_i , the player who cheats faces the risk of being punished by his peers. This potential punishment zq depends on two elements: the strength z of the sanction implemented collectively by the players who do not cheat - which is exogenously given - and the fraction q of transactions in society where cheating does not take place. The behavior of the H-type players as second movers is not affected by the sanction, as they would never cheat, in any case. The behavior of the L-type players instead might change, as they may choose not to cheat either, if $q_i \ge \frac{x+s}{z}$, where q_i represents player i's beliefs about q. Let us denote this second threshold θ .

Figure 2: the trust game with an exogenous collective punishment mechanism.

In the following, we assume that $0 < \theta < \theta < 1$, which is consistent with the parameters we adopt in the experiment. If the proportion p of H-types in society is larger than the threshold θ then in the game with collective punishment, any player i will never cheat as a second mover and will always trust as a first mover, regardless of his own type. If instead $p < \theta$, this game becomes a coordination game with two Pareto-ranked equilibria. In the low-efficiency equilibrium, L-type players cheat in the role of second mover, and nobody trusts as a first mover. In the high-efficiency equilibrium, instead, neither L-types nor H-types cheat as second movers, and everybody trusts as a first mover. There exists, however, the risk of miscoordination, as subjects cannot be certain of the strategy the others will adopt.

Let β_i be player *i*'s belief about the fraction of the other players who adopt the cooperative strategy (trust, do not cheat) in the trust game with a collective punishment mechanism. Then, we could obtain the belief q_i about the total number of players who will not cheat, which depends on two elements: the proportion of

intrinsically trustworthy players p, and the belief β_i .

$$q_i = p + (1 - p)\beta_i$$

To summarize, for any value of p, the introduction of a collective punishment mechanism does not decrease trustworthiness with respect to the baseline scenario, and might increase both trust and trustworthiness, if the proportion of H-types p is high enough, or if a sufficiently high number of players have high beliefs β_i about the fraction of the other players who adopt the cooperative strategy.⁸

Hypothesis 1: In presence of a collective punishment mechanism, the levels of trust and trustworthiness are equal or higher than in the baseline scenario.

b). Endogenous adoption of the collective punishment mechanism

We now consider the case in which, prior to playing the game (and before roles are assigned), players express their preference on whether to have or not a collective punishment mechanism in place. More specifically, we consider the case in which the implementation of the punishment mechanism is determined by a majority voting rule. The main question we would like to pursue is whether this mechanism can affect the beliefs q_i , thus serving as a coordination device to drive the society towards the efficient equilibrium.

Let us consider again the behavior of player i in the game with a collective punishment mechanism in place. Depending on the player i's belief q_i , we can envisage five possible cases based on the types of players. For the L-type, i.e. selfish players, there are three possible scenarios:

- (i.) $q_i \le \theta < \theta \le 1$: the player chooses the strategy (do not trust, cheat);
- (ii.) $\theta < q_i < \theta \le 1$: the player chooses the strategy (do not trust, do not cheat);
- (iii.) $q_i \ge \Theta$: the player chooses the strategy (trust, do not cheat).

For the *H*-type, i.e. intrinsically trustworthy players, there are two possible scenarios:

- (iv.) $q_i < \theta \le 1$: the player chooses the strategy (do not trust, do not cheat);
- (v.) $q_i \ge \theta$: the player chooses the strategy (trust, do not cheat).

However, these boil down to the first three scenarios, as (ii) and (iv) coincide, as well as (iii) and (v). Let us now calculate the player's expected profit in the trust game with collective punishment, under these three alternative scenarios. Remember that in

⁸ An alternative, behavioral hypothesis is that the exogenous introduction of a punishment mechanism could crowd out intrinsic motivations for trustworthiness (Bowles and Polania-Reyes, 2012; Fehr and Rockenbach, 2003).

the basic trust game, when $p < \theta < 1$, player i's expected profit is equal to x, no matter what, while if $p > \theta$, then in the basic trust game player i would trust as a first mover, and everyone else does the same. In this case his expected payoff depends on his type.

Scenario (i). As a first mover, player i will not trust, hence he will be sure to earn x. As a second mover he will earn x if his partner does not trust, and $2x + 2s - zq_i$ if his partner chooses to trust. Because β_i is player i's belief about the fraction of other players who adopt the cooperative strategy (trust, do not cheat), he will expect the former event to take place with probability $1 - \beta_i$, and the latter with probability β_i . Hence, the expected profit a player can obtain in the game with collective punishment is:

$$E(\pi^s) = \frac{1}{2}x + \frac{1}{2}[x(1-\beta_i) + (2x+2s-zq_i)\beta_i] = x + \frac{\beta_i}{2}(x+2s-zq_i)$$

The expected profit above is greater than x if $q_i < \frac{x+2s}{z}$, which is true for every $q_i \le \theta = \frac{x+s}{z}$. Hence, a selfish player with belief $q_i \le \theta$ will prefer to have the punishment mechanism in place.

Scenario (ii). As a first mover, the player i will not trust, hence he will be sure to earn x. As a second mover he will earn x if his partner does not trust, which happens with probability $1 - \beta_i$, and x + s if his partner chooses to trust, which happens with probability β_i . Hence, the expected profit in the game with collective punishment is:

$$E(\pi^s) = \frac{1}{2}x + \frac{1}{2}[x(1 - \beta_i) + (x + s)\beta_i] = x + \frac{\beta_i}{2}s \ge x$$

Hence, both a selfish player and an intrinsically trustworthy player with beliefs $\theta < q_i < \Theta$ will prefer to have the collective punishment mechanism in place.

Scenario (iii). As a first mover, player i will trust, hence he will earn x + s with probability q_i and 0 with probability $1 - q_i$. As a second mover he will earn x if his partner does not trust, which happens with probability $1 - \beta_i$, and x + s if his partner trusts, which happens with probability β_i . Hence, the expected profit a player can obtain in the game with collective punishment is:

$$E(\pi^s) = \frac{1}{2}q_i(x+s) + \frac{1}{2}[x(1-\beta_i) + (x+s)\beta_i] = \frac{1}{2}[q_i(x+s) + x + \beta_i s]$$

In this case, however, the expected payoff $E(\pi^b)$ in the basic trust game depends on player i's type, and on whether $p > \Theta$. If $p < \Theta \le q_i$ then $E(\pi^b) = x < E(\pi^s)$ and player i will vote in favor of the punishment mechanism. Indeed, the expected

profit in presence of collective punishment is grater than x if $q_i(x+s) + \beta_i s > x$, which holds for every $q_i \ge \Theta = \frac{x}{x+s}$. Hence, both a selfish player and an intrinsically trustworthy player with $p < \Theta \le q_i$ will prefer to have the punishment mechanism in place.

If instead p > 0, the preferences of H-type and L-type players will differ. If player i is an H-type, in the basic trust game as a first mover he will trust, hence expecting to earn x + s with probability p and 0 with probability 1 - p. As a second mover he earns x + s because all first movers should trust. Hence, the expected profit a player can obtain is:

$$E(\pi^b) = \frac{1}{2}p(x+s) + \frac{1}{2}(x+s) = \frac{1+p}{2}(x+s)$$

Consider also that if p > 0 then $q_i = \beta_i = 1$ for all players. Hence $E(\pi^s) = x + s \ge E(\pi^b)$: when p > 0, *H*-type players will always vote in favor of collective punishment.

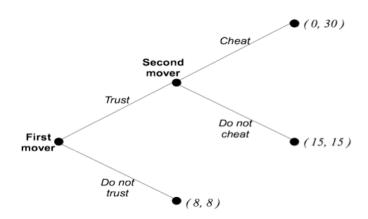
By contrast, if player i is an L-type, in the basic trust game as a first mover he will trust, hence he will earn x + s with probability p and 0 with probability 1 - p. As a second mover he earns 2(x + s) because all first movers should trust, and he will cheat. Hence, the expected profit a player can obtain is:

$$E(\pi^b) = \frac{1}{2}p(x+s) + (x+s) = \frac{2+p}{2}(x+s) > x+s = E(\pi^s)$$

Hence, when $p > \theta$, L-type players will vote against collective punishment.

Hypothesis 2: *H-type players will always vote in favor of the introduction of a collective punishment mechanism; L-type players will also vote in favor of it, unless the proportion of H-types is sufficiently high to induce them to trust in the Baseline* (p > 0).

As a consequence, the collective punishment mechanism will always be adopted if $\theta \ge 0.5$, which is the case in our experiment. Hence, we can state the following hypothesis on the effects of the vote on trust and trustworthiness.

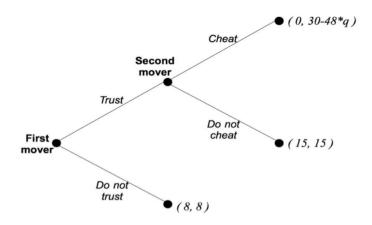

Hypothesis 3: a majority vote in favor of the collective punishment mechanism does not reveal anything on the distribution of types and beliefs, hence it should not affect trust and trustworthiness levels, as compared to those observed when the mechanism is exogenously introduced.

3.2 Experimental design

Our experimental treatments were based on variants of the binary-choice trust game (Bohnet et al., 2008) introduced in the previous section. We adopted a

within-subject design, in which each participant was exposed to three treatments: *Baseline, Exogenous* and *Voting*. At the beginning of the session each subject was assigned into a group of six. In each treatment, subjects were paired with one of their group's members, to play a one-shot game. Matching across treatments was done so to ensure that no two subjects would meet more than once. The group composition was kept constant during the whole session.

Figure 3: the basic trust game, with the parameterization adopted in the *Baseline* treatment.


In the *Baseline* treatment, subjects were asked to play the binary trust game (i.e. Baseline game), as parameterized and represented in **Figure 3**. We adopted the strategy method (Brandts and Charness, 2011): all subjects had to choose their action both as a first mover and as a second mover, before knowing which role they would actually be assigned. Once all subjects had made their two choices, roles were randomly assigned and subjects were matched in pairs. In each pair, payoffs were determined by the choice each of the two players had made for the role he was actually assigned.

In the *Exogenous* treatment, the strategic environment, the information structure and the options subjects had to choose were the same as in the *Baseline* game but, here, a collective punishment mechanism was exogenously introduced, under which cheating was sanctioned and the severity depended upon the number of subjects in the group, who chose not to cheat as second movers (i.e. Exogenous game, see **Figure 4**).¹⁰

⁹ With the exception of the Voting-IF treatment, as illustrated below.

¹⁰ In order to be consistent with the theoretical model, in **Figure 4** the size of the sanction (48*q) is expressed in terms of the fraction q of subjects who choose not to cheat, in a group of six. In fact, in the experimental instructions, we expressed that variable as a function (8*N) of the number N of trustworthy players (see *Appendix 2*). With the parameters adopted in our set up, we have that θ =0.35 and Θ =0.53. This implies that trusting is profitable even in the *Baseline* treatment, if the proportion of *H-types* in the society is higher than 0.53, while if this proportion is as high as 0.35, in the *Exogenous*

Figure 4: the trust game with an exogenously imposed collective punishment mechanism, with the parameterization adopted in the *Exogenous* treatment.

After experiencing these two variations of the trust game, subjects entered the third treatment (*Voting*). At the beginning of this last treatment, before roles were assigned, subjects were asked to vote for implementing either the *Baseline* or the *Exogenous* game, then a majority voting mechanism determined which of the two variations of trust games would have been ultimately played within the group, in this final phase. Abstention was not allowed. Before playing this third trust game, subjects were informed of the number of their group members who voted in favor of either option.

To reduce the risk of spillover effects, the outcomes of these three games were not revealed to the subjects, until the end of the session. In addition, to control for possible order effects, in four sessions subjects were exposed to the *Baseline* treatment first, then they played the *Exogenous* treatment and finally the *Voting* treatment, while in other four sessions the order of the first two treatments was reversed. In the session of the first two treatments was reversed.

In order to examine whether having information about the aggregate behavior with and without collective punishment affected the individual voting behavior, in four of the sessions we introduced one additional treatment, after the *Voting* treatment. This treatment, denoted *Voting-IF*, was identical to the *Voting* treatment, with two exceptions. First, before voting subjects received information on the aggregate behavior of their group members in the Baseline and Exogenous treatments. More specifically, they were shown the number of subjects who chose either option, as a first and as a second mover, in each of the two treatments. Second, subjects were told that their partner might have been be the same person as in one of the previous three games.

treatment not cheating becomes more profitable than cheating.

¹¹ Each part of the instructions was distributed and read just before subjects started to play the corresponding game, which implies that subjects had no prior knowledge about the next part of the experiment.

¹² For more information on the treatments and sessions, please refer to Table A in the **Appendix 1**.

Since our experiment was relatively complex, to ensure full understanding of the instructions, subjects were asked to complete a comprehension guiz with calculations and questions before making decisions in each stage game (see Appendix 2). Subjects were rewarded with €0.40 for each question they answered correctly at the first try. There were six questions per treatment (no questions before the *Voting-IF* treatment), hence subjects could earn in total €7.20 for the comprehension quiz.

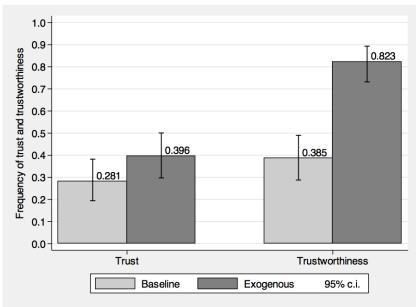
At the end of the session, all subjects had to fill in a questionnaire including questions on their individual characteristics (gender, age, education, social status), general trust, risk attitudes, social preferences and cognitive abilities (see the **Appendix 3** for the complete text of the questionnaire). These questions allowed us to study how personal characteristics may affect the voting behavior, as well as the impact of the endogenous/exogenous introduction of collective punishment on individual behavior.

The experiment involved 96 subjects, divided in 8 sessions (see Table A in Appendix 1) and was conducted at the Bologna Laboratory for Experiments in Social Sciences (BLESS). Subjects were mostly undergraduate students at the University of Bologna, and were recruited through ORSEE (Greiner, 2015). About 53 percent of the subjects were male; nobody took part in more than one session. The experiment was programmed and implemented using the software z-Tree (Fischbacher, 2007). For each session, after showing up to the lab at the pre-scheduled session time, the 12 participants were randomly assigned to cubicles to avoid eye contact, and no communication was allowed during the experiment. The average session lasted about 1 hour and 15 minutes. Subjects were paid privately in cash at the end of the session and earned on average 18.25 Euros, including the earnings from the comprehension quiz. No show-up fee was given. 13

4. Results

In this section we carry out four steps of analysis. First, we juxtapose data from the Baseline and the Exogenous treatments, in order to analyze whether exogenously introducing collective punishment enhances the levels of trust and of trustworthiness in society. Second, we study subjects' voting behavior, and test whether a majority of subjects vote in favor of collective punishment as predicted in our theoretical model. We also investigate who are the subjects who vote in favor of the punishment mechanism, and whether they differ from those who vote against it, along any significant dimension. Third, we examine whether the endogenous introduction of a collective punishment mechanism promotes efficiency by boosting trust and trustworthiness with respect to the case in which such a mechanism is exogenously

¹³ For each session we recruited 15 subjects, to take into account possible no-show-ups, but only 12 students were randomly selected to participate in the experiments. Supernumerary subjects were paid 5 Euros and had to leave before the session started.


imposed. We also study whether the endogenous choice not to adopt collective punishment depresses trust and trustworthiness, as predicted by our model. Finally, we examine whether the exposure to information about the aggregate behavior of their members in the Baseline and Exogenous treatments affects a subject's decision to vote in favor of the punishment mechanism.

4.1 Effects of collective punishment, when exogenously imposed

The main difference between Baseline and Exogenous games lies in the way the payoff of the player in the role of a second mover (i.e. trustee) depends on the other trustees' behavior, in case he chooses to abuse his partner's trust. This manipulation has a direct effect on trustworthiness and only an indirect effect on trust, because the player in the role of a first mover (i.e. trustor) will change her behavior only if she expects collective punishment to have a (direct) effect on the others' levels of trustworthiness. For this reason, we first present the results about trustees' behavior and then illustrate trustors' behavior.

As shown in Figure 5, the fraction of the trustworthy actions is larger when the collective punishment mechanism is exogenously imposed. More specifically, only 38.5% of subjects in the role of trustee reciprocate trust in the Baseline treatment while 82.3% of trustees in the *Exogenous* treatment behave trustworthily. The difference is strongly significant (p<0.001). If not specified otherwise, comparisons across treatments are performed by means of logit regressions, where the only explanatory variable is a treatment dummy, and standard errors are robust for clustering at the subject's level. Two-tailed z-tests using each subject as an independent observation always confirm the results.

Figure 5: frequency of trustful and trustworthy choices in the Baseline and Exogenous treatments. 1.0 0.9 0.823 8.0

Notes: One observation per subject, per treatment. The whiskers represent 95% confidence intervals.

The impact of collective punishment on trustees' behavior emerges regardless of the order in which subjects are exposed to the *Baseline* and the *Exogenous* treatment, the level of trustworthiness being almost twice as high in the latter than in the former (p<0.001 in both cases, Table B in the **Appendix 1**). In addition, when we compare behavior across subjects, and focus exclusively on the first game played in each session, we observe that the difference in trustworthiness remains highly significant (p<0.001, Table B in the **Appendix 1**).

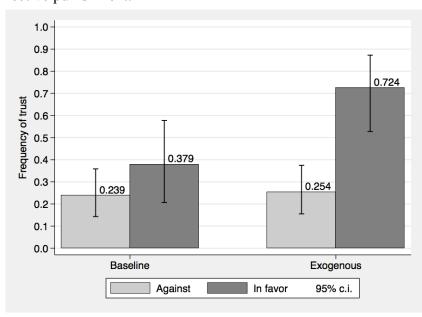
Figure 5 also shows that the overall level of trust is higher in the *Exogenous* than in the *Baseline* treatment. Specifically, while the average level of trust in the *Baseline* game is 28.1%, it reaches 39.6% in the *Exogenous* game, and the difference is statistically significant (p=0.040). However, if we control for the order effect, we find that when *Baseline* is implemented first the exogenously imposed punishment mechanism does not significantly enhance the trust (p=0.784). Conversely, when the punishment mechanism is implemented first but removed afterwards, the level of trust drops dramatically (p=0.012, see Table C in **Appendix 1**). We can summarize our results as follows.

Result 1: the presence of a collective punishment mechanism significantly increases trustworthiness, and to a lesser extent also trust.

4.2 Endogenous adoption of collective punishment

Our theoretical model predicts that, in the *Voting* treatment, *H*-types would always vote in favor of the collective punishment mechanism, while L-types would vote against it only if the proportion of H-types in society is very high (Hypothesis 2). Our data reveal instead that only a minority of subjects (30.2%) vote in favor of the mechanism, and that subjects' voting behavior does not seem to depend on their preferences or beliefs. This result does not depend on the order of the first two treatments: 29.2% of subjects vote in favor of the mechanism when the *Baseline* treatment is first played, while 31.2% opt for the punishment mechanism when subjects are first exposed to the *Exogenous* treatment, and the difference is not statistically significant (p=0.825).

Since we adopt the strategy method in the experiment, for every subject we observe both choices (as a trustor and a trustee) in each treatment. By looking at subjects' behavior as trustees in the *Baseline* treatment, we can classify subjects as *L*-types and *H*-types: by definition, those who do not cheat in the *Baseline* are *H*-types. Information on the choice as first movers is also relevant in order to predict voting behavior. Indeed, according to our model, *L*-type players would vote against the introduction of the punishment mechanism only if they trust in the *Baseline*. **Table 1** reports the distribution of subjects, along these two dimensions.


Table 1: subjects' behavior in the *Baseline* treatment.

	Trust in Baseline		
Reciprocate in Baseline	Yes	No	Total
Yes (<i>H-type</i>)	20.8%	17.7%	38.5%
No (<i>L-type</i>)	7.3%	54.2%	61.5%
Total	28.1%	71.9%	100.0%

Table 1 reveals that, according to our predictions, only 7.3% of the subjects would have voted against the adoption of collective punishment, in the *Voting* treatment, while in our experiment this proportion was much higher.

To better understand the source of this discrepancy between our results and the theoretical predictions, we now investigate the determinants of subjects' voting decision. First, we divide subjects into two categories, depending on their voting decisions: against collective punishment and pro-punishment. We find that these two categories of subjects have similar levels of trust and trustworthiness in the *Baseline* treatment, implying that there is no difference in the preferences or ex-ante beliefs between them (p=0.165 for the difference in trust level, and p=0.409 for the difference in trustworthiness level). P-values in this paragraph are obtained by means of logit regressions where the only explanatory variable is a dummy taking value one for subjects who voted in favor of the punishment mechanism in the *Voting* treatment, and with standard errors robust for clustering at the subject's level. Results are always confirmed by two-tailed z-tests using each subject as an independent observation.

Figure 6: differences in trust between subjects who voted in favor and against collective punishment.

Notes: One observation per subject, per treatment. The whiskers represent 95% confidence intervals.

In the *Exogenous* treatment, as revealed in **Figure 6**, subjects who vote in favor of collective punishment are more likely to trust their partners than others (72.4% vs. 25.4%, p<0.001). We also find that these pro-punishment subjects react more to the introduction of the punishment mechanism, i.e. they are more likely to increase their level of trust from the *Baseline* to the *Exogenous* game, as compared to the subjects who voted against the mechanism (p=0.002).

Table 2: Logit regressions on the determinants of subjects' voting behavior.

Dependent variable: Vote	Model 1	Model 2	Model 3
Trust-BL	0.126		0.021
	(0.109)		(0.086)
Trustworthiness-BL	0.022		0.069
	(0.106)		(0.111)
Trust-EX		0.342***	0.334***
		(0.054)	(0.033)
Trustworthiness-EX		0.146	0.089
		(0.120)	(0.104)
Controls	No	No	Yes
Number of Observations	96	96	96

Notes: Marginal effects from logit regressions (Standard errors robust for clustering at the session level are reported in parentheses). Trust-BL (Trustworthiness-BL) equals 1 for subjects choosing to trust (reciprocate) in the *Baseline* treatment; Trust-EX (Trustworthiness-EX) equals 1 for subjects choosing to trust (reciprocate) in the *Exogenous* treatment; *Controls* indicates the presence of fourteen regressors, aimed at controlling for subjects' individual characteristics. These include all the variables listed in **Table 3**. The symbols *, **, and *** indicate significance at the 10%, 5% and 1% level, respectively.

To dig deeper into these differences, we run a series of logit regressions (**Table 2**). The dependent variable indicates whether the subject voted in favor of collective punishment. In Model 1 we introduce subjects' choices in the *Baseline* as explanatory variables, finding that subjects' preferences and their ex-ante beliefs about others do not affect their voting behavior. In Model 2, we instead use their choices in the *Exogenous* treatment as explanatory variables. Our result shows that the probability that a subject votes in favor of collective punishment is 34.2% higher when she chose to trust in the *Exogenous*. This strongly significant difference reappears in the Model 3 where we include all four choices of subjects in both the *Baseline* and *Exogenous* treatments, which suggests that only those who can anticipate the impact of collective punishment on others' trustworthiness, and react to it with a higher level of trust, are inclined to vote in favor of it.

Result 2. Only about 30% of subjects vote in favor of the collective punishment mechanism, and the voting behavior does not depend on subjects' preferences and beliefs.

Our next step is to explore the question of whether subjects' individual characteristics affect their voting behavior. **Table 3** reveals that subjects who vote in favor of the punishment mechanism have higher cognitive abilities than the others, as

supported by an ordered logit regression on the number of correct answers given to the three questions of the Cognitive Reflection Test. The result is confirmed if we look at the IQ test to measure subjects' cognitive abilities, which also reveals that subjects who vote in favor of collective punishment are significantly more likely to answer correctly. Results in **Table 3** also indicate that, although our experimental design is relatively complicated, subjects could answer most of the control questions correctly before playing the game and, on average, the subjects who voted against or in favor of the punishment mechanism could provide a similar number of right answers. This implies that all subjects could well understand the instructions, and that differences in the voting behavior are not driven by comprehension problems.

Table 3: Individual characteristics and voting.

Individual	Against	In favor	Significance of the difference
characteristics	(N=67)	(N=29)	
Male	49.3%	62.1%	<i>p</i> >0.1 ^b
Age	25.6	24.1	$p=0.079^{a}$
Higher education	67.2%	44.8%	$p=0.049^{b}$
CRT	1.1	1.6	$p=0.093^{a}$
IQ	1.2	1.7	$p=0.002^{a}$
Economics	50.7%	48.3%	<i>p</i> >0.1 ^b
Statistics	44.8%	58.6%	<i>p</i> >0.1 ^b
Game theory	28.4%	20.7%	<i>p</i> >0.1 ^b
Trust	17.9%	17.2%	<i>p</i> >0.1 ^b
Altruism	7.8	8	<i>p</i> >0.1 ^a
Risk aversion	5.8	5.2	<i>p</i> >0.1 ^a
RightAnswerBL	5.4	5.2	<i>p</i> >0.1 ^a
RightAnswerEXO	5.1	5.2	<i>p</i> >0.1 ^a
RightAnswerVOTE	5.6	5.6	<i>p</i> >0.1 ^a

Notes: Male is a dummy taking value 1 for males and 0 for females; Age indicates subjects' age; Higher education equals 1 for those who have obtained at least a bachelor degree, and 0 otherwise; CRT ranges between 0 and 3 and is calculated by a three-item cognitive reflection test introduced by Frederick (2005); IQ ranges between 0 and 3 and is calculated by a three-item IQ test; Economics, Statistics, and Game theory are dummies taking value 1 for those who have taken at least one course in economics, statistics, or game theory, respectively; Trust equals 1 for those whose answer to the WVS on generalized trust is positive, and 0 otherwise; Altruism corresponds to our questionnaire-based measure of altruism; Risk aversion indicates subjects' answer to the risk attitude question; RightAnswerBL, RightAnswerEXO, and RightAnswerVOTE indicate the number of the correct answers to the control questions in the Baseline, Exogenous, and Voting treatment, respectively.

Table 4 reports results from three logit regressions providing further support for this result. The dependent variable is a dummy taking value one for the subjects who voted in favor of collective punishment. Model 1, where the only explanatory variable is *CRT*, indicates that cognitive abilities measured by the Cognitive Reflection Test are not significantly correlated with subjects' voting behavior. When we measure

The symbols *, **, and *** indicate significance at the 10%, 5% and 1% level, respectively.

^a Ordered logit regression, with standard errors robust for clustering at the subject's level.

^b Logit regression, with standard errors robust for clustering at the subject's level.

cognitive abilities based on the IQ questions in Model 2, instead, we find that the probability of voting for the punishment mechanism is 24.2% larger among subjects with higher cognitive abilities relative to other subjects. In Model 3 we include as regressors three dummy variables meant to capture the academic background of the subjects. Results indicate that subjects who have some prior knowledge of statistics are more likely to vote in favor of the punishment mechanism. These significant results still hold in Model 4 where we introduce additional controls for individual characteristics (listed in **Table 3**) and for subjects' choices in the *Baseline* and *Exogenous* treatments (listed in **Table 2**). These regressions suggest that only subjects who have higher cognitive abilities, or have a background in statistics, are able to fully anticipate the consequences of the introduction of collective punishment, hence its profitability.

Table 4: Voting behavior and individual characteristics

Dependent	variable:	Model 1	Model 2	Model 3	Model 4
Vote					
CRT		0.076			-0.003
		(0.048)			(0.041)
IQ			0.242**		0.176^*
			(0.102)		(0.091)
Economics				0.010	-0.076
				(0.060)	(0.092)
Statistics				0.188^{***}	0.169^*
				(0.078)	(0.086)
Game theory				-0.124	-0.123
				(0.067)	(0.089)
Trust-BL					0.021
					(0.086)
Trustworthiness	s-BL				0.069
					(0.111)
Trust-EX					0.334***
					(0.033)
Trustworthiness	s-EX				0.089
					(0.104)
Controls		No	No	No	Yes
N. Obs.		96	96	96	96

Notes: Marginal effects from logit regressions (standard errors robust for clustering at the session level are reported in parentheses). CRT ranges between 0 and 3 and is calculated by a three-item cognitive reflection test introduced by Frederick (2005); IQ ranges between 0 and 3 and is calculated by a three-item IQ test. Economics, Statistics, and Game theory are dummies taking value 1 for those who have taken at least one course in economics, statistics, or game theory, respectively; Controls indicates the presence of the remaining nine controls for individual characteristics (see **Table 3**).

The symbols *, **, and *** indicate significance at the 10%, 5% and 1% level, respectively.

4.3 Effects of the endogenous adoption or rejection of the punishment mechanism

The existing experimental literature on public good games has shown that there is a "dividend of democracy" in the sense that institutions endogenously chosen through voting can be more efficient than the same institutions being exogenously imposed on decision makers (Dal Bo et al., 2010; Sutter et al., 2010). One possible reason is that voting for the deterrent (or non-deterrent) institutions that punish uncooperative subjects credibly signals an intention to establish a high level of cooperation and thereby induces other group members to do the same. Consequently, the voting mechanism promotes coordination on the efficient, cooperative outcome (Markussen et al., 2014). In this part, we investigate whether "the dividend of democracy" can also be observed in our setting. Specifically, we investigate whether the punishment mechanism, when endogenously chosen, could significantly increase the levels of trust and trustworthiness relative to the case in which it is exogenously imposed.

Result 3. When subjects vote for (not) introducing collective punishment, the levels of trust and trustworthiness are not significantly different from the case in which collective punishment is exogenously (not) introduced.

In our study, only three groups endogenously adopt the collective punishment mechanism, while the other thirteen groups play the baseline trust game in the Voting treatment. Consider the behavior of subjects in the role of trustee first. When the majority of the group members vote against the implementation of collective punishment, the average level of trustworthiness does not change substantially, decreasing from 34.6% to 33.3%, relative to the *Baseline* treatment. Similarly, in groups where collective punishment is endogenously adopted trustworthiness levels decreased from 100% to 94.4%, relative to the *Exogenous* treatment. Neither difference is statistically significant (p=0.318 for the former comparison, and p=0.225 for the latter).

Similar results emerge if we focus on trusting behavior: when subjects vote for not introducing the punishment mechanism, compared to the *Baseline*, the level of trust drops from 25.6% to 23.1%, while the fraction of trustful behavior remains stable at 55.6% in groups where the collective punishment mechanism is determined by the majority voting mechanism. These two differences are also not statistically significant (p=0.286 for the former comparison, and p=0.190 for the latter).

While "the dividend of democracy" has been often observed in previous experimental papers, our study fails to find any positive effect of the voting mechanism on the society's ability to coordinate on an efficient outcome. Part of the reason is that the exogenously imposed punishment mechanism had induced a higher level of trust and trustworthiness among those who endogenously adopt it, hence there is little space for improvement. Another possible reason is that, when the mechanism is endogenously chosen, not all subjects positively react to it, but only those who voted in favor of it.

Indeed, we find that the three groups where the punishment mechanism was endogenously activated achieved a higher level of trustworthiness in the *Exogenous* treatment: the average level of trustworthiness is 100% in these three groups and 78.2% in the other thirteen groups, and the difference is significant (p<0.001). These three groups also exhibit higher levels of trust than other groups in the *Exogenous* treatment. The average level of trust is 55.6% in the three groups where the punishment mechanism is endogenously imposed and 35.9% in the other thirteen groups, and the difference is significant (p=0.009). In this paragraph, comparisons are based on logit regressions where the only explanatory variable is a dummy taking value one for subjects belonging to the three groups who adopted the collective punishment mechanism in the *Voting* treatment, and standard errors robust for clustering at the subject's level.

In addition, within these three groups, we could not find that all subjects positively react to the collectively determined punishment mechanism. Our results suggest that the endogenously chosen mechanism makes those who prefer its activation act more trustfully, while other subjects who vote against collective punishment seem to be immune to it. In fact, when collective punishment is endogenously chosen, those who vote in favor of it increase their trust level from 70% to 80% respect to the *Exogenous* treatment, while others reduce their trust level from 37.5% to 25%. Due to the limited sample, however, we cannot detect whether these differences are statistically significant.

4.4 Effects of information about others' behavior on voting

We now turn to the question of whether feedback about the aggregate behavior in the group, with and without collective punishment, could help subjects understand the effectiveness of the punishment mechanism, thereby changing their voting behavior. In the last 4 experimental sessions, we added a fourth game, where subjects received information on the aggregate behavior of their group members in the *Baseline* and *Exogenous* treatments before deciding whether to vote for or against collective punishment (see Section 3).

Result 4. Even though exposed to feedback about others' past behavior, the large majority of subjects do not change their vote. Only information about others' trust levels in the Exogenous game positively affects a subjects' decision to vote in favor of the punishment mechanism.

Among the 48 subjects who took part in these additional sessions, only 8 (i.e. 16.7%) changed their vote after observing the aggregate information about the first two treatments. Of them, five subjects voted in favor of collective punishment in the *Voting-IF* treatment, and three voted against it. A logit regression indicates that there is no difference in the voting behavior between in the *Voting* and *Voting-IF* treatments (p=0.438). Only two groups endogenously adopted the collective punishment mechanism in the last treatment. To explore subjects' voting behavior in more depth,

we run two logit regressions, whose results are reported in **Table 5**.

The dependent variable is a dummy taking value one when the subject voted in favor of collective punishment. N. Trust-BL (N. Trustworthiness-BL) indicates the number of the other group members who are trustful (trustworthy) in the Baseline treatment; N. Trust-EX (N. Trustworthiness-EX) indicates the number of the other group members who are trustful (trustworthy) in the Exogenous treatment; Pro-punishment Vote equals 1 if the subject voted in favor of the punishment mechanism in the third game. Model 1 shows that observing an additional trustful group member in the Exogenous game increased the probability of a subject voting for the punishment mechanism by 17.5%. It also highlights the high persistency of voting behavior: the probability that a subject votes in favor of the punishment mechanism in the *Voting-IF* treatment is 47.1% higher when s/he preferred to vote for the punishment mechanism rather than against it in the Voting treatment. In order to examine whether the subjects who voted in favor of the punishment mechanism in Voting are more sensitive to the feedback on others' trust levels in the Exogenous, we include the interaction term into Model 2, finding that the pro-punishment subjects are not better than the others at using the aggregate information. To sum up, these results imply that the additional information could not help subjects to understand the effectiveness of the punishment mechanism, regardless of their voting behavior in the third game.

Table 5: Voting behavior and feedback information.

Dependent variable: Vote	Model 1	Model 2
N. Trust-BL	-0.043	-0.043
	(0.032)	(0.032)
N. Trustworthiness-BL	0.013	0.013
	(0.081)	(0.081)
N. Trust-EX	0.175**	0.166***
	(0.072)	(0.070)
N. Trustworthiness-EX	0.079	0.079
	(0.076)	(0.076)
Pro-punishment Vote	0.471***	0.424***
-	(0.105)	(0.095)
N. Trust-EX × Pro-punishment Vote		0.034
-		(0.028)
N. Obs.	48	48

Notes: Marginal effects from logit regressions (standard errors robust for clustering at the session level are reported in parentheses).

The symbols *, **, and *** indicate significance at the 10%, 5% and 1% level, respectively.

5. Discussion and Conclusions

In this paper, we explore whether the endogenous adoption of a collective punishment mechanism can help a society coordinate on an efficient outcome, characterized by high levels of trust and trustworthiness. We first introduce a theoretical analysis of the consequences of the introduction of a collective punishment mechanism, which largely builds upon Anderlini and Terlizzese's (2013) work. We then design and run an experiment to empirically test the theoretical predictions we previously derived.

We find that subjects exhibit significantly higher levels of trust and trustworthiness when a collective punishment mechanism is imposed exogenously. In contrast with the previous studies on the "dividend of democracy", however, we fail to observe that the punishment mechanism induces higher level of cooperation when it is democratically chosen compared to the case in which it is exogenously activated. One potential explanation is that in most previous studies based on the public game the subjects could directly inflict punishment on low contributors to enforce the endogenously determined rule, or the punishment was fixed and determined ex-ante by the experimenter. By contrast, in our trust game, even when the social sanction rule is democratically introduced, the severity of punishment depends on the average behavior in society, which makes it more unpredictable from the subjects' perspective; hence a higher cognitive effort is necessary to anticipate how others will react to the rule, and to predict its overall effects on profits and welfare. Further experimental studies are needed to more precisely pin down the mechanisms driving these differences in results

Another important finding is that a majority of subjects vote against the collective punishment mechanism, even though from an ex post perspective it would have paid off, on average, to vote in favor of it. Previous experimental studies have shown that subjects are reluctant to choose a punishment institution when facing alternative options. In Sutter et al. (2010), subjects are allowed to vote for a voluntary contribution mechanism (VCM), an institution with reward possibility and an institution with punishment possibility. The authors report that under unanimous voting, the punishment option is rarely selected. A similar behavior pattern is also observed in Botelho et al. (2007). After having experienced both the VCM and the VCM with the punishment option, subjects decide to choose the governing institution for the final period. Botelho et al. (2007) find that in their experiment 77.8% of subjects vote against the punishment institution. One possible reason is that subjects may naturally dislike the punishment since it evokes negative feelings. To test whether opting against the sanction is mainly driven by a "natural aversion" to punishment, in future research we plan to run a follow-up experiment where we reframe the game without changing the incentives, and substitute penalties with rewards. Another potential explanation is that cognitive limitations may refrain subjects from anticipating the positive effect of the introduction of collective punishment. Putterman et al. (2011) find that intelligence predicts subjects' votes on efficient schemes when they are permitted to vote over a menu of sanction rules. Our study also confirms that subjects with high cognitive abilities are more likely to anticipate the effectiveness of collective punishment and therefore vote in favor of it.

In an additional treatment, we investigate whether the information about the others' aggregate behavior with and without collective punishment affects subjects' voting choices, finding that subjects hardly change their votes respect to the no-feedback condition. In Gurerk (2013), before a voting phase in which they choose among alternative institutions governing the public good provision, subjects are provided with the complete history of a punishment institution which was actually implemented in a previous experiment. The author finds that social information significantly induces more subjects to accept the punishment option and reach full contributions more quickly over time. Our study fails to replicate the positive effect of social information, a result which is in line with some previous studies, showing that a high percentage of subjects are reluctant to select a relatively efficient mechanism even when they are exposed to the complete information on subjects' behavior under the alternative institutional regimes (Dal Bo et al., 2010; Gurerk, et al., 2006; Hilbe, et al., 2014). One possible reason is that subjects may need repetition to fully understand the change in incentives introduced by the collective punishment mechanism, and its effects on others' behavior; we see this as an interesting route for future research. Another possible way of promoting the endogenous adoption efficiency-enhancing institution is group communication. Alm et al. (1999) investigate the effect of voting on a social norm of tax compliance by letting subjects vote via majority rule on different aspects of the fiscal system. They find that, without communication, subjects vote against an increase in the levels of sanction enforcement imposed on tax evaders. However, when subjects are allowed to communicate before voting, they are more likely to select a greater level of enforcement, achieving an overall increase in efficiency. Along these lines, we could also expand our set-up and examine the question of whether group communication before the voting phase facilitates the acceptance of the collective punishment institution. All this, however, is left for future research.

Acknowledgement

We thank Stefania Bortolotti, Marco Casari, Davide Dragone, Diego Gambetta and Paolo Vanin for insightful comments. This paper also benefited from comments received by seminar participants at the University of Bologna, the European University Institute, and the European School on New Institutional Economics. The usual disclaimer applies. We gratefully acknowledge financial support from the Law and Economics Research Center of Zhejiang University (RG201310004), and from the Italian Ministry of Education (grant FIRB-Futuro in Ricerca no. RBFR084L83).

References

Algan, Y., and Cahuc, P., 2013, "Trust and Human Development: Overview and Policy", *Handbook of Economic Growth*, ed. by Philippe Aghion and Steven Durlauf.

Alm, J., McClelland, G., and Schulze, W., 1999, "Changing the Social Norm of Tax Compliance by Voting." *Kyklos*, 52, 141-171.

Anderlini, L. and Terlizzese, D., 2013, "Equilibrium Trust", Georgetown University, mimeo.

Becker, G. S., 1968, "Crime and Punishment: An Economic Approach", *Journal of Political Economy*, 76, 169-217.

Bernstein, L., 1992, "Opting out of the Legal System: Extralegal Contractual Relations in the Diamond Industry", *Journal of Legal Studies*, 21, 115–157.

Bernstein, L., 2001, "Private Commercial Law in the Cotton Industry: Creating Cooperation through Rules, Norms, and Institutions", *Michigan Law Review*, 99, 1724–90.

Besley, T., and Coate, A., 1995, "Group Lending, Repayment Incentives and Social Collateral." *Journal of Development Economics*, 46(1), 1-18.

Bicchieri, C., 2006, *The Grammar of Society: The Nature and Dynamics of Social Norms*, Cambridge University Press.

Blanco, M., Engelmann, D., and Normann, H. T., 2011, "A Within-subject Analysis of Other-regarding Preferences." *Games and Economic Behavior*, 72, 321-338.

Bohnet, I., and Cooter, R., 2003, "Expressive Law: Framing or Equilibrium Selection?" KSG Working Paper No. RWP03-046; and UC Berkeley Public Law Research Paper No. 138. http://ssrn.com/abstract=452420.

Bohnet, I., Grieg, F., Herrmann, B., and Zeckhauser, R., 2008, "Betrayal Aversion: Evidence from Brazil, China, Oman, Switzerland, Turkey, and the United States." *American Economic Review*, 98(1), 294–310.

Botelho, A., Harrison, G., Costa Pinto, L., and Rutstrom, E., 2007, "Social Norms and Social Choice." Working paper 05-23, Department of Economics, College of Business Administration, University of Central Florida.

Bowles, S., and Polania-Reyes, S., 2012, "Economic Incentives and Social Preferences: Substitutes or Complements?" *Journal of Economic Literature*, 50, 368-425.

Brandts, J., and Charness, G., 2011, "The Strategy versus the Direct-Response Method: A First Survey of Experimental Comparisons", *Experimental Economics*, 21, 1-24

Buchan, N. R., Croson, R. T., & Dawes, R. M., 2002, "Swift Neighbors and Persistent Strangers: A Cross-Cultural Investigation of Trust and Reciprocity in Social Exchange." *American Journal of Sociology*, 108(1), 168-206.

Charness, G., Cobo-Reyes, R., and Jimenez, N., 2008, "An Investment Game with Third-Party Intervention." *Journal of Economic Behavior & Organization*, 68, 18-28.

Cialdini, R., Reno, R., and Kallgren, 1990, "A Focus Theory of Normative Conduct: Recycling the Concept of Norms to Reduce Littering in Public Places." *Journal of*

- Personality and Social Psychology, 58, 1015-1026.
- Cialdini, R. B., Demaine, L. J., Sagarin, B. J., Barrett, D. W., Rhoads, K., & Winter, P. L., 2006, "Managing Social Norms for Persuasive Impact." *Social Influence*, 1, 3-15.
- Clay, K., 1997, "Trade without Law: Private-order Institutions in Mexican California", *Journal of Law, Economics, and Organization*, 13, 202–231.
- Clay, K., and Wright, G., 2005, "Order without Law? Property Rights during the California Gold Rush", *Explorations in Economic History*, 42, 155-183.
- Cooter, R., 1998, "Expressive Law and Economics", *Journal of Legal Studies*, 27, 585–608.
- **Dal Bo, P., Foster, A., and Putterman, L., 2010,** "Institutions and Behavior: Experimental Evidence on the Effects of Democracy", *American Economic Review*, 100, 2205-2229.
- de Quervain, D., Fischbacher, U., Treyer, V., Schellhammer, M., Schnyder, U., Buck, A., and Fehr, E., 2004, "The Neural Basis of Altruistic Punishment." *Science*, 305, 1254-1258.
- Ellickson, R., 1986, "Of Coase and Cattle: Dispute Resolution among Neighbors in Shasta County." *Stanford Law Review*, 38, 623-687.
- Ellickson, R., 1991, Order Without Law: How Neighbors Settle Disputes, Cambridge, Harvard University Press.
- Elster, J., 1989, "Social Norms and Economic Theory." *Journal of Economic Perspectives*, 3(4), 99-117.
- Ertan, A., Page, T., and Putterman, L., 2009, "Who to Punish? Individual Decisions and Majority Rule in Mitigate the Free Rider Problem." *European Economic Review*, 53, 495-511.
- **Fehr, E., and Williams, T., 2013,** "Endogenous Emergence of Institutions to Sustain Cooperation." Working Paper, University of Zurich.
- https://sites.google.com/site/tonywilliamsresearch/Tony_Williams_JOB_MARKET_PAPER.pdf
- Fehr, E., and Rockenbach, B., 2003, "Detrimental Effects of Sanctions on Human Altruism." *Nature*, 422, 137-140.
- **Fischbacher**, **U., 2007**, "z-Tree: Zurich Toolbox for Ready-made Economic Experiments." *Experimental Economics*, 10, 171-178.
- Frederick, S., 2005, "Cognitive Reflection and Decision Making." *Journal of Economic Perspective*, 19(4), 25-42.
- Galbiati, R., and Vertova, P., 2008, "Obligations and Cooperative Behavior in Public Good Games." *Games and Economic Behavior*, 146-170.
- **Greif, A., 1989,** "Reputation and Coalitions in Medieval Trade: Evidence on the Maghribi Traders", *Journal of Economic History*, XLIX, 857–82.
- **Greif, A., 1993,** "Contract Enforceability and Economic Institutions in Early Trade: the Maghribi Traders' Coalition", *American Economic Review*, 83, 525–48.
- **Greif, A., 2006,** *Institutions and the Path to the Modern Economy: Lessons from Medieval Trade*, Cambridge University Press.
- Greiner, B., 2015, "Subject Pool Recruitment Procedures: Organizing Experiments

with ORSEE." Journal of the Economic Science Association 1 (1), 114-125.

Guiso, L., Sapienza, P., and Zingales, L., 2008, "Social Capital as Good Culture." *Journal of the European Economic Association*, 6(2-3), 295-320.

Gurerk, O., 2013, "Social Learning Increases the Acceptance and the Efficiency of Punishment Institutions in Social Dilemmas." *Journal of Economic Psychology*, 34, 229-239.

Gurerk, O., Irlenbusch, B. and Rockenbach, B., 2006, "The Competitive Advantage of Sanctioning Institutions." *Science*, 312, 108–111.

Gurerk, O., Irlenbusch, B. and Rockenbach, B., 2014, "On Cooperation in Open Communities." *Journal of Public Economics*, 120, 220-230.

Hechter, M., and Opp, K., 2001, Social Norms. New York: Russell Sage Foundation.

Hilbe, C., Traulsen, A., Rohl, T., and Milinshi, M., 2014, "Democratic Decisions Establish Stable Authorities That Overcome the Paradox of Second-order Punishment." *Proceedings of the National Academy of Sciences*, 111, 752-756.

Huang, P., and Wu, H., 1994, "More Order without More Law: A Theory of Social Norms and Organizational Cultures." *Journal of Law, Economics, and Organization*, 10(2), 390-406.

Kadens, E., and Young, E., 2013, "How Customary Is Customary International Law?" *William & Mary Law Review*, 54, 885-920.

Kamei, K., 2014, "Democracy and Resilient Pro-Social Behavioral Change: An Experimental Study", Available at SSRN: http://dx.doi.org/10.2139/ssrn.1756225.

Kimbrough, E., and Rubin, J., 2015, "Sustaining Group Reputation." *Journal of Law, Economics, & Organization*, 31, 599-628.

Kosfeld, M., Okada, A., and Riedl, A., 2009, "Institution Formation in Public Good Games." *American Economic Review*, 1335-1355.

Krupka, E., and Weber, R., 2013, "Identifying Social Norms Using Coordination Games: Why Does Dictator Game Sharing Vary?" *Journal of the European Economic Association*, 11(3), 495-524.

Leeson, P., and Williamson, C., 2009, "Anarchy and Development: An Application of the Theory of Second Best." *Law and Development Review*, 2(1), 76-96.

Markussen, T., Putterman, L., and Tyran, J., 2014, "Self-Organization for Collective Action: An Experimental Study of Voting on Sanction Regimes." *Review of Economic Studies*, 81, 301-324.

McAdams, R., 2000a, "An Attitudinal Theory of Expressive Law." *Oregon Law Review*, 79, 339–390.

McAdams, R., 2000b, "A Focal Point Theory of Expressive Law." *Virginia Law Review*, 86, 1649–1731.

McAdams, R., and Nadler, J., 2005, "Testing the Focal Point Theory of Legal Compliance: The Effect of Third-Party Expression in an Experimental Hawk/Dove Game." *Journal of Empirical Legal Studies*, 2(1), 87-123.

Ostrom, E., 1990, Governing the Commons: The Evolution of Institutions for Collective Action, Cambridge University Press, New York.

Polinsky, A. M. and Shavell, S., 2000, "The Economic Theory of Public

Enforcement of Law." Journal of Economic Literature, 38, 45-76.

Polinsky, A. M. and Shavell, S., 2008, "Economic Analysis of Law", *The New Palgrave Dictionary of Economics*, ed. by Steven N. Durlauf and Lawrence E. Blume.

Posner, E., 1998, "Symbols, Signals, and Social Norms in Politics and the Law." *Journal of Legal Studies*, 27, 765–789.

Posner, E., 2000, *Law and Social Norms*, Harvard University Press, Cambridge, MA. **Posner, R., 1997,** "Social Norms and the Law: An Economic Approach." *American Economic Review*, 87(2), 365-369.

Posner, R., and Rasmusen, E., 1999, "Creating and Enforcing Norms, with Special Reference to Sanctions." *International Review of Law and Economics*, 19, 369-382.

Putterman, L., Tyran, J., and Kamei, K., 2011, "Public Goods and Voting on Formal Sanction Schemes." *Journal of Public Economics*, 95, 1213-1222.

Schultz, P. W., Nolan, J. M., Cialdini, R., B., Goldstein, N. J., and Griskevicius, V., 2007, "The Constructive, Destructive, and Reconstructive Power of Social Norms." *Psychological Science*, 18(5), 429-434.

Sutter, M., Haigner, S., and Kocher, M., 2010, "Choosing the Carrot or the Stick? Endogenous Institutional Choice in Social Dilemma Situations." *Review of Economic Studies*, 77, 1540-1566.

Tabellini, G., 2008, "The Scope of Cooperation: Norms and Incentives." *Quarterly Journal of Economics*, 123(3), 905-950.

Tyler, T., 1990, Why People Obey Law, Yale University Press.

Tyran, J., and Feld, L., 2006, "Achieving Compliance when Legal Sanctions are Non-deterrent." *Scandinavian Journal of Economics*, 108(1), 135-156.

Vollan, B., 2011, "The Difference between Kinship and Friendship: (Field-) Experimental Evidence on Trust and Punishment." *The Journal of Socio-Economics*, 40, 14-25.

Vollan, B., Zhou, Y., Landmann, A., Hu, B., Herrmann-Pillath, C., 2013, "Cooperation and Authoritarian Norms: An Experimental Study in China." Working Papers in Economics and Statistics, University of Innsbruck.

Xiao, E., 2013, "Profit – Seeking Punishment Corrupts Norm Obedience." *Games and Economic Behavior*, 77, 321-344.

Appendix 1

Table A: Treatments and sessions

Session type	Baseline-first	Exogenous-first	Baseline-first	Exogenous first
			+Information	+ Information
Order	BL-EX-VT	EX-BL-VT	BL-EX-VT-VF	EX-BL-VT-VF
Session dates	Dec. 03, 2013;	Dec.12, 2013	March 20, 2014	March 20, 2014
	Dec. 10, 2013		March 24, 2014	March 24, 2014
N. Subjects	24	24	24	24
N. Independent observations	24	24	24	24

Notes: In the table, BL stands for Baseline, EX for Exogenous, VT for Voting, and VF for Voting-IF.

Table B: Order effects on trustworthiness

	Trustworthin	ess (%)	
	1st Game		2 nd Game
BL-EXO-VOTE	43.8%	<***	77.1%
	۸***		V ***
EXO-BL-VOTE	77.1%	>***	33.3%

Notes: BL stands for *Baseline* treatment, EXO for *Exogenous* treatment, VOTE for *Voting* treatment.
*** indicates the significance at 1% level based on a two-tailed z-test.

Table C: Order effects on trust

	Trust (%)		
	1st Game		2 nd Game
BL-EXO-VOTE	41.7%	~	43.8%
	~		V ***
EXO-BL-VOTE	35.4%	>***	14.6%

Notes: BL stands for *Baseline* treatment, EXO for *Exogenous* treatment, VOTE for *Voting* treatment.
*** indicates the significance at 1% level based on a two-tailed z-test.

Appendix 2: Experimental instructions (Baseline first + Information)

Welcome. This is a study on how people make decisions. In this study you can earn money based on how well you follow the instructions, and on the decisions made by you and by the other participants. You will be paid in private and in cash at the end of the session.

Please turn off your mobile phone. From this moment on, no form of communication among participants is allowed. If you have any question, or need assistance of any kind, please raise your hand and one of us will come to your desk to help you.

Please, follow the instructions carefully. In this study there are four parts, and for each part, we will distribute and read the corresponding instructions. In the first three parts, after having read the instructions, we will ask you to answer six questions, to verify your full understanding. For every question you answer correctly you earn $\{0.40.$ So you can earn up to $\{0.40.$ So answering correctly to all questions for Parts 1, 2 and 3 of the study. In addition you will earn money for the decisions you and the other participants will make in Parts 1, 2, 3 and 4 of the study.

Now, I will read instruction for Part 1.

Instructions for Part 1

In this part of the study, participants are randomly divided into **groups of six**. In each group, three participants will be assigned the role BLUE, while the other three will be RED, then the computer will form pairs of subjects belonging to the same group. If you are BLUE, you will be paired with a RED player, and vice versa. Your counterpart will never know your true identity, nor will you know hers/his.

Your earnings are expressed in tokens that will be converted in Euros at the rate of 1 Euro for 3 tokens.

BLUE has to make one choice: between option A and option B. RED has to make one choice: between option X and option Y. Table 1 summarizes the earnings corresponding to BLUE's and RED's choices.

Table 1: earnings in Part 1

BLUE chooses	RED chooses	Earnings
	X	BLUE: 0 RED: 30
A	Y	BLUE: 15 RED: 15
В	Irrelevant	BLUE: 8 RED: 8

If BLUE chooses option A, earnings depend on the choice made by RED:

- if RED chooses X, BLUE earns 0 tokens and RED earns 30 tokens;
- if RED chooses Y, BLUE earns 15 tokens and RED earns 15 tokens.

If BLUE chooses option B, the choice made by RED has no consequences on either BLUE's or RED's earnings:

• BLUE earns 8 tokens and RED earns 8 tokens.

We ask you to make a decision first as RED, then as BLUE. We will inform you of the role you are actually assigned in this Part only at the end of the session.

If you are assigned the BLUE role, your earnings from this part will depend on the choice you made as BLUE, and on the choice made by your counterpart as RED.

If you are assigned the RED role, your earnings from this part will depend on the choice you made as RED, and on the choice made by your counterpart as BLUE.

You will be informed of the results of this Part only at the end of the session.

We will now make an **example**. At the end of the example we will ask you to answer two questions, to verify you understanding of the instructions. Remember that you earn 0.40 for each question you answer correctly.

Look at your screen. You now have to make a choice as RED. Please, choose X, and confirm your choice. Good. You now have to make a choice as BLUE. Please, choose B and confirm your choice. Good. On your screen, you will now see two questions. Please, give your answers by pressing the corresponding buttons.

If you are not sure about the answer, you can re-read the instructions. Take your time and think carefully before answering the question.

[As RED, you chose X and as BLUE you chose B. You are assigned the BLUE role, and your counterpart, who is assigned the RED role, chose Y.

- How much do you earn?
- How much does your counterpart earn?

We will now make another **example**. At the end of the example we will ask you to answer two questions, to verify you understanding of the instructions. Remember that you earn 0.40 for each question you answer correctly.

Look at your screen. You now have to make a choice as RED. Please, choose X, and confirm your choice. Good. You now have to make a choice as BLUE. Please, choose A and confirm your choice. Good. On your screen, you will now see two questions. Please, give your answers by pressing the corresponding buttons.

[As RED, you chose X and as BLUE you chose A. You are assigned the RED role, and your counterpart, who is assigned the BLUE role, chose A.

- How much do you earn?
- How much does your counterpart earn?]

You will now read on your screen the last two questions. Please, give your answers by pressing the corresponding buttons.

- How much are 6 tokens worth, in Euros?
- Will you know if you are **RED** or **BLUE** before making your choice?

If you have any doubts on the instructions, please raise your hand now. Good, then we can start with Part 1.

Instructions for Part 2

In this part of the study, participants are in **the same groups of six as in Part 1**. In each group, three participants will be assigned the role BLUE, while the other three will be RED, then the computer will form pairs of subjects belonging to the same group. If you are BLUE, you will be paired with a RED player, and vice versa. Your counterpart will never know your true identity, nor will you know hers/his. Your counterpart will **NOT** be the same person as in Part 1.

Your earnings are expressed in tokens that will be converted in Euros at the rate of 1 Euro for 3 tokens. You may also lose tokens. In the unlikely event your total earnings at the end of the study are negative, you may lose part of the money you earned by correctly answering the questions on the instructions. In any case, we guarantee you a minimum earning of \in 5 for your participation.

BLUE has to make one choice: between option A and option B. RED has to make one choice: between option X and option Y. Table 2 summarizes the earnings corresponding to BLUE's and RED's choices. Earnings for RED may depend on the choices made by the other five members of the group.

Table 2: earnings in Part 2

BLUE chooses	RED chooses	Earnings
	X	BLUE: 0
A	A	RED: $30 - 8 \times number$ of others who choose Y
A	V	BLUE: 15
	Y	RED: 15
R	B Irrelevant	BLUE: 8
		RED: 8

If BLUE chooses option A, earnings depend on the choice made by RED:

- if RED chooses X, BLUE earns 0 tokens. Earnings for RED depend on the choices made as RED by the other five members of the group. Notice that all members of your group make decisions both as RED and as BLUE, before knowing the role they are actually assigned.
 - o If 0 of the others chooses Y, RED will get 30 tokens.
 - o If 1 of others chooses Y, RED will get 22 tokens.
 - o If 2 of others choose Y, RED will get 14 tokens.
 - o If 3 of others choose Y, RED will get 6 tokens.
 - o If 4 of others choose Y, RED will lose 2 tokens.
 - o If 5 of others choose Y, RED will lose 10 tokens.
- if RED chooses Y, BLUE earns 15 tokens and RED earns 15 tokens.

If BLUE chooses option B, the choice made by RED has no consequences on either BLUE's or RED's earnings:

• BLUE earns 8 tokens and RED earns 8 tokens.

We ask you to make a decision first as RED, then as BLUE. We will inform you of the role you are actually assigned in this Part only at the end of the session.

If you are assigned the BLUE role, your earnings from this part will depend on the choice you made as BLUE, and on the choice made by your counterpart as RED.

If you are assigned the RED role, your earnings from this part will depend on the choice you made as RED, on the choice made by your counterpart as BLUE, and on the choices made as RED by each of the other five members of your group.

You will be informed of the results of this Part only at the end of the session.

We will now make an **example**. At the end of the example we will ask you to answer two questions, to verify you understanding of the instructions. Remember that you earn 0.40 for each question you answer correctly.

Look at your screen. You now have to make a choice as RED. Please, choose Y, and confirm your choice. Good. You now have to make a choice as BLUE. Please, choose B and confirm your choice. Good. On your screen, you will now see two questions. Please, give your answers by pressing the corresponding buttons.

If you are not sure about the answer, you can re-read the instructions. Take your time and think carefully before answering the question.

[As RED, you chose Y and as BLUE you chose B. You are assigned the BLUE role, and your counterpart, who is assigned the RED role, chose X. Two of the other members of your group chose Y as RED.

- How much do you earn?
- How much does your counterpart earn?]

We will now make another **example**. At the end of the example we will ask you to answer two questions, to verify you understanding of the instructions. Remember that you earn 0.40 for each question you answer correctly.

Look at your screen. You now have to make a choice as RED. Please, choose X, and confirm your choice. Good. You now have to make a choice as BLUE. Please, choose A and confirm your choice. Good. On your screen, you will now see two questions. Please, give your answers by pressing the corresponding buttons.

[As RED, you chose X and as BLUE you chose A. You are assigned the RED role, and your counterpart, who is assigned the BLUE role, chose A. Four of the other members of your group chose Y as RED.

- How much do you earn?
- How much does your counterpart earn?]

You will now read on your screen the last two questions. Please, give your answers by pressing the corresponding buttons.

- Can your counterpart in Part 2 be the same person as in Part 1?
- How many people are there in each group?

If you have any doubts on the instructions, please raise your hand now. Good, then we can start with Part 2.

Instructions for Part 3

In this part of the study, participants are in **the same groups of six as in Parts 1 and 2**. In each group, three participants will be assigned the role BLUE, while the other three will be RED, then the computer will form pairs of subjects belonging to the same group. If you are BLUE, you will be paired with a RED player, and vice versa. Your counterpart will never know your true identity, nor will you know hers/his. Your counterpart will **NOT** be the same person as in Part 1 or in Part 2.

In Part 3, you will be asked to take 3 decisions. First you will have vote in favor of either Situation 1, or Situation 2. Then you will have to make a choice as RED and as BLUE, as in Parts 1 and 2.

Situation 1 is the situation you faced in Part 1 of this study, represented in Table 3.

Table 3: Situation1

BLUE chooses	RED chooses	Earnings
	X	BLUE: 0
A	A	RED: 30
A	V	BLUE: 15
	1	RED: 15
В	Irrelevant	BLUE: 8 RED: 8

Situation 2 is the situation you faced in Part 2 of this study, represented in Table 4.

Table 4: Situation 2

BLUE chooses	RED chooses	Earnings
	X	BLUE: 0
A	A	RED: $30 - 8 \times number$ of others who choose Y
74	V	BLUE: 15
	1	RED: 15
D.		BLUE: 8
В	Irrelevant	RED: 8

When all participants have casted their vote, you will be informed of how many of your group's members voted for Situation 1, of how many of your group's members voted for Situation 2, and of the outcome of the vote.

If the majority of the members of your group vote for Situation 1, then the rules for the rest of this Part will be the same as in Part 1. If instead the majority of the members in your group vote for Situation 2, then the rules for the rest of this Part will be the same as in Part 2. If in your group three members vote in favor of Situation 1, and three members vote in favor of Situation 2, then the outcome will be randomly determined by the computer.

We ask you to make a decision first as RED, then as BLUE. We will inform you of the role you are actually assigned only at the end of the session.

If you are assigned the BLUE role, your earnings from this part will depend on the choice you made as BLUE, and on the choice made by your counterpart as RED.

If you are assigned the RED role, your earnings from this part will depend on the choice you made as RED, and on the choice made by your counterpart as BLUE. In case in your group the outcome of the vote is Situation 2, earnings for RED may also depend on the choices made as RED by each of the other five members of your group.

You will be informed of the results of this Part only at the end of the session.

We will now make an **example**. At the end of the example we will ask you to answer two questions, to verify you understanding of the instructions. Remember that you earn 0.40 for each question you answer correctly.

Look at your screen. You now have to vote either for Situation 1 or for Situation 2. Please, vote for Situation 2, and confirm your choice.

You can now see on your screen that the majority of your group members voted for Situation 1. Hence, the rules for the rest of this Part will be the same as in Part 1.

You now have to make a choice as RED. Please, choose Y, and confirm your choice. Good. You now have to make a choice as BLUE. Please, choose B and confirm your choice. Good. On your screen, you will now see two questions. Please, give your answers by pressing the corresponding buttons.

If you are not sure about the answer, you can re-read the instructions. Take your time and think carefully before answering the question.

[Situation 1 has been selected. As RED, you chose Y and as BLUE you chose B. You are assigned the BLUE role, and your counterpart, who is assigned the RED role, chose X. Four of the other members of your group chose Y as RED.

- How much do you earn?
- How much does your counterpart earn?]

We will now make another **example**. At the end of the example we will ask you to answer two questions, to verify you understanding of the instructions. Remember that you earn 0.40 for each question you answer correctly.

Look at your screen. You now have to vote either for Situation 1 or for Situation 2. Please, vote for Situation 1, and confirm your choice.

You can now see on your screen that the majority of your group members voted for Situation 2. Hence, the rules for the rest of this Part will be the same as in Part 2.

You now have to make a choice as RED. Please, choose X, and confirm your choice. Good. You now have to make a choice as BLUE. Please, choose A and confirm your choice. Good. On your screen, you will now see two questions. Please, give your answers by pressing the corresponding buttons.

[Situation 2 has been selected. As RED, you chose X and as BLUE you chose A. You are assigned the RED role, and your counterpart, who is assigned the BLUE role, chose A. Two of the other members of your group chose Y as RED.

- How much do you earn?
- How much does your counterpart earn?]

You will now read on your screen the last two questions. Please, give your answers by pressing the corresponding buttons.

- Can your counterpart in Part 3 be the same person as in Part 1 or Part 2?
- If four members of your group vote for Situation 1 and two members of your group vote for Situation 2, in Part 3 your group will play according to the rules adopted in Part 1 of the study. True or False?

If you have any doubts on the instructions, please raise your hand now. Good, then we can start with Part 3.

Instructions for Part 4

In this part of the study, participants are in **the same groups of six as in Parts 1, 2 and 3**. In each group, three participants will be assigned the role BLUE, while the other three will be RED, then the computer will form pairs of subjects belonging to the same group. If you are BLUE, you will be paired with a RED player, and vice versa. Your counterpart will never know your true identity, nor will you know hers/his. Your counterpart **may** be the same person as in **Part 1, Part 2 or in Part 3**. Rules for Part 4 are the same as for Part 3: you will be asked to take 3 decisions. First you will have vote in favor of either Situation 1, or Situation 2. Then you will have to make a choice as RED and as BLUE, as in Parts 1, 2 and 3. **Differently from Part 3**, in Part 4, before making your decisions, you will receive **information on the choices** that you and your group members made in **Parts 1, and 2**.

At the end of this Part, you will receive information on the outcome of Parts 1, 2 3 and 4 of the study. You will know the role you have been assigned in each Part, and the earnings you obtained.

Appendix 3

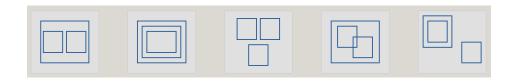
(1) Yes

(2) No

Questionnaire

We kindly ask you to complete this questionnaire. The answers you give will not affect in any way your earnings. Some of these questions refer to personal information, which will help us in this study. Your identity will not be revealed under any circumstances in the presentation of the results.

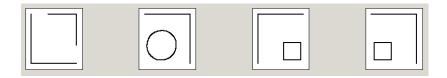
any circumstances in the presentation of the results.
Please answer carefully. Once an answer is given, you can no longer change it.
Press OK to begin. Thank you.
1. Were the instructions you have received for today's activities clear?
(1) No, not at all (2) No, not so much (3) Yes, enough (4) Yes, very much
2. Gender (press the corresponding button)
(1) Male (2) Female
3. Age (please, give your answer using the slider below and press ok to confirm)
4. Were you born in Italy?
(1) Yes (2) No
5. Education background
(1) Middle high school (2) High school (3) Bachelor degree (4) Master degree (5) Ph.D. or postgraduate degree (6) Other
6. Occupation
(1) Student (2) Self-employed worker (3) Employee (4) Retired (5) Jobless (6) Others
6.1 Field of studies (this question is accessed only if the subject gives answer (1) to question 6)
 (1) Social sciences (2) Mathematical, Physical and Natural sciences (3) Engineering and Architecture (4) Medicine (5) Literature and Philosophy (6) Others
7. Have you attended courses in Economics?


- 8. Have you attended courses in Statistics?
- (1) Yes (2) No
- 9. Have you attended courses in Game Theory?
- (1) Yes (2) No
- 10. Have you previously participated as a volunteer in other researches? (choose one or more answers)
- (1) Yes, in the field of economics
- (2) Yes, in the field of psychology
- (3) Yes, in the field of medicine or biology
- (4) No
- 11. Generally speaking, would you say that most people can be trusted or that you can't be too careful in dealing with people?
- (1) Most people can be trusted(2) Can't be too careful (3) No idea
- 12. Are you generally a person who is fully prepared to take risks or do you try to avoid taking risk?

Please tick a box on the scale, where the value 1 means: "unwilling to take risks" and the value 10 means: "fully prepared to take risk"

13. In general, do you think it is important to help others, and take care of their well being?

Please tick a box on the scale, where the value 1 means: "not important at all" and the value 10 means: "Maximally important"


14. Which of these diagrams represents the relationship between Orange-Citrus Fruit-Fruit? Please select an answer and click OK to confirm.

15. Select the element that completes the following series.

Please select an answer and click OK to confirm.

- 16. A bat and a ball cost \$ 1.10 in total. The bat costs \$ 1.00 more than the ball. How much does the ball cost?
- 17. If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines to make 100 widgets?
- 18. In a pond, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48 days for the patch to cover the entire pond, how long would it take for the patch to cover half of the pond?

Alma Mater Studiorum - Università di Bologna DEPARTMENT OF ECONOMICS

Strada Maggiore 45 40125 Bologna - Italy Tel. +39 051 2092604 Fax +39 051 2092664 http://www.dse.unibo.it