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Abstract

We extend the available asymptotic theory for autoregressive sieve estimators to cover
the case of stationary and invertible linear processes driven by independent identically
distributed (i.i.d.) infinite variance (IV) innovations. We show that the ordinary least
squares sieve estimates, together with estimates of the impulse responses derived from
these, obtained from an autoregression whose order is an increasing function of the sample
size, are consistent and exhibit asymptotic properties analogous to those which obtain for
a finite-order autoregressive process driven by i.i.d.~IV errors. As these limit distributions
cannot be directly employed for inference because they either may not exist or, where they
do, depend on unknown parameters, a second contribution of the paper is to investigate
the usefulness of bootstrap methods in this setting. Focusing on three sieve bootstraps:
the wild and permutation bootstraps, and a hybrid of the two, we show that, in contrast to
the case of finite variance innovations, the wild bootstrap requires an infeasible correction
to be consistent, whereas the other two bootstrap schemes are shown to be consistent (the
hybrid for symmetrically distributed innovations) under general conditions.
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1 Introduction

A large body of statistical literature exists around the related inference problems of consis-
tent parameter estimation and hypothesis testing within autoregressive and moving average
models of (potentially) infinite orders. Key applications include: (i) estimation of the (scale
free) spectral density, (ii) inference on impulse response functions, (iii) lag length selection
in autoregressive specifications and (sieve) approximations, (iv) point and interval forecasts.
Following the pioneering work of Berk (1974), the majority of this literature has been articu-
lated in the familiar L2 norm and is therefore not applicable in the case of time series driven
by innovations which display infinite variance (IV). Such heavy tailed data are widely encoun-
tered in many areas of application including financial, insurance, macroeconomic, actuarial,
telecommunication network traffi c, and meteorological time series; see, inter alia, Embrechts
et al (1997), Resnick (1997), Finkenstädt and Rootzén (2003) and Davis (2010).

The extension of these time series methods to the case of IV innovations is particularly
challenging for at least two distinct reasons. First, under IV the asymptotic distributions of
estimators and statistics obtained from autoregressive and moving average time series models
are in general non-standard (in particular, they depend on unknown nuisance parameters,
such as the so-called ‘tail index’, see e.g. Davis and Resnick, 1985a). Second, the bootstrap
techniques which are frequently used to approximate the asymptotic distributions of these
quantities in the finite-variance case, tend not to be robust to infinite second order moments
and require some modification. This is due to the fact that the bootstrap distributions are
dominated by sample extremes (Athreya, 1987; Knight, 1989).

In the finite-variance case, sieve-based inference on linear stationary processes is well-
understood and is based on fitting an autoregressive approximation whose order increases
with the sample size. Berk (1974) and Lewis and Reinsel (1985) study the asymptotic dis-
tributions of the resulting sieve OLS estimators for univariate and multivariate processes,
respectively, while Kreiss (1997) and Paparoditis (1996) demonstrate the asymptotic validity
of the associated standard i.i.d. and wild bootstrap sieve inference procedures. In this paper
we explore asymptotic and bootstrap sieve-based methods of inference for stationary linear
processes driven by IV innovations, restricting our attention to ordinary least squares (OLS)
estimators. While other estimators, includingM estimators (see, inter alia, Knight 1987, and
Davis et al., 1992), and estimators based on trimmed data (Hill, 2013, and references therein)
can be more effi cient than OLS (most notably where the tail index is considerably below 2; see
Calder and Davis, 1998), these estimators are dominated by OLS in the finite variance case;
see Maronna et al. (2006,p.269) for a comparison of M and OLS estimators. Importantly,
OLS remains widely used by applied workers, especially in economics and finance, and part
of our contribution is to show how the small sample effi cacy of OLS-based methods can be
considerably improved when the innovations are IV using bootstrap methods.

For finite-order autoregression driven by i.i.d. IV errors, it has been established that the
OLS estimators of the autoregressive parameters are consistent but that three possible types
of asymptotic behavior can occur; see, inter alia, Hannan and Kanter (1977) and Davis and
Resnick (1985b, 1986). To illustrate this via a simple example, consider the AR(1) process

Xt = βXt−1 + εt, t ∈ Z,

where |β| < 1 and εt are symmetric i.i.d. in the domain of attraction of an α-stable distribution
(defined formally in section 2) with tail index α ∈ (0, 2). The large sample behavior of the
OLS estimate of β, denoted β̂, depends on the unknown distribution of {εt}. In particular,
three possible cases arise:

Case (i): If E |ε1|α =∞, then there exists a sequence lT , slowly varying at infinity
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and depending on the distribution of εt, such that

lTT
1/α(β̂ − β)

w→ 1− β2

(1− βα)1/α

S1

S0
, (1)

where S1 and S0 are independent α and α/2-stable random variables (r.v.’s),
respectively; see Davis and Resnick (1986, p.557);

Case (ii): If E |ε1|α < ∞ and limt→∞ P (|ε1ε2| > t)/P (|ε1| > t) = 2 E |ε1|α, then
there exists a slowly varying sequence lT such that (1) holds but where S1 and S0

are now dependent α and α/2-stable r.v.’s; see Davis and Resnick (1985b, p.279);

Case (iii): If E |ε1|α < ∞ and limt→∞ P (|ε1ε2| > t)/P (|ε1| > t) = ∞ (note that
there are no other possible values for this limit than 2 E |ε1|α and ∞), then β̂− β
cannot be normalised such that a non-degenerate limiting distribution obtains;
see Davis and Resnick (1985b).

Our first contribution is to show that this asymptotic trichotomy carries over to the
general IV linear process case, thereby extending the range of available asymptotic theory for
OLS sieve estimators to cover the case of i.i.d. IV innovations. In doing so we establish the
consistency of the OLS sieve estimators and the rates at which the order of the autoregressive
approximation must increase with the sample size for these results to hold. We also use
these results to demonstrate the consistency of two important estimators derived from the
OLS sieve-based estimates, namely estimates of the impulse responses and of the scale-free
spectral density function.

As the example above demonstrates, even with knowledge of the tail index, α, asymptotic
inference based on the OLS sieve estimator may not be possible and, if it is, it will not be
known which form of the asymptotic distribution should be used. Our second contribution is
then to investigate the usefulness of bootstrap approximations to the distribution of the OLS
sieve estimators in the IV case, complementing the recent work of Kreiss et al. (2011) who
highlight the wide range of validity of autoregressive sieve bootstrap methods for the case of
finite-variance data.

Whilst standard i.i.d. bootstrap methods are inconsistent in the IV case, other bootstrap
methods can yield consistent inference for the case of the location parameter; these include the
‘m out of n’bootstrap (Arcones and Giné, 1989), a parametric bootstrap (Cornea-Madeira
and Davidson, 2015), the permutation bootstrap (LePage and Podgorski, 1996) and the wild
bootstrap (Cavaliere et al., 2013). Of these, the latter two preserve the sample extremes
(even asymptotically) and are therefore anticipated to lead to more concentrated reference
distributions than the unconditional distribution estimated by the ‘m out of n’and parametric
bootstraps (see the numerical evidence in LePage, 1992), and hence to deliver more powerful
bootstrap tests. Moreover, issues surrounding sample length selection with the ‘m out of n’
bootstrap and preliminary estimation of the tail index and the asymmetry parameter with
the parametric bootstrap are avoided. For these reasons, our focus will be on the permutation
bootstrap, the wild bootstrap and a hybrid combination of the two.

In the context of the present problem, with the existence of asymptotic distributions not
guaranteed in case (iii) above, we discuss consistency in terms of the proximity between some
conditional finite-sample distributions of the OLS sieve estimate and their bootstrap coun-
terparts. We show that the permutation and hybrid bootstraps are consistent under general
conditions (the latter provided the innovations are symmetric), but that, in contrast to the
case of finite variance innovations, the wild bootstrap is inconsistent unless an infeasible cor-
rection term is added to the difference between the original and bootstrap sieve estimates.
Monte Carlo simulation results are presented which suggest that the permutation and hybrid
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bootstraps outperform the uncorrected wild bootstrap, ‘m out of n’bootstrap and i.i.d. boot-
strap procedures in terms of finite sample size properties (and the latter two, also in terms
of power). These results, consistent with the findings of LePage (1992) and Cavaliere et al.
(2013) for the location testing problem, also show that the permutation, wild and hybrid
bootstrap methods can lead to considerable gains in the finite-sample precision of OLS-based
inference under IV, especially when the tail index is small, yet retain the superior properties
of OLS-based inference when the innovations have finite variance.

The plan of the paper is as follows. In section 2 we detail our reference data generating
process (DGP) and introduce the autoregressive sieve approximation, and associated OLS
sieve estimators. In section 3 we establish the large sample properties of these estimators.
Section 4 investigates the use of sieve bootstrap methods. Results from a Monte Carlo study
are reported in section 5. An application to impulse response functions is offered in section 6.
Main proofs are contained in section 7; additional theory and proofs are reported in Appendix
A.1.

2 The DGP and Sieve Approximation

Suppose that

Xt =
∞∑
i=0

γiεt−i, t ∈ Z, (2)

is a stationary and invertible linear process with IV innovations. Specifically, the following
set of conditions is taken to hold.

Assumption 1

(a) The random variables εt (t ∈ Z) form an i.i.d. sequence which is in the domain of
attraction of an α-stable law, α ∈ (0, 2); i.e., the tails of the distribution of εt exhibit
the power law decay, P (|εt| > x) = x−αL (x), for x > 0, with L(·) a slowly varying
function at infinity, and lim x→∞ P (εt > x)/P (|εt| > x) =: p ∈ [0, 1], lim x→∞ P (εt <
−x)/P (|εt| > x) = 1− p. If E |ε1| <∞, it is assumed that E ε1 = 0.

(b) There exists a δ ∈ (0, α) ∩ [0, 1] such that
∑∞

i=0 i|γi|δ/2 <∞.

(c) The power series γ (z) :=
∑∞

i=0 γiz
i, where we set γ0 = 1 with no loss of generality,

has no roots on the closed complex unit disk.

(d) Its reciprocal 1 −
∑∞

i=1 βiz
i := (

∑∞
i=0 γiz

i)−1 satisfies
∑∞

i=0 |βi|δ < ∞, where δ is as
defined in (b).

Remark 2.1. (i) The parameter α in part (a) of Assumption 1, which will be treated as
unknown in this paper, controls the thickness of the tails of the distribution of εt, and, as
such, is often referred to as the tail index, index of stability or characteristic exponent; see
e.g. Chapter XVII of Feller (1971). Moments E |εt|r are finite for r < α and infinite for
r > α; the moment E |εt|α can be either finite or infinite, discriminating between some results
in section 3. The tail index is inherited by the limiting distribution of the appropriately
normalized (and for α = 1, also centred) sums of εt, belonging to the class of so-called
stable distributions. Heavy tailed data are widely encountered in applied research; reported
estimates of α include 1.85 for stock returns (McCulloch, 1997), above 1.5 for income, about
1.5 for wealth and trading volumes, about 1 for firm and city sizes (all in Gabaix, 2009, and
references therein) and even below 1 for returns from technological innovations (Silverberg
and Verspagen, 2007).
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(ii) Part (b) of Assumption 1 imposes strict stationarity on Xt, guarantees almost sure
convergence of

∑∞
i=0 γiεt−i (as well as some series in ε

2
t ) and underlies the asymptotics for

sample correlations (Davis and Resnick, 1985b, p.270, and 1986, p.547). This condition also
implies that

∑∞
i=1 i

2/δ|γi| < ∞. Therefore, part (b) of Assumption 1 would also impose
weak stationarity on Xt in the case where the mean and variance of εt were both finite and
constant. Part (c) ensures that the MA polynomial, γ(z), is invertible, while part (d) implies,
among other things, that the infinite autoregressive series in (3) below converges absolutely
with probability one. �

Under Assumption 1 Xt in (2) is strictly stationary and invertible and, equivalently, solves
the (potentially) infinite-order difference equation

Xt =

∞∑
i=1

βiXt−i + εt, t ∈ Z. (3)

The coeffi cients in (3) satisfy
∑∞

i=1 i
2/δ|βi| < ∞ due to the analogous property imposed on

the {γi} in part (b) of Assumption 1; see Brillinger (2001, pp.76-77).
In this paper we study inference based on a sieve approximation to (3); this is obtained

using the truncated autoregression

Xt =

k∑
i=1

βiXt−i + εt,k (4)

where the lag truncation parameter, k, is an increasing function of the sample size. In
(4), εt,k := εt + ρt,k where ρt,k :=

∑∞
i=k+1 βiXt−i represents the sieve approximation error.

The OLS estimates of the sieve parameters βk := (β1, ..., βk)
′ in (4), given the sample ob-

servations (X1, ..., XT ), are given by β̂k := (Sk00)−1
∑T

t=k+1 Xk
t−1Xt =: (β̂1, ..., β̂k)

′, where
Sk00 :=

∑T
t=k+1 Xk

t−1(Xk
t−1)′ with Xk

t−1 = (Xt−1, ..., Xt−k)
′.

3 Convergence Results for OLS Sieve Estimators

Here we establish the large sample properties of the OLS estimators from the sieve regression
(4) when the DGP is a linear process driven by IV innovations, as in (2). We initially show
consistency of the OLS sieve estimators from (4). The usual Euclidean vector norm is denoted
by ‖·‖.

Theorem 1 Let {Xt} be generated according to (2) under the conditions of Assumption 1.
Then, provided 1/k + k2/T → 0 as T →∞, it follows that ‖β̂k − βk‖ = oP (1).

Having established the consistency properties of the OLS sieve estimators, we now turn
to studying the asymptotic distributions (where they exist) of the OLS sieve estimators,
demonstrating how the assumptions used so far need to be strengthened to achieve finer
results. We begin by stating a lemma which shows how the asymptotic argument can be
reduced to an analysis of the sample autocorrelations. This lemma employs some additional
notation that we introduce and discuss next.

First, define aT := inf{x : P (|ε1| > x) ≤ T−1}. By part (a) of Assumption 1, there
exists a sequence lT , slowly varying at infinity, such that aT = T 1/αlT . For the case where
E |ε1|α < ∞ and limt→∞ P (|ε1ε2| > t)/P (|ε1| > t) = 2 E |ε1|α, define ãT = aT ; otherwise,
define ãT := inf{x : P (|ε1ε2| > x) ≤ T−1}. In the latter case ãT = aT l̃T for some l̃T , slowly
varying at infinity, such that l̃T → ∞ as T → ∞; see Davis and Resnick (1985b,p.263, and
1986,p.542).
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Second, define the infinite Toeplitz matrix Σ := (r|i−j|)
∞
i,j=0 formed from the scale-free

autocovariances, r|i−j| :=
∑∞

s=0 γsγs+|i−j|. It is a standard fact that Σ generates a bounded
operator on the space `2 of square summable sequences endowed with the Euclidean metric;
see Theorem 1.9 of Böttcher and Silbermann (1999,p.10). Moreover, under Assumption 1, the
operator generated by Σ is invertible; see Theorem 1.15 of Böttcher and Silbermann (1999,
p.18). We denote the matrix of the inverse operator with respect to the canonical base of `2
by Σ−1.

Finally, we denote by L a generic m × ∞ selection matrix of constants, with (i, j)-th
element lij , and let Lk := (L·1, ..., L·k) denote the matrix formed from the first k columns
of L. The matrix L, and hence Lk, will determine the linear combination(s) of the coeffi -
cients, βj , j = 1, 2, ... from (3) we are interested in conducting inference on, via constructing
confidence intervals or, equivalently, testing hypotheses of the generic form Lβ = l, where
β := (β1, β2, ...)

′ is the ∞× 1 vector of AR coeffi cients from (3) and l is a m × 1 vector of
constants. For example: inference on β1 would require L = (1, 0, 0, ....); inference involving
the sum of β1 and β2 would require L = (1, 1, 0....); a joint simple hypothesis on β1 and β2

would require the first row of L to be as in the first example above and the second row to be
(0, 1, 0, ....). We are now in a position to state our preparatory lemma.

Lemma 1 Let the conditions of Theorem 1 hold, and assume further that aT
∑∞

i=k+1 |βi| →
0 as T →∞. Also assume that there exists some δ′ ∈ (δ, 2α

2+α), where δ is as defined in part
(a) of Assumption 1, such that the selection matrix L has δ′-summable rows under linear
weighting (i.e. such that

∑∞
j=1 j|lij |δ

′
<∞, i = 1, ...,m). Then, provided 1/k + k3/T → 0 as

T → ∞, with the additional condition that k is not a slowly varying function of T for the
particular value α = 1, it holds that

‖Lk{(β̂k − βk)− dT } − σ−2
T

∞∑
j=1

Aj

T∑
t=k+1

(εt−jεt − µT )‖ = oP (a−2
T ãT ),

where: dT := (T−k)γ (1)µT (Sk00)−1uk with µT := E(ε1ε2I{|ε1ε2|≤ãT }) and uk a k-dimensional

vector of ones; σ2
T :=

∑T
t=k+1 ε

2
t ; finally, Aj ∈ Rm (j ∈ N) are given by Aj :=

∑j
i=1 L(Σ−1)·iγj−i.

Remark 3.1. (i) The analogue of our condition aT
∑∞

i=k+1 |βi| → 0 in the finite-variance
case is T 1/2

∑∞
i=k+1 |βi| → 0; see Berk (1974) and Lewis and Reinsel (1985). Both conditions

involve the order of magnitude of the (possibly centred) error sums
∑T

t=1 εt, respectively aT
and T 1/2 for infinite and finite variance. Our condition entails that k is, in general, required to
grow at a faster rate the smaller is α. However, in the important special case of a finite-order
autoregression, k is only required to be at least as large as the true autoregressive order, while
in the case where the βi, i = 1, 2, ... exhibit exponential decay (as happens for finite-order
ARMA processes), any power rate of the form k = T r (r ∈ (0, 1)) is suffi cient uniformly in α.
As regards the summability condition on the rows of L, again a similar condition is imposed
on L in the finite-variance case; see Theorem 2(iv) of Lewis and Reinsel (1985).
(ii) An important implication of the approximation given in Lemma 1 is that the large
sample behavior of the OLS sieve estimator is determined by the same three cases for
ã−1
T

∑T
t=k+1(εt−jεt − µT ) studied in Davis and Resnick (1985b,1986) as in the finite-order

autoregressive setup discussed in the introduction. Cases (i) and (ii), where an asymptotic
distribution exists, will be detailed in Theorem 2 below. Under case (iii), and as in Davis and
Resnick (1985b), the OLS sieve estimators cannot be normalised such that a non-degenerate
limiting distribution is obtained.
(iii) Given part (a) of Assumption 1 and the assumption of δ′-row-summability of L under
linear weighting, the Aj (j ∈ N) are also row-wise δ′-summable under linear weighting; that
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is,
∑∞

j=1 j|Aij |δ
′
< ∞, i = 1, ...,m (see section 7.2). This property is suffi cient for the series

in Lemma 1 and Theorem 2 to be a.s. convergent, and, hence, for David and Resnick’s (1985b
and 1986) asymptotic theory for sample autocovariances to be applied in Theorem 2 below.
Notice that the upper bound on δ′ is used to control the convergence rate of the quantity
LkΣ

−1
k to LΣ. �
We now provide in Theorem 2 the asymptotic distribution of the OLS sieve estimator

from (4) under Cases (i) and (ii) of the three possible cases outlined in section 1.

Theorem 2 Let the conditions of Lemma 1 hold, including the rate conditions on k imposed
therein. Then:
Case (i): If E |εt|α =∞, then

a2
T ã
−1
T Lk{(β̂k − βk)− dT }

w→ S−1
∞∑
j=1

AjSj , (5)

where {Sj}∞j=1 is an i.i.d. sequence of α-stable r.v.’s and S is an a.s. positive α/2-stable r.v.
independent of {Sj}∞j=1, with remaining notation as in Lemma 1; Case (ii): If E |εt|α <∞
and lim inft→∞ P (|ε1ε2| > t)/P (|ε1| > t) = 2 E |ε1|α, then (5) holds with a2

T ã
−1
T = aT , and

where {Sj}∞j=1 and S are as described in Case (i) except that they are now dependent with
joint distribution as given in Theorem 3.5 of Davis and Resnick (1985b).

Remark 3.2. (i) The requirement on the lag truncation parameter that 1/k+ k3/T → 0, as
T → ∞, is standard in analogous theorems in the finite-variance case; see, inter alia, Berk
(1974, Theorem 6) and Lewis and Reinsel (1985, Theorem 2). However, this rate condition
can be weakened in our setting to 1/k + kmax{2,1+α}+ζ/T → 0, as T → ∞, for some ζ > 0.
Clearly this condition becomes weaker the further α is from 2, while approaching the usual
k3/T rate as α approaches 2. This weaker rate entails that k is allowed to grow at a faster
rate the smaller is α.

(ii) If the distribution of {ε1} is symmetric (about zero), then so is the distribution of ε1ε2,
and the centering term dT in (5) will be zero. If the distribution of {ε1} is asymmetric and
α ∈ (0, 1)∪ (1, 2), then the centering of (β̂k−βk) can be omitted but at the cost of a location
shift in Sj . In the case where α ∈ (0, 1) we have that T ã−1

T µT → (2p̃− 1) α
1−α as T → ∞,

by Karamata’s theorem (see Feller, 1971, p.283), where p̃ := p2 + (1− p)2 (see Assumption
1(a)), and so omitting dT requires Sj to be replaced by S̃j := Sj + (2p̃− 1) α

1−α in (5). For
α ∈ (1, 2), omitting dT requires Sj to be replaced by Sj − ESj = Sj + (2p̃− 1) α

1−α again.
The centering cannot in general (other than in the symmetric case) be omitted when α = 1.

(iii) If the distribution of {ε1} is symmetric (about zero), then so is the distribution of
Sj . In this case the i-th component of the limit distribution in (5) is equal in distribution
to (

∑∞
j=1 |Aji|α)1/αS1/S. This is analogous to the the finite-variance case, where the same

holds with α = 2, S1 standard Gaussian and S = 1. If a consistent estimator α̂ of α were
available, then (

∑∞
j=1 |Aji|α)1/α could be consistently estimated. If a studentising statistic

growing at the rate of a−2
T ãT were available (which is in itself an open question, as pointed out

by a referee), then an asymptotic test for one-dimensional restrictions could be constructed
by reference to the quantity S1/S. However, and in contrast to the the finite-variance case,
it does not seem possible to find a full-rank linear transformation of the limit in (5) which
depends on α alone, precluding a similar simplification of the joint asymptotic test of several
restrictions. �

The asymptotic results given in this section highlight the infeasibility of classical asymp-
totic inference for testing linear hypotheses (or constructing confidence intervals) concerning
the elements of β. In particular, as Remark 3.2(ii) makes clear, even under the special case
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discussed there inference would still not be feasible without knowledge of which of Cases
(i) and (ii) held (and indeed, that it was one of these cases, rather than Case (iii) which
held). An obvious alternative therefore, which we consider in the next section, is to explore
bootstrap methods of inference, which may be thought of as a device for approximating the
finite sample distributions of the test statistics involved. As in practice it is rarely clear if
the data exhibit IV, it will be desirable to have available bootstrap procedures that are valid
for testing hypotheses concerning the parameters of linear processes driven either by finite
variance or IV innovations.

4 Bootstrap Methods

In this section we propose and discuss three bootstrap methods of inference for IV linear
processes. First, we consider the wild bootstrap (based on random sign changes in the
residuals), which for the benchmark problem of inference on the location has been shown
to be robust to errors with symmetric IV distributions; see Cavaliere et al. (2013). LePage
(1992) also shows that a wild bootstrap based on random signs can yield very significant
improvements in precision since it approximates a conditional version of the test statistic’s
distribution. Importantly for precision, in the IV case the randomness due to conditioning
remains in the limiting distribution of the bootstrap statistic, in contrast to what happens in
the finite-variance case. An alternative to the wild bootstrap, which approximates a different
conditional distribution of the test statistic with asymptotic randomness, is the permutation
bootstrap proposed by LePage and Podgorski (1996) in the context of regressions with fixed
regressors and IV errors. Unlike the wild bootstrap, the permutation bootstrap does not
require the assumption of distributional symmetry. Finally, we also consider a hybrid of
these two, which we term the permuted wild bootstrap, where the residuals are permuted
and their signs drawn randomly.

In the problem of inference on the location (Cavaliere et al. 2013), a particularity of
the wild bootstrap statistic used is permutation-invariance. Only two of the three bootstrap
schemes outlined above will deliver statistics which have permutation-invariant distributions
in the present setting and it will turn out to matter for the asymptotic properties of the boot-
strap approximation. Specifically, unlike the location case, here bootstrap statistics computed
by randomly changing the signs of the residuals (as is done with the wild bootstrap) are not
permutation invariant; they are used to approximate the distribution of the test statistics
conditional on (essentially) {|εt|}Tt=k+1 and this distribution changes when the elements in
this sequence are reshuffl ed. To obtain a permutation-invariant reference distribution, the
residuals need to be permuted explicitly, resulting in an approximation to the distribution of
test statistics conditional on (essentially) the order statistics of {εt}Tt=k+1 and {|εt|}Tt=k+1 for
the permutation bootstrap and the permuted wild bootstrap, respectively. Moreover, because
random permuting effectively enlarges the reference population, the reference distributions
for the permutation bootstrap and the permuted wild bootstrap can be expected to be more
dispersed than that of the pure wild bootstrap, illustrating a cost of achieving permutation
invariance.

4.1 Bootstrap Implementations

In Algorithm 1 below we formalise the three bootstrap schemes that we will analyse in this
section. To simplify notation and ease exposition, we shall assume that L and Lk are 1×∞
and 1 × k, respectively, corresponding to the case of a single linear restriction of the form
Lβ = l. Moreover, we shall not studentise the test statistics. Corresponding results for
Wald-type tests of multiple restrictions will be discussed in Remark 4.2(ix).
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Algorithm 1.
Step (i) Estimate (4) by OLS to yield the sieve estimates, β̂i, i = 1, ..., k, and the correspond-
ing residuals, ε̂t := Xt − β̂

′
kX

k
t−1, t = k + 1, ..., T .

Step (ii) Generate the bootstrap errors ε∗t := ε̂π(t)wt, t = k + 1, ..., T , where two options
are considered for each of π and {wt}Tt=k+1, namely: (πid) π (t) = t, i.e., π is the identity
function on {k + 1, ..., T}, or (πR) π is a random permutation of {k + 1, ..., T}, and (w1)
wt = 1 (t = k + 1, ..., T ), or (wR) wt are i.i.d. Rademacher r.v.’s (wt = ±1 each occurring
with probability 1

2). In all options, π and {wt}
T
t=k+1 are independent of each other and the

data. The combinations (πid,wR), (πR,w1) and (πR,wR) correspond respectively to the
wild bootstrap, permutations bootstrap and permuted wild bootstrap.
Step (iii) Construct the bootstrap sample using the recursion

X∗t :=

{
Xt t = 1, ..., k∑k

i=1 β̂iX
∗
t−i + ε∗t t = k + 1, ..., T

(6)

and define the bootstrap product moment matrices S∗k00 :=
∑T

t=k+1 X∗kt−1(X∗kt−1)′ and S∗k0ε :=∑T
t=k+1 X∗kt−1ε

∗
t with X∗kt−1 := (X∗t−1, ..., X

∗
t−k)

′. The bootstrap analogue of the OLS sieve

estimator, β̂k, is β̂
∗
k := (S∗k00 )−1

∑T
t=k+1 X∗kt−1X

∗
t .

Step (iv) Define the bootstrap statistic Lk(β̂
∗
k− β̂k) = Lk(S

∗k
00 )−1S∗k0ε and use its distribution

conditional on the data to approximate an appropriate conditional distribution of Lk(β̂k−βk).
Remark 4.1. (i) As is standard, the distribution of the bootstrap statistic Lk(β̂

∗
k − β̂k)

conditional on the data is approximated by numerical simulation. This is achieved by gen-

erating B (conditionally) independent bootstrap statistics, Lk(β̂
∗(b)
k − β̂k), b = 1, ..., B, com-

puted as in Algorithm 1 above, with B large. The respective B simulated quantiles are
then used as approximations for the quantiles of Lk(β̂k − βk). For instance, in the case
where inference is on the null hypothesis H0 : Lβ = l against the (one sided) alternative
H1 : Lβ > l, the bootstrap p-value associated to the original test statistic Lkβ̂k − l is com-
puted as p̃∗T := B−1

∑B
b=1 I(Lk(β̂

∗(b)
k − β̂k) > Lkβ̂k − l).

(ii) Notice that in the implementation of the bootstrap procedures proposed in Algorithm
1, deterministic normalising sequences (such as T 1/2 or a2

T ã
−1
T as in Theorem 2), are not

required when applied simultaneously to the original and bootstrap statistics, as bootstrap
test outcomes are invariant to scaling. This exempts one from the need to decide on an
appropriate normalising sequence in applications and, in particular, is important for the
robustness of bootstrap tests based on the finite-variance normalisation T 1/2 to the presence
of IV. Nevertheless, normalisation is necessary in the asymptotic analysis of the bootstrap to
prevent the statistics at hand from vanishing as T diverges. �

4.2 Asymptotic Theory for the Bootstrap

The next theorem, in the style of LePage and Podgorski (1996), characterizes the large
sample properties of the three bootstrap methods introduced in Algorithm 1. It concerns
the proximity (in the Lévy metric ρL) of finite-sample distribution functions as T → ∞.
Specifically, for a given η > 0, η-proximity of two cdfs F and F ∗ at a point x is evaluated by
means of the indicator

IF,F
∗

η (x) := I (F ∗ (x− η)− η ≤ F (x) ≤ F ∗ (x+ η) + η) .

Then, for F a (conditional) distribution function of a2
T ã
−1
T Lk(β̂

∗
k − βk), and F ∗ a (condi-

tional) distribution function of the bootstrap statistic a2
T ã
−1
T Lk(β̂

∗
k −β̂k), we will provide
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suffi cient conditions such that the Lévy distance between F and F ∗ vanishes in probability
as T diverges:

ρL (F, F ∗)
P→ 0, ρL (F, F ∗) := inf{η > 0 : ∀x ∈ R, IF,F ∗η (x) = 1}.

In the theorem, we will discuss two forms of the bootstrap statistic. Along with Lk(β̂
∗
k −

β̂k), which is the usual bootstrap analogue of Lk(β̂k−βk), we will consider an infeasible boot-
strap statistic of the form Lk(β̂

∗
k−β̂k+∆β̂

∗
k), where∆β̂

∗
k := (S∗k00 )−1{

∑T
t=k+1wtX

∗k
t−1(Xk

t−1)′}(β̂k−
βk) is a correction term. Although this statistic cannot be computed in practice, it allows
us to shed some light on the properties of the wild bootstrap approximation in the present
framework. The statistics are normalised as in Lemma 1 and Theorem 2; see also Remark
4.2.(viii) below.

Theorem 3 Let {Xt} be generated according to (2) under Assumption 1. Let L be such that∑∞
i=1 |L·i|δ <∞, where δ is as given in Assumption 1. Moreover, let F ∗ and F ∗,∆ denote the

bootstrap distribution functions conditional on the data of, respectively, a2
T ã
−1
T Lk(β̂

∗
k − β̂k)

and a2
T ã
−1
T Lk(β̂

∗
k − β̂k + ∆β̂

∗
k). For distribution functions viewed as stochastic processes on

the probability space where {εt}∞t=−∞ are defined, and provided k is such that 1/k+k5/T → 0
and aT

∑∞
i=k+1 |βi| → 0 as T →∞, it holds that:

(a) If {εt} is symmetrically distributed, then ρL(F ∗,∆, F |ε|) → 0 for the wild bootstrap,
(πid,wR), where F |ε| denotes the distribution function of a2

T ã
−1
T Lk(β̂k − βk) conditional on

{|εt|}Tt=−∞.

(b) Provided k1+2/α+ζ/T → 0 for some ζ > 0 if α ≤ 1
2 , then ρL(F ∗, F e)→ 0 for the per-

mutations bootstrap, (πR,w1), where F e denotes the distribution function of a2
T ã
−1
T Lk(β̂k −

βk) conditional on {εt}kt=−∞ and the order statistics of {εt}Tt=k+1.

(c) If {εt} is symmetrically distributed, and provided k1+2/α+ζ/T → 0 for some ζ > 0
if α ≤ 1

2 , then ρL(F ∗, F |e|) → 0 for the permuted wild bootstrap, (πR,wR), where F |e|

denotes the distribution function of a2
T ã
−1
T Lk(β̂k − βk) conditional on {|εt|}kt=−∞ and the

order statistics of {|εt|}Tt=k+1.

Remark 4.2. (i) The result in part (a) of Theorem 3 shows that an asymptotically exact
(in the Lévy metric) approximation of F |ε| by the wild bootstrap requires the addition of
the correction term, ∆β̂

∗
k, to β̂

∗
k − β̂k. In contrast, parts (b) and (c) establish that the

permutation bootstrap and the permuted wild bootstrap approximations of, respectively, F e

and F |e| are consistent (in the Lévy metric) with no need for a correction. Some further
clarifications in regard to this are given in Remarks 4.2(iv)-4.2(vii) below.
(ii) Because Lβ = Lkβk+o(a−2

T ãT ) under the conditions of Theorem 3, the results there hold
with Lk(β̂k − βk) replaced by Lkβ̂k − Lβ. Hence, the corrected wild, permutation and per-
muted wild bootstraps always approximate a (conditional) distribution of τ := a2

T ã
−1
T (Lkβ̂k−

Lβ) for the true Lβ. Under the null hypothesis H0 : Lβ = l, the bootstraps approximate a
distribution of the test statistic τ0 := a2

T ã
−1
T (Lkβ̂k − l) since τ0 = τ . On the other hand, if

H0 does not hold, then τ0 = τ + a2
T ã
−1
T (Lβ − l) diverges at rate a2

T ã
−1
T , while it can be seen

that (under the conditional probability measures of Theorem 3) τ , and, hence, its consistent
distributional approximations by the bootstrap, have lower orders of magnitude. This implies
consistency of the bootstrap tests of H0. The test based on the uncorrected wild bootstrap
is consistent for similar reasons.
(iii) Although in the case where α ≤ 1

2 additional rate conditions have been placed on k in
parts (b)-(c) of Theorem 3 in order to obtain the stated results in a reasonably tractable
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way, we conjecture that these extra conditions could be weakened. However, given the very
limited empirical relevance of distributions with small α, we have not attempted to do so.
(iv) The use of the correction term ∆β̂

∗
k is asymptotically equivalent to using the true εt,kwt

instead of ε∗t = ε̂twt in the generation of the bootstrap data X∗t . The correction term can
only be calculated if β is completely specified under the null hypothesis (specifying Lβ alone
is not enough as (S∗k00 )−1{

∑T
t=k+1wtX

∗k
t−1(Xk

t−1)′} is not asymptotically equivalent to a scalar
matrix). Therefore, it is of limited practical interest. Nevertheless, it can be calculated in a
simulation experiment in order to evaluate its effect on the finite-sample performance of the
bootstrap, as we shall do in Section 5 below.
(v) Under IV, without permuting the residuals, the term ∆β̂

∗
k is not asymptotically negligible

compared to β̂k−βk. In fact, conditionally on the data, the terms S∗k00 and
∑T

t=k+1wtX
∗k
t−1(Xk

t−1)′

have the same order of magnitude in probability as the squared extremes of the data, and so
∆β̂
∗
k has the same order of magnitude as β̂k − βk.

(vi) The term ∆β̂
∗
k is not related to the fact that we do not centre the residuals, nor to

the approximate nature of the autoregressions we estimate. The same correction would be
necessary even for an i.i.d. process with IV errors (γi = 0, i ∈ N) to which an exact finite-
order autoregression is fitted (say, with k = 1 and coeffi cient β). Without permuting, in that
(k = 1) case

∆β∗ = β̂

(
T∑
t=3

ε2
t−1

)−1( T∑
t=3

ε2
t−1wt−1wt

)
+ oP ∗(β̂) (7)

in P -probability, where P ∗ denotes probability conditional on the data. Then, in the sense
of weak convergence of random measures,

L
(∑T

t=3 ε
2
t−1wt−1wt∑T
t=3 ε

2
t−1

∣∣∣∣∣ {εt}T−1
t=2

)
w→ L

(∑∞
i=1 τ

−2/α
i δi∑∞

t=1 τ
−2/α
i

∣∣∣∣∣ {τ i}∞i=1

)

with τ i (i ∈ N) distributed as the arrival times of a Poisson process with intensity one, and
{δi} an i.i.d. sequence of Rademacher r.v.’s jointly independent of {τ i}i∈N (LePage, Woodroffe
and Zinn, 1981). Rather, the correction is made necessary by the IV of the regressors. This
is in contrast to the case where

∑T
t=3 ε

4
t−1(

∑T
t=3 ε

2
t−1)−2 = oP (1), e.g., when E ε4

1 <∞.
(vii) In the context of Remark 4.2(vi), if a random permutation, say π, is applied to the
residuals, then the following expansion holds in place of (7):

∆β∗ = β̂

(
T∑
t=3

ε2
t−1

)−1( T∑
t=3

επ(t−1)επ(t)−1wt−1wt

)
+ oP ∗(β̂) (8)

in P -probability. Because π(t− 1) 6= π(t)− 1 with high probability, the random permutation
avoids, with high probability, the squaring of errors in the numerator of ∆β∗, in contradistinc-
tion to (7). Intuitively, since the cumulation of mixed products of errors is of lower stochastic
magnitude order than the cumulation of squared errors, the order of magnitude of the leading
term in expansion (8) is lower than in (7). A rough but suffi cient formal estimate confirming
this is

E
∗

∣∣∣∣∣
∑T

t=3 επ(t−1)επ(t)−1wt−1wt∑T
t=3 ε

2
t−1

∣∣∣∣∣ ≤ 1

T − 3

(
∑T

t=1 |εt|)2∑T
t=3 ε

2
t−1

= oP (1),

where
∑T

t=3 ε
2
t−1 = OP (a2

T ), and
∑T

t=1 |εt| is OP (aT ), OP (T lT ) and OP (T ) respectively for
α ∈ (0, 1), α = 1 and α ∈ (1, 2), with lT slowly varying at infinity. Hence, by Markov’s
inequality, ∆β∗ = oP ∗(β̂) in P -probability and no correction of the bootstrap statistic is
necessary.
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(viii) Theorem 3 employs normalisation by the rates from the unconditional analysis of mean
corrected estimators (see Lemma 1 and Theorem 2), but does not employ the mean correction
itself. Omitting the mean correction may affect the order of magnitude of the estimators (by
a multiplicative slowly varying factor) only for the case of asymmetric errors with α = 1 (see
Remark 3.2(iii)). The bootstrap approximations remain valid also if the statistics are divided
by this extra factor because the conclusions of Theorem 3 can be shown to hold also if the
normalisation sequence a2

T ã
−1
T is replaced by a1+ε

T for small ε > 0 (for the wild bootstrap,
under the extra condition that a1+ε

T

∑∞
i=k+1 |βi| → 0 as k →∞).

(ix) To test m linear restrictions on β, written as Lβ = l, where L satisfies the assumptions
of Lemma 1, a Wald statistic can be used:

W := T σ̂−2
T (Lkβ̂k − l)′[Lk(Sk00)−1L′k]

−1(Lkβ̂k − l),

where σ̂2
T :=

∑T
t=k+1 ε̂

2
t . Critical values from conditional distributions of W (with the three

conditioning options as in parts (a)-(c) of Theorem 3) can be approximated using the boot-
strap distribution of the bootstrap counterparts (respectively feasible and infeasible),

W ∗ := T (σ∗2T )−1(β̂
∗
k − β̂k)′L′k[Lk(S∗k00 )−1L′k]

−1Lk(β̂
∗
k − β̂k)

W ∗∆ := T (σ∗2T )−1(β̂
∗
k − β̂k + ∆β̂

∗
k)
′L′k[Lk(S

∗k
00 )−1L′k]

−1Lk(β̂
∗
k − β̂k + ∆β̂

∗
k)

where σ∗2T is the sum of squared residuals for the bootstrap data. The properties of the
bootstrap approximation are analogous to those stated in Theorem 3 for the univariate non-
studentised statistics. More specifically, in the appendix we show that if a2

T ã
−1
T Lk(β̂k − βk),

a2
T ã
−1
T Lk(β̂

∗
k− β̂k) and a2

T ã
−1
T Lk(β̂

∗
k− β̂k+∆β̂

∗
k) are replaced by a

4
T ã
−2
T T−1W , a4

T ã
−2
T T−1W ∗

and a4
T ã
−2
T T−1W ∗∆ respectively, the conclusions of Theorem 3 remain valid, provided the row

sequences of L decay suffi ciently fast (cf. Lemma 1).

5 Finite Sample Properties

We now present results from a small Monte Carlo simulation study comparing the finite sam-
ple size and power properties of the three bootstrap procedures from Algorithm 1, together
with a standard i.i.d. bootstrap, an ‘m out of n’bootstrap and a non-bootstrap test which
uses a critical value from the standard Gaussian distribution. Throughout the section, the
wild bootstrap is based on centred residuals, as we found that centring tends to attenuate the
size distortions due to the inconsistency (see Remark 4.2(i)) of this bootstrap method. As a
benchmark for comparison, results for the infeasible corrected version of the wild bootstrap
discussed in Remark 4.2(iv) are also included in the cases of symmetric errors (where the
correction is asymptotically valid). The reference DGP is the MA(1)

Xt = εt + γεt−1, t = 1, ..., T (9)

with γ ∈ {±0.4, 0} and T ∈ {100, 500}. The errors {εt}Tt=0 are i.i.d. draws from one of the
following stable distributions: (1) symmetric with α = 1 (Cauchy); (2) asymmetric with
α = 1 and asymmetry parameter 0.75; (3) symmetric with α = 1.5; (4) asymmetric with
α = 1.5 and asymmetry parameter 0.75. As a benchmark case we also include: (5) the
standard Gaussian distribution (α = 2).

We evaluate the finite-sample size and power properties of tests for the null hypothesis H0 :
β1 = β̄ against the two-sided alternative H1 : β1 6= β̄ in the context of the sieve autoregression
(4) with k chosen such that the condition in Theorem 3 that 1/k + k5/T → 0 as T → ∞
is satisfied. The same value of k is used in step (iii) of Algorithm 1. Results are reported
for the (two-sided) studentised t-type version of the bootstrap tests (see Remark 4.2(ix)) at
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Table 1
Empirical Rejection Frequencies under the Null Hypothesis: DGP (9)

γ : −0.4 0.0 0.4
Case: 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Panel A: T = 100
Wild 6.4 6.1 6.7 7.0 5.6 6.3 6.4 6.7 7.1 5.5 6.1 5.8 6.6 6.9 5.4
Wild (corr.) 3.5 − 2.8 − 3.2 3.5 − 2.9 − 3.3 3.6 − 2.8 − 3.4
Perm.-Wild 5.2 6.0 4.5 5.1 4.8 5.1 5.8 4.6 4.8 4.9 5.1 5.6 4.7 4.8 4.9
Permutation 5.2 6.1 4.7 5.2 5.0 5.1 5.9 4.7 5.0 5.0 5.2 5.8 4.8 5.0 5.0
iid 3.7 4.4 3.8 4.1 4.7 3.8 4.4 4.6 4.0 4.8 3.8 4.4 4.0 4.1 4.9
m/n 3.3 4.0 3.3 3.4 3.9 3.3 3.8 3.3 3.4 4.4 3.3 3.7 3.4 3.6 3.9
tN 3.7 4.4 4.6 4.7 6.9 3.6 4.2 4.6 4.7 6.8 3.7 4.0 4.6 4.7 6.7
Panel B: T = 500
Wild 5.8 6.0 7.2 7.9 4.7 5.9 5.9 7.2 8.0 4.8 5.8 5.6 7.2 8.0 4.8
Wild (corr.) 4.2 − 4.4 − 4.3 4.3 − 4.4 − 4.3 4.1 − 4.3 − 4.3
Perm.-Wild 4.7 6.9 5.1 5.0 4.8 4.8 6.8 5.1 4.9 4.8 4.7 6.5 5.0 4.9 4.8
Permutation 4.7 6.1 4.9 5.3 4.7 4.9 6.2 4.9 5.2 4.6 4.7 5.9 4.9 5.1 4.7
iid 2.8 3.7 4.0 3.8 4.6 3.0 3.8 4.0 3.8 4.6 2.9 3.4 4.0 3.9 4.7
m/n 2.9 3.9 3.9 3.7 4.4 2.9 4.0 3.9 3.7 4.4 2.9 3.5 3.9 3.6 4.4
tN 2.4 3.5 3.6 3.5 5.0 4.0 3.4 3.6 3.4 5.0 2.5 3.0 3.7 3.4 5.0

Notes: (i) Tests of H0 : β1 = β̄ with β̄ = γ under the null hypothesis. (ii) ‘Wild’, ‘Perm.-Wild’, ‘Permutation’,
‘iid’, and ‘m/n’, denote the wild, permuted wild hybrid, permutation, i.i.d. and ‘m out of n’ bootstraps,
respectively, based on studentised tests; (iii) ‘tN’denotes the (non-bootstrapped) studentised test based on
standard Gaussian critical values; (iv) ‘Wild (corr.)’ indicates the infeasible wild bootstrap with the correction
term included, see Remark 4.2(iv); (v) the lag truncation in both the sieve regression (4) and its bootstrap
analogue is set to k = b25T 1/5/ lnT c; the size of the ‘m out of n’bootstrap samples is set to m = b3T/ lnT c.

the nominal 5% level (tests based on non-studentised statistics behave very similarly and so
are not reported). The results are based on 10000 Monte Carlo and B = 1499 bootstrap
repetitions.

Empirical rejection frequencies (ERFs) under the true null hypothesis, H0 : β1 = γ, are
reported in Table 1. The results for stable symmetric cases (1) and (3) suggest that the
permutation and hybrid bootstraps outperform the wild bootstrap, ‘m out of n’bootstrap
and i.i.d. bootstrap procedures as well as the tN test in terms of finite-sample size control.
The same observation can be made for the asymmetric stable cases (2) and (4), although
here we do observe a degree of oversizing for the hybrid bootstrap in case (2) when T = 500
(recall that the hybrid bootstrap was not shown to be theoretically valid under asymmetry).
As expected on theoretical grounds, the wild bootstrap test under cases (1)-(4) is oversized,
with size distortions appearing to increase slightly, other things being equal, as the sample
size is increased. Notice also that the infeasible corrected wild bootstrap appears to, if
anything, overcorrect in small samples. Under case (5), where the errors are Gaussian, all
of the procedures are asymptotically valid and little is seen between them, save to note that
the ‘m out of n’bootstrap remains moderately undersized.

ERFs under the false null hypotheses H0 : β1 = β̄ for β̄ ∈ {−0.1, 0.1} when in fact γ = 0
are provided in Table 2. The reported results show that under cases (1)-(4) the permutation
and hybrid bootstraps, and to an even greater extent, the wild bootstrap, can lead to sig-
nificantly more powerful tests than their i.i.d. and ‘m out of n’bootstrap counterparts, as
well as the tN test. Power gains are particularly apparent for T = 100 and are considerably
greater for α = 1 vis-à-vis α = 1.5, other things equal. These results are consistent with
previous evidence in the literature (LePage, 1992; see also the first two paragraphs of section
4) documenting that in the IV case, inference based on conditional distributions tends to
be more precise relative to unconditional inference. The precision gains decrease when α
approaches 2, as the conditional distributions get closer to the corresponding unconditional
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Table 2
Empirical Rejection Frequencies under the Alternative Hypothesis

β̄ −0.1 0.1
Case: 1 2 3 4 5 1 2 3 4 5

Panel A: T = 100
Wild 62.5 68.9 32.3 29.5 15.2 62.4 52.1 33.2 33.5 15.2
Wild (corr.) 62.9 − 30.1 − 11.2 63.9 − 29.2 − 10.9
Perm.-Wild 31.3 38.3 19.2 19.5 14.1 31.3 24.3 18.1 18.4 13.7
Permutation 31.3 38.9 19.2 20.1 14.4 31.0 24.2 18.4 19.0 14.0
iid 7.7 12.9 11.3 12.5 14.1 7.7 4.2 10.6 9.7 13.4
m/n 6.4 11.3 9.7 10.9 12.1 6.3 3.4 8.9 7.9 11.7
tN 7.5 13.0 12.8 13.8 17.7 7.3 3.9 12.5 11.4 17.5
Panel B: T = 500
Wild 94.7 98.0 83.2 84.9 59.4 95.1 89.6 83.3 80.4 58.6
Wild (corr.) 95.7 − 83.3 − 58.0 95.2 − 82.9 − 58.4
Perm.-Wild 91.7 97.5 75.8 74.7 58.7 91.2 80.8 75.1 74.4 59.2
Permutation 91.8 97.2 75.4 75.3 58.9 91.1 78.8 74.9 74.9 59.1
iid 89.9 96.0 73.0 71.6 58.4 89.1 71.9 72.1 72.0 58.9
m/n 90.8 96.8 72.0 69.8 57.4 89.9 74.4 71.0 70.7 57.8
tN 84.6 96.1 67.1 64.4 59.9 83.4 63.6 65.7 67.0 60.1

Notes: (i) Tests of H0 : β1 = β̄ under the alternative hypothesis H1 : β1 = γ = 0. See also Notes to Table 1.

distributions (at least in large samples).
It should be recalled, however, that the wild bootstrap is not size controlled, and this is

the price one pays for the additional finite sample power it displays relative to the permuted
and hybrid bootstraps under cases (1)-(4). Taking these two aspects of the wild bootstrap
together, these results are arguably in accordance with a strand in the recent literature on
the possible finite-sample advantages of inconsistent bootstrap procedures with respect to
their consistent modifications (Samworth, 2003; cf. Pötscher and Leeb, 2009, for inconsistent
model selection). The permutation and hybrid bootstraps display almost identical power
throughout, suggesting that the permutation bootstrap should be preferred, given its theo-
retical validity under both symmetric and asymmetric stable cases.

Overall, our Monte Carlo results suggest that, in particular in situations where the prac-
titioner desires inference robust to the possibility of IV, rather than inference specifically
designed for the case of IV, the implementation of OLS estimation in conjunction with the
permutation and hybrid bootstrap methods appears to be very useful. Furthermore, the wild
bootstrap may also constitute a relevant inference device, given its validity in finite vari-
ance autoregressive models (Kreiss, 1997; Gonçalves and Kilian, 2007) and its superior power
properties under IV.

6 Further Applications

In this section we briefly discuss how our results can be applied to the examples of analysing
the impulse response (MA) coeffi cients and the power transfer function (scale-free spectral
density) of the process. Proofs of the results in Corollaries 1 and 2 can be found in the
appendix.

Theorem 1 can be used to obtain the consistency properties of the associated sieve-based
estimates of the impulse response (MA) coeffi cients in (2). To that end, let γk := (γ1, ..., γk)

′

denote the vector formed from the first k MA coeffi cients from (2). It is well known that γk
and βk are related via the recursive relation γk ≡ Γkβk, where Γk is the lower triangular
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Toeplitz matrix with first column (1 : γ ′k−1)′. Given β̂k, a sieve-based estimator of γk can
therefore by obtained via the recursive relations γ̂k ≡ Γ̂kβ̂k, where Γ̂k is the lower triangular
Toeplitz matrix with first column (1 : γ̂ ′k−1)′. The consistency of γ̂k =: (γ̂1, ..., γ̂k)

′ for γk is
established in the following corollary of Theorem 1.

Corollary 1 Let the conditions of Theorem 1 hold. Then, provided 1/k + k2/T → 0 as
T →∞, it follows that ‖γ̂k − γk‖ = oP (1).

The impulse response estimates, γ̂1, ..., γ̂k, can in turn be used to obtain a sieve-based
estimate of the power transfer function (scale-free spectral density) of the process Xt, C(λ) :=
|1 +

∑∞
j=1 γje

ijλ|2, λ ∈ (−π, π], where i is the imaginary unit. Specifically, the sieve-based

estimator of C(λ) is given by ĈT (λ) := |1+
∑k

j=1 γ̂je
ijλ|2, λ ∈ (−π, π]. The following corollary

of Theorem 1 establishes the uniform consistency of this estimator.

Corollary 2 Let the conditions of Theorem 1 hold. Then, provided 1/k + k2/T → 0 as
T →∞, it follows that supλ∈(−π,π] |ĈT (λ)− C (λ) | = oP (1).

We now use Theorem 2 to obtain the asymptotic distribution of the sieve-based estimate
γ̂k, introduced above, of the vector of the first k impulse response coeffi cients in (2), γk, via
the relation γ̂k − γk ≡ Γ̂kβ̂k − Γkβk.

Corollary 3 Let the conditions of Theorem 2 hold, including the rate conditions on k stated
therein. Then, a2

T ã
−1
T Lk{(γ̂k − γk)− Γ̂2

kdT }
w→ S−1

∑∞
j=1 ÃjSj, where S and {Sj}∞j=1 are as

under Cases (i) and (ii) in Theorem 2, and where Ãj :=
∑j

i=1 LΓ2(Σ−1)·iγj−i (j ∈ N) and
Γ is the infinite-order lower triangular Toeplitz matrix with first column γ := (1, γ1, γ2, ...)

′.
The centering term, Γ̂2

kdT , can again be omitted under the circumstances outlined in Remark
3.2(ii).

The bootstrap schemes outlined in Section 4 extend naturally to tests of restrictions on
the MA coeffi cients γ1 := (γ1, γ2, ...)

′. For example, for a null hypothesis of the form Lγ1 = l,
where L satisfies the assumptions of Lemma 1, in the Wald statistics W and W ∗ one should
replace Lkβ̂k − l, Lk(Sk00)−1L′k, β̂

∗
k − β̂k and Lk(S∗k00 )−1L′k by Lkγ̂k − l, LkΓ̂2

k(S
k
00)−1Γ̂′2k L

′
k,

γ̂∗k − γ̂k and Lk(Γ̂∗k)2(S∗k00 )−1(Γ̂∗′k )2L′k respectively, where γ̂
∗
k is obtained from β̂

∗
k through the

recursive relations γ̂∗k := Γ̂∗kβ̂
∗
k, with Γ̂∗k denoting a Toeplitz lower triangular matrix with first

column (1 : γ̂∗′k−1)′.

7 Proofs

We employ the matrix norms ‖ · ‖2 := sup‖x‖=1 ‖(·)x‖ induced by the Euclidean vector norm
and ‖ · ‖ := [tr{(·)′(·)}]1/2, with tr denoting the trace operator. In particular, for square
positive semi-definite matrices, ‖ · ‖2 = λmax (·), the largest eigenvalue.

7.1 Consistency of OLS Sieve Estimators

The proof of Theorem 1 makes use of the next lemma (proved in the appendix). Let Σk :=
(r|i−j|)k×k, with r|i−j| :=

∑∞
s=0 γsγs+|i−j|; under Assumption 1, the eigenvalues of Σk are

bounded and bounded away from zero as k →∞ (see Berk, 1974, and the related discussion
of Σ preceding Lemma 1).

Lemma 2 Under Assumption 1 and the condition k2/T + 1/k → 0 as T → ∞, for every
ε > 0,
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a. Sk00 :=
∑T

t=k+1 Xk
t−1(Xk

t−1)′ has ‖Sk00−Σkσ
2
T ‖2 = OP (lT ãT ) max{kεak, k}, where σ2

T :=∑T
t=k+1 ε

2
t , lT = 1 for α 6= 1 and lT is slowly varying for α = 1; Moreover, (Sk00)−1 exists

with probability approaching one and ‖(Sk00)−1 − Σ−1
k σ−2

T ‖2 = OP (lT ãTa
−4
T ) max{kεak, k}.

b. Sk0ε :=
∑T

t=k+1 Xk
t−1εt,k satisfies ‖Sk0ε−

∑T
t=k+1 Xk

t−1εt‖ = oP (a1−ζ
T )+OP (a2

T )
∑∞

j=k+1 |βj |
and ‖Sk0ε‖ = oP (kεaklT ãT ) + OP (a2

T )
∑∞

j=k+1 |βj | with ζ > 0 suffi ciently small and lT as in
(a).

Proof of Theorem 1. From ‖β̂k−βk‖ = ‖(Sk00)−1Sk0ε‖ ≤ ‖(Sk00)−1‖2‖Sk0ε‖ and the triangle
inequality we obtain that, for ε > 0,

‖β̂k − βk‖ ≤
[
{λmin(Σk)}−1σ−2

T + ‖(Sk00)−1 − Σ−1
k σ−2

T ‖2
]
‖Sk0ε‖

= OP (a−2
T )
[
oP (kεaklT ãT ) +OP (a2

T )
∞∑

j=k+1

|βj |
]

= OP (aka
ε−1
T ) +OP

( ∞∑
j=k+1

|βj |
)

= oP (1) (10)

using Lemma 2(a,b), the stochastic boundedness of a2
Tσ
−2
T (which converges weakly to an a.s.

finite r.v.), the convergence of
∑∞

j=1 |βj | and the condition k2/T + 1/k → 0. �

7.2 Asymptotic α-stability

As the row dimension m of the restriction design matrix L is fixed, it is enough to provide
proofs for m = 1 (in the case of limiting distributions, by the Cramér-Wold device). Thus,
L = (l1, l2, ...) is 1×∞ in this section.

First, using estimates of the decay rates of the off-diagonal elements of Σ and Σ−1, we
discuss the well-definition of the random series in Lemma 1 and its proof. As assumed in
that lemma, let δ′ ∈ (δ, 2α

2+α) be such that
∑∞

j=1 j
s|lj |δ

′
<∞.

Regarding Σ, the estimate ri ≤ c (1 + i)−2/δ for some c > 0, δ as in Assumption 1(b) and
all i ∈ N is implied by the convergence of the series

∑∞
i=1 i

2/δ|ri| which is straightforward
to establish under Assumption 1(b). This estimate of ri implies that Σ ∈ Q2/δ, an algebra
studied by Jaffard (1990), and by his Proposition 3, also Σ−1 ∈ Q2/δ. Equivalently, if
Σ−1 =: (sij)i,j∈N, then there exists a c′ > 0 such that |sij | ≤ c′(1 + |i− j|)−2/δ (i, j ∈ N). As
a consequence, for LΣ−1 =: (l̃1, l̃2, ...), s ∈ {0, 1} and δ′ as previously, we find that

∞∑
i=1

is|l̃i|δ
′ ≤

∞∑
i=1

is
∞∑
j=1

|sji|δ
′ |lj |δ

′ ≤ (c′)δ
′
∞∑
j=1

[ ∞∑
i=1

is

js
(1 + |i− j|)−

2δ′
δ

]
js|lj |δ

′
,

where

∞∑
i=1

is

js
(1 + |i− j|)−

2δ′
δ =

j∑
i=1

is

js
(1 + |i− j|)−

2δ′
δ +

∞∑
i=j+1

is

js
(1 + |i− j|)−

2δ′
δ

<

j∑
i=1

i−
2δ′
δ +

∞∑
i=1

(i+ j)s

js
i−

2δ′
δ < 3

∞∑
i=1

is−
2δ′
δ <∞

because δ′ ∈ (δ, 1). Hence, with c′′s := 3(c′)δ
′∑∞

i=1 i
s−2δ′/δ < ∞, it holds that

∑∞
i=1 i

s|l̃i|δ
′
<

c′′s
∑∞

j=1 j
s|lj |δ

′
, and further,

∑∞
i=1 i

s|l̃i|δ
′
<∞ because

∑∞
j=1 j

s|lj |δ
′
<∞. Finally, regarding
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Aj , for s ∈ {0, 1} and δ′ as previously,

∞∑
j=1

js |Aj |δ
′
≤

∞∑
j=1

j∑
i=1

js|l̃i|δ
′ |γj−i|δ

′ ≤ 2
∞∑
j=1

j∑
i=1

{is|l̃i|δ
′}{(j − i+ 1)s|γj−i|δ

′}

≤ 2{
∞∑
i=1

is|l̃i|δ
′}{

∞∑
j=0

(j + 1)s|γj |δ
′},

so
∑∞

j=1 j
s|Aj |δ

′
< ∞ holds given that

∑∞
i=1 i

s|l̃i|δ
′
< ∞ and

∑∞
j=1 j

s|γj |δ
′
< ∞. This

guarantees that the series below are absolutely convergent a.s. (with s = 0) and asymptotic
results of Davis and Resnick can be invoked (with s = 1, for use in the proof of Theorem 2).

Proof of Lemma 1. Let L̃k := (l̃1, l̃2, ..., l̃k) = (LΣ−1)k consist of the first k entries of
LΣ−1. Then β̂k − βk = (Sk00)−1Sk0ε satisfies

|Lk(β̂k − βk)− σ−2
T L̃k

T∑
t=k+1

Xk
t−1εt| ≤ ‖Lk‖(B1 +B2) +B3, (11)

where ‖Lk‖2 ≤
∑∞

i=1 l
2
i < ∞ for all k, and Bi (i = 1, 2, 3) are defined next and shown to be

oP (a−2
T ãT ) provided k3/T + 1/k → 0. First,

B1 := ‖β̂k − βk − (Sk00)−1
T∑

t=k+1

Xk
t−1εt‖ ≤ ‖(Sk00)−1‖2‖Sk0ε −

T∑
t=k+1

Xk
t−1εt‖,

where ‖(Sk00)−1‖2 = OP (a−2
T ) as in (10). Thus, using also Lemma 2(b), B1 = oP (a−1

T ) +
OP (1)

∑∞
j=k+1 |βj | = oP (a−1

T ) = oP (a−2
T ãT ), given that aT

∑∞
j=k+1 |βj | → 0. Second, by

Lemma 2(a) and because ‖
∑T

t=k+1 Xk
t−1εt‖ = oP (kεaklT ãT ) for all ε > 0 (see the proof of

Lemma 2(b)), it holds that

B2 := ‖(Sk00)−1 − Σ−1
k σ−2

T ‖2‖
T∑

t=k+1

Xk
t−1εt‖ = oP (ã2

Ta
−4
T lTakk

ε max{ak, k}),

using the property that multiplication preserves slow variation. Under k3/T → 0 it is checked
directly that ã2

Ta
−4
T lTk

ε = o(aε−2
T ) for all ε > 0 and that aε−2

T ak max{ak, k} = o(a−2
T ãT ) for

small enough ε > 0, so B2 = oP (a−2
T ãT ). Third,

B3 := σ−2
T ‖(LkΣ

−1
k )∞ − LΣ−1‖2‖

T∑
t=k+1

(Xk
t−1)∞εt‖,

where (·)∞ denotes the infinite sequence (or infinite matrix) obtained from a vector (resp.
a matrix) by appending a tail of zeroes (resp. in both dimensions), and the norm is in `2
(resp. its dual space) in order to comply with the notation of Theorem 3.1 of Strohmer
(2002); that theorem ensures the estimate ‖(LkΣ−1

k )∞ − LΣ−1‖2 = O(k1/2−s) provided that
ri ≤ c (1 + i)−s and li ≤ c (1 + i)−s for some s > 1, c > 0 and all i ∈ N. Under Assumption
1(b), ri ≤ c (1 + i)−s was shown above to hold for s = 2/δ > 1/2 + 1/α and some c > 0. As,
under the hypotheses of Lemma 1, also li ≤ c (1 + i)−s (i ∈ N) for some s > 1/2+1/α, c > 0,
we can define a new s > 1/2 + 1/α such that ‖(LkΣ−1

k )∞ − LΣ−1‖2 = O(k1/2−s) does hold.
Using also that ‖

∑T
t=k+1(Xk

t−1)∞εt‖ = ‖
∑T

t=k+1 Xk
t−1εt‖ = oP (kεaklT ãT ) for all ε > 0, we

find the product of norms in the definition of B3 to be oP (k1/2−s+εaklT ãT ) = oP (k−ωlT ãT )
for some ω > 0 defined by fixing a suffi ciently small ε > 0. For α 6= 1 (and lT = 1) this
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magnitude order is oP (ãT ), whereas for α = 1 the extra assumption that k grows faster
than any slowly varying function of T yields the same magnitude order, so B3 = oP (a−2

T ãT )
because σ−2

T = OP (a−2
T ). Hence, from (11),

Lk(β̂k − βk) = σ−2
T L̃k

T∑
t=k+1

Xk
t−1εt + oP (a−2

T ãT ). (12)

Next, define

J1 :=

∞∑
j=1

(

j∑
i=k+1

l̃iγj−i)
T∑

t=k+1

εt−jεtI|εt−jεt|>ãT

and

J2 :=
∞∑
j=1

(

j∑
i=k+1

l̃iγj−i)
T∑

t=k+1

(εt−jεtI|εt−jεt|≤ãT − µT ).

Then we can write

L̃k

T∑
t=k+1

(Xk
t−1εt − ukµTγ (1)) =

∞∑
j=1

(

min(k,j)∑
i=1

l̃iγj−i)
T∑

t=k+1

(εt−jεt − µT )

=

∞∑
j=1

Aj

T∑
t=k+1

(εt−jεt − µT ) + J1 + J2. (13)

First observe that J1 = oP (ãT ), since

E |ã−1
T J1|δ

′ ≤ a−δ
′

T T E(|ε1ε2|δ
′
I|ε1ε2|>ãT )

∞∑
j=1

|
j∑

i=k+1

l̃iγj−i|δ
′

≤ O (1) (
∞∑
j=1

|γj |δ
′
)(

j∑
i=k+1

|l̃i|δ
′
) = o (1)

by Karamata’s theorem [KT] and the fact that
∑∞

i=k+1 |l̃i|δ
′ → 0 as k → ∞. Second,

J2 = oP (ãT ), since

E J
2
2 =

∞∑
j,h=1

(

j∑
i=k+1

l̃iγj−i)(
h∑

i=k+1

l̃iγh−i)

×
T∑

t,s=k+1

E{(εt−jεtI|εt−jεt|≤ãT − µT )(εs−hεsI|εs−hεs|≤ãT − µT )}

≤ 4T E(ε2
1ε

2
2I|ε1ε2|≤ãT )(

∞∑
j=1

|γj |)2(
∞∑

i=k+1

|l̃i|)2 = o(ã2
T )

by KT and because
∑∞

i=k+1 |l̃i| → 0 as k → ∞. The lemma then follows by combining (12)
and (13) with J1 + J2 = oP (ãT ). �
Proof of Theorem 2. Given that ak/aT = o (1) and ãk/ãT = o (1) as T → ∞, and∑∞

j=1 j|Aj |δ
′
<∞ by the previous argument, it follows respectively from the proof of Theorem

4.4 of Davis and Resnick (1986) and from their Theorem 3.5 in (1985b) thata−2
T

T∑
t=k+1

ε2
t , ã
−1
T

∞∑
j=1

Aj(

T∑
t=k+1

εt−jεt − µT )

 w→

S, ∞∑
j=1

AjSj

 ,
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with the limit distribution respectively as in the two parts of Theorem 2. This convergence
and Lemma 1 prove Theorem 2. �

7.3 Bootstrap Approximations

7.3.1 Notation and Preparatory Results

Without loss of generality, in this section we set X∗t = 0, t = 1, ..., k. Let V̂k be the k × k
matrix V̂k := (β̂k,u1, ...,uk−1)′, where ui is the ith canonical basis vector in Rk, and let
γ̂j:k := V̂ j

k u1 = (γ̂j , ..., γ̂j−k+1)′, γ̂i := 0 (i < 0). Then, X∗kt =
∑t−k−1

j=0 γ̂j:kε
∗
t−j , t =

k + 1, ..., T .
Further, as a benchmark, we introduce the (infeasible) bootstrap errors ε†t := επ(t)wt (t =

k+1, ..., T ), which are a transformation of the true errors εt instead of the residuals ε̂t, with π
and {wt}∞t=k+1 defined respectively as in the wild, permutations or permuted wild bootstrap.

Associated with ε†t we define the infeasible bootstrap sample X
†
t = 0 (t = 1, ..., k) and X†kt =∑t−k−1

j=0 γj:kε
†
t−j , t = k + 1, ..., T , where X†kt := (X†t , ..., X

†
t−k+1)′, γj:k := (γj , ..., γj−k+1)′,

γi := 0 (i < 0), as well as the product moments matrices S†k00 :=
∑T

t=k+1 X†kt−1(X†kt−1)′ and

S†k0ε :=
∑T

t=k+1 X†kt−1ε
†
t,k, where ε

†
t,k := ε†t + ρ†t,k, ρ

†
t,k :=

∑t−k−1
i=k+1 βiX

†
t−i. Equivalently,

X†t =

{
0 t = 1, ..., k

β′kX
†k
t−1 + ε†t,k t = k + 1, ..., T

.

In order to prove Theorem 3 we will need the following Lemma 3 (proved in the appendix).
We denote by P † probability conditional on {εt}Tt=−∞ (equivalently, on {εt}Tt=−∞ and the
data, as the latter are a measurable function of {εt}Tt=−∞).

Lemma 3 Under Assumption 1 and the conditions k4/T + 1/k → 0, aT
∑∞

i=k+1 |βi| → 0 as
T →∞, it holds in P -probability that:

a. ‖S∗k00 −S
†k
00‖ = oP †(kaka

1+ε
T ) for all ε > 0 and λ−1

min(a−2
T S∗k00 ) = OP † (1) in P -probability.

b. If π is the identity, then ‖S∗k0ε − S
†k
0ε − σ1‖ = oP †(a

1
T ), where σ1 :=

∑T
t=k+1 X∗kt−1(ε̂t −

επ(t),k)wt. If π is a random permutation [r.p.], then ‖S∗k0ε − S
†k
0ε‖ = oP †(T

ε−1/2k1/2akaT ) for
all ε > 0.

c. ‖S†k0ε‖ = OP †(a
1+ε
k ãT ) for π equal to the identity and all ε > 0, and ‖S†k0ε‖ = OP †(hTk)

for an r.p. π, with hTk = min{ k1/2
T 1/2

a2
T ,

k
T max{T 2, a2

T l
2
T }} and lT as in Lemma 2.

7.3.2 Proof of Theorem 3

Let the bootstrap statistic and its corrected version be τ∗ := a2
T ã
−1
T Lk(β̂

∗
k − β̂k) and τ∗c :=

a2
T ã
−1
T Lk{(β̂

∗
k − β̂k) − (S∗k00 )−1σ1}, where σ1 =

∑T
t=k+1 X∗kt−1(ε̂π(t) − επ(t),k)wt. We need

to evaluate the Lévy distance between the distribution of τ∗ and τ∗c conditional of the
data and three conditional distributions of τ := a2

T ã
−1
T Lk(β̂k − βk). To this end, we in-

troduce some auxiliary r.v.’s and evaluate sequentially several distances involving them
as well as τ∗, τ∗c and τ , such that our desired evaluation then follows by the triangle
inequality. The auxiliary r.v.’s are τ † := a2

T ã
−1
T Lk(S

†k
00)−1S†k0ε , τ̆ := a2

T ã
−1
T Lk(S̆

k
00)−1S̆k0ε

and τπ := a2
T ã
−1
T Lk(S

πk
00 )−1Sπk0ε , where we define S̆

k
00 :=

∑T
t=k+2 X̆k

t−1(X̆k
t−1)′ and S̆k0ε :=∑T

t=k+2 X̆k
t−1επ(t) with X̆k

t−1 :=
∑t−k−2

j=0 γj:kεπ(t−j−1), while Sπk00 :=
∑T

t=k+2 Xπk
t−1(Xπk

t−1)′ and

Sπk0ε :=
∑T

t=k+2 Xπk
t−1(επ(t) + ρπt,k) with , Xπk

t−1 :=
∑t−k−2

j=0 γj:kεπ(t−j−1) +
∑∞

j=t−k γj:kεt−j and

finally ρπt,k :=
∑∞

i=k+1 βi(
∑t−k−i−1

m=0 γmεπ(t−m−i) +
∑∞

m=t−k−i γmεt−m−i). The sequential dis-
tances are as follows.
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1. The bootstrap statistics τ∗ and τ∗c , as measurable functions of the data, π and {wt}Tt=k+1,
have the same distribution conditional on the data. Specifically, conditional on the data and
all past {εt}Tt=−∞ it holds that ρ1c := ρL(L∗(τ∗c),L†(τ∗c)) = 0 and ρ1 := ρL(L∗(τ∗),L†(τ∗)) =
0, where ρL denotes Lévy distance, L stands for law, the ∗ superscript for conditioning on
the data, and the † superscript for conditioning on the data and {εt}Tt=−∞.
2. If π is the identity, then τ∗c = a2

T ã
−1
T Lk(S

∗k
00 )−1(S∗k0ε − σ1) = τ † + oP †(1) in P -probability

(proved below), whereas if π is an r.p., also τ∗ = τ † + oP †(1) in P -probability independently
of the specification of {wt}Tt=k+1 (proved below). Hence,

ρ2c := ρL(L†(τ∗c),L†(τ †)) = oP (1), ρ2 := ρL(L†(τ∗),L†(τ †)) = oP (1).

3(a). Under bootstrap schemeswR and symmetry of εt, it holds that ρ
|ε|
3 := ρL(L†(τ †),L|ε|(τ̆)) =

0, where the |ε| subscript denotes conditioning on {|εt|}Tt=−∞.
3(b). Under scheme (πR,w1), τ † = τ̆ so ρ†3 := ρL(L†(τ †),L†(τ̆)) = 0.

4(a). Under symmetry of εt, τ̆ = τπ + oP |ε|(1) in P -probability (discussed below), resulting
in ρL(L|ε|(τ̆),L|ε|(τπ)) = oP (1). Two conclusions follow.

Where π is the identity, it holds that τπ = τ , so the previous convergence becomes
ρ
|ε|
4 := ρL(L|ε|(τ̆),L|ε|(τ)) = oP (1).
Instead, where π is an r.p., τ conditional on {|εt|}kt=−∞ and the order statistics of

{|εt|}Tt=k+1 is distributed like τ
π conditional on {|εt|}Tt=−∞, so now ρ

|e|
4 := ρL(L|ε|(τ̆),L|e|(τ)) =

oP (1), with |e| standing for conditioning on {|εt|}kt=−∞ and the order statistics of {|εt|}Tt=k+1.
4(b). Generally, τ̆ = τπ + oP †(1) in P -probability (discussed below). As τ conditional on
{εt}kt=−∞ and the order statistics of {εt}Tt=k+1 is distributed like τ

π conditional on {εt}Tt=−∞
(equivalently, under P †), it follows that ρe4 := ρL(L†(τ̆),Le(τ)) = oP (1), with e standing for
conditioning on {εt}kt=−∞ and the order statistics of {εt}Tt=k+1.

Next we combine the previous evaluations. First, we can conclude that, for π equal to
the identity (scheme πid, wild bootstrap),

ρL(L∗(τ∗c),L|ε|(τ)) ≤ ρ1c + ρ2c + ρ
|ε|
3 + ρ

|ε|
4 = oP (1) ,

which is equivalent to the convergence in Theorem 3(a). On the other hand, for an r.p. π,

ρL(L∗(τ∗),Le(τ)) ≤ ρ1 + ρ2 + ρ†3 + ρe4 = oP (1) for (πR,w1),

ρL(L∗(τ∗),L|e|(τ)) ≤ ρ1 + ρ2 + ρ
|ε|
3 + ρ

|e|
4 = oP (1) for (πR,wR);

hence, Theorem 3(b,c).

It remains to complete steps 2 and 4 outlined above.
Step 2. Let σid1 := Iπ=idσ1. The next evaluation is valid for Lk 6= 0 of type m× k, m ∈ N:

‖Lk‖−1‖Lk(S∗k00 )−1(S∗k0ε − σid1 )− Lk(S†k00)−1S†k0ε‖
≤ ‖(S∗k00 )−1 − (S†k00)−1‖‖S∗k0ε − σid1 ‖+ ‖(S†k00)−1‖2‖S∗k0ε − σid1 − S

†k
0ε‖

≤ ‖(S†k00)−1‖22‖S∗k00 − S
†k
00‖

1− ‖(S†k00)−1‖2‖S∗k00 − S
†k
00‖

(‖S†k0ε‖+ ‖S∗k0ε − σid1 − S
†k
0ε‖)

+‖(S†k00)−1‖2‖S∗k0ε − σid1 − S
†k
0ε‖

with P †-probability approaching 1 in P -probability, as ‖(S†k00)−1‖2‖S∗k00 − S
†k
00‖ = oP †(1) in

P -probability by Lemma 3. Using again Lemma 3 and the conditions k4/T → 0 (for πid)
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and k5/T → 0, k1+2/α+ζ/T → 0 (for πR and some ζ > 0) it follows that for small enough
ε > 0,

‖Lk‖−1|Lk(S∗k00 )−1(S∗k0ε − σid1 )− Lk(S†k00)−1S†k0ε |

≤ oP †(kaka
ε−3
T )

1 + oP †(1)

(
Iπ=idaka

1+ε
T + Iπ=r.p.{hTk + T ε−1/2k1/2akaT }

)
+a−2

T oP †(Iπ=idaT + Iπ=r.p.T
ε−1/2k1/2akaT )

= oP †(a
−1
T ) in P -probability

for all the three bootstrap schemes, from where step 2 follows.

Step 4. This step is analogous to step 2, prepared by Lemma 3’s estimates involving ρ, with
sgn εt playing the role of wt. �

A Appendix: Extended Proofs

A.1 Introduction

This appendix contains additional theoretical results and proofs for the theory stated in the
paper. The appendix is organized as follows. Section A.2 provides a lemma with two tail
inequalities regarding the series of the coeffi cients from the AR(∞) representations. Section
A.3 reports the proof of Lemma 2 and corollaries from Section 6. Section A.4 contains
proofs of the results given in Section 7.3.1. Finally, Section A.5 discusses the case of multiple
restrictions.

A.2 A Tail Inequality

We first establish two inequalities between the tails of the series of autoregressive coeffi cients
and their powers.

Lemma A.1 Under Assumption 1, let k2/T + 1/k → 0 as T →∞. Then for large T , for η
in a suffi ciently small left neighborhood of α∧1 := min{α, 1} and for ζ > 0 suffi ciently small,
it holds that

ãTa
−2
T (k

∞∑
j=k+1

|βj |η)1/η ≤ ãTa−ζ−2
T +

∞∑
j=k+1

|βj |. (A.1.1)

If k3/T + 1/k → 0 as T →∞, then also

ãTa
−2
T (k

∞∑
j=k+1

|βj |η)1/η ≤ ãTa−9/4
T + a

−1/5
T

∞∑
j=k+1

|βj |. (A.1.2)

Proof. In the case of a finite-order AR representation the inequality is obvious, so we discuss
the opposite case.

From
∑∞

j=1 j
2/δ|βj | <∞ it follows that |βj | ≤ j−2/δ for large j. For fixed k, the expression

(
∑∞

j=k+1 |βj |)−η
∑∞

j=k+1 |βj |η cannot be prolonged by continuity to the zero sequence in `2,
so we consider separately the sets

Bl := {{|βj |}∞j=k+1 : 0 ≤ |βj | ≤ a
−ζ
T j−2/δ, j = k + 1, ...},

Bu := {{|βj |}∞j=k+1 : a−ζT j−2/δ ≤ |βj | ≤ j−2/δ, j = k + 1, ...}.
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Using the upper bound in the standard estimate

(K + 1)1−s

s− 1
≤

∞∑
j=K+1

j−s ≤ K1−s

s− 1
for s > 1, (A.1.3)

we find that on Bl,

ãTa
−2
T (k

∞∑
j=k+1

|βj |η)1/η ≤ CãTa−ζ−2
T (k + 1)

2(δ−η)
δη = o(ãTa

−ζ−2
T )

for T ≥ 2, δ < η and suffi ciently small ζ > 0. If Bu is equipped with the `2 metric, it becomes
a compact in `2, for it is closed, bounded and for every ε > 0 there exists an N ∈ N such
that for all {|βj |}∞j=k+1 ∈ Bu it holds that

∑∞
j=N β

2
j ≤

∑∞
j=N j

−4/δ < ε. The expression
(
∑∞

j=k+1 |βj |)−η
∑∞

j=k+1 |βj |η defines a continuous real function on Bu and, hence, attains a
maximum there. Let {|β]j |}∞j=k+1 denote a maximizing sequence; by examining directional

derivatives, it follows that |β]j | (j = k + 1, ...) satisfy

|β]j | =


a−ζT j−2/δ if B] < a−ζT j−2/δ

B] if a−ζT j−2/δ ≤ B] < j−2/δ

j−2/δ if j−2/δ ≤ B]

with B] =
(∑∞

j=k+1 |β
]
j |
/∑∞

j=k+1 |β
]
j |η
) 1
1−η 6= 0. We examine this condition without at-

tempting to find all |β]j | exactly.
As B] > 0 and j−2/δ is decreasing in j, |β]j | = j−2/δ necessarily holds from some index

onwards. Let K2 ≥ k be the smallest natural ≥ k such that |β]j | = j−2/δ for j ≥ K2 +1. Then

(K2 + 1)−2/δ ≤ B] and, if K2 > k, then B] < K
−2/δ
2 and |β]j | 6= j−2/δ for j = k + 1, ...,K2.

Still if K2 > k, then either |β]k+1| = B] or |β]k+1| = a−ζT j−2/δ > B]. In the former case it

must be that a−ζT (k + 1)−2/δ ≤ B], so a−ζT j−2/δ ≤ B] for all j ≥ k + 1, the value a−ζT j−2/δ

is never taken by |β]j | and at K2 a switch between B] and j−2/δ takes place; define K1 = k

in this case. On the other hand, if |β]k+1| = a−ζT (k + 1)−2/δ > B], let K1 < K2 be the

largest natural j such that a−ζT j−2/δ > B] for j = k+ 1, ...,K1. Then at K1 a switch between
a−ζT j−2/δ and B] or j−2/δ takes place.

Summarizing,

|β]j | =

 a−ζT j−2/δ k + 1 ≤ j ≤ K1

B] K1 + 1 ≤ j ≤ K2

j−2/δ j ≥ K2 + 1, ...,

with

B] =

(
a−ζT

∑K1
j=k+1 j

−2/δ + (K2 −K1)B] +
∑∞

j=K2+1 j
−2/δ

a−ζηT

∑K1
j=k+1 j

−2η/δ + (K2 −K1)B]η +
∑∞

j=K2+1 j
−2η/δ

) 1
1−η

,

where the first two conditions may be satisfied by an empty set of j’s. If switches do occur,
then a−ζT (K1 + 1)−2/δ ≤ B] ≤ a−ζT K

−2/δ
1 holds at a switch away from the a−ζT j−2/δ branch,

and (1 +K2)−2/δ ≤ B] ≤ K−2/δ
2 at the start of the j−2/δ branch.

Solving for B] in its defining equation gives

B] =

(
a−ζT

∑K1
j=k+1 j

−2/δ +
∑∞

j=K2+1 j
−2/δ

a−ζηT

∑K1
j=k+1 j

−2η/δ +
∑∞

j=K2+1 j
−2η/δ

) 1
1−η
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and using (A.1.3), it follows that B] satisfies

a−ζT {(k + 1)1−2/δ −K1−2/δ
1 }+ (K2 + 1)1−2/δ

a−ζηT (k1−2η/δ − (K1 + 1)1−2η/δ) +K
1−2η/δ
2

≤ 2− δ
2η − δ (B])1−η (A.1.4)

≤ a−ζT k1−2/δ +K
1−2/δ
2

a−ζηT {(k + 1)1−2η/δ −K1−2η/δ
1 }+ (K2 + 1)1−2η/δ

We examine the implications of this inequality and the switching conditions for subsequential
limits. Two cases are possible.

1. If two switches occur, then K2/K1 ∼ a
δζ/2
T from the switching conditions. Let

a−ζT (k/K2)1−2/δ → c as T →∞, possibly along a subsequence; we are looking for the values
of c that can occur. Passing to the (subsequential) limit in (A.1.4), it follows that

c+ 1 ≤ 2− δ
2η − δ (limK

2/δ
2 B])1−η ≤ c+ 1,

and since K2/δ
2 B] → 1, the unique subsequential limit is c = 2 (1− η) /(2η − δ), and thus,

it is the limit of a−ζT (k/K2)1−2/δ as T → ∞. Further, since a2
TK

2/δ
1 B] → 1, we find that

K1 ∼ c
δ

2−δ a
ζδ2

2(2−δ)
T k and K2 ∼ c

δ
2−δ a

ζδ
2−δ
T k. Then

(
∑∞

j=k+1 |βj |η)1/η∑∞
j=k+1 |βj |

=
(a−ζηT

∑K1
j=k+1 j

−2η/δ+(K2−K1)B]η+
∑∞
j=K2+1

j−2η/δ)1/η

a−ζT
∑K1
j=k+1 j

−2/δ+(K2−K1)B]+
∑∞
j=K2+1

j−2/δ

∼ (c1a
−ζη
T k1−2η/δ+c2a

− ζ(2η−δ)
2−δ

T k1−2η/δ)1/η

c3a
−ζ
T k1−2/δ

∼ c4(a
ζδ
2−δ
T k)

1−η
η

for some positive c1,2,3,4, and

ãTa
−2
T

(k
∑∞

j=k+1 |βj |η)1/η∑∞
j=k+1 |βj |

∼ c4ãTa
−2
T k1/η(a

ζδ
2−δ
T k)

1−η
η = o (1)

for k2/T → 0, η in a suffi ciently small left neighbourhood of α ∧ 1 and ζ > 0 suffi ciently
small. The same expression is o(a−1/5

T ) for k3/T → 0 and ζ = 1
4 .

2. Alternatively, if the value of a−ζT j−2/δ is not taken by any |β]j |, we are left with

(K2 + 1)1−2/δ

K
1−2η/δ
2

≤ 2− δ
2η − δ (B])1−η ≤ K

1−2/δ
2

(K2 + 1)1−2η/δ

or equivalently,(
2η−δ
2−δ

) 1
1−η
(

1 + 1
K2

) δ−2
δ(1−η)

K
− 2
δ

2 ≤ B] ≤
(

2η−δ
2−δ

) 1
1−η
(

1 + 1
K2

) 2−δ
δ(1−η)

(K2 + 1)−
2
δ .

As (K2 + 1)−2/δ ≤ B] ≤ K−2/δ
2 should also hold, it follows that

2η − δ
2− δ

(
1 +

1

K2

) δ−2
δ

≤ 1 ≤ 2η − δ
2− δ

(
1 +

1

K2

) 2−δ
δ

,

which is equivalent to K2 ≤
[
{(2− δ)/(2η − δ)}

δ
2−δ − 1

]−1
for η ∈ ( δ2 , 1). As this is incon-

sistent with K2 > k → ∞ as T → ∞, for large T the maximizing sequence is |β]j | = j−2/δ,
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j ≥ k + 1. Therefore,
∑∞

j=1 j
2/δ|βj | <∞ implies for large T that∑T

j=k+1 |βj |η

(
∑T

j=k+1 |βj |)η
≤
∑T

j=k+1 j
−2η/δ

(
∑T

j=k+1 j
−2/δ)η

≤
δ

2η−δk
1−2η/δ

( δ
2−δ )η(k + 1)η−2η/δ

≤ ck1−η

for obvious choices of c, so

ãTa
−2
T

(k
∑∞

j=k+1 |βj |η)1/η∑∞
j=k+1 |βj |

≤ c1/ηãTa
−2
T k2/η−1 =

{
o (1) if k2/T → 0

o(a
−1/5
T ) if k3/T → 0

for η smaller than but close to α ∧ 1.
This proves the lemma. �

A.3 Additional proofs

Tohether with the matrix norms ‖ · ‖2 and ‖ · ‖ employed in the the paper, here we also use
the linear space matrix norms ‖ · ‖1 := sup‖x‖1=1 ‖(·)x‖1 and ‖ · ‖∞ := sup‖x‖∞=1 ‖(·)x‖∞
induced respectively by the 1 and max vector norms.

A.3.1 Proof of Lemma 2

Regarding Sk00 of part (a), we argue first that ‖Sk00σ
−2
T −Σk‖2 = OP (lT ãTa

−2
T ) max{kεak, k} =

oP (1) when k2/T → 0. Then λmin(Sk00σ
−2
T ) ≥ λmin(Σk)−‖Sk00σ

−2
T −Σk‖2 = λmin(Σk)+oP (1)

by Weyl’s inequality (Seber, 2008, p.117), so λmin(Sk00σ
−2
T ) is bounded away from zero in

probability and (Sk00)−1 exists with probability approaching one. Further we use the fact
that

‖(Sk00)−1σ2
T − Σ−1

k ‖2 ≤
‖Σ−1

k ‖22‖Sk00σ
−2
T − Σk‖2

1− ‖Σ−1
k ‖2‖Sk00σ

−2
T − Σk‖2

if ‖Σ−1
k ‖2‖Sk00σ

−2
T − Σk‖2 < 1. The latter inequality holds with probability approaching one

since ‖Σ−1
k ‖2 is bounded as k → ∞ and ‖Sk00σ

−2
T − Σk‖2 = oP (1), so we can conclude that

also
‖(Sk00)−1σ2

T − Σ−1
k ‖2 = OP (lT ãTa

−2
T ) max{kεak, k}.

The proof of part (a) is completed observing that a−2
T σ2

T is bounded away from zero in
probability as it converges in distribution to an a.s. positive (α/2-stable) r.v.

We present now the evaluation of ‖Sk00σ
−2
T −Σk‖2. A generic element of Sk00 is

∑T−1
t=k Xt−iXt−j =

ckij + ξ≤ij + ξ>ij (for 0 ≤ i, j ≤ k − 1), where ckij :=
∑T−1

t=k

∑∞
v=0 ε

2
t−max(i,j)−vγvγv+|j−i| and

ξRij :=
∑T−1

t=k

∑∞
u,v=0 I{u6=v+j−i}γuγvεt−i−uεt−j−vI|εt−i−uεt−j−v |RãT ,

R ∈ {>,≤}. With Ck := (ckij)
k−1
i,j=0, it holds that

‖Sk00 − Ck‖2 ≤ ‖(ξij)
≤
i,j‖2 + ‖(ξ>0,|i−j|)i,j‖2 + ‖(ξ>0,|i−j| − ξ

>
ij)i,j‖2

≤ ‖(ξij)
≤
i,j‖2 + max

i=0,...,k−1

k−1∑
j=0

|ξ>0,|i−j||+
k−1∑
i,j=0

|ξ>0,|i−j| − ξ
>
ij |

since ‖(ξ>0,|i−j|)i,j‖2 ≤ maxi=0,...,k−1
∑k−1

j=0 |ξ>0,|i−j|| as (ξ>0,|i−j|)i,j is symmetric (in general,

‖ · ‖2 ≤ ‖ · ‖1/21 ‖ · ‖
1/2
∞ ). Let first E |ε1| =∞ (so α ∈ (0, 1]). Since ‖ · ‖2 ≤ ‖ · ‖, the inequalities

can be continued as

‖Sk00 − Ck‖2 ≤ (Ξ≤1 + Ξ≤2 )1/2 + 2

k−1∑
j=0

|ξ>0,j |+
k−1∑
i,j=0

|ξ>0,|i−j| − ξ
>
ij |,
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where
Ξ≤1 :=

∑
i,j

∑T−1
s,t=k

∑∞
a,b,u,v=0 IAγaγbγuγvεs−i−aεs−j−bεt−i−uεt−j−v

×I|εs−i−aεs−j−b|≤ãT I|εt−i−uεt−j−v |≤ãT ,
Ξ≤2 :=

∑
i,j

∑T−1
s,t=k

∑∞
a,b,u,v=0 IAcγaγbγuγvεs−i−aεs−j−bεt−i−uεt−j−v

×I|εs−i−aεs−j−b|≤ãT I|εt−i−uεt−j−v |≤ãT ,

A := {#({s− i− a, s− j − b, t− i− u, t− j − v}) = 4}, Ac := {#({s− i− a, s− j − b, t− i−
u, t− j − v}) = 2 or 3}. Further,

E |Ξ≤1 | ≤ k2T 2
E(|ε1ε2|I|ε1ε2|≤ãT )2(

∑∞
u=0 |γu|)

4 = O(k2ã2
T )

for α ∈ (0, 1), as ã−1
T T E(|ε1ε2|I|ε1ε2|≤ãT ) → α/(1 − α) by Karamata’s theorem [KT], and

E |Ξ≤1 | = O(k2l2T ã
2
T ) for α = 1, as ã−1

T T E(|ε1ε2|I|ε1ε2|≤ãT ) is slowly varying in this case.
Similarly,

E |Ξ≤2 | ≤ 4k2T E(|ε2
1ε

2
2|I|ε1ε2|≤ãT )(

∑∞
u=0 |γu|)

4 = O(k2ã2
T )

by KT, so Ξ≤1 + Ξ≤2 = OP (k2l2T ã
2
T ). Also, for every η ∈ (δ, α),

E |
k−1∑
j=0

|ξ>0,j ||η ≤ kT E(|ε1ε2|ηI|ε1ε2|>ãT )(

∞∑
u=0

|γu|η)2 = O(kãηT ) (A.1.5)

by KT with E(|ε1ε2|η) < ∞, so
∑k−1

j=0 |ξ>0,j | = OP (k1/ηãT ) by Markov’s inequality, and by

letting η ↑ α,
∑k−1

j=0 |ξ>0,j | = oP (kεakãT ) for every ε > 0. Similarly, since |ξ>0,|i−j| − ξ
>
ij | does

not exceed

(

k−1∑
t=k−i∧j

+

T−1∑
t=T−i∧j

)

∞∑
u,v=0

I{u6=v+|j−i|}|γu||γv||εt−uεt−|j−i|−v|I|εt−uεt−|j−i|−v |>ãT ,

with i ∧ j := min(i, j), it follows that

E |
k−1∑
i,j=0

|ξ>0,|i−j| − ξ
>
ij ||η ≤ (k + 1)3

E(|ε1ε2|ηI|ε1ε2|>ãT )(
∞∑
u=0

|γu|η)2 (A.1.6)

is O((k3/T )ãηT ) = o(kãηT ), so
∑k−1

i,j=0 |ξ>0,|i−j|−ξ
>
ij | = oP (kεakãT ) for every ε > 0. By combining

these results, also ‖Sk00 − Ck‖2 = oP (kεaklT ãT ).
Instead, for E |ε1| <∞ (so α ∈ [1, 2)), we write ‖(ξij)

≤
i,j‖2 ≤

√
2(Ξ≤3 + Ξ≤4 )1/2 with

Ξ≤3 :=
∑

i,j{
∑T−1

t=k

∑∞
u,v=0 I{u6=v+j−i}γuγv(εt−i−uεt−j−vI|εt−i−uεt−j−v |≤ãT − µT )}2,

Ξ≤4 := µ2
T

∑
i,j{
∑T−1

t=k

∑∞
u,v=0 I{u6=v+j−i}γuγv}2

and µT := E(ε1ε2I|ε1ε2|≤ãT ), so

‖Sk00 − Ck‖2 ≤
√

2(Ξ≤3 + Ξ≤4 )1/2 + 2

k−1∑
j=0

|ξ>0,j |+
k−1∑
i,j=0

|ξ>0,|i−j| − ξ
>
ij |.

The terms in the upper bound satisfy: (i) Ξ≤3 = OP (k2ã2
T ), as

E |Ξ≤3 | ≤ 4k2T E(ε1ε2I|ε1ε2|≤ãT − µT )2(
∑
|γu|)4 ≤ O(k2T ) E(|ε1ε2|2I|ε1ε2|≤ãT )
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is O(k2ã2
T ) by independence and KT; (ii) |Ξ≤4 | ≤ µ2

Tk
2T 2(

∑
|γu|)4 = O(k2ã2

T ) for α ∈ (1, 2)
since

|µT | =
∣∣E(ε1ε2I|ε1ε2|≤ãT )

∣∣ = | − E(ε1ε2I|ε1ε2|>ãT )| (A.1.7)

≤ E(|ε1ε2|I|ε1ε2|>ãT ) = O(T−1ãT )

using E (ε1ε2) = 0 and KT, whereas |Ξ≤4 | = OP (k2T 2) = OP (k2l2Ta
2
T ) for α = 1 as µT = O (1);

(iii) 2
∑k−1

j=0 |ξ>0,j | +
∑k−1

i,j=0 |ξ>0,|i−j| − ξ
>
ij | = OP (kãT ) for α ∈ (1, 2) by (A.1.5)-(A.1.6) with

η = 1, and 2
∑k−1

j=0 |ξ>0,j |+
∑k−1

i,j=0 |ξ>0,|i−j| − ξ
>
ij | = OP (kT ) = OP (klT ãT ) for α = 1 using the

same displays. Thus, ‖Sk00 − Ck‖2 = OP (klT ãT ) in the case E |ε1| < ∞, and by the earlier
argument, ‖Sk00 − Ck‖2 = OP (lT ãT ) max{kεak, k} for all α ∈ (0, 2) and ε > 0.

In its turn,

ckij = r|i−j|

T−1∑
t=k

ε2
t−max(i,j) +

∞∑
v=0

ρijv [ε2
k−max(i,j)−v − ε

2
T−max(i,j)−1−v], (A.1.8)

where ρijv :=
∑∞

u=v+1 γuγu+|j−i| has |ρ
ij
v | ≤

∑∞
u=v+1 γ

2
u := γ̃2

v. For δ of Assumption 1(b) it

follows that
∑∞

v=0 |ρ
ij
v |δ/2 ≤

∑∞
v=0

∑∞
u=v+1 |γu|δ =

∑∞
u=1 u|γu|δ <∞, so the series in (A.1.8)

are a.s. convergent because ε2
t has tail index α/2. Further, as r

2
|i−j| ≤ r

2
0,

‖Σkσ
2
T − Ck‖22 ≤ ‖Σkσ

2
T − Ck‖2 (A.1.9)

≤ 3(
k∑
t=1

ε2
t +

T∑
t=T−k

ε2
t )

2
∑
i,j

r2
ij + 3

∑
i,j

(
∞∑
v=0

γ̃2
vε

2
T−max(i,j)−1−v)

2

+3
∑
i,j

(

∞∑
v=0

γ̃2
vε

2
k−max(i,j)−v)

2 ≤ 3k2[OP (a4
k)r

2
00

+ max
i=1,...,k

(

∞∑
v=0

γ̃2
vε

2
T−i−v)

2 + max
i=1,...,k

(

∞∑
v=0

γ̃2
vε

2
k−i−v)

2] = OP (k2a4
k)

using that maxi=1,...,k |a−2
k

∑∞
v=0 γ̃

2
vε

2
T−i−v|, maxi=1,...,k |a−2

k

∑∞
v=0 γ̃

2
vε

2
k−i−v|, a

−2
k

∑k
t=1 ε

2
t and

a−2
k

∑T
t=T−k ε

2
t converge weakly to a.s. finite r.v.’s (see Theorem 3.2 of Davis and Resnick

(1985a) for the former two, as ε2
t are in the α/2-stable domain of attraction with normalisation

a2
T ). From the triangle inequality and the condition k2/T → 0, we conclude that, for every
ε > 0,

‖Sk00 − Σkσ
2
T ‖2 = OP (lT ãT ) max{kεak, k}. (A.1.10)

Regarding Sk0ε in part (b), first,

‖
T∑

t=k+1

Xk
t−1εt‖2 =

k∑
i=1

(

T∑
t=k+1

∞∑
j=0

γjεt−j−iεt)
2.

For {εt} with E |ε1| =∞ (and hence, α ≤ 1), we write ‖
∑T

t=k+1 Xk
t−1εt‖2 ≤ 2{(Λ>1 )2 + Λ1 +

Λ2} with

Λ>1 :=
∑k

i=1

∑T
t=k+1

∑∞
j=0 |γj ||εt−j−iεt|I|εt−j−iεt|>ãT

Λ1 :=
∑k

i=1

∑T
s,t=k+1

∑∞
h,j=0 IBγhγjεs−h−iεsεt−j−iεtI|εs−h−iεs|≤ãT I|εt−j−iεt|≤ãT ,

Λ2 :=
∑k

i=1

∑T
s,t=k+1

∑∞
h,j=0 IBcγhγjεs−h−iεsεt−j−iεtI|εs−h−iεs|≤ãT I|εt−j−iεt|≤ãT ,
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B := {#({s, t, s−h−i, t−j−i}) = 4}, Bc := {#({s, t, s−h−i, t−j−i}) = 2 or 3}. Similarly
to the evaluations of (Ξ>)2,Ξ1,2, we find for η ∈ (δ, α) that E |Λ>1 |η = O(kãηT ), E |Λ1| =
O(kl2T ã

2
T ) and E |Λ2| = O(kã2

T ), so Λ>1 = oP (kεakãT ) for every ε > 0, Λ1 = OP (kl2T ã
2
T ) for

lT as in part (a), and Λ2 = OP (kã2
T ), giving ‖

∑T
t=k+1 Xk

t−1εt‖ = oP (kεaklT ãT ) for every
ε > 0. On the other hand, in the case E |ε1| < ∞ (where α ≥ 1), ‖

∑T
t=k+1 Xk

t−1εt‖2 ≤
3(Λ>2 + Λ3 + Λ4) with

Λ>2 :=
∑k

i=1(
∑T

t=k+1

∑∞
j=0 |γj ||εt−j−iεt|I|εt−j−iεt|>ãT )2

satisfying by KT E |Λ>2 |η/2 ≤ kT E(|ε1ε2|ηI|ε1ε2|>ãT )(
∑
|γu|η) = O(kãηT ) for η ∈ [1, α), α > 1,

whereas E |Λ>2 |1/2 = O (kT ) = O (klT ãT ) for α = 1, so Λ>2 = OP (kεa2
kl

2
T ã

2
T ) by Markov’s

inequality, and

Λ3 :=
∑k

i=1{
∑T

t=k+1

∑∞
j=0 γj(εt−j−iεtI|εt−j−iεt|≤ãT − µT )}2 = OP (kã2

T ),

Λ4 := µ2
T

∑k
i=1(

∑T
t=k+1

∑∞
j=0 γj)

2 = O(kl2T ã
2
T )

as Ξ3,4 earlier. Thus, ‖
∑T

t=k+1 Xk
t−1εt‖ = OP (kεaklT ãT ) for every ε > 0 in the case E |ε1| <

∞, and by the previous argument, for all α ∈ (0, 2).
Second,

‖
T∑

t=k+1

Xk
t−1ρt,k‖ = {

k∑
i=1

(

∞∑
j=k+1

βj

T∑
t=k+1

Xt−iXt−j)
2}1/2

≤
√

2
k∑
i=1

∞∑
j=k+1

|βj ||ckij |+
√

2{
k∑
i=1

(
∞∑

j=k+1

βjξij)
2}1/2

where ckij :=
∑T−1

t=k

∑∞
v=0 ε

2
t−j−vγvγv+j−i is

ckij = rj−i

T−1∑
t=k

ε2
t−j −

∞∑
v=0

ρijv ε
2
T−j−v−1 +

∞∑
v=0

ρijv ε
2
k−j−v

and ξij :=
∑T−1

t=k

∑∞
u=0

∑∞
v=0 I{u6=v+j−i}γuγvεt−i−uεt−j−v; cf. (A.1.8) with i < j. We find

that (i)

k∑
i=1

∞∑
j=k+1

|βj ||rj−i||
T−1∑
t=k

ε2
t−j ≤ {

∞∑
j=k+1

|βj |}{
T−1∑
t=k

∞∑
j=k+1

(

k∑
i=1

|rj−i|)ε2
t−j},

where
∑T−1

t=k

∑∞
j=k+1(

∑k
i=1 |rj−i|)ε2

t−j is distributed like

T−k−1∑
t=0

∞∑
j=1

(

j+k−1∑
i=j

|ri|)ε2
t−j ≤ T E[ε2

1I|ε1|≤aT ]

∞∑
j=1

∞∑
i=j

|ri|

+
T−1∑
t=0

∞∑
j=1

(
∞∑
i=j

|ri|)(ε2
t−j − E[ε2

t−jI|εt−j |≤aT ]) = OP (a2
T )

since ε2
t have tail index α/2 and

∞∑
j=1

(
∞∑
i=j

|ri|)δ/2 ≤
∞∑
s=0

|γs|δ/2
∞∑
j=1

j|γs+j |δ/2 ≤
∞∑
s=0

|γs|δ/2
∞∑
s=0

s|γs|δ/2 <∞
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by Assumption 1(b), so Theorem 4.1 of Davis and Resnick (1985a) applies (with their cj =∑∞
i=j |ri|) jointly with KT; (ii)

k∑
i=1

∞∑
j=k+1

|βj |
∞∑
v=0

|ρijv |ε2
T−j−v−1 ≤ {

∞∑
j=k+1

|βj |}{
k∑
i=1

∞∑
j=k+1

∞∑
v=0

|ρijv |ε2
T−j−v−1}

with

E(

k∑
i=1

∞∑
j=k+1

∞∑
v=0

|ρijv |ε2
T−j−v−1I|εT−j−v−1|≤aT ) ≤ E(ε2

1I|ε1|≤aT )

k∑
i=1

∞∑
j=k+1

∞∑
v=0

|ρijv |

≤ O(T−1a2
T )

k∑
i=1

∞∑
j=k+1

∞∑
v=0

∞∑
u=v+1

|γu||γu+|i−j|| ≤ O(T−1a2
T )(

∞∑
u=1

u|γu|)2

and similarly, for η ∈ (δ, α),

E(

k∑
i=1

∞∑
j=k+1

∞∑
v=0

|ρijv |ε2
T−j−v−1I|εT−j−v−1|>aT )η/2 ≤ E(|ε1|ηI|ε1|≤aT )(

∞∑
u=1

u|γu|η/2)2

is O(T−1aηT ) by KT, so
∑k

i=1

∑∞
j=k+1

∑∞
v=0 |ρ

ij
v |ε2

T−j−v−1 = oP (a2
T ); (iii),

k∑
i=1

∞∑
j=k+1

|βj |
∞∑
v=0

|ρijv |ε2
k−j−v = oP (a2

T )
∞∑

j=k+1

|βj |

likewise. Thus,
∑k

i=1

∑∞
j=k+1 |βj ||ckij | = OP (a2

T )
∑∞

j=k+1 |βj | by combining the previous esti-
mates.

Further, we split ξij = ξ≤ij + ξ>ij as in the proof of part (a):

ξRij :=
T−1∑
t=k

∞∑
u,v=0

I{u6=v+j−i}γuγvεt−i−uεt−j−vI|εt−i−uεt−j−v |RãT , R ∈ {≤, >},

and for {εt} with E |ε1| =∞ we find that,

E(
k∑
i=1

∞∑
j=k+1

|βj ||ξ
≤
ij |) ≤ TkE(|ε1ε2|I|ε1ε2|≤ãT )(

∞∑
u=0

|γu|)2
∞∑

j=k+1

|βj |

is o(a2
T )
∑∞

j=k+1 |βj | by KT, and similarly, for η ∈ (δ, α),

E(

k∑
i=1

∞∑
j=k+1

|βj ||ξ>ij |)η ≤ TkE(|ε1ε2|ηI|ε1ε2|>ãT )(

∞∑
u=0

|γu|η)2
∞∑

j=k+1

|βj |η

is O(kãηT )
∑∞

j=k+1 |βj |η, so by using (A.1.1), {
∑k

i=1(
∑∞

j=k+1 βjξij)
2}1/2 ≤∑k

i=1

∑∞
j=k+1 |βj ||ξij | = oP (a1−ζ

T ) + OP (a2
T )
∑∞

j=k+1 |βj | for ζ > 0 suffi ciently small, and

‖
∑T

t=k+1 Xk
t−1ρt,k‖ = oP (a1−ζ

T ) + OP (a2
T )
∑∞

j=k+1 |βj | in this case. In the case E |ε1| < ∞,
as in the proof of part (a), we find that, (i),

E(

k∑
i=1

(

∞∑
j=k+1

βjξ
≤
ij)

2) ≤ [

k∑
i=1

∞∑
j=k+1

|βj |E{(ξ
≤
ij)

2}](
∞∑

j=k+1

|βj |) (A.1.11)

≤ k
[
4T E(ε2

1ε
2
2I|ε1ε2|≤ãT ) + T 2µ2

T

]
(

∞∑
u=0

|γu|)4(

∞∑
j=k+1

|βj |)2
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is O(kl2T ã
2
T )(
∑∞

j=k+1 |βj |)2, the inequalities respectively from Cauchy-Schwartz and by sep-
arating products where some ε is squared from those where all ε’s are distinct, and the
magnitude order from KT and (A.1.7), and (ii),

E(
k∑
i=1

∞∑
j=k+1

|βj ||ξ>ij |) ≤ kT E(|ε1ε2|I|ε1ε2|>ãT )(
∞∑
u=0

|γu|)2
∞∑

j=k+1

|βj |

is O (klT ãT )
∑∞

j=k+1 |βj | by KT. Thus,

{
k∑
i=1

(
∞∑

j=k+1

βjξij)
2}1/2 ≤

√
2{

k∑
i=1

(
∞∑

j=k+1

βjξ
≤
ij)

2}1/2 +
√

2
k∑
i=1

∞∑
j=k+1

|βj ||ξ>ij |

isOP (klT ãT )
∑∞

j=k+1 |βj | with klT ãT = o(a2
T ) when k2/T → 0. Finally, ‖

∑T
t=k+1 Xk

t−1ρt,k‖ =

OP (a2
T )
∑∞

j=k+1 |βj | when E |ε1| <∞.
The magnitude order of Sk0ε is obtained by combining the magnitude orders of ‖

∑T
t=k+1 Xk

t−1εt‖
and ‖

∑T
t=k+1 Xk

t−1ρt,k‖. �

A.3.2 Proof of Corollary 1

Using the fact that Γ̂−1
k is the lower triangular Toeplitz matrix with first column (1 : −β̂′k−1)′,

it can be checked directly that Γ̂−1
k γk = (Ik − Γk)β̂k + γk, from where

γ̂k − γk = Γ̂kβ̂k − γk = Γ̂k(β̂k − Γ̂−1
k γk) = Γ̂k(Γkβ̂k − γk)

= Γ̂k(Γkβ̂k − Γkβk) = Γ̂kΓk(β̂k − βk).

Hence, ‖γ̂k − γk‖1 ≤ ‖Γ̂k‖1‖Γk‖1‖β̂k − βk‖1, where ‖ · ‖1 equals the maximum absolute
column sum. As ‖Γk‖1 ≤ ‖γ‖1 :=

∑∞
i=0 |γi| <∞, and thus,

‖Γ̂k‖1 ≤ ‖Γk‖1 + ‖Γ̂k − Γk‖1 ≤ ‖γ‖1 + ‖γ̂k − γk‖1,

it holds further that ‖γ̂k − γk‖1 ≤ (‖γ‖1 + ‖γ̂k − γk‖1)‖γ‖1‖β̂k − βk‖1 and, for small
‖β̂k − βk‖1, ‖γ̂k − γk‖1 ≤ ‖β̂k − βk‖1‖γ‖21/(1 − ‖γ‖1‖β̂k − βk‖1). Hence, ‖γ̂k − γk‖1 =
OP (‖β̂k−βk‖1) = OP (k1/2‖β̂k−βk‖) = oP (1) by (10) with k2/T → 0 and k1/2

∑∞
j=k+1 |βj | ≤∑∞

j=k+1 j|βj | = o (1).

Similarly, ‖γ̂k − γk‖ ≤ ‖Γ̂k‖2‖Γk‖2‖β̂k − βk‖, with

‖Γ̂k‖2 ≤ ‖Γk‖2 + ‖Γ̂k − Γk‖2 ≤ ‖Γk‖2 + ‖Γ̂k − Γk‖1/21 ‖Γ̂k − Γk‖1/2∞
≤ ‖Γk‖2 + ‖γ̂k − γk‖1,

so ‖γ̂k − γk‖ ≤ (‖Γk‖2 + ‖γ̂k − γk‖1)‖Γk‖2‖β̂k − βk‖. Since ‖γ̂k − γk‖1 = oP (1) and
‖Γk‖2 ≤ ‖Γk‖1/21 ‖Γk‖

1/2
∞ ≤ ‖γ‖1 < ∞, it follows that ‖γ̂k − γk‖ = OP (‖β̂k − βk‖) = oP (1).

�

A.3.3 Proof of Corollary 2

It holds that |ĈT (λ)− C (λ) | ≤ RT (λ) + IT (λ) with

RT (λ) :=

∣∣∣∣∣∣|1 +

k∑
j=1

γ̂j cos (λj) |2 − |1 +

∞∑
j=1

γj cos (λj) |2
∣∣∣∣∣∣

≤
(

2 +
∞∑
j=1

|γj |+
k∑
j=1

|γ̂j |
)( k∑

j=1

|γ̂j − γj |+
∞∑

j=k+1

|γj |
)
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≤
(

2 + 2
∞∑
j=1

|γj |+ ‖γ̂k − γk‖1
)(
‖γ̂k − γk‖1 +

∞∑
j=k+1

|γj |
)

= oP (1)

since ‖γ̂k−γk‖1 = oP (1) by the proof of Corollary 1 and
∑∞

j=1 |γj | <∞. Similarly, IT (λ) :=∣∣∣|∑∞j=1 γj sin (λj) |2 − |
∑k

j=1 γ̂j sin (λj) |2
∣∣∣ = oP (1) using the same upper bounds. As these

bounds are independent of λ, convergence is uniform in λ. �

A.4 Proofs from Section 7.3.1

Similarly to Lemma 8.3 of Kreiss (1997), the following bounds can be established for γ̂j .

Lemma A.2 There exist constants bjk ≥ 0 and C such that, for large k and uniformly in
j ∈ N, it holds that

|γ̂j − γj | ≤
(

1 +
1

k

)−j
OP (‖β̂k − βk‖1 +

∞∑
j=k+1

|βj |) + bjk (A.1.12)

and
∑∞

j=0 bjk ≤ C
∑∞

j=k+1 |βj |.

A.4.1 Proof of Lemma 3

Preparation From ε̂t − εt = (βk − β̂k)′Xk
t−1 + ρt,k it follows that

T∑
t=k+1

(ε̂t − εt) =
T∑

t=k+1

(Xk
t−1)′(βk − β̂k) +

T∑
t=k+1

ρt,k, (A.1.13)

where, (i),
∑T

t=k+1 Xk
t−1 = OP (k1/2aT ) is implied by the Beveridge-Nelson decomposition of

Xt (Xt = γ (1) εt −∆Zt, Zt :=
∑∞

j=0 εt−j
∑∞

i=j+1 γi), which yields

‖
T∑

t=k+1

Xk
t−1‖ ≤ k1/2|γ(1)||

T−1∑
t=k

εt|+ k max
t∈{0,...,k−1}∪{T−k,...,T−1}

(|εt|+ |Zt|)

= OP (k1/2aT lT + kak) = OP (k1/2aT lT )

as a−1
T

∑T−1
t=k εt−a

−1
T T E(ε1I|ε1|≤aT ) = OP (1), a−1

T T E(ε1I|ε1|≤aT ) = lT , and (ii),
∑T

t=k+1 ρt,k =
oP (lT ) by Markov’s inequality. Indeed, for E |ε1| <∞,

(

T∑
t=k+1

ρt,k)
2 ≤ 2(

T∑
t=k+1

∞∑
i=k+1

βi

∞∑
j=0

γjεt−i−jI|εt−i−j |≤aT )2

+2(
T∑

t=k+1

∞∑
i=k+1

βi

∞∑
j=0

γjεt−i−jI|εt−i−j |>aT )2 := 2R≤k + 2R>k

with

ER
≤
k ≤ E(ε2

1I|ε1|≤aT )

T∑
t=k+1

∞∑
i,m=k+1

|βi||βm|
∞∑

j,n=0

|γj ||γn|

+{E(ε1I|ε1|≤aT )}2
T∑

t,s=k+1

∞∑
i,m=k+1

|βi||βm|
∞∑

j,n=0

|γj ||γn|

= O (1) ‖γ‖21(aT

∞∑
i=k+1

|βi|)2 = o (1)
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by using E(ε1I|ε1|≤aT ) = −E(ε1I|ε1|>aT ) and KT (‖γ‖1 :=
∑∞

i=0 |γi|), and

E(R>k )1/2 ≤ E(|ε1|I|ε1|>aT )T
∞∑

i=k+1

|βi|
∞∑
j=0

|γj | = O(lT )(aT

∞∑
i=k+1

|βi|) = o(lT ),

so
∑T

t=k+1 ρt,k = oP (lT ) in this case, whereas for E |ε1| =∞ it holds that

T∑
t=k+1

|ρt,k| ≤
T∑

t=k+1

∞∑
i=k+1

|βi||Xt−i|I|Xt−i|≤aT +
T∑

t=k+1

∞∑
i=k+1

|βi||Xt−i|I|Xt−i|>aT

=: C≤k + C>k

with

EC
≤
k ≤ T E(|X1|I|X1|≤aT )

∞∑
i=k+1

|βi| = O(lT )(aT

∞∑
i=k+1

|βi|) = o(lT ),

E(C>k )η ≤ E(
2T−k−1∑
i=k+1

|XT−i|I|XT−i|>aT
∞∑

j=k+1

|βi|+
∞∑

i=T−k
|X−i|I|X−i|>aT

T+i∑
j=k+1+i

|βj |)η

≤ T E(|X1|ηI|X1|>aT ){2(

∞∑
j=k+1

|βi|)η + T−1
∞∑

i=T−k

T+i∑
j=k+1+i

|βj |η}

≤ O(aηT ){2(
∞∑

j=k+1

|βi|)η +
∞∑

j=T+1

|βj |η}

by KT for η ∈ [δ, α), α ≤ 1, so from aT
∑∞

j=k+1 |βi| → 0 and
∑∞

j=T+1 |βj |η = O(T 1−2η/δ)

(under
∑∞

j=1 j
2/δ|βj | < ∞), it follows that C>k = oP (1) + OP (aTT

1/η−2/δ) = oP (1) as η ∈
[δ, α) can be chosen such that 1/α + 1/η < 2/δ; eventually

∑T
t=k+1 |ρt,k| = oP (lT ) for

E |ε1| =∞. Returning to (A.1.13) and using (10), it follows that for all ε > 0,

T∑
t=k+1

(ε̂t − εt) = OP (k1/2aka
ε
T + lT ) = OP (k1/2aka

ε
T ). (A.1.14)

As (ε̂t − εt,k)2 = {(β̂k − βk)′Xk
t−1}2 and π is a.s. bijective, we find

T∑
t=k+1

(ε̂t − εt,k)2 = (β̂k − βk)′Sk00(β̂k − βk) ≤ ‖β̂k − βk‖2‖Sk00‖2

≤ ‖β̂k − βk‖2(σ2
T ‖Σk‖2 + oP (a2

T )) = OP (a2
T ‖β̂k − βk‖2)

by Lemma 2(a), and since σ2
T = OP (a2

T ) and ‖Σk‖2 = O (1). Next, from (ε̂t − εt)
2 ≤

2(ε̂t − εt,k)2 + 2ρ2
t,k and the a.s. bijectivity of π, it follows that P

π-a.s. (i.e., conditional on
the data and {wt}Tt=k+1, with randomness stemming from π alone),

T∑
t=k+1

(ε̂π(t) − επ(t))
2 =

T∑
t=k+1

(ε̂t − εt)2 =: ‖ε̂T − εT ‖2 (A.1.15)

≤ 2{
T∑

t=k+1

(ε̂t − εt,k)2 + Skρρ} = OP (a2
T ‖β̂k − βk‖2) + 2Skρρ,
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where Skρρ :=
∑T

t=k+1 ρ
2
t,k = oP (lT ) by Markov’s inequality. In fact, for E |ε1| < ∞ it holds

that

Skρρ ≤ 2

T∑
t=k+1

(

∞∑
i=k+1

βi

∞∑
j=0

γjεt−i−jI|εt−i−j |≤aT )2

+2
T∑

t=k+1

(
∞∑

i=k+1

βi

∞∑
j=0

γjεt−i−jI|εt−i−j |>aT )2 =: 2S≤ρρ + 2S>ρρ

with (i)

ES
≤
ρρ =

T∑
t=k+1

E(
∞∑

i=k+1

βi

∞∑
j=0

γjεt−i−jI|εt−i−j |≤aT )2

= E(ε2
1I|ε1|≤aT )

T∑
t=k+1

∞∑
i=k+1

(
i∑

j=k+1

βjγi−j)
2

+{E(ε1I|ε1|≤aT )}2
T∑

t=k+1

∞∑
i,m=k+1

∞∑
j,n=0

I{i+j 6=m+n}βjβmγjγn

≤ O(a2
T )(

∞∑
i=k+1

i∑
j=k+1

|βj ||γi−j |)2 +O(T−1lTa
2
T )(

∞∑
j=k+1

|βj |)2‖γ‖21

≤ O (1) (a2
T

∞∑
j=k+1

|βj |)2‖γ‖21 = o (1)

by using E(ε1I|ε1|≤aT ) = −E(ε1I|ε1|>aT ) and KT, and (ii),

E(S>ρρ)
1
2 ≤ E(|ε1|I|ε1|>aT )T

∞∑
i=k+1

|βi|
∞∑
j=0

|γj | = O(lT )(aT

∞∑
i=k+1

|βi|) = o(lT ),

whereas for E |ε1| = ∞ it holds that (Skρρ)
1/2 ≤

∑T
t=k+1 |ρt,k| = oP (lT ) by the earlier argu-

ment for (A.1.13), so Skρρ = oP (lT ) independently of E |ε1| (as the square of slowly varying is
slowly varying). Thus, continuing (A.1.15),

‖ε̂T − εT ‖2 = OP (a2
T ‖β̂k − βk‖2) + oP (lT ) = oP (a2

T ). (A.1.16)

Further, as ε̂2
t ≤ 2ε2

t + 2(ε̂t − εt)2, it holds P π-a.s. that

T∑
t=k+1

ε̂2
π(t) =

T∑
t=k+1

ε̂2
t =: σ̂2

Tk ≤ 2σ2
T + 2 ‖ε̂T − εT ‖2 = OP (a2

T ).

Proof of part (a) After this preparation, we turn to

S∗k00 − S
†k
00 =

T∑
t=k+2

{
t−k−2∑
j=0

γ̂j:kε
∗
t−j−1

t−k−2∑
j=0

γ̂ ′j:kε
∗
t−j−1

−
t−k−2∑
j=0

γj:kε
†
t−j−1

t−k−2∑
j=0

γ ′j:kε
†
t−j−1}

=

T∑
t=k+2

t−k−2∑
j,i=0

wt−j−1wt−i−1{γ̂j:kγ̂ ′i:kε̂π(t−j−1)ε̂π(t−i−1)

−γj:kγ ′i:kεπ(t−j−1)επ(t−i−1)}.
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Let Gji:k := vec(γj:kγ
′
i:k) and Ĝji:k := vec(γ̂j:kγ̂

′
i:k), such that

∆00 := vec(S∗k00 − S
†k
00) =

T∑
t=k+2

t−k−2∑
j,i=0

wt−j−1wt−i−1(Ĝji:kε̂π(t−j−1)ε̂π(t−i−1)

−Gji:kεπ(t−j−1)επ(t−i−1)).

We split ∆00 into ∆00 = ∆
(1)
00 + ∆

(2)
00 + ∆

(3)
00 with ∆

(1)
00 :=

∑T−1
t=k+1 ε

2
π(t)ct,t,

∆
(2)
00 :=

T−1∑
s,t=k+1

Is 6=twswtεπ(s)επ(t)cs,t

∆
(3)
00 :=

T−1∑
t=k+1

t−k−2∑
j,i=0

Ĝji:kwt−jwt−i(ε̂π(t−j)ε̂π(t−i) − επ(t−j)επ(t−i))

=

T−1∑
s,t=k+1

wswt(ε̂π(s)ε̂π(t) − επ(s)επ(t))d̂s,t,

where

cs,t :=
T−t−1∑

i=max{0,s−t}
(Ĝt−s+i,i:k −Gt−s+i,i:k), d̂s,t :=

T−t−1∑
i=max{0,s−t}

Ĝt−s+i,i:k.

For an r.p. π, with E† denoting expectation under P †, it holds that, first, E† ‖∆(1)
00 ‖ ≤

σ2
T maxt=k+1,...,T ‖ct,t‖, where ct,t remain to be evaluated.
Second, regarding ∆

(2)
00 , for Rademacher wt it holds that

E
† ‖∆(2)

00 ‖2 =
T−1∑

s,t=k+1

Is 6=t E
†(ε2

π(s)ε
2
π(t)){c

′
s,tcs,t + c′s,tct,s} (A.1.17)

= E
†(ε2

π(k+1)ε
2
π(k+2))

T−1∑
s,t=k+1

Is 6=t{c′s,tcs,t + c′s,tct,s}

= OP (T−2a4
T )

T−1∑
s,t=k+1

|c′s,tcs,t + c′s,tct,s|

because

E
†(ε2

π(k+1)ε
2
π(k+2)) =

T∑
u,v=k+1

Iu6=vP{π (k + 1) = u, π (k + 2) = v}ε2
uε

2
v

= O(T−2){σ4
T −

T∑
t=k+1

ε4
t } = OP (T−2a4

T ), (A.1.18)

whereas for wt = 1 a.s. (all t),

E
† ‖∆(2)

00 ‖2 = E
†(ε2

π(k+1)ε
2
π(k+2))

T−1∑
s,t=k+1

Is 6=t{c′s,tcs,t + c′s,tct,s}
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+ E
†(ε2

π(k+1)επ(k+2)επ(T ))

×
T−1∑

s,t,v=k+1

I#{s,t,v}=3{c′s,tcs,v + c′s,tcv,s + c′t,scs,v + c′t,scv,s}

+ E
†(επ(k+1)επ(k+2)επ(T−1)επ(T ))

T−1∑
s,t,u,v=k+1

I#{s,t,u,v}=4c
′
s,tcu,v,

where E†(ε2
π(k+1)ε

2
π(k+2)) = OP (T−2a4

T ) as before,

E
†(ε2

π(k+1)επ(k+2)επ(T )) (A.1.19)

= O(T−3){σ2
T [(

T∑
t=k+1

εt)
2 − σ2

T ]− 2[(
T∑

t=k+1

ε3
t )(

T∑
t=k+1

εt)−
T∑

t=k+1

ε4
t ]}

is OP (T−3a4
T lT ) as powers of slowly varying functions vary slowly, and

E
†(επ(k+1)επ(k+2)επ(T−1)επ(T ))

≤ O(T−4){(
T∑

t=k+1

εt)
4 +

T∑
t=k+1

ε4
t + 4σ4

T + 8(

T∑
t=k+1

ε3
t )(

T∑
t=k+1

εt)} (A.1.20)

is OP (T−4a4
T lT ) because

∑T
t=k+1 εt = OP (aT lT ) and

∑T
t=k+1 ε

i
t = OP (aiT ) (i = 2, ..., 4), so

E
† ‖∆(2)

00 ‖2 = OP (T−2a4
T )

T−1∑
s,t=k+1

Is 6=t|c′s,tcs,t + c′s,tct,s| (A.1.21)

+OP (T−3a4
T lT )

T−1∑
s,t,v=k+1

I#{s,t,v}=3|c′s,tcs,v + c′s,tcv,s + c′t,scs,v + c′t,scv,s|

+OP (T−4a4
T lT )

T−1∑
s,t,u,v=k+1

I#{s,t,u,v}=4|c′s,tcu,v|,

and cs,t remain to be evaluated.

Third, regarding ∆
(3)
00 , for Rademacher wt it holds that

E
† ‖∆(3)

00 ‖2 =
T−1∑

s,t=k+1

E
†(ε̂π(s)ε̂π(t) − επ(s)επ(t))

2{d̂′s,td̂s,t + Is 6=td̂′s,td̂t,s}

≤ E
†(ε̂2

π(k+1) − ε
2
π(k+1))

2
T−1∑
s=k+1

‖d̂s,s‖2

+ E
†(ε̂π(k+1)ε̂π(k+2) − επ(k+1)επ(k+2))

2
T−1∑

s,t=k+1

Is 6=t|d̂′s,td̂s,t + d̂′s,td̂t,s|,

where E†(ε̂2
π(k+1) − ε2

π(k+1))
2 equals

O(T−1)

T∑
s=k+1

(ε̂2
s − ε2

s)
2 ≤ O(T−1) ‖ε̂T − εT ‖2 (σ2

T + ‖ε̂T − εT ‖2)

= OP (T−1a4
T ‖β̂k − βk‖2) + oP (T−1lTa

2
T )
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and is OP (T−1a2
ka

2+ε
T ) for all ε > 0, using (A.1.16) and (10), and also

E
†(ε̂π(k+1)ε̂π(k+2) − επ(k+1)επ(k+2))

2 (A.1.22)

= O(T−2)

T∑
s,t=k+1

Is 6=t(ε̂sε̂t − εsεt)2 ≤ O(T−2)(σ̂2
Tk + σ2

T ) ‖ε̂T − εT ‖2

= OP (T−2a4
T ‖β̂k − βk‖2) + oP (T−2lTa

2
T )

is OP (T−2a2
ka

2+ε
T ) for all ε > 0, so

E
† ‖∆(3)

00 ‖2 = OP (T−1a2
ka

2+ε
T )

T−1∑
s=k+1

‖d̂s,s‖2 (A.1.23)

+OP (T−2a2
ka

2+ε
T )

T−1∑
s,t=k+1

Is 6=t|d̂′s,td̂s,t + d̂′s,td̂t,s|

for all ε > 0, where d̂s,t remain to be evaluated. If wt = 1 a.s. (all t),

E
† ‖∆(3)

00 ‖2 =

T−1∑
s,t=k+1

E
†(ε̂π(s)ε̂π(t) − επ(s)επ(t))

2{d̂′s,td̂s,t + Is 6=td̂′s,td̂t,s}

+ E
†{(ε̂π(k+1)ε̂π(k+2) − επ(k+1)επ(k+2))(ε̂π(k+1)ε̂π(T ) − επ(k+1)επ(T ))}

×
T−1∑

s,t,v=k+1

I#{s,t,v}=3(d̂′s,t + d̂′s,t)(d̂s,v + d̂v,s)

+ E
†{(ε̂π(k+1)ε̂π(k+2) − επ(k+1)επ(k+2))(ε̂π(T−1)ε̂π(T ) − επ(T−1)επ(T ))}

×
T−1∑

s,t,u,v=k+1

I#{s,t,u,v}=4d̂
′
s,td̂u,v,

where |E†{(ε̂π(k+1)ε̂π(k+2) − επ(k+1)επ(k+2))(ε̂π(k+1)ε̂π(T ) − επ(k+1)επ(T ))}| equals

O(T−3)|
T∑

s,t,v=k+1

I#{s,t,v}=3(ε̂sε̂t − εsεt)(ε̂sε̂v − εsεv)|

= O(T−3)
T∑

s=k+1

[{
T∑

t=k+1

Is 6=t(ε̂sε̂t − εsεt)}2 −
T∑

t=k+1

Is 6=t(ε̂sε̂t − εsεt)2]

≤ O(T−3)
T∑

s=k+1

{
T∑

t=k+1

Is6=t(ε̂sε̂t − εsεt)}2

= O(T−3)

T∑
s=k+1

[ε̂2
s{

T∑
t=k+1

Is 6=t(ε̂t − εt)}2 + (ε̂s − εs)2(

T∑
t=k+1

Is 6=tεt)2]

≤ O(T−3)[σ̂2
Tk{

T∑
t=k+1

(ε̂t − εt)}2 + ‖ε̂T − εT ‖2 {σ̂2
Tk + σ2

T + (
T∑

t=k+1

εt)
2}]

isOP (T−3ka2
ka

2+ε
T ) for all ε > 0, using (A.1.14), (A.1.16) and (10), and similarly, |E†{(ε̂π(k+1)ε̂π(k+2)−
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επ(k+1)επ(k+2))(ε̂π(T−1)ε̂π(T ) − επ(T−1)επ(T ))}| equals

O(T−4)|
T∑

s,t,u,v=k+1

I#{s,t,u,v}=4(ε̂sε̂t − εsεt)(ε̂uε̂v − εuεv)|

= O(T−4)|{
T∑

s,t=k+1

Is 6=t(ε̂sε̂t − εsεt)}2

− 4
T∑

s,t,v=k+1

I#{s,t,v}=3(ε̂sε̂t − εsεt)(ε̂sε̂v − εsεv)− 2
T∑

s,t=k+1

Is 6=t(ε̂sε̂t − εsεt)2}|

≤ O(T−4){
T∑

s,t=k+1

Is 6=t(ε̂sε̂t − εsεt)}2 +OP (T−4ka2
ka

2+ε
T )

using previous evaluations, so further

= O(T−4){[
T∑

t=k+1

(ε̂t − εt)]2 + 2
T∑

t=k+1

εt

T∑
s=k+1

(ε̂s − εs) +
T∑

t=k+1

(ε2
t − ε̂2

t )}2

+OP (T−4ka2
ka

2+ε
T ) = O(T−4){(k1/2aka

ε
T + aT lT )k1/2aka

ε
T

+ ‖ε̂T − εT ‖2 + 2 ‖ε̂T − εT ‖ σ̂Tk}2 +OP (T−4ka2
ka

2+ε
T )

which is OP (T−4ka2
ka

2+ε
T ) for all ε > 0. Hence,

E
† ‖∆(3)

00 ‖2 = OP (T−1a2
ka

2+ε
T )

T−1∑
s=k+1

‖d̂s,s‖2

+OP (T−2a2
ka

2+ε
T )

T−1∑
s,t=k+1

Is6=t|d̂′s,td̂s,t + d̂′s,td̂t,s|

+OP (T−3ka2
ka

2+ε
T )

T−1∑
s,t,v=k+1

I#{s,t,v}=3|(d̂′s,t + d̂′s,t)(d̂s,v + d̂v,s)|

+OP (T−4ka2
ka

2+ε
T )

T−1∑
s,t,u,v=k+1

I#{s,t,u,v}=4|d̂′s,td̂u,v|. (A.1.24)

We now turn to cs,t and d̂s,t. As in the proof of Corollary 1,

‖γ̂T−k−2 − γT−k−2‖∞ ≤ ‖γ̂T−k−2 − γT−k−2‖1 (A.1.25)

:=

T−k−2∑
j=1

|γ̂j − γj | = OP (‖β̂k − βk‖1 +

∞∑
j=k+1

|βj |),

‖γ̂T−k−2 − γT−k−2‖ := (

T−k−2∑
j=1

|γ̂j − γj |2)1/2 (A.1.26)

= OP (‖β̂k − βk‖+
∞∑

j=k+1

|βj |).
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Using also the identity
∥∥vec(ab′)

∥∥ = ‖a‖ ‖b‖, the triangle inequality and (10), we obtain, for
all ε > 0 and s, t that

‖cs,t‖ = ‖vec{
T−t−1∑

i=max{0,s−t}
(γ̂t−s+i:k − γt−s+i:k)γ̂ ′i:k + γt−s+i:k(γ̂i:k − γi:k)′}‖

≤ (2‖γ‖+ ‖γ̂T−k−2 − γT+k−2‖)

×
T−t−1∑

i=max{0,s−t}
(‖γ̂t−s+i:k − γt−s+i:k‖+ ‖γ̂i:k − γi:k‖)

= OP (k)‖γ̂T−k−2 − γT−k−2‖ = OP (kaka
ε−1
T )

uniformly in s, t. Thus, E† ‖∆(1)
00 ‖ = OP (kaka

1+ε
T ) and, returning to (A.1.17) and (A.1.21),

E† ‖∆(2)
00 ‖2 = OP (k2a2

ka
2+ε
T ) for all ε > 0.

Further, using (A.1.26), (i),

T−1∑
s=k+1

‖d̂s,s‖2 ≤
T−1∑
s=k+1

(
T−s−1∑
i=0

‖γ̂i:k‖2)2 ≤
T−1∑
s=k+1

(k
T−s−1∑
i=0

|γ̂i|2)2

≤ 2Tk2(‖γ‖4 + ‖γ̂T−k−2 − γT−k−2‖4) = OP (Tk2),

and (ii),

T−1∑
s,t=k+1

Is 6=t|d̂′s,td̂s,t + d̂′s,td̂t,s| ≤
T−1∑

s,t=k+1

Is 6=t(‖d̂s,t‖2 + ‖d̂s,t‖‖d̂t,s‖)

≤ 2
T−1∑

s,t=k+1

Is 6=t(
T−1−max{t,s}∑

i=0

‖γ̂|t−s|+i:k‖‖γ̂i:k‖)2

≤ ‖γ̂T−k−2‖2
T−1∑

s,t=k+1

Is 6=t(
T−1−max{t,s}∑

i=0

‖γ̂|t−s|+i:k‖)2

= O(T 2)(‖γ‖+ ‖γ̂T−k−2 − γT−k−2‖)2(

T−k−2∑
i=0

‖γ̂i:k‖)2

= O(k2T 2)(‖γ‖+ ‖γ̂T−k−2 − γT−k−2‖)4 = OP (k2T 2).

37



Before (iii), observe that, by Assumption 1(b), Lemma A.2 and (10),

T−k−2∑
i=1

i‖γ̂i:k‖ ≤
T−k−2∑
i=1

i‖γ̂i:k − γi:k‖+

T−k−2∑
i=1

i‖γi:k‖ (A.1.27)

≤
T−k−2∑
i=1

i{
k−1∑
j=0

(γ̂i−j − γi−j)2}1/2 + k

∞∑
i=1

i|γi|+ k2‖γ‖1

= OP (‖β̂k − βk‖1 +

∞∑
j=k+1

|βj |)k1/2
T−k−2∑
i=1

i(1 +
1

k
)i∧k−i−1

+
√

2
T−k−2∑
i=1

i

(k−1)∧i∑
j=0

|bi−j,k|+O(k2)

= OP (‖β̂k − βk‖1 +
∞∑

j=k+1

|βj |)k5/2 +O(kT )
∞∑

j=k+1

|βj |

+O(k2) = OP (k3aka
ε−1
T + kTa−1

T + k2)

for all ε > 0, so using also (A.1.26) and (10),

T−1∑
s,t,v=k+1

I#{s,t,v}=3|(d̂s,t + d̂t,s)
′(d̂s,v + d̂v,s)|

≤
T−1∑
s=k+1

(
T−1∑
t=k+1

Is 6=t‖d̂s,t + d̂t,s‖)2

≤ 4
T−1∑
s=k+1

(
T−1∑
t=k+1

Is 6=t
T−1−max{t,s}∑

i=0

‖γ̂|t−s|+i:k‖‖γ̂i:k‖)2

≤ 4‖γ̂T−k−2‖2
T−1∑
s=k+1

(
T−1∑
t=k+1

Is 6=t
T−1−max{t,s}∑

i=0

‖γ̂|t−s|+i:k‖)2

≤ 4(‖γ‖+ ‖γ̂T−k−2 − γT−k−2‖)2
T−1∑
s=k+1

(2

T−k−2∑
i=1

i‖γ̂i:k‖)2

= OP (k4T + k6a2
kTa

ε−2
T + k2T 3a−2

T )

for all ε > 0, and (iv), similarly,

T−1∑
s,t,u,v=k+1

I#{s,t,u,v}=4|d̂′s,td̂u,v| ≤ (
T−1∑

s,t=k+1

Is 6=t‖d̂s,t‖)2

≤ (

T−1∑
s,t=k+1

Is 6=t
T−1−max{t,s}∑

i=0

‖γ̂|t−s|+i:k‖‖γ̂i:k‖)2

≤ ‖γ̂T−k−2‖2(
T−1∑

s,t=k+1

Is 6=t
T−1−max{t,s}∑

i=0

‖γ̂|t−s|+i:k‖)2

≤ (‖γ‖+ ‖γ̂T−k−2 − γT−k−2‖)2(2
T−1∑
s=k+1

T−k−2∑
i=1

i‖γ̂i‖)2

= OP (k4T 2 + k6a2
kT

2aε−2
T + k2T 4a−2

T ).
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Thus, returning to (A.1.23) and (A.1.24),

E
† ‖∆(3)

00 ‖2 = OP (k2a2
ka

2+ε
T )

+OP (T−4ka2
ka

2+ε
T )OP (k4T 2 + k6a2

kT
2aε−2
T + k2T 4a−2

T )

isOP (k2a2
ka

2+ε
T ) for all ε > 0, if k3/T → 0. As also E† ‖∆(1)

00 ‖ = OP (kaka
1+ε
T ) and E† ‖∆(2)

00 ‖2 =
OP (k2a2

ka
2+ε
T ) were found to hold, it follows that ‖∆00‖ = OP †(kaka

1+ε
T ) in P -probability for

all ε > 0, in the case where π is an r.p.
For π = id (and Rademacher wt), E† ‖∆(1)

00 ‖ ≤ σ2
T maxt=k+1,...,T ‖ct,t‖ is OP (kaka

1+ε
T ) as

previously,

E
† ‖∆(2)

00 ‖2 ≤
T−1∑

s,t=k+1

ε2
sε

2
t Is 6=t|c′s,tcs,t + c′s,tct,s| ≤ σ4

TOP (k2a2
ka
ε−2
T )

is OP (k2a2
ka

2+ε
T ) using the previous uniform estimate of ‖cs,t‖, and finally,

E
† ‖∆(3)

00 ‖2 = E
† ‖

T−1∑
s,t=k+1

wswt(ε̂sε̂t − εsεt)d̂s,t‖2

≤
T−1∑

s,t=k+1

(ε̂sε̂t − εsεt)2{d̂′s,td̂s,t + d̂′s,td̂t,s}

≤ {
T−1∑

s,t=k+1

(ε̂sε̂t − εsεt)2}( max
s,t=k+1,...,T−1

‖d̂s,t‖)2,

where
∑T−1

s,t=k+1(ε̂sε̂t − εsεt)2 = OP (a2
ka

2+ε
T ) for ε > 0 as in (A.1.22) and

‖d̂s,t‖ ≤
T−t−1∑

i=max{0,s−t}
‖Gt−s+i,i:k‖+ ‖cs,t‖

≤
T−t−1∑

i=max{0,s−t}
‖γt−s+i:k‖‖γi:k‖+ ‖cs,t‖ ≤ k‖γ‖2 +OP (kaka

ε−1
T )

is OP (k) uniformly in s, t, so also E† ‖∆(3)
00 ‖2 = OP (k2a2

ka
2+ε
T ) for every ε > 0. By combining

the evaluations of ‖∆(i)
00‖ (i = 1, 2, 3) and applying Markov’s inequality, the first statement

in part (a) is proved also for the wild bootstrap scheme.
Regarding the lower bound for S†k00 , let

τ : = min{t : k + 1 ≤ t ≤ T, |εt| = max
k+1≤s≤T

|εs|},

T : = {τ = min{t : k + 1 ≤ t ≤ T, |εt| = max
k+1≤s≤T−1

|επ(s)|};

then P (T ) → 1. By considerations of positive semi-definiteness, for outcomes in T it holds
that

λmin(S†k00) ≥ λmin

(
ε2
τ

T−π−1(τ)−1∑
j=0

γj:kγ
′
j:k + ετwπ−1(τ)∆λ

)
, (A.1.28)

where the right-hand side matrix collects the terms of S†k00 involving ετ , with

∆λ :=
T−1∑
t=k+1

Iτ 6=π(t)wtεπ(t)(dπ−1(τ),t + dt,π−1(τ)),

39



ds,t :=
∑T−t−1

i=max{0,s−t} γt−s+i:kγ
′
i:k. We evaluate ∆λ for the three bootstrap schemes.

If π is an r.p., then

E
† ‖∆λ‖2 =

T−1∑
t=k+1

E
†(Iτ 6=π(t)ε

2
π(t)‖dπ−1(τ),t + dt,π−1(τ)‖2)

+
T−1∑

t,s=k+1

E
†[Iπ(t) 6=τ 6=π(s),t6=swtwsεπ(t)επ(s)

× tr{(dπ−1(τ),t + dt,π−1(τ))
′(dπ−1(τ),s + ds,π−1(τ))}].

Next, if further wt are Rademacher, this reduces to

E
† ‖∆λ‖2 =

T−1∑
t=k+1

E
†(Iτ 6=π(t)ε

2
π(t)‖dπ−1(τ),t + dt,π−1(τ)‖2)

=
T−1∑
t=k+1

E
†(

T∑
u,v=k+1

It6=vIπ(t)=u,π(v)=τε
2
u‖dv,t + dt,v‖2)

=

T−1∑
t=k+1

T∑
u,v=k+1

It6=v P
†(π (t) = u, π(v) = τ)ε2

u‖dv,t + dt,v‖2

= O(T−2)

T−1∑
t=k+1

T∑
u,v=k+1

It6=vIu6=τε2
u‖dv,t + dt,v‖2

= O(T−2)σ2
T

T∑
v=k+1

T−1∑
t=k+1

It6=v‖dv,t + dt,v‖2

because P†(π (t) = u, π(v) = τ) = (T − k)−1 (T − k − 1)−1 for t 6= v, u 6= τ (τ is †-
measurable). Further,

T−1∑
t=k+1

It6=v‖dv,t‖2 ≤
T−1∑
t=k+1

It6=v‖
T−t−1∑

i=max{0,v−t}
γt−v+i:kγ

′
i:k‖2

≤ 2k‖γ‖2(k2‖γ‖2 + k
∞∑
i=1

iγ2
i ) = O(k3) (A.1.29)

and similarly for
∑T−1

t=k+1 It6=v‖dt,v‖2, so for the permuted wild bootstrap, E† ‖∆λ‖2 = OP (T−1k3)σ2
T =

OP (T−1k3a2
T ) = oP (a2

T ) as k3/T → 0, and ‖∆λ‖ = oP †(aT ) in P -probability. If wt = 1 a.s.
(all t), the estimate of

∑T−1
t=k+1 E†(Iτ 6=π(t)ε

2
π(t)‖dπ−1(τ),t+dt,π−1(τ)‖2) remains valid. Addition-

ally,

E
†[Iπ(t)6=τ 6=π(s),t 6=sεπ(t)επ(s) tr{(dπ−1(τ),t + dt,π−1(τ))

′(dπ−1(τ),s + ds,π−1(τ))}]

= E
†

T∑
u,v,w=k+1

I#{t,s,w}=3Iπ(t)=u,π(s)=v,π(w)=τεuεv

× tr{(dw,t + dt,w)′(dw,s + ds,w)}

=

T∑
u,v,w=k+1

I#{t,s,w}=3 P
†(π(t) = u, π(s) = v, π(w) = τ)

×εuεv tr{(dw,t + dt,w)′(dw,s + ds,w)}
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= O(T−3)
T∑

u,v=k+1

εuεvI#{u,v,τ}=3

T∑
w=k+1

I#{t,s,w}=3

× tr{(dw,t + dt,w)′(dw,s + ds,w)}

uniformly in t, s because P†(π(t) = u, π(s) = v, π(w) = τ) = O(T−3)I#{u,v,τ}=3 for#{t, s, w} =
3. Hence,

|
T−1∑

t,s=k+1

E
†[Iπ(t)6=τ 6=π(s),t 6=sεπ(t)επ(s) tr{(dπ−1(τ),t + dt,π−1(τ))

′(dπ−1(τ),s + ds,π−1(τ))}]|

≤ O(T−3)[(

T∑
u=k+1

εu)2 + σ2
T ]

T∑
w=k+1

|
T−1∑

t,s=k+1

I#{t,s,w}=3

× tr{(dw,t + dt,w)′(dw,s + ds,w)}|

is OP (T−2k4a2
T lT ) = oP (a2

T ) for k3/T → 0, since

|
T−1∑

t,s=k+1

I#{t,s,w}=3 tr{(dw,t + dt,w)′(dw,s + ds,w)}|

≤ 24‖γ‖2(k2‖γ‖1 + k
∞∑
i=1

i|γi|)2 = O(k4).

Therefore, E† ‖∆λ‖2 = oP (a2
T ), and ‖∆λ‖ = oP †(aT ) in P -probability, also for the permuta-

tion bootstrap.
For π equal to the identity (wild bootstrap), it holds that

E
† ‖∆λ‖2 =

T−1∑
t=k+1

Iτ 6=tε2
t ‖dτ ,t + dt,τ‖2, (A.1.30)

where

E

T−1∑
t=k+1

Iτ 6=tI|εt|≤aT ε
2
t ‖dτ ,t + dt,τ‖2 (A.1.31)

= E E(
T−1∑
t=k+1

Iτ 6=tI|εt|≤aT ε
2
t ‖dτ ,t + dt,τ‖2|τ)

= E

T−1∑
t=k+1

Iτ 6=t E(I|εt|≤aT ε
2
t |τ)‖dτ ,t + dt,τ‖2

≤ E(I|ε1|≤aT ε
2
1) E

T−1∑
t=k+1

Iτ 6=t‖dτ ,t + dt,τ‖2

is O(T−1k3a2
T ) = o(a2

T ) because Iτ 6=t E(I|εt|≤aT ε
2
t |τ) ≤ Iτ 6=t E(I|εt|≤aT ε

2
t ) = Iτ 6=t E(I|ε1|≤aT ε

2
1)

a.s. by the maximizing property of τ , E(I|εt|≤aT ε
2
t ) = O(T−1a2

T ) by KT,

T−1∑
t=k+1

Iτ 6=t‖dτ ,t + dt,τ‖2 ≤ 4k‖γ‖2(k2‖γ‖2 + k

∞∑
i=1

iγ2
i ) = O(k3)
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with a deterministic bound (see equation (A.1.29)), and k3/T → 0; similarly,

E(
T−1∑
t=k+1

Iτ 6=tI|εt|>aT ε
2
t ‖dτ ,t + dt,τ‖2)η/2

≤ E(I|ε1|>aT |ε1|η) E

T−1∑
t=k+1

Iτ 6=t‖dτ ,t + dt,τ‖η

is O(T−1k2aηT ) = o(aηT ) for η ∈ [δ, α) and δ from Assumption 1(b), by KT and since, with a
deterministic upper bound and k2/T → 0,

T−1∑
t=k+1

Iτ 6=t‖dτ ,t + dt,τ‖η ≤ O (1) (k2
∞∑
i=0

|γi|η + k

∞∑
i=1

i|γi|η) = O(k2),

so
∑T−1

t=k+1 Iτ 6=tI|εt|>aT ε
2
t ‖dτ ,t + dt,τ‖2 = oP (a2

T ). Recalling also (A.1.30) and (A.1.31), it
follows that ‖∆λ‖ = oP †(aT ) in P -probability also for the wild bootstrap.

By Weyl’s inequality (Seber, 2008, p.117), the estimate of ‖∆λ‖ yields

|λmin

(
ε2
τ

T−π−1(τ)−1∑
j=0

γj:kγ
′
j:k + ετwπ−1(τ)∆λ

)
(A.1.32)

−ε2
τλmin

( T−π−1(τ)−1∑
j=0

γj:kγ
′
j:k

)
| ≤ |ετ |‖∆λ‖ = oP †(a

2
T )

in P -probability, because a−1
T ετ converges in distribution under P . Again by Weyl’s inequality

and matrix symmetry,∣∣∣∣∣∣λmin

( T−π−1(τ)−1∑
j=0

γj:kγ
′
j:k

)
− λmin(Σk)

∣∣∣∣∣∣ ≤ ‖
∞∑

j=T−π−1(τ)

γj:kγ
′
j:k‖2

≤
∞∑

j=T−π−1(τ)

‖γj:kγ ′j:k‖1 ≤ k(max
i
|γi|)

∞∑
j=max{0,T−π−1(τ)−k+1}

|γj |

is oP †(1) in P -probability, the magnitude order because P †(T −π−1(τ)− k+ 1 ≥ k)
P→ 1 and

k
∑∞

j=k |γj | ≤
∑∞

j=k j|γj | → 0 as k →∞ as the tail of a convergent series. Since λmin(Σk) is

bounded away from zero, it follows that λmin(
∑T−π−1(τ)−1

j=0 γj:kγ
′
j:k) is bounded away from

zero in P †-probability, and as further a−1
T ετ converges weakly under P to a distribution

with no atom at zero, it follows that λmin(a−2
T ε2

τ

∑T−π−1(τ)−1
j=0 γj:kγ

′
j:k) is bounded away from

zero in P †, then P , probability. Recalling (A.1.28) and (A.1.32), we can conclude that also
λmin(a−2

T S†k00) is bounded away from zero in P †, then P , probability.
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Proof of part (b) Write S∗k0ε −S
†k
0ε = σ1 +σ∗2−σ

†
2 +σ3 with σ∗2 :=

∑T
t=k+1 X∗kt−1ρπ(t),kwt,

σ†2 :=
∑T

t=k+1 X†kt−1ρ
†
π(t),k and

σ3 : =
T∑

t=k+1

(X∗kt−1 −X†kt−1)επ(t)wt

=

T∑
t=k+2

t−k−2∑
j=0

(γ̂j:k − γj:k)ε̂π(t−j−1)επ(t)wt−j−1wt

+

T∑
t=k+2

t−k−2∑
j=0

γj:k(ε̂π(t−j−1) − επ(t−j−1))επ(t)wt−j−1wt.

If π is an r.p., we discuss σ1 + σ∗2, σ
†
2 and σ3, no matter how wt are specified, whereas if π is

the identity, we evaluate σ∗2, σ
†
2 and σ3.

Let π be the identity (and wt be Rademacher). For the discussion of σ∗2, define modified
ρt,kj := ρt,k − εt−j−1

∑j+1
i=k+1 βiγj+1−i, (j = k, ..., T − k − 2), as ρt,k ’cleaned’ from the

contribution of εt−j−1, and ρt,kj := ρt,k for j = 0, ..., k − 1. It holds that

E
† ‖σ∗2‖2 =

T∑
t=k+2

t−k−2∑
j=0

‖γ̂j:k‖2ε̂2
t−j−1ρ

2
t,k

≤ 4
T∑

t=k+2

t−k−2∑
j=0

(‖γj:k‖2 + ‖γ̂j:k − γj:k‖2)(ε2
t−j−1 + (ε̂t−j−1 − εt−j−1)2)ρ2

t,k

≤ 8(

T∑
t=k+2

t−k−2∑
j=k

‖γj:k‖ε2
t−j−1|

j+1∑
i=k+1

βiγj+1−i|)2

+8
T∑

t=k+2

t−k−2∑
j=0

‖γj:k‖2ε2
t−j−1ρ

2
t,kj + 4

T∑
t=k+2

t−k−2∑
j=0

‖γ̂j:k − γj:k‖2ε2
t−j−1ρ

2
t,k

+4
T∑

t=k+2

t−k−2∑
j=0

(‖γj:k‖2 + ‖γ̂j:k − γj:k‖2)(ε̂t−j−1 − εt−j−1)2ρ2
t,k

=: 8(ς2 + σ∗21) + 4(σ∗22 + σ∗23).

Here

ς =

T∑
t=k+2

t−k−2∑
j=k

‖γj:k‖ε2
t−j−1(I{|εt−j−1|≤aT }+I{|εt−j−1|>aT })|

j+1∑
i=k+1

βiγj+1−i|

:= ς≤ + ς> = oP (aT )

by Markov’s inequality, since

E(ς≤) ≤ T E(ε2
1I{|ε1|≤aT })‖γ‖

T−k−2∑
j=k

‖γj:k‖
∞∑

i=k+1

|βi|

≤ T E(ε2
1I{|ε1|≤aT })‖γ‖(

∞∑
i=1

i|γi|+ k

∞∑
i=k+1

|γi|)
∞∑

i=k+1

|βi| = oP (aT )
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by KT, Assumption 1(b) and the condition
∑∞

i=k+1 |βi| = o(a−1
T ) and, for η ∈ [δ, α), by using

the same facts,

E |ς>|
η
2 ≤ T E(|ε1|ηI{|ε1|>aT })‖γ‖

η
2

T−k−2∑
j=k

‖γj:k‖
η
2 (

∞∑
i=k+1

|βi|)
η
2

≤ T E(|ε1|ηI{|ε1|>aT })‖γ‖
η
2 (
∞∑
i=1

i|γi|
η
2 + k

∞∑
i=k+1

|γi|
η
2 )(

∞∑
i=k+1

|βi|)
η
2

is oP (a
η/2
T ). Further, for η ∈ [δ, α) and all t, by independence of εt−j−1 and ρt,kj ,

E (σ∗21)
η
2 ≤ E |ε1|η(sup

t,j
E |ρt,kj |η)

T∑
t=k+2

t−k−2∑
j=0

‖γj:k‖η,

where the sup is over t = k+ 2, ..., T and j = 0, ..., t−k−2. By Hölder’s inequality, for α > 1
and η ∈ [1, α) it holds that

E |ρt,kj |η = E |ρk+1,k|η ≤ (
∞∑

i=k+1

|βi|)η−1
∞∑

i=k+1

|βi|E |Xk+1−i|η

= (
∞∑

i=k+1

|βi|)η E |X1|η = o(a−ηT )

if j = 0, ..., k − 1, and similarly,

E |ρt,kj |η ≤ (

∞∑
i=k+1

|βi|)η−1
∞∑

i=k+1

|βi|E |
∞∑
l=0

Il 6=j+1γlεt−l|η

≤ (

∞∑
i=k+1

|βi|)η‖γ‖η E |ε1|η = o(a−ηT )

for j = k, ..., t− k− 2. Hence, a common, in t and j, o(a−ηT ) upper bound exists for E |ρt,kj |η,
yielding

E (σ∗21)
η
2 ≤ o(kTa−ηT )(

∞∑
j=0

|γj |η) = o(kTa−ηT ), η ∈ [1, α).

As k2/T → 0, this yields σ∗21 = oP (a2
T ). On the other hand, for α ≤ 1 and η ∈ [δ, α) it holds

that E |ρt,kj |η = E |ρk+1,k|η ≤ E |X1|η
∑∞

i=k+1 |βi|η if j = 0, ..., k − 1, and

E |ρt,kj |η ≤
∞∑

i=k+1

|βi|η E |
∞∑
l=0

Il 6=j+1γlεt−l|η ≤ E |ε1|η
∞∑
i=0

|γi|η
∞∑

i=k+1

|βi|η

if j = k, ..., t − k − 2, so E (σ∗21)η/2 = O(kT
∑∞

i=k+1 |βi|η)
∑∞

j=k+1 |γj |η and, by (A.1.2) and
Markov’s inequality, σ∗21 = oP (ã2

T ) under k3/T → 0.
Next,

σ∗22 ≤ σ2
TS

k
ρρ

T−k−2∑
j=0

‖γ̂j:k − γj:k‖2 = oP (lTa
2
T )

T−k−2∑
j=0

k−1∑
i=0

|γ̂j−i − γj−i|2

44



since Skρρ = oP (lT ) was proved in the preparation, so from (A.1.12) and (10), for all ε > 0,

σ∗22 = oP (klTa
2
T ){[‖β̂k − βk‖21 + (

∞∑
j=k+1

|βj |)2]
∞∑
j=0

(
1 +

1

k

)−2j

+
∞∑
j=0

b2jk}

= oP (klTa
2
T ){k2a2

ka
ε−2
T + (

∞∑
j=k+1

|βj |)2} = oP (k3a2
kT

ε) = oP (ã2
T )

if k4/T → 0 by choosing small ε > 0, and similarly, from (A.1.16) and (10),

σ∗23 ≤ ‖ε̂T − εT ‖2 Skρρ
T−k−2∑
j=0

(‖γj:k‖2 + ‖γ̂j:k − γj:k‖2)

= oP (klTa
2
T ‖β̂k − βk‖2)(‖γ‖2 + oP (1)) = oP (ã2

T )

if k2/T → 0. We conclude that E† ‖σ∗2‖2 = oP (ã2
T ) if k4/T → 0 and, hence, ‖σ∗2‖ = oP †(ãT )

in P -probability if π is the identity.
Regarding σ†2 =

∑T
t=k+1 X†kt−1ρ

†
t,k (ρ

†
t,k =

∑t−k−1
i=k+1 βiX

†
t−i), we reuse several steps of the

evaluation of ‖
∑T

t=k+1 Xk
t−1ρt,k‖ in the proof of Lemma 2. Namely, all the evaluations

of expressions in |εt| and ε2
t (equal to |ε

†
t | and (ε†t)

2, resp.) can be used as there, upon
replacement of εt (t ≤ k) by zeroes. A minor modification is needed only for (what is now)

ξ≤,†ij : =
T−1∑

t=k+1+max{i,j}

t−i−k−1∑
u=0

t−j−k−1∑
v=0

I{u6=v+j−i}

×I|εt−i−uεt−j−v |≤ãT ε
†
t−i−uε

†
t−j−vγuγv

with

E
†(ξ≤,†ij )2 ≤ 2‖γ‖2

T−1∑
t=k+1+max{i,j}

t−i−k−1∑
u=0

t−j−k−1∑
v=0

I{u6=v+j−i}

×I|εt−i−uεt−j−v |≤ãT ε
2
t−i−uε

2
t−j−v|γu||γv|

possessing, by KT, E E†(ξ
≤,†
ij )2 ≤ O(ã2

T )‖γ‖4 uniformly in i, j, so in place of (A.1.11),

E E
†(

k∑
i=1

(

∞∑
j=k+1

βjξ
≤,†
ij )2) ≤ [

k∑
i=1

∞∑
j=k+1

|βj |E E
†{(ξ≤,†ij )2}](

∞∑
j=k+1

|βj |)

is O(kã2
T )(
∑∞

j=k+1 |βj |)2. Thus, as in the discussion of ‖
∑T

t=k+1 Xk
t−1ρt,k‖ in Lemma 2, we

conclude that ‖
∑T

t=k+1 X†kt−1ρ
†
t,k‖ = OP †(a

2
T )
∑∞

j=k+1 |βj | = oP †(aT ) in P -probability.
Further,

E
† ‖σ3‖2 ≤ 4

T∑
t=k+2

t−k−2∑
j=0

‖γ̂j:k − γj:k‖2{ε2
t−j−1,k + (ε̂t−j−1 − εt−j−1,k)

2}ε2
t︸ ︷︷ ︸

=:etj

+ 4
T∑

t=k+2

t−k−2∑
j=0

‖γj:k‖2{(ε̂t−j−1 − εt−j−1,k)
2
↓
+ ρ2

t−j−1,k}ε2
t := 4(σ31 + σ32 + σ33).
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First,

σ31 =

T∑
t=k+2

t−k−2∑
j=0

‖γ̂j:k − γj:k‖2etj =

T∑
t=k+2

t−k−2∑
j=0

k−1∑
i=0

(γ̂j−i − γj−i)2etj

≤ kOP (‖β̂k − βk‖21 + (
∞∑
j=k

|βj |)2)
T∑

t=k+2

t−k−2∑
j=0

(
1 +

1

k

)−2j

etj

+2

T∑
t=k+2

t−k−2∑
j=0

(k−1)∧j∑
i=0

b2j−i,ketj

contains, (i),

T∑
t=k+2

t−k−2∑
j=0

(
1 +

1

k

)−2j

etj ≤ 2
T∑

t=k+2

t−k−2∑
j=0

(
1 +

1

k

)−2j

{ε2
t−j−1 + ρ2

t−j−1,k}ε2
t

+ 2‖β̂k − βk‖2
T∑

t=k+2

t−k−2∑
j=0

(
1 +

1

k

)−2j

‖Xk
t−j−2‖2ε2

t

is OP (a2+ε
k ã2

T ) for all ε > 0 since, (i.i),
∑T

t=k+2

∑t−k−2
j=0 (1 + 1

k )−2jε2
t−j−1ε

2
t = OP (a2+ε

k ã2
T ) for

all ε > 0, as

E(
T∑

t=k+2

t−k−2∑
j=0

(
1 +

1

k

)−2j

ε2
t−j−1ε

2
t I{|εt−j−1εt|≤ãT })

≤ T E(ε2
1ε

2
2I{|ε1ε2|≤ãT })

∞∑
j=0

(
1 +

1

k

)−2j

= O(kã2
T ),

E(
T∑

t=k+2

t−k−2∑
j=0

(
1 +

1

k

)−2j

ε2
t−j−1ε

2
t I{|εt−j−1εt|>ãT })

η
2

≤ T E(|ε1ε2|ηI{|ε1ε2|>ãT })
∞∑
j=0

(
1 +

1

k

)−jη
= O(kãηT )

by KT for all η ∈ (0, α), (i.ii), similarly,

T∑
t=k+2

t−k−2∑
j=0

(
1 +

1

k

)−2j

‖Xk
t−j−2‖2ε2

t = OP (a4+ε
k ã2

T )

for all ε > 0, and is multiplied by ‖β̂k −βk‖2 = OP (a2
ka
ε−2
T ) = OP (a−2

k ) for suffi ciently small
ε > 0 by (10) and k3/T → 0, (i.iii),

T∑
t=k+2

t−k−2∑
j=0

(
1 +

1

k

)−2j

ρ2
t−j−1,kε

2
t = oP (ã2

T )

since, for η ∈ [δ, α),

E(

T∑
t=k+2

t−k−2∑
j=0

(
1 +

1

k

)−2j

ρ2
t−j−1,kε

2
t )

η
2 ≤
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≤ T E |ε1|η E |ρk+1,k|η
∞∑
j=0

(
1 +

1

k

)−jη
= O(kT ) E |ρk+1,k|η

is OP (kTa−ηT ) as E |ρk+1,k|η was evaluated in the discussion of σ∗21 and k
2/T → 0, and (ii),

T∑
t=k+2

t−k−2∑
j=0

(k−1)∧j∑
i=0

b2j−i,ketj

≤ 2

T∑
t=k+2

t−k−2∑
j=0

(k−1)∧j∑
i=0

b2j−i,k{ε2
t−j−1 + ρ2

t−j−1,k}ε2
t

+2‖β̂k − βk‖2
T∑

t=k+2

t−k−2∑
j=0

(k−1)∧j∑
i=0

b2j−i,k‖Xk
t−j−2‖2ε2

t

= OP (kT−1ã4+ε
T + ‖β̂k − βk‖2a2

kkT
−1ã4+ε

T )(
∞∑

i=k+1

|βi|)2 = oP (a2
T )

for all ε > 0, by taking expectations as in (i) and using
∑t−k−2

j=0

∑k−1
i=0 b

2
j−i,k ≤ k

∑t−k−2
j=0 b2jk ≤

k(
∑∞

j=0 bjk)
2 ≤ Ck(

∑∞
i=k+1 |βi|)2, (10) and the conditions k3/T → 0 and aT

∑∞
i=k+1 |βi| → 0;

for example,

E(
T∑

t=k+2

t−k−2∑
j=0

k−1∑
i=0

b2j−i,kε
2
t−j−1ε

2
t I{|εt−j−1εt|≤ãT })

≤ T E(ε2
1ε

2
2I{|ε1ε2|≤ãT })

T−k−2∑
j=0

k−1∑
i=0

b2j−i,k = O(kã2
T )(

∞∑
i=k+1

|βi|)2

and, by Hölder’s inequality for η ∈ (0, α),

E(
T∑

t=k+2

t−k−2∑
j=0

k−1∑
i=0

b2j−i,kε
2
t−j−1ε

2
t I{|εt−j−1εt|>ãT })

η
2

≤ T E(|ε1ε2|ηI{|ε1ε2|>ãT })×
T−k−2∑
j=0

(
k−1∑
i=0

b2j−i,k)
η
2

≤ O(ãηT )T 1− η
2 (
T−k−2∑
j=0

k−1∑
i=0

b2j−i,k)
η
2 = {O(kT

2
η
−1
ã2
T )(

∞∑
i=k+1

|βi|)2}
η
2 .

By combining (i), (ii) and (10), for all ε > 0,

σ31 = OP (ka2+ε
k ã2

T )(‖β̂k − βk‖21 + (
∞∑
j=k

|βj |)2) + 2
T∑

t=k+2

t−k−2∑
j=0

k−1∑
i=0

b2j−i,ketj

is OP (k2a4
ka
ε
T ) + oP (ã2

T ) = oP (ã2
T ) since k4/T → 0 and aT

∑∞
i=k+1 |βi| → 0.

Second,

σ32 ≤ ‖β̂k − βk‖2
T∑

t=k+2

t−k−2∑
j=0

‖γj:k‖2‖Xk
t−j−2‖2ε2

t = ‖β̂k − βk‖2OP (a4+ε
k ã2

T )
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is OP (a6
ka
ε
T ) = oP (ã2

T ) using (10) and k4/T → 0, again by taking expectations and replacing
the geometric series in powers of 1 + 1

k by

T−k−2∑
j=0

‖γj:k‖2 ≤ k
∞∑
j=0

γ2
j = O (k) ,

T−k−2∑
j=0

‖γj:k‖η ≤ k
∞∑
j=0

|γj |η = O (k)

for η ≥ δ. Third, σ33 :=
∑T

t=k+2

∑t−k−2
j=0 ‖γj:k‖2ρ2

t−j−1,kε
2
t = oP (ã2

T ), similarly to σ∗21.
Returning to the initial decomposition of E† ‖σ3‖2, we can conclude that E† ‖σ3‖2 =

oP (ã2
T ) for k4/T → 0. By combining it with the evaluations of σ∗2 and σ

†
2, we complete the

proof of part (b) for π equal to the identity.
For an r.p. π, we start from

σ1 + σ∗2 =

T∑
t=k+2

t−k−2∑
j=0

γ̂j:kε̂π(t−j−1)(ε̂π(t) − επ(t))wt−j−1wt.

If wt are Rademacher, then

E
† ‖σ1 + σ∗2‖2 =

T∑
t=k+2

t−k−2∑
j=0

‖γ̂j:k‖2 E
†{ε̂2

π(t−j−1)(ε̂π(t) − επ(t))
2}

= E
†{ε̂2

π(k+1)(ε̂π(k+2) − επ(k+2))
2}

T∑
t=k+2

t−k−2∑
j=0

‖γ̂j:k‖2,

with E†{ε̂2
π(k+1)(ε̂π(k+2) − επ(k+2))

2} ≤ O(T−2)σ̂2
Tk ‖ε̂T − εT ‖

2 = OP (T ε−2a2
ka

2
T ), so

E
† ‖σ1 + σ∗2‖2 = OP (T ε−1a2

ka
2
T )

T−k−2∑
j=0

‖γ̂j:k‖2

= OP (T ε−1ka2
ka

2
T )(‖γ‖2 + ‖γ̂T+k−2 − γT+k−2‖2)

is OP (T ε−1ka2
ka

2
T ) for all ε > 0, using equation (A.1.16) and (10). On the other hand, if

wt = 1 P †-a.s. (all t), then

E
† ‖σ1 + σ∗2‖2 =

T∑
s,t=k+2

s−k−2∑
i=0

t−k−2∑
j=0

γ̂ ′i:kγ̂j:k×

× E
†{ε̂π(s−i−1)ε̂π(t−j−1)(ε̂π(s) − επ(s))(ε̂π(t) − επ(t))}

= E
†{ε̂2

π(k+1)(ε̂π(k+2) − επ(k+2))
2}

T∑
t=k+2

t−k−2∑
j=0

‖γ̂j:k‖2

+ E
†{ε̂π(k+1)ε̂π(k+2)(ε̂π(T ) − επ(T ))

2}
T∑

t=k+2

t−k−2∑
i,j=0

I{i 6=j}γ̂ ′i:kγ̂j:k

+ E
†{ε̂2

π(k+1)(ε̂π(k+2) − επ(k+2))(ε̂π(T ) − επ(T ))}

×
T∑

s,t=k+2

s−k−2∑
i=max{0,s−t}

γ̂ ′i:kγ̂t−s+i:kI#{s,t,s−i−1}=3

+ E
†{ε̂π(k+1)ε̂π(k+2)(ε̂π(k+3) − επ(k+3))(ε̂π(T ) − επ(T ))}

×
T∑

s,t=k+2

s−k−2∑
i=0

t−k−2∑
j=0

I#{s−i−1,t−j−1,s,t}=4γ̂
′
i:kγ̂j:k
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by separating according to the possible subscript repetitions. Here, first, E†{ε̂2
π(k+1)(ε̂π(k+2)−

επ(k+2))
2} = OP (T ε−2a2

ka
2
T ) for all ε > 0, as found earlier. Second,

E
†{ε̂π(k+1)ε̂π(k+2)(ε̂π(T ) − επ(T ))

2} = O(T−3)
T∑

u,v,s=k+1

I#{u,v,s}=3ε̂uε̂v(ε̂s − εs)2

≤ O(T−3){(
T∑

u=k+1

ε̂u)2 ‖ε̂T − εT ‖2 − 2(

T∑
u=k+1

ε̂u)

T∑
s=k+1

ε̂s(ε̂s − εs)2

+
T∑

u=k+1

ε̂2
u(ε̂u − εu)2}

≤ O(T−3){(
T∑

u=k+1

ε̂u)2 + 2σ̂Tk|
T∑

u=k+1

ε̂u|+ σ̂2
Tk} ‖ε̂T − εT ‖

2

Hence, using
∑T

t=k+1 εt = OP (aT lT ), equation (A.1.14) and k3/T → 0,

E
†{ε̂π(k+1)ε̂π(k+2)(ε̂π(T ) − επ(T ))

2} = OP (T−3){a2
T lT + ka2

kT
ε + k1/2akaTT

ε}
× ‖ε̂T − εT ‖2 = OP (T−3a2

T lT ) ‖ε̂T − εT ‖2 = OP (T ε−3a2
ka

2
T )

for all ε > 0. Third, with |
∑T

u=k+1 ε̂
2
u(ε̂u − εu)| ≤ σ̂2

Tk ‖ε̂T − εT ‖, we find

E
†{ε̂2

π(k+1)(ε̂π(k+2) − επ(k+2))(ε̂π(T ) − επ(T ))}

= O(T−3)
T∑

u,v,s=k+1

I#{u,v,s}=3ε̂
2
u(ε̂v − εv)(ε̂s − εs)

≤ O(T−3)[σ̂2
Tk{

T∑
v=k+1

(ε̂v − εv)}2

−2
T∑

u=k+1

ε̂2
u(ε̂u − εu)

T∑
u=k+1

(ε̂u − εu) +
T∑

u=k+1

ε̂2
u(ε̂u − εu)2]

= OP (T ε−3ka2
ka

2
T + T ε−3k1/2aka

2
T ‖ε̂T − εT ‖+ T−3σ̂2

Tk ‖ε̂T − εT ‖
2)

= OP (T ε−3ka2
ka

2
T + T ε−3k1/2a2

kaT + T ε−3a2
k) = OP (T ε−3ka2

ka
2
T )

for all ε > 0. Fourth,

E
†{ε̂π(k+1)ε̂π(k+2)(ε̂π(k+3) − επ(k+3))(ε̂π(T ) − επ(T ))}

= O(T−4)

T∑
u,v,s,t=k+1

I#{u,v,s,t}=4ε̂uε̂t(ε̂v − εv)(ε̂s − εs)

= O(T−4){
T∑

u,v=k+1

Iu6=v ε̂u(ε̂v − εv)}2 −
T∑

u,v,s=k+1

I#{u,v,s}=3ε̂uε̂v(ε̂s − εs)2

−
T∑

u,v,s=k+1

I#{u,v,s}=3ε̂
2
u(ε̂v − εv)(ε̂s − εs)−

T∑
u,v=k+1

Iu6=v ε̂2
u(ε̂v − εv)2},
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where the magnitude order of the last three sums was determined above, so

= O(T−4){
T∑

u=k+1

ε̂u

T∑
v=k+1

(ε̂v − εv)−
T∑

u=k+1

ε̂u(ε̂u − εu)}2 +OP (T ε−4ka2
ka

2
T )

≤ O(T−4)[(

T∑
u=k+1

ε̂u)2{
T∑

v=k+1

(ε̂v − εv)}2 + σ̂2
T,k ‖ε̂T − εT ‖

2] +OP (T ε−4ka2
ka

2
T )

= OP (T−4(a2
T lT + ka2

kT
ε)ka2

kT
ε) +OP (T ε−4ka2

ka
2
T ) = OP (T ε−4ka2

ka
2
T )

for all ε > 0 if k3/T → 0. Returning to ‖σ1 + σ∗2‖,

E
† ‖σ1 + σ∗2‖2 = OP (T ε−1a2

ka
2
T )

T−k−2∑
j=0

‖γ̂j:k‖2

+OP (T ε−3ka2
ka

2
T )

T∑
t=k+2

t−k−2∑
i,j=0

I{i 6=j}γ̂ ′i:kγ̂j:k

+OP (T ε−3ka2
ka

2
T )

T∑
s,t=k+2

s−k−2∑
i=max{0,s−t}

γ̂ ′i:kγ̂t−s+i:kI#{s,t,s−i−1}=3

+OP (T ε−4ka2
ka

2
T )

T∑
s,t=k+2

s−k−2∑
i=0

t−k−2∑
j=0

I#{s−i−1,t−j−1,s,t}=4γ̂
′
i:kγ̂j:k

= OP (T ε−1ka2
ka

2
T )‖γ̂‖2 +OP (T ε−2k2a2

ka
2
T )‖γ̂‖21

+OP (T ε−2k3a2
ka

2
T + T ε−1k2a2

kaT ) +OP (T ε−2k3a2
ka

2
T )‖γ̂‖21

is OP (T ε−1ka2
ka

2
T ) for all ε > 0 if k3/T → 0, the magnitude orders using (A.1.25), (A.1.27)

and reasoning applied previously. Hence, ‖σ1 + σ∗2‖ = oP †(T
ε−1/2k1/2akaT ) in P -probability

for all ε > 0 and an r.p. π.
Next, with $kj :=

∑j
m=k+1 βmγj−m (j = k + 1, ..., T − k − 2), σ†2 can be written as

σ†2 =
T∑

t=2k+2

[
t−k−1∑
i=1

γi−1:kε
†
t−i

]t−k−1∑
j=k+1

$kjε
†
t−j


=

T∑
t=2k+2

t−k−1∑
i=k+1

γi−1:k$kiε
2
π(t−i) +

T∑
t=2k+2

t−k−1∑
i=1

t−k−1∑
j=k+1

Ii 6=jγi−1:k$kjε
†
t−iε

†
t−j ,

where, independently of how wt are specified,

E
† ‖

T∑
t=2k+2

t−k−1∑
i=k+1

γi−1:k$kiε
2
π(t−i)‖ ≤ E

†{ε2
π(T )}

T∑
t=2k+2

t−k−1∑
i=k+1

‖γi−1:k‖|$ki|

= σ2
T ‖γ‖21

∞∑
m=k+1

|βm| = oP (aT )

under Assumption 1(b) and the condition
∑∞

m=k+1 |βm| = o(a−1
T ). Further, with fs,t :=∑T−t

j=1+max{k,s−t} γj+t−s−1:k$kj , the term

σ†2× :=

T∑
t=2k+2

t−k−1∑
i=1

t−k−1∑
j=k+1

Ii 6=jγi−1:k$kjε
†
t−iε

†
t−j =

T−1∑
s=2k+1

T−k−1∑
t=k+1

Is 6=tε†sε
†
tfs,t
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has, for Rademacher wt,

E
† ‖σ†2×‖2 = E

†(ε2
π(k+1)ε

2
π(k+2))(

T−1∑
s=2k+1

T−k−1∑
t=k+1

Is6=t‖fs,t‖2 +
T−k−1∑
s,t=2k+1

f ′s,tft,s) := e†2×,

where

T−1∑
s=2k+1

T−k−1∑
t=k+1

Is 6=t‖fs,t‖2 ≤ ‖γ‖2
T−1∑

s=2k+1

T−k−1∑
t=k+1

Is 6=t(
T−t∑

j=1+max{k,s−t}
|$kj |)2

≤ T 2‖γ‖2(

T−k−1∑
j=k+1

j∑
m=k+1

|βm||γj−m|)2

≤ T 2‖γ‖41(
∞∑

m=k+1

|βm|)2 = o(T 2a−2
T ),

and similarly, also
∑T−k−1

s,t=2k+1 f
′
s,tft,s = o(T 2a−2

T ), so

E
† ‖σ†2×‖2 = e†2× = o(T 2a−2

T ) E
†(ε2

π(k+1)ε
2
π(k+2)) = oP (a2

T )

using equation (A.1.18). On the other hand, for wt = 1 a.s. (all t),

E
† ‖σ†2×‖2 = e†2× + E

†(ε2
π(k+1)επ(k+2)επ(T ))

×(

T−1∑
s=2k+1

T−k−1∑
t,u=k+1

I#{u,s,t}=3f
′
stfsu +

T−k−1∑
s=2k+1

T−k−1∑
t=k+1

T−1∑
u=2k+1

I#{u,s,t}=3f
′
stfus

+

T−1∑
s=2k+1

T−k−1∑
t=2k+1

T−k−1∑
u=k+1

I#{u,s,t}=3f
′
stftu +

T−1∑
s,u=2k+1

T−k−1∑
t=k+1

I#{u,s,t}=3f
′
stfut)

+ E
†(επ(k+1)επ(k+2)επ(T−1)επ(T ))

T−1∑
s,u=2k+1

T−k−1∑
t,v=k+1

I#{u,v,s,t}=4f
′
stfuv

is oP (a2
T ) as

|
T−1∑

s=2k+1

T−k−1∑
t,u=k+1

I#{u,s,t}=3f
′
stfsu| ≤

T−1∑
s=2k+1

(

T−k−1∑
t=k+1

Is 6=t‖fst‖)2

≤
T−1∑

s=2k+1

(
T−k−1∑
t=k+1

Is 6=t
T−t∑

j=1+max{k,s−t}
‖γj+t−s−1:k‖|$kj |)2

≤ T 3‖γ‖2(
T−k−1∑
j=k+1

j∑
m=k+1

|βm||γj−m|)2 ≤ T 3‖γ‖41(
∞∑

j=k+1

|βj |)2 = o(T 3a−2
T ),

and similarly
T−k−1∑
s=2k+1

T−k−1∑
t=k+1

T−1∑
u=2k+1

I#{u,s,t}=3f
′
stfus = o(T 3a−2

T ),

also
T−1∑

s=2k+1

T−k−1∑
t=2k+1

T−k−1∑
u=k+1

I#{u,s,t}=3f
′
stftu = o(T 3a−2

T ),
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and eventually, likewise,

T−1∑
s,u=2k+1

T−k−1∑
t=k+1

I#{u,s,t}=3f
′
stfut = o(T 3a−2

T ),

whereas

|
T−1∑

s,u=2k+1

T−k−1∑
t,v=k+1

I#{u,v,s,t}=4f
′
stfuv| ≤ (

T−1∑
s=2k+1

T−k−1∑
t=k+1

Is 6=t‖fst‖)2

≤ T 4‖γ‖2(
T−k−1∑
j=k+1

j∑
m=k+1

|βm||γj−m|)2 = o(T 4a−2
T )

and the expectations were evaluated in (A.1.19) and (A.1.20). By combining the above results
with Markov’s inequality, it follows that σ†2 = oP †(aT ) in P -probability.

Finally, we consider σ3, still in the case where π is an r.p.:

‖σ3‖ ≤ ‖
T∑

t=k+2

t−k−2∑
j=0

(γ̂j:k − γj:k)ε̂π(t−j−1)επ(t)wt−j−1wt‖

+‖
T∑

t=k+2

t−k−2∑
j=0

γj:k(ε̂π(t−j−1) − επ(t−j−1))επ(t)wt−j−1wt‖,

where the second norm on the right-hand side is of the same form as ‖σ1 + σ∗2‖, with γj:k in
place of γ̂j:k, and is oP †(T

ε−1/2k1/2akaT ) in P -probability, for all ε > 0, by a similar argument
as for σ1 + σ∗2. Regarding the other norm, say ‖σ31‖, for Rademacher {wt} it holds that

E
† ‖σ31‖2 = E

†{ε̂2
π(k+1)ε

2
π(k+2)}

T∑
t=k+2

t−k−2∑
j=0

‖γ̂j:k − γj:k‖2

≤ O(T−1k)σ2
T σ̂

2
Tk‖γ̂T+k−2 − γT+k−2‖2

= O(T−1ka4
T )‖β̂k − βk‖2 = OP (T ε−1ka2

ka
2
T )

using equations (A.1.25), (A.1.16) and (10), for all ε > 0. Similarly, for wt = 1 P †-a.s. (all
t),

E
† σ31 =

T∑
s,t=k+2

s−k−2∑
i=0

t−k−2∑
j=0

(γ̂i:k − γi:k)′(γ̂j:k − γj:k)

×E
†{ε̂π(s−i−1)ε̂π(t−j−1)επ(s)επ(t)}

= E
†{ε̂2

π(k+1)ε
2
π(k+2)}

T∑
t=k+2

t−k−2∑
j=0

‖γ̂j:k − γj:k‖2
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+ E
†{ε̂π(k+1)ε̂π(k+2)ε

2
π(T )}

T∑
t=k+2

t−k−2∑
i,j=0

I{i 6=j}(γ̂i:k − γi:k)′(γ̂j:k − γj:k)

+ E
†{ε̂2

π(k+1)επ(k+2)επ(T )}

×
T∑

s,t=k+2

s−k−2∑
i=max{0,s−t}

(γ̂i:k − γi:k)′(γ̂t−s+i:k − γt−s+i:k)I#{s,t,s−i−1}=3

+ E
†{ε̂π(k+1)ε̂π(k+2)επ(k+3)επ(T )}

×
T∑

s,t=k+2

s−k−2∑
i=0

t−k−2∑
j=0

I#{s−i−1,t−j−1,s,t}=4(γ̂i:k − γi:k)′(γ̂j:k − γj:k)

implying that

E
† σ31 = OP (T ε−1ka2

ka
2
T ) +OP (T−2k2a4

T lT )‖γ̂T+k−2 − γT+k−2‖2

+OP (T−2k3aka
3+ε
T lT + T−1ka3

T lT )‖γ̂T+k−2 − γT+k−2‖
= OP (T ε−1ka2

ka
2
T ) +OP (T−2k2a4

T lT )‖β̂k − βk‖2

+OP (T−2k3aka
3+ε
T lT + T−1ka3

T lT )‖β̂k − βk‖ = OP (T ε−1ka2
ka

2
T ),

for all ε > 0, as

T∑
s,t=k+2

s−k−2∑
i=max{0,s−t}

‖γ̂i:k − γi:k‖‖γ̂t−s+i:k − γt−s+i:k‖I#{s,t,s−i−1}=3

≤ 2T‖γ̂T+k−2 − γT+k−2‖
T−k−2∑
i=0

i‖γ̂i:k − γi:k‖

= ‖γ̂T+k−2 − γT+k−2‖OP (k3akTa
ε−1
T + kT 2a−1

T )

by (A.1.27) and k3/T → 0, so ‖σ3‖ = oP †(T
ε−1/2k1/2akaT ) in P -probability.

Combined with the evaluations of ‖σ1 + σ∗2‖ and σ
†
2, this proves part (b) in the r.p. case.

Proof of part (c) We consider the bootstrap schemes separately for

Sk†0ε − σ
†
2 =

T∑
t=k+2

t−k−2∑
j=0

γj:kεπ(t−j−1)επ(t)wt−j−1wt,

and we use previous evaluations for ‖σ†2‖ = oP †(aT ) in P -probability.
For π equal to the identity it holds that

E
† ‖Sk†0ε − σ

†
2‖2 =

T∑
t=k+2

t−k−2∑
j=0

‖γj:k‖2ε2
t−j−1ε

2
t

=

T∑
t=k+2

t−k−2∑
j=0

‖γj:k‖2ε2
t−j−1ε

2
t (I|εt−j−1εt|≤ãT + I|εt−j−1εt|>ãT )

with

E

T∑
t=k+2

t−k−2∑
j=0

‖γj:k‖2ε2
t−j−1ε

2
t I|εt−j−1εt|≤ãT ≤ TkE(ε2

1ε
2
2I|ε1ε2|≤ãT )

∞∑
j=0

γ2
j ,
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which is O(ã2
Tk), and for η ∈ [δ, α),

E(
T∑

t=k+2

t−k−2∑
j=0

‖γj:k‖2ε2
t−j−1ε

2
t I|εt−j−1εt|>ãT )

η
2 ≤ TkE(|ε1ε2|ηI|ε1ε2|>ãT )

∞∑
j=0

|γj |η

which is O(ãηTk) by KT, so

E
† ‖Sk†0ε − σ

†
2‖2 = OP (ã2

Tk
2/η) and ‖Sk†0ε − σ

†
2‖ = oP †(ãTa

1+ε
k )

in P -probability, for ε > 0, by Markov’s inequality. Adding ‖σ†2‖ = oP †(aT ) completes the
case π equal to the identity.

If π is an r.p., for Sk†0ε it holds that

E
† ‖Sk†0ε − σ

†
2‖ ≤ E

†
T∑

t=k+2

t−k−2∑
j=0

‖γj:k‖|επ(t−j−1)||επ(t)|

≤ OP (T−1k)(
T∑

t=k+1

|εt|)2 = OP (T−1kmax{T 2, a2
T l

2
T }).

Hence, by Markov’s inequality, ‖Sk†0ε−σ
†
2‖ = OP †(T

−1kmax{T 2, a2
T l

2
T }) in P -probability. For

large α this can be sharpened slightly by evaluating the conditional variance. For Rademacher
{wt},

E
† ‖Sk†0ε − σ

†
2‖2 = E

†
T∑

t=k+2

t−k−2∑
j=0

‖γj:k‖2ε2
π(t−j−1)ε

2
π(t) ≤ OP (T−1k)σ4

T

is OP (T−1ka4
T ), whereas for constant wt,

E
† ‖Sk†0ε − σ

†
2‖2 =

T∑
s,t=k+2

s−k−2∑
i=0

t−k−2∑
j=0

γ ′i:kγj:k E
†{επ(s−i−1)επ(t−j−1)επ(s)επ(t)}

= E
†{ε2

π(k+1)ε
2
π(k+2)}

T∑
t=k+2

t−k−2∑
j=0

‖γj:k‖2

+ E
†{επ(k+1)επ(k+2)ε

2
π(T )}

T∑
t=k+2

t−k−2∑
i,j=0

I{i 6=j}γ ′i:kγj:k

+ E
†{ε2

π(k+1)επ(k+2)επ(T )}

×
T∑

s,t=k+2

s−k−2∑
i=max{0,s−t}

γ ′i:kγt−s+i:kI#{s,t,s−i−1}=3

+ E
†{επ(k+1)επ(k+2)επ(k+3)επ(T )}

×
T∑

s,t=k+2

s−k−2∑
i=0

t−k−2∑
j=0

I#{s−i−1,t−j−1,s,t}=4γ
′
i:kγj:k

= OP (T−1ka4
T )‖γ‖2 +OP (T−2k2a4

T lT ) = OP (T−1ka4
T )

using
∑∞

i=1 i‖γi:k‖ ≤ k2‖γ‖1 + k
∑∞

i=1 i|γi| = O
(
k2
)
, so ‖Sk†0ε − σ

†
2‖ = OP †(T

−1/2k1/2a2
T ) in

P -probability. Adding ‖σ†2‖ = oP †(aT ) completes the proof in the case where π is equal to
the identity. �
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A.5 Multiple Restrictions

Consider the Wald statisticW and its bootstrap counterpartsW ∗ andW ∗∆ defined in Remark
4.2(ix). As in the proof of Theorem 3, and using repeatedly the notation introduced there in
what follows, define the r.v.’s

W † : = Tσ−2
T Lk(S

†k
00)−1S†k0ε [Lk(S

†k
00)−1L′k]

−1Lk(S
†k
00)−1S†k0ε ,

W̆ : = Tσ−2
T Lk(S̆

k
00)−1S̆k0ε[Lk(S̆

k
00)−1L′k]

−1Lk(S̆
k
00)−1S̆k0ε,

W πk : = Tσ−2
T Lk(S

πk
00 )−1Sπk0ε [Lk(S

πk
00 )−1L′k]

−1Lk(S
πk
00 )−1Sπk0ε .

The following sequential distances can then be evaluated in place of those in the proof of
Theorem 3.

1. As in step 1 of that proof, it holds that ρL(L∗(W ∗),L†(W ∗)) = 0 and ρL(L∗(W ∗∆),L†(W ∗∆)) =
0.

2. We argue below that, for the wild bootstrap,W ∗∆ = W †+oP †(T ã
2
Ta
−4
T ) in P -probability,

so
ρL(L†(a4

T ã
−2
T T−1W ∗∆),L†(a4

T ã
−2
T T−1W †)) = oP (1), (A.1.33)

whereas for an r.p. π, W ∗ = W † + oP †(T ã
2
Ta
−4
T ) in P -probability, so

ρL(L†(a4
T ã
−2
T T−1W ∗),L†(a4

T ã
−2
T T−1W †)) = oP (1). (A.1.34)

3(a). As in step 3 of Theorem 3’s proof, under bootstrap schemes wR it holds that
ρL(Lε(S†k00),L|ε|(S̆k00)) = 0 and ρL(Lε(S†k0ε ),L|ε|(S̆k0ε)) = 0 for symmetric εt’s. As a result,
ρL(L†(a4

T ã
−2
T T−1W †),L|ε|(a4

T ã
−2
T T−1W̆ )) = 0.

3(b). Under scheme (πR,w1), it holds that W † = W̆ algebraically.
4(a). Under symmetry of the distribution of εt, similarly to step 2,

Lk(S̆
k
00)−1S̆k0ε = Lk(S

πk
00 )−1Sπk0ε + oP |ε|(a

−2
T ãT + Iπ=r.p.T

ε−1/2a−1
T k1/2ak),

[Lk(S̆
k
00)−1L′k]

−1Lk(S̆
k
00)−1S̆k0ε = [Lk(S

πk
00 )−1L′k]

−1Lk(S
πk
00 )−1Sπk0ε

+oP |ε|(ãT + Iπ=r.p.T
ε−1/2aTk

1/2ak),

in P -probability, so ρL(L|ε|(a4
T ã
−2
T T−1W̆ ),L|ε|(a4

T ã
−2
T T−1W πk) = oP (1). In the case where π

is the identity, using

σ̂−2
Tkσ

2
T = 1 + σ̂−2

Tk(‖ε̂− ε‖2 + 2
∑

ε̂t(εt − ε̂t))

≤ 1 + σ̂−2
Tk(‖ε̂− ε‖2 + 2σ̂Tk‖ε̂− ε‖)

= 1 +OP (a−2
T (a2

ka
ε
T + aka

1+ε
T )) = 1 +OP (aka

ε−1
T )

for ε > 0, we can conclude that W πk equals σ̂−2
Tkσ

2
TW = W + oP |ε|(W ) = W + oP |ε|(a

−4
T ã2

TT ),
resulting in

ρL(L|ε|(a4
T ã
−2
T T−1W̆ ),L|ε|(a4

T ã
−2
T T−1W )) = oP (1).

In the case of an r.p. π, σ̂−2
Tkσ

2
TW conditional on {|εt|}kt=−∞ and the order statistics of

{|εt|}Tt=k+1 is distributed like W
πk conditional on {|εi|}Ti=−∞, so

ρL(L|ε|(a4
T ã
−2
T T−1W̆ ),L|e|(a4

T ã
−2
T T−1W ) = oP (1).

As σ̂−2
Tkσ

2
TTW = TW + oP |ε|(W ), also

ρL(L|ε|(a4
T ã
−2
T T−1W̆ ),L|e|(a4

T ã
−2
T T−1W ) = oP (1).
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4(b). Under scheme (πR,w1), similarly to step 2,

Lk(S̆
k
00)−1S̆k0ε = Lk(S

πk
00 )−1Sπk0ε + oP †(a

−2
T ãT + Iπ=r.p.T

ε−1/2a−1
T k1/2ak),

[Lk(S̆
k
00)−1L′k]

−1Lk(S̆
k
00)−1S̆k0ε = [Lk(S

πk
00 )−1L′k]

−1Lk(S
πk
00 )−1Sπk0ε

+oP †(ãT + Iπ=r.p.T
ε−1/2aTk

1/2ak)

in P -probability. As σ̂−2
Tkσ

2
TW conditional on {εt}kt=−∞ and the order statistics of {εi}Ti=k+1

is distributed like W πk under P †, it follows that

ρL(L†(a4
T ã
−2
T T−1W̆ ),Le(a4

T ã
−2
T T−1W ) = oP (1).

Finally, σ̂−2
Tkσ

2
TW = W + oP e(W ), so also

ρL(L†(a4
T ã
−2
T T−1W̆ ),Le(a4

T ã
−2
T T−1W ) = oP (1).

Then we combine the previous distances using the triangle inequality to conclude that

for πid : ρL(L∗(a4
T ã
−2
T T−1W ∗∆),L|ε|(a4

T ã
−2
T T−1W )) = oP (1),

for πR,wR : ρL(L∗(a4
T ã
−2
T T−1W ∗),L|e|(a4

T ã
−2
T T−1W )) = oP (1),

for πR,wid : ρL(L∗(a4
T ã
−2
T T−1W ∗),Le(a4

T ã
−2
T T−1W )) = oP (1).

These are equivalent to the convergence asserted in Remark 4.2.(ix).
The argument for Step 2 above can be structured as follows. First, the following refinement

of Lemma 3(c) can be proved similarly to that lemma (we skip the details).

Lemma A.3 Let k4/T + 1/k → 0 and Assumption 1 hold. Then it holds that:
(a) For an r.p. π, ‖Sk†0ε‖ = OP †((k + a1+ε

k )ãT ) in P probability, for every ε > 0.
Moreover, as in Lemma 1, let the selection matrix L has δ′-summable rows under linear

weighting (i.e. such that
∑∞

j=1 j|lij |δ
′
< ∞, i = 1, ...,m) for some δ′ ∈ (δ, 2α

2+α), with δ as
defined in Assumption 1. Then:

(b) For an r.p. π, ‖(LΣ−1)kS
†k
0ε‖ = OP †(ãT lT ) in P probability, where lT = 1 for α 6= 1

and lT is slowly varying for α = 1.
(c) For π equal to the identity, ‖(LΣ−1)kS

†k
0ε‖ = OP †(a

1+ε
T ) in P probability, for every

ε > 0.

Next, it can be used to derive the following expansions.

Lemma A.4 Under Assumption 1 and the δ′-summability assumption of Lemma 1, it holds
in P probability that, for small ε > 0,

Lk(S
†k
00)−1S†k0ε = σ−2

T (LΣ−1)kS
†k
0ε + oP †(a

−ε−1
T ) = oP †(a

ε−1
T )

if π is the identity and k4/T + 1/k → 0, whereas

Lk(S
†k
00)−1S†k0ε = σ−2

T (LΣ−1)kS
†k
0ε + oP †(a

−2
T ãT ) = oP †(a

−2
T ãT lT )

if π is an r.p., k5/T + 1/k → 0 and for α ≤ 1, also k3+2/α+ζ/T → 0 for some ζ > 0.
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Finally, (A.1.33) and (A.1.34) can be obtained as follows. Similarly to the argument for
Step 2 in the proof of Theorem 3, it can be shown that

Lk(β̂
∗
k − β̂k + Iπ=id∆β̂

∗
k) = Lk(S

∗k
00 )−1(S∗k0ε − σid1 ) (A.1.35)

= Lk(S
†k
00)−1S†k0ε + oP †(a

−1−ε
T + Iπ=r.p.T

ε−1/2a−1
T k1/2ak),

[Lk(S
∗k
00 )−1L′k]

−1Lk(β̂
∗
k − β̂k + Iπ=id∆β̂

∗
k) (A.1.36)

= [Lk(S
†k
00)−1L′k]

−1Lk(S
†k
00)−1S†k0ε + oP †(a

1−ε
T + Iπ=r.p.T

ε−1/2aTk
1/2ak),

It also holds that

|σ∗2Tk − σ̂2
Tk| ≤ (β̂

∗
k − β̂k)′S∗k00 (β̂

∗
k − β̂k) + 2σ̂Tk[(β̂

∗
k − β̂k)′S∗k00 (β̂

∗
k − β̂k)]1/2

= S∗kε0 (S∗k00 )−1S∗k0ε + 2σ̂Tk[S
∗k
ε0 (S∗k00 )−1S∗k0ε ]1/2

so |σ∗2Tk − σ̂
2
Tk| = oP †(a

1+ε
k ãT ) for π = id and |σ∗2k − σ̂

2
k| = OP †((k + ak)ãT ) for an r.p. π, in

P -probability, for all ε > 0. As |σ̂2
Tk − σ2

T | = oP (aka
1+ε
T ), all ε > 0 (see equation (10) and

(A.1.16)), it follows that

σ∗2k = σ2
T + oP †(aka

1+ε
T + Iπ=r.p.ka

1+ε
T ). (A.1.37)

From (A.1.35) and (A.1.36), using that the eigenvalues of S†k00 have exact magnitude order
a2
T in P

†,P probability, and Lk(S
†k
00)−1S†k0ε = OP †(a

ε−1
T ) for π = id and ε > 0 (by Lemma

A.4), it follows that for small ε > 0,

T−1σ∗2TkW
∗
∆ = Lk(S

†k
00)−1S†k0ε [Lk(S

†k
00)−1L′k]

−1Lk(S
†k
00)−1S†k0ε + oP †(a

−ε
T ) = oP †(a

ε
T )

for the wild bootstrap, if k4/T → 0. Upon division by σ∗2k and its approximation by σ2
T

according to (A.1.37), it is obtained that W ∗∆ = W † + oP †(T ã
2
Ta
−4
T ) and, as a consequence,

equation (A.1.33) holds.
If π is an r.p., independently of the specification of {wt}Tt=k+1, equations (A.1.35) and

(A.1.36) specialize to

Lk(β̂
∗
k − β̂k) = Lk(S

†k
00)−1S†k0ε + oP †(a

−1−ε
T + T ε−1/2a−1

T k1/2ak),

[Lk(S
∗k
00 )−1L′k]

−1Lk(β̂
∗
k − β̂k) = [Lk(S

†k
00)−1L′k]

−1Lk(S
†k
00)−1S†k0ε

+oP †(a
1−ε
T + T ε−1/2k1/2akaT ).

As now Lk(S
†k
00)−1S†k0ε = OP †(a

−2
T ãT lT ) under the hypotheses of Lemma A.4, it follows that,

if k5/T → 0 (and for α ≤ 1, also k3+2/α+ζ/T → 0 for some ζ > 0), then for suffi ciently small
ε > 0,

T−1σ∗2TkW
∗ = Lk(S

†k
00)−1S†k0ε [Lk(S

†k
00)−1L′k]

−1Lk(S
†k
00)−1S†k0ε + oP †(a

−ε
T )

is oP †(a
ε
T ) in P probability. As previously, jointly with (A.1.37) this leads to W ∗ = W † +

oP †(T ã
2
Ta
−4
T ) and, hence, (A.1.34) follows.
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