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ABSTRACT 

Purpose 

The aim of this study was to identify markers of poorer prognosis in patients with core-

binding factor acute myeloid leukemia (AML). 

Patients and Methods 

A total of 192 patients were treated with curative intent (age, 18-79 years) in 11 Italian 

institutions. 

Results 

Overall, 10-year overall survival (OS), disease-free survival (DFS), and event-free survival 

were 63.9%, 54.8%, and 49.9%, respectively; patients with the t(8;21) and inv(16) 

chromosomal rearrangements exhibited significant differences in terms of clinical 

presentation and laboratory and cytogenetic findings. Although the complete remission (CR) 

rate was similarly high in both groups, patients with inv(16) experienced superior DFS, a 

higher chance of achieving a second CR following relapse, and eventually a trend toward 

longer OS. Despite its rarity, we found that a complex karyotype (ie, ≥ 4 cytogenetic 

anomalies) strongly impacted survival. The KIT D816 mutation predicted worse prognosis 

only in patients with the t(8;21) rearrangement, whereas FLT3 mutations had no prognostic 

impact. We found increasingly better outcomes with more intense first-line therapy, with the 

best results achieved after 3-drug induction regimens and consolidation by repetitive high-

dose cytarabine courses and/or autologous stem cell transplant (ASCT) or allogeneic 

hematopoietic stem cell transplant. In multivariate analysis, age, severe thrombocytopenia, 

elevated lactate dehydrogenase levels, and failure to achieve CR after induction 

independently predicted longer OS, whereas complex karyotype predicted shorter OS only in 

univariate analysis. The achievement of minimal residual disease negativity predicted better 

outcome. Long-term survival was also observed in a minority of elderly patients who 

received intensive consolidation treatment. 

Conclusions 
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AML with the t(8;21) and inv(16) rearrangements should be considered distinct diseases. 

The overall intensity of first-line treatment remains the strongest predictor of ultimate cure. 

Complex karyotype identified patients at higher risk who might benefit from intensive 

consolidation therapy, possibly including ASCT. 
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INTRODUCTION 

Core-binding factor (CBF) acute myeloid leukemia (AML) is cytogenetically defined by the 

presence of t(8;21)(q22;q22) or inv(16)(p13q22)/t(16;16)(p13;q22).1,2 These cytogenetic 

alterations lead to the formation of the runt-related transcription factor 1 (RUNX1)/RUNX1T1 

and CBFB/myosin heavy chain 11 (MYH11) fusion genes and their respective fusion 

proteins that disrupt the signaling of the CBF complex, a heterodimeric transcription factor 

involved in normal hematopoiesis.3 Both genetic events are responsible for the loss of CBF 

function and result in impaired hematopoietic differentiation, a first step in the predisposition 

of the development of AML.3-5 According to the World Health Organization (WHO) 2008 

classification of myeloid neoplasms,6 CBF AML is categorized as one type of AML with 

recurrent genetic abnormalities.6 Among adults with de novo AML, the frequency of CBF 

AML decreases from approximately 15% in younger patients to only 7% in patients older 

than age 60 years.7-10 Due to a common pathogenetic foundation, but different genetic, 

clinical, and prognostic implications, it is still debated whether t(8;21) and inv(16) should be 

considered distinct disease entities.11-15 Patients with t(8;21) are frequently grouped as 

morphological subtype M2 according to the French-American-British (FAB) classification; 

they frequently also display loss of a sex chromosome and/or deletions of the long arm of 

chromosome 9.6 On the other hand, patients with inv(16) are more often diagnosed with FAB 

subtype M4Eo; these patients are frequently associated with trisomies of chromosomes 22, 

8, and 21.6,16 Despite the common finding of these additional cytogenetic abnormalities, their 

role in the pathogenesis of CBF AML is still uncertain, as is their putative prognostic 

relevance.7,8,10,16,17 

 Considering the high remission rate and good survival of patients with CBF AML, this 

type of leukemia is usually considered “favorable” in most recent classifications based on 

cytogenetics.7,10,18-20 This is particularly true when patients are treated with standard 

induction therapy followed by multiple cycles of high-dose cytarabine (HiDAC) as a 

consolidation regimen.19-22 Thus, patients affected by CBF AML are not usually considered 

candidates for allogeneic hematopoietic stem cell transplant (HSCT) when first complete 
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remission (CR) is achieved.23,24 However, as with other types of acute leukemia, relapse 

remains the main cause of treatment failure, with relapse rates up to 40% to 50%.2,25 

Patients with the t(8;21) translocation seem to have a worse outcome than those with 

inv(16).26 The reason for such disparity could be explained by the growing evidence of the 

genetic heterogeneity of CBF AML.19 In fact, in addition to the known secondary 

chromosome aberrations, gene mutations affecting tyrosine kinases commonly involved in 

the cellular cycle, such as KIT, fms-like tyrosine kinase 3 (FLT3), and RAS, have been found 

to be frequently mutated in CBF AML.17,27-30 In particular, the KIT D816 mutation, detected in 

approximately one-third of patients with CBF AML, has been associated with unfavorable 

outcome, mostly in patients with the t(8;21) translocation; however, its prognostic impact in 

patients with inv(16) is less clear.17,31-33 It is likely that additional molecular alterations with 

prognostic and therapeutic implications will be uncovered by genomic sequencing 

technology (eg, next-generation sequencing); nevertheless, at present, this technology is not 

available in daily clinical practice, and its use is limited to a few hematology institutions 

mainly for research purposes. Minimal residual disease (MRD) monitoring by quantitative 

reverse transcriptase polymerase chain reaction (RT-PCR) is currently under investigation 

as a tool to identify patients at high risk of relapse.25,34 Consequently, up-front risk 

stratification based on feasible clinical and biological markers remains the most useful and 

accessible tool to date to refine clinical decisions. 

 In this study, we retrospectively evaluated a large series of patients with CBF AML 

diagnosed and treated at 11 different Italian hematology institutions in the last 2 decades. 

We focused our attention on identifying heterogeneity among patients with t(8;21) and 

inv(16) AML in terms of clinical presentation, genetic features and response to therapy. We 

also focused on defining the potential prognostic role of additional cytogenetic abnormalities 

at diagnosis, as well as molecular, clinical, and laboratory data. We then assessed the role 

of overall dose intensity of first-line treatment in determining final outcome, exploiting the 

long available follow-up. Based on our results, we identified several characteristics 
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commonly assessed at diagnosis in daily clinical practice that may have a useful role in 

helping physicians to make evidence-based decisions. 

 

PATIENTS AND METHODS 

Patients 

We retrospectively reviewed the medical records of patients with CBF AML from 11 Italian 

hematology institutions in Treviso (n = 14), Bologna (n = 51), Vicenza (n = 34), Verona 

(n = 22), Udine (n = 18), Ancona (n = 17), Bolzano (n = 15), Modena (n = 9), Ascoli Piceno 

(n = 7), Pesaro (n = 3), and Padova (n = 2). Minimal required follow-up was 6 months for 

surviving patients. For July 1987 to August 2012, we collected data on 202 patients 

diagnosed and intensively treated with curative intent; of these, 192 (95%) had adequate 

clinical, laboratory, cytogenetic, and survival data to be considered eligible for the present 

study. The main reasons for exclusion were follow-up < 6 months or inadequate karyotype 

analysis at diagnosis (mainly due to failure to detect a sufficient number of mitoses). 

 Consent to use the medical records anonymously for research purposes was 

obtained from all patients as part of the informed consent for therapy, as revised and 

approved by the local institutional review boards of the participating centers and according to 

the existing regulations at the time of diagnosis and initial therapy. Part of the present clinical 

series (n = 46 [24%]), mainly those patients diagnosed and treated less recently, was 

already presented in 2 other multicenter studies.28,35 

 

Clinical, laboratory, cytogenetic, and molecular data 

Clinical and laboratory data were collected from medical records. In all cases, a complete 

clinical examination and laboratory profile were obtained at diagnosis, including full 

hemochromocytometric analysis confirmed by microscopic examination of peripheral blood 

smears; evaluation of common laboratory markers of renal and hepatic function; and levels 

of serum lactate dehydrogenase (LDH), coagulation markers, serum urates, and lysozyme. 
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Morphology and immunophenotype of leukemic blasts were evaluated in bone marrow 

samples in all cases. 

 All 192 patients had complete cytogenetic information at diagnosis. Chromosome 

banding analysis was performed on bone marrow cells after short-term culture (24-48 

hours). A total of 20 metaphase cells were analyzed according to the International System 

for Human Cytogenetic Nomenclature.36 All participating centers provided complete 

descriptions of CBF translocations and additional cytogenetic abnormalities and subclone 

analysis, when different pathologic clones coexisted, or of the CBF AML clone together with 

cytogenetically normal hematopoiesis. Fluorescence in situ hybridization was conducted as 

to confirm cytogenetic information in 39 cases (20%). 

 Molecular analysis in more recent years included data for mutations in KIT, FLT3, 

and nucleophosmin (NPM1) in all newly diagnosed patients. Mutation analysis of the KIT 

gene was performed by PCR using specific primers for exons 8 and 17, followed by 

sequencing. 

 The presence of internal tandem duplication and D835 mutations of the FLT3 gene 

was determined by multiplex PCR, followed by restriction endonuclease digestion (for the 

D835 mutation) and separation by capillary electrophoresis, per the manufacturer’s 

instructions.37 NPM1 exon 12 A, B, and D mutations were initially characterized by real-time 

PCR.38 Given the retrospective nature of the current study, complete data were only 

available for a subgroup of the whole series. Overall, KIT analysis was performed in 59 

patients (30.7%), FLT3 in 101 patients (52.6%), and NPM1 in 79 patients (41.1%). 

 For the detection of chimeric genes RUNX1/RUNX1T1 and CBFB/MYH11, a 

standardized RT-PCR protocol was used, as described previously.39 These transcripts were 

systematically used for molecular follow-up at 4 hematology institutions participating in this 

study (Bologna, Modena, Bolzano, and Ascoli Piceno). Detection of MRD was performed on 

bone marrow samples at diagnosis and at regular time points during treatment (end of 

induction, end of consolidation, and post-HSCT [autologous or allogeneic HSCT]). Overall, 



 

8 

60 patients had complete molecular follow-up data that were used for subsequent statistical 

analysis. 

 

Chemotherapy and conditioning regimens 

Intensive chemotherapy induction regimens used for curative purpose in patients aged 18-60 

years with AML were categorized into groups: (1) “standard” D3A7 regimen, consisting of 

daunorubicin 45 mg/m2 days 1-3 + intravenous cytarabine continuous infusion 100 mg/m2 

days 1-7 or other similar 2-drug regimens consisting of an anthracycline plus standard-dose 

cytarabine; (2) similar 2-drug regimens with intermediate-dose cytarabine (IDAC) 1-1.5 g/m2 

twice daily [bid] days 1-5 or HiDAC 3 g/m2 bid days 1-5 plus an anthracycline (eg, HAM, 

IDAC/HiDAC, HiDAC + idarubicin); (3) 3-drug regimens, adding etoposide 50 mg/m2 days 1-

5 or other drugs (eg, thioguanine 200 mg/m2 days 1-5 in the ETI and days 1-7 in the AAT 

regimens), excluding purine nucleoside analogues to anthracycline and cytarabine (eg, ICE, 

MICE, DAV/DAE/DCE, MEC, BARTS, ETI, AAT); (4) 3-drug fludarabine-based regimens, 

with fludarabine 25-30 mg/m2 days 1-5 or, in a few cases, other purine analogues as the 

third drug together with IDAC/HiDAC and an anthracycline (eg, FLAI5, FLAIRG, FLAN, 

FLAIE); (5) 3-drug fludarabine-based regimens with the addition of anti-CD33 gemtuzumab 

ozogamicin, mainly as part of other collaborative trials in more recent years (eg, AML M7 

protocol using My-FLAI5 as an induction regimen). 

 Following 1 cycle of intensive induction (cycle 2 in the ETI regimen [n = 2]), patients 

achieving complete hematologic response were consolidated with ≥ 1 (range, 1-4) 

heterogeneous consolidation courses depending on the time and hematology institution in 

which they were treated. Three patients only were consolidated with > 4 courses. All 

consolidation courses included IDAC/HiDAC given alone or together with other 

chemotherapeutic drugs. After 2-3 courses of consolidation, first-line autologous HSCT 

(ASCT) was implemented in (1) patients considered at high risk of relapse because of the 

presence of prognostically adverse clinical or laboratory findings at diagnosis (eg, 

hyperleukocytosis with > 108/L white blood cells [WBC]; extensive bone marrow, hepatic, 
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and splenic infiltration; granulocytic sarcoma); (2) patients failing to achieve complete 

hematologic remission after induction and rescued with reinduction therapy; (3) slow-

responding patients who achieved hematologic but not cytogenetic remission after induction 

therapy; (4) patients with persisting or relapsing molecular transcripts, when the patient had 

regular molecular follow-up visits. Similarly, a small group of patients with available HLA-

matched donors (n = 29) was treated with first-line allogeneic HSCT for the same reasons. 

BuCy, BuMel, BAVC, fTBI + CTX, fTBI + CTX + ATG, and Flu-CTX were used as 

conditioning regimens for both autologous or allogeneic HSCT, with BuCy as the most 

common regimen (62%). All first-line allogeneic HSCT but 1 were performed after 

myeloablative conditioning. 

 In relapsing patients, rescue therapy mainly included 3-drug fludarabine-based 

regimens, and responding patients were consolidated with another course of the same 

regimen, whenever possible. After that, second-line allogeneic HSCT was the treatment of 

choice in all patients capable of undergoing HSCT and with a potential HLA-matched donor. 

 Patients aged > 60 years were still intensively treated with curative intent, using 

either the same regimen as younger patients or their reduced versions for older patients, 

when available. 

 

Descriptive statistics, group comparison, and survival analysis 

For analysis of the differences in proportions, the Fisher exact (for cell n < 5 in a contingency 

table) and Pearson χ2 (n ≥ 5) tests were used. The Mann-Whitney and Kruskal-Wallis tests 

were used to compare nonparametric variables between 2 or multiple groups, whereas 1-

way analysis of variance and Holm-Šidák test for multiple comparison were used to compare 

parametric variables among multiple groups. Two-way Student t test was used to compare 

parametric variables between 2 groups. The Shapiro-Wilk test was used to test normal 

distribution. Differences were considered statistically significant for P ≤ .05. 

 Survival data from February 2014 were retrospectively analyzed. At this time point, 

134 patients (69.8%) were alive, with a median follow-up of 73.4 months (range, 6-294). 
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 Overall survival (OS) was defined as the time from diagnosis to death from all causes 

or last follow-up. Disease-free survival (DFS) was defined only in patients achieving 

complete hematologic remission as the time from assessment of complete remission until 

relapse of leukemia, death from all causes, or last follow-up. Event-free survival (EFS) was 

defined as the time from diagnosis to any adverse event, including death from all causes, 

relapse of leukemia, and treatment-related death occurring during induction or consolidation 

therapy. 

 With a competing risk survival approach, relapse mortality (RM) was defined as 

death due to leukemia relapse and nonrelapse mortality (NRM) was defined as death from 

any cause in the absence of overt leukemia. When the role of allogeneic HSCT on survival 

was assessed, a Mantel-Byar approach was used (ie, allogeneic HSCT was treated as a 

time-varying covariate, and patients eventually transplanted were switched from the regular 

group to the group of transplanted patients only at the time of HSCT). In our opinion, as 

detailed in more recent literature, this enabled us to avoid the possible bias of considering 

the effects of allogeneic transplant (eg, graft-vs-leukemia effect) from the date of diagnosis 

to last follow-up, rather than the time from transplant to last follow-up. 

 OS curves were calculated according to the Kaplan-Meier method, and differences 

between patient groups were tested using the log-rank test. P ≤ .05 was considered 

statistically significant. We then applied Cox proportional hazard modeling to evaluate 

potential prognostic factors, defining death from all causes as the event in the case of OS. 

This enabled us to obtain hazard ratios (HRs) and their 95% CI in both univariate 

(unadjusted) and multivariate (adjusted) modes. Multivariate analysis was carried out for 

those factors resulting in statistically significant differences (ie, P ≤ 0.05) among patients at 

the univariate analysis. In 1 case (ie, t[8;21] patients), KIT evaluation was excluded from the 

multivariate analysis because of incomplete molecular data at diagnosis, which limits the 

multivariate analysis to approximately one-third of the whole series. 

 To evaluate the effects of the same factors on NRM and RM, we modeled survival 

analysis in a competing risk setting, using death from different causes as mutually exclusive 
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competing events. We also considered allogeneic HSCT in this setting as a time-dependent 

covariate when assessing its role on survival. We compared cumulative incidence functions 

between groups identified by the presence or absence of putative risk factors used as 

covariates by means of the Pepe and Mori test.40 

 Statistical analyses were performed using the Stata IC v.10.1 platform for Microsoft 

Windows, by StataCorp (College Station, TX). 

 

RESULTS 

Patient characteristics 

Patient characteristics are summarized in Table 1. Overall, 80 patients (41.7%) presented 

with t(8;21) and 112 (58.3%) with inv(16) AML. Age and sex ratio were equally distributed, 

with 9 (11.3%) and 17 (15.2%) patients diagnosed with CBF AML at an older age (≥ 61 

years). We observed 11 patients (5.7%) with secondary AML, following a previous history of 

hematologic or neoplastic disease. In 8 patients, the diagnosis of AML followed a previous 

cancer treated with either chemotherapy including alkylating agents or chemotherapy and 

radiotherapy (4 non-Hodgkin lymphomas, 2 Hodgkin lymphomas, 1 colon cancer, and 1 

breast cancer); in 2 more patients, a previous history of myelodysplastic syndrome, as 

documented by hematologic anomalies lasting > 6 months, was present; and in 1 patient, 

AML emerged in the context of chronic myeloid leukemia but from a Philadelphia-negative 

clone. At diagnosis, hepatic involvement did not differ between the 2 CBF AML subtypes, 

whereas splenomegaly (24 vs 6; P = .008) and lymphadenomegaly (28 vs 7, respectively; 

P = .005) were more common with patients with inv(16) than t(8;21). Patients with inv(16) 

AML had higher WBC (P < .001) and lower platelet counts (P = .04), and a higher degree of 

blastic substitution at the initial bone marrow analysis (ie, packed marrow; P = .02). 

Hemoglobin level was lower in patients with t(8;21) AML (P = .002). Diffuse extramedullary 

leukemia not meeting the requirements of granulocytic sarcoma (eg, skin localizations, 

diffuse pulmonary infiltrates) was slightly more frequent in patients with inv(16) vs t(8;21) 

AML (12 vs 3 patients, respectively; P = nonsignificant [NS]). 
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Survival 

Overall, OS of our entire series was 67.0% at 5 years and 63.9% at 10 years, confirming the 

favorable outcome of this type of AML; 5-year and 10-year DFS were 58.2% and 54.8%, and 

5-year and 10-year EFS were 53.9% and 49.9%, respectively. We observed a better DFS 

rate for patients with inv(16) compared with t(8;21) (5-year DFS, 63.7% vs 50.5%; 10-year 

DFS, 61.7% vs 45.2%, respectively; P = .04; Figure 1). Although this trend was maintained 

when OS was considered, the difference between the 2 subtypes was not significant (Figure 

1); in fact, patients with t(8;21) experienced 5-year and 10-year OS that was only slightly 

lower than that of patients with inv(16) (64.7% and 57.2% vs 68.5% for both time points, 

respectively; P = NS; Figure 1). 

 Both t(8;21) and inv(16) AML presented high CR (CR1) rates after intensive induction 

chemotherapy (92.5% vs 93.8%), with 29 of 74 patients (39.2%) relapsing after 8.9 months 

(range, 0.9-42) in t(8;21) and 31 of 105 patients (29.5%) relapsing after 13.9 months (range, 

1-70) for inv(16). Age did not impact CR1 after induction therapy: overall, 23 older patients 

achieved CR1 after induction (88.5%) vs 156 younger patients (95.1%; P = .18). Thereafter, 

patients were consolidated with multiple courses of therapy and possibly first-line ASCT or 

allogeneic HSCT as described in the Patients and Methods section. Three patients died 

during the aplastic phase following induction therapy and 1 more died during consolidation 

therapy after the achievement of CR1, accounting for an overall treatment-related mortality 

of 2.1% in the series. 

 Regarding relapse, patients with inv(16) had a slightly better chance to achieve a 

second CR (CR2) following rescue chemotherapy (n = 21 of 25 [84.0%] vs n = 16 of 24 

[66.7%], respectively; P = NS), resulting in a nonstatistical trend toward better final OS 

(Figure 1). 

 Eleven patients not achieving CR1 after induction therapy experienced poor survival 

despite administration of rescue therapy in most cases (n = 8 [72.7%]) and the later 

achievement of CR in 5 of 8 patients (62.5%). We could not find any correlation between 
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clinical, laboratory, cytogenetic, or molecular features and the chance to achieve CR1. 

Eventually, 7 patients of this group died early from leukemia progression, with a median 

survival of 2.2 months from diagnosis; 1 died later following allogeneic HSCT, due to 

infectious complications while still in CR. Only 3 patients survived long term: of these, 1 was 

treated with allogeneic HSCT following successful rescue chemotherapy, the other 2 were 

treated with consolidation chemotherapy alone. 

 

Prognostic role of additional cytogenetic abnormalities 

We then analyzed whether additional cytogenetic abnormalities predicted different 

prognoses. We detected additional cytogenetic abnormalities in 83 patients (42 patients with 

t[8;21] [52.5%] and 41 patients with inv[16] [36.6%; P = NS]). These are listed in 

Supplementary Table 1. We observed both quantitative (eg, aneuploidy, hyperdiploidy, 

trisomy) and qualitative (eg, deletions, additions, isochromosome formation) abnormalities 

and considered them separately in survival analysis. We also considered whether the 

presence of multiple subclones, as identified by the coexistence of different populations with 

different cytogenetic abnormalities or by the leukemic clone together with hematopoietic cells 

with normal karyotype, had any impact on the final outcome. 

 Single additional cytogenetic abnormalities were present in 43 patients and are listed 

in Table 2. Most anomalies were not homogenously distributed in either t(8;21) or inv(16), 

with anomalies involving sex chromosomes and chromosome 9 more common in patients 

with t(8;21) and others, such as trisomy 22, trisomy 8, and anomalies of chromosome 7, 

almost exclusively in patients with inv(16). We found a nonsignificant trend toward better OS 

and DFS for patients with inv(16) and trisomy 22 and trisomy 8 (data not shown), but proper 

survival analysis could not be performed for these patients, mainly due to the small numbers 

in each group. 

 We then considered the whole series according to the number of cytogenetic 

abnormalities besides t(8;21) and inv(16). Overall, 43 patients presented with 1 additional 

cytogenetic abnormality, 31 with 2, and 9 with ≥ 3; the latter were considered “complex 
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karyotypes” (Table 2). As presented in Figure 2, although the survival rates of patients with 1 

or 2 additional cytogenetic abnormalities were not statistically different than those of patients 

with CBF AML with just t(8;21) or inv(16), patients with ≥ 3 additional cytogenetic 

abnormalities fared significantly worse than all other groups (Figure 2) in terms of DFS and 

EFS. Shorter OS was evident only as a trend approaching statistical significance, due to the 

small group number. This was confirmed by Cox proportional hazard modeling; also in this 

setting, the presence of ≥ 3 additional cytogenetic abnormalities identified a small subgroup 

of patients with dismal prognosis (HR, 2.58; 95% CI, 1.02-6.49; P = .044). This subgroup 

consisted of 9 patients (4.7% of the whole series), 5 presenting with t(8;21) and 4 with 

inv(16); 3 patients were aged ≥ 61 years and notably, only 2 presented with secondary AML. 

Eight achieved CR following induction and 4 relapsed, with a median DFS of 15.4 months. 

Three relapsing patients were then treated with second-line therapy, including allogeneic 

HSCT in 2 of the patients. When we evaluated the prognostic significance of complex 

karyotypes separately in patients with t(8;21) and inv(16), the presence of ≥ 3 additional 

cytogenetic abnormalities still identified (at the limit of statistical significance) a subgroup 

with dismal prognosis in t(8;21), despite the low number in the group (HR, 2.85; 95% CI, 

0.98-8.29; P = .055; n = 5). The difference in survival became statistically nonsignificant in 

the analysis of patients with inv(16) (Supplementary Tables 4 and 5). 

 Paradoxically, as shown in Figure 2, we observed a nonstatistical trend toward better 

survival in patients with 2 additional cytogenetic abnormalities compared with patients 

without any additional abnormalities; notably, there were more patients with inv(16) in the 

group with 2 additional cytogenetic abnormalities compared with the groups with either 1 or 

≥ 3 additional abnormalities (19 of 31 [61.3%] vs 18 of 43 [41.9%] and 4 of 9 [44.4%], 

respectively). Trisomy 22 and trisomy 8 were both common among patients with 2 additional 

abnormalities, being present in 14 patients of this group overall (45.2%), either separately or 

combined together. If we excluded these patients from the group with 2 additional 

cytogenetic abnormalities, the advantage in survival shown by this group remained (still as a 

trend) but diminished considerably (data not shown). 
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 Finally, we did not detect any prognostic role for the presence of subclones as 

detected by classic karyotyping or by the presence of additional abnormalities listed as 

qualitative or quantitative. 

 

Prognostic role of molecular data 

Details on molecular data are listed in Supplementary Table 2. In the small group for whom 

data had been consistently collected, we observed the presence of mutated FLT3 or NPM1 

in rare cases (10 of 101 [9.9%] and 2 of 79 [2.5%], respectively), whereas KIT was mutated 

in 7 of 59 patients (11.8%). Despite the low numbers, KIT mutations proved to be an 

indicator of shorter OS at the univariate analysis in patients with t(8;21) (HR, 12.5; 95% CI, 

1.12-139.33; P = .04) but not in patients with inv(16) or in the whole series (Table 3). KIT 

mutations did not indicate worse DFS in patients with either t(8;21) or inv(16) (data not 

shown). FLT3 mutations did not predict worse OS or DFS, whereas NPM1 mutations could 

not be analyzed due to the presence of just 2 patients with these mutations in the whole 

series. 

 

Postinduction consolidation 

We first used D3A7 as a reference for induction therapy against more recent and intensive 

regimens. Overall, 25 patients were treated with the D3A7 regimen and 167 with more 

intensive regimens (IDAC/HiDAC based, n = 12; 3-drug regimens, n = 112; fludarabine 

based, n = 43); the characteristics of the 2 cohorts are summarized in Supplementary Table 

3. Interestingly, there was no temporal bias toward the D3A7 regimen in the first decade 

covered by our study (1987-2000) compared with the more recent one (19 vs 132 compared 

with 6 vs 35; P = NS), indicating that D3A7 was still used as a potential induction regimen in 

more recent years. Furthermore, patients treated with more intensive schemes did not 

statistically differ in age, presence of secondary leukemia, blood cell counts, LDH levels, or 

degree of marrow involvement, whereas the presence of granulocytic sarcoma and liver and 

splenic involvement appeared to be more frequent in the group treated with D3A7. With 



 

16 

these differences, we observed a more favorable outcome after 3-drug or fludarabine-based 

regimens than after D3A7 (Supplementary Figure 1). Although this appeared only as a 

statistical trend toward better OS and DFS for intensively treated patients (P = NS for both), 

the difference was statistically significant for EFS (P = .043). 

 We further investigated this issue by dividing patients with CR1 into groups according 

to the dose intensity of first-line therapy. This resulted in 4 different groups: (1) patients 

treated with induction + 1-2 consolidation courses (n = 60 [33.5%]); (2) patients treated with 

induction + ≥ 3 intensive consolidation courses (n = 57 [31.8%]); (3) patients treated with 2-3 

consolidation courses and first-line ASCT (n = 33 [18.4%]); and (4) patients treated with first-

line allogeneic HSCT (n = 27 [15.1%]). Results are shown in Figure 3. We recognized a 

distinctive trend toward better outcomes as the dose intensity during first-line treatment 

increased. Differences were statistically significant for DFS (P < .001) and OS (P = .005). 

Although limited consolidation ultimately resulted in poor DFS and OS at 5 years (29.7% and 

52.7%, respectively), outcome significantly improved with more intensive consolidation 

(61.8% and 73.0%) and especially with first-line ASCT (71.3% and 80.3%) or allogeneic 

HSCT (83.7% and 91.3%). In a small group (n = 27) of patients who were treated with 

allogeneic HSCT, we observed the best DFS and OS. Notably, only 3 deaths occurred (due 

to leukemia relapse in one case and to HSCT complications in the other two) in this group. 

 Given the importance of age in predicting the outcome of patients with AML, we 

performed a subanalysis of elderly (≥ 61 years) patients (n = 26 [13.5%]). The CR rate was 

high in this group, with 23 of 26 patients (88.4%) achieving CR1 after induction. Fourteen 

patients of this group (53.8%) were further consolidated by 1-2 courses and 4 by ≥ 3 courses 

(15.3%), whereas 4 more patients (15.3%) received ASCT as additional first-line treatment 

after 2 previous consolidation courses. The sole remaining patient with CR, aged 61 years, 

was treated with first-line allogeneic reduced-induction conditioning HSCT from a 

haploidentical related donor. Long-term DFS was achieved only in the more intensively 

treated cohort. Five-year DFS and OS ranged from 11.3% and 20.2% for patients 

consolidated with 1-2 courses to 62.2% (for both DFS and OS) in those who were treated 
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with more intensive first-line consolidation (P = .002 and P = .019, respectively). Notably, 

there were no deaths during induction and consolidation in the elderly patients of our series. 

 

Molecular MRD 

In those patients for whom MRD was monitored (n = 60), we found a fundamental difference 

in survival between those achieving molecular CR and those failing, regardless of the time 

point during treatment at which MRD was negative (Supplementary Figure 2). This was true 

for OS (log-rank P < 0.001; HR, 8.73; 95% CI, 3.30-23.12; Cox univariate analysis P < .001), 

DFS (P < .001; HR, 5.02; 95% CI, 2.22-11.34; P < .001), and EFS (P < .001; HR, 4.90; 95% 

CI, 2.24-10.71; P < .001; data not shown). Twenty-three patients (38.3%) never achieved 

molecular remission and had a median OS of 16.7 months regardless of the treatment they 

received (Supplementary Figure 2), including first-line ASCT and allogeneic HSCT in 4 and 3 

patients, respectively. 

 Due to the small number of patients, when we stratified patients according to first-line 

treatment (ie, chemotherapy only, chemotherapy + ASCT, chemotherapy + allogeneic 

HSCT), we could not find a consistent relationship between time point of achievement of 

MRD negativity and final outcome. 

 

Cox HR survival modeling 

We systematically checked the putative prognostic factors listed in Table 3, chosen on the 

basis of the literature on AML. In the univariate analysis for OS, age (> 60 years; HR, 3.05; 

95% CI, 1.69-5.51; P < .001), severe thrombocytopenia at diagnosis (platelet count, < 20 × 

103/mm3; HR, 2.24; 95% CI, 1.29-3.91; P = .004), increased LDH levels (HR, 3.6; 95% CI, 

1.12-11.57; P = .032), presence of ≥ 3 additional cytogenetic abnormalities (other than 

t[8;21] or inv[16]/t[16;16]; HR, 2.58; 95% CI, 1.02-6.49; P = .044), and failure to achieve CR 

following induction (HR, 6.21; 95% CI, 2.92-13.22; P < .001) identified patients at higher risk. 

Of these, only age (HR, 4.08; 95% CI, 2.03-8.21; P < .001), severe thrombocytopenia (HR, 

2.1; 95% CI, 1.15-3.83; P = .016), increased LDH levels (HR, 3.46; 95% CI, 1.06-11.35; 
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P = .041), and failure to achieve CR after induction (HR, 5.33; 95% CI, 2.27-12.48) proved to 

be independent prognostic factors in the multivariate analysis. When we analyzed OS for 

patients with t(8;21) or inv(16) AML separately (Supplementary Tables 4 and 5), we found 

that age, presence of ≥ 3 additional cytogenetic abnormalities, and failure to achieve CR 

after induction were independent prognostic factors for patients with t(8;21), whereas only 

age and severe thrombocytopenia remained independent prognostic factors for OS in 

patients with inv(16). Notably, in our series, the KIT D816 mutation identified patients with 

worse prognosis only in those with t(8;21) AML and only in univariate analysis (we excluded 

this term from the multivariate analysis because of narrow data coverage [30.7% of the 

whole series]; Table 3 and Supplementary Table 4). Conversely, failure to achieve CR after 

induction did indicate adverse prognosis in univariate analysis for patients with inv(16) but 

did not remain an independent marker for OS in the multivariate analysis, thus highlighting 

the possibility to rescue failing patients with more intensive second-line therapies (Table 3 

and Supplementary Table 5). 

 

Role of allogeneic HSCT 

As detailed in the Patients and Methods section, to assess the role of allogeneic HSCT, we 

used a Mantel-Byar approach and a competing-risk analysis to distinguish death due to 

leukemia persistence or recurrence (ie, RM) and death from all other causes (ie, NRM) as 

mutually exclusive, competing events. First-line allogeneic HSCT was performed in CR 

achieved after initial induction (CR1) in 27 patients and in CR achieved after reinduction 

following failure of initial chemotherapy (CR2) in 2 more. In this small series of 29 patients, 

we found that first-line allogeneic HSCT deeply reduced RM (P < .001) without significantly 

increasing NRM (P = NS), thus determining a good final outcome, with 5-year OS at 88.5% 

and 5-year DFS at 83.7% (Figure 4). This resulted in a strong statistical trend (P = .059) 

toward longer OS of the first-line transplanted group compared with patients who did not 

receive transplants. As previously shown, patients receiving allogeneic HSCT and ASCT as 

part of first-line treatment experienced the best outcome compared with those who received 
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consolidation by chemotherapy only (Figure 3). Twenty-two patients treated with allogeneic 

HSCT as part of rescue or second-line therapy were considered separately. 

 

Relapsing patients and second-line therapy 

Overall, 60 patients (31.2%) relapsed after achieving CR, with similar rates in those with 

t(8;21) and inv(16) AML (n = 29 [39.2%] vs n = 31 [29.5%]; P = NS), resulting in only a slight 

advantage of patients with inv(16) compared with t(8;21) for DFS (P = .04; Figure 1). When 

the intensity of treatment given as first line was tested specifically, we did not find any 

significant difference between patients with t(8;21) vs inv(16) (data not shown). In both 

groups, moreover, the chance of achieving CR2 following rescue therapy was good, with 49 

patients (81.7%) actually receiving second-line treatment and 37 of these (75.5%) achieving 

CR2. The chance of achieving CR2 was slightly better for patients with inv(16) vs t(8;21) 

(n = 16 [66.7%] vs n = 21 [84.0%]; P = NS). 

 The type of induction therapy did not impact the chance of achieving second 

remission following relapse: 5 of 8 relapsing patients after D3A7 achieved CR2 vs 32 of 41 

relapsing after more intensive induction regimens (P = NS). Similarly, the overall intensity of 

first-line treatment did not influence the possibility to rescue patients after relapse: the 

chance of achieving CR2 was similar for reduced-intensity consolidation (1-2 courses), 

intensive consolidation (> 3 courses), or ASCT (17 of 22 vs 14 of 19 vs 5 of 7; P = NS). 

 Twenty-two of the 37 patients achieving CR2 were consolidated by allogeneic HSCT. 

Patients only received second-line allogeneic HSCT while in hematologic remission; this 

group did not include first-line refractory patients. We analyzed the role of second-line 

allogeneic HSCT by applying the same time-dependent, competing-risk approach we used 

for first-line allogeneic HSCT, as previously described. We found better relapse survival for 

the allotransplanted group compared with the one consolidated with second-line therapy not 

including HSCT (P = .044; Supplementary Figure 3); this was explained by a strong effect of 

allogeneic transplantation to diminish RM (P < .001; Supplementary Figure 3), which was 

ultimately balanced by an equally powerful NRM in second-line transplanted patients 
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(P = .011; Supplementary Figure 3). NRM accounted for 7 deaths (n = 11 [31.8% of all]) in 

patients transplanted as part of their second-line therapy. 

 

DISCUSSION 

We critically reviewed the clinical experience of 11 Italian hematology institutions, trying to 

identify predictors of poor prognosis among patients with CBF AML. 

 Overall, age proved to be a pivotal independent factor in multivariate analysis. In 

most forms of AML, poor outcome in elderly patients reflects the presence of more 

aggressive biological features of AML blasts, making them resistant to cytotoxic drugs, as 

well as the effect of comorbidities that mostly prevent the administration of an adequate 

treatment intensity.41-43 Using a cutoff of 60 years, we observed a CR rate comparable for 

younger and older patients but a higher relapse rate in older patients, ultimately leading to 

poorer OS. This is similar to what was reported in a recent study,44 in which these results 

were linked to the clinical decision not to administer consolidation therapy to most older 

patients because of high induction-related toxicity.44 Similarly, only one-third of the older 

patients in our cohort received intensive postremission therapy (data not shown). It proved 

impossible to assess whether this reflected a poorer tolerance to chemotherapy or a specific 

attitude by physicians. Nevertheless, long-term DFS and OS could still be achieved in a 

significant proportion of elderly patients with CBF AML when intensive consolidation was 

provided, an achievement not usually observed in other forms of AML. We believe that this is 

derived from the preserved chemosensitivity of CBF AML blasts also in elderly 

patients11,44,45; we therefore believe that less toxic induction regimens should be given to 

older patients with CBF AML and later intensive postremission treatment provided to a larger 

proportion of responding patients. 

 Besides age, elevated LDH levels (P = .041) and low platelet count at diagnosis 

(P = .016) proved to be independent predictors of shorter OS in multivariate modeling, as in 

other previously published studies25,46,47; the precise biological mechanisms highlighted by 

these statistics are still largely unknown. 
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 We also tested whether other clinical and laboratory data, such as the presence of 

high tumor burden (ie, high WBC count, deeper bone marrow substitution, or hepatic and 

splenic involvement), might impact CR rate and survival. Surprisingly, we found no 

correlation between clinical and laboratory data and CR rate after induction or final outcome. 

This is similar to what was reported by Appelbaum et al,15 Marcucci et al,26 and others,25 in 

which cytogenetic and molecular data proved to be more powerful prognostic factors. 

 We therefore addressed the role of cytogenetics. In agreement with most previous 

studies,14,16,26 we could not detect a prognostic value for single additional abnormalities, 

which showed only a nonsignificant trend toward worse DFS and EFS but no difference in 

OS. Seemingly a paradox, the group defined by the presence of 2 additional independent 

abnormalities showed a nonstatistical advantage in survival; we think this may be explained 

by the prevalence of patients with inv(16) in this group, as well as by the presence of 

cytogenetic findings such as trisomy 22 and trisomy 21, which were already linked to better 

prognosis in patients with inv(16) in other studies.14,16,25 

 Most significantly, though, we found that ≥ 3 additional cytogenetic abnormalities, 

herein defined as “complex karyotype,” predicted significantly worse outcome in terms of 

DFS, EFS, and to a lesser degree, OS. This was proved despite the relative rarity of this 

subgroup and independently from the intensity of treatment these patients received. Effects 

were more evident for patients with t(8;21) than those with inv(16), for whom only 

nonsignificant trends could be observed. So far, complex karyotype AML has been defined 

on a functional and statistical basis from the results of clinical trials as an indicator of poor 

prognosis due to chemotherapy resistence.10,48 Biological studies addressing this type of 

AML as a putative unique disease entity48 have found multiple molecular changes, such as 

TP53 deletion49 and alterations in NuMA proteins50 linked to the multiple chromosomal 

abnormalities used to identify patients. An overall status of “genetic instability” was 

determined to be a typical feature of the disease, highlighted by a specific gene expression 

signature that separates this subgroup from other types of AML. However, there is poor 

interlaboratory consistency on this issue, and the identified gene expression signatures for 
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complex karyotype do not overlap between different laboratories.51,52 Therefore, the 

definition of complex karyotype has remained functional, and the cutoff of independent 

chromosomal aberrations has ranged from ≥ 3 to ≥ 5 in different clinical series, even by the 

same cooperative group.2,7-10,24 

 In CBF AML, most studies have used a cutoff of ≥ 3 independent abnormalities 

overall to define complex karyotype8,14,48; as such, opposite to our own results, most of these 

studies failed to detect a prognostic impact of additional chromosomal abnormalities on 

OS.25 We believe this discrepancy to be the consequence of several issues: (1) the possible 

lack of complete karyotypic data prior to chemotherapy, due to the failure to detect a proper 

number of mitoses or, in more recent years, to the ever-growing use of molecular data (ie, 

RUNX1/RUNX1T1 and CBFB/MYH11) as an alternative to cytogenetic analysis; (2) the 

different definition of “complex karyotype” AML that in our series, as in another large series 

by the Medical Research Council (MRC) group in the United Kingdom, required ≥ 4 

independent cytogenetic abnormalities overall to identify patients with worse outcome10; (3) 

the relative rarity of such patients; and (4) the deeper impact on DFS and EFS than on OS, 

as a consequence of the relatively good chance to achieve CR2 after relapse and rescue 

therapy. Despite this, we speculate that complex karyotype, as a sign of intrinsic genetic 

instability, may present a higher chance of clonal evolution eventually leading to disease 

relapse and treatment failure in CBF AML. In our opinion, these patients might deserve 

higher first-line intensity, possibly including first-line ASCT or, in selected patients, allogeneic 

HSCT. 

 Due to the small number of patients, we could not assess the prognostic value of 

single specific alterations, such as trisomy 22 for patients with inv(16), as indicated by 

others14,16; we observed only a nonstatistical trend of these patients toward better survival. In 

contrast to what has been shown by others,53 the presence of different pathological 

subclones or the coexistence of the leukemic clone with residual cytogenetically normal 

hematopoiesis did not yield different survival results. 
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 With the limitation of incomplete data, we also addressed the role of genes already 

well known for their prognostic impact, such as KIT,17,27,28 FLT3,54 and NPM1.38 The KIT 

D816 mutation, present in approximately one-third of patients with CBF AML,25 has been 

proposed to identify intermediate-risk CBF AML17,27,28,31; patients with the KIT mutation are 

also considered to have intermediate risk by the ongoing cooperative Gruppo Italiano 

Malattie Ematologiche dell’Adulto AML1310 trial and other studies by the National Cancer 

Institute (ClinicalTrials.gov NCT01238211) and German Deutsch-Österreichische 

Studiengruppe Akute Myeloische Leukämie (AMLSG) 11-08 trial (ClinicalTrials.gov 

NCT00850382) that both add dasatinib to standard treatment. More mixed results have been 

obtained in the patients with inv(16) AML.16,35,55 In our series, the KIT mutation predicted 

independent unfavorable OS for t(8;21) but not inv(16); this fact is particularly relevant when 

the low number of patients with mutations is considered. With the limitation of incomplete 

data, NPM1 mutations proved mutually exclusive with CBF translocations, as has been 

previously observed,56 whereas FLT3 mutations did not seem to predict worse OS or EFS, 

similarly to what has been shown in some studies57,58 and opposite to what has been shown 

in others.59,60 It has recently been proposed that the effect of FLT3 mutations on the 

prognosis of CBF AML might depend on the relative mutant level,61 which might explain the 

differences among studies. 

 Besides cytogenetics, the overall dose-intensity of chemotherapy administered as 

first line proved to be more important. We observed a high CR rate with few deaths occurring 

during induction, thus highlighting the efficacy of modern first-line 3-drug regimens. The high 

CR rate was maintained even though there was hepatic and splenic involvement in the D3A7 

group, as well as a larger presence of granulocytic sarcoma. A study from MD Anderson 

Cancer Center62 reported similar results comparing fludarabine-based regimens with more 

conventional induction protocols, as did studies by the Eastern Cooperative Oncology 

Group63 and Hemato-Oncologie voor Volwassenen Nederland 

(HOVON)/AMLSG/Schweizerische Arbeitsgemeinschaft für Klinische Krebsforschung 

(SAKK)64 testing intensification of daunorubicin doses in younger and older patients. The 
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most recently published results of the MRC group on the FLAG + idarubicin regimen for 

younger patients, moreover, improved historical results, especially in the “favorable” and 

“intermediate-risk” categories.65 However, in our series, the better control over the disease 

obtained by more intensive induction ultimately resulted only in a trend toward better OS, 

probably because of the high probability of achieving CR2 following relapse and rescue 

therapy. Despite this, failure to achieve CR after induction still translated into more than 6 

times higher relative risk of dying of disease (P < .001). 

 Following achievement of CR, repetitive HiDAC courses given as consolidation 

therapy are currently considered the standard primary treatment for CBF AML.24 

Nevertheless, the overall dose of cytarabine and the optimal number of consolidation 

courses are still a matter of debate.22 A clear advantage in terms of DFS has been 

demonstrated for HiDAC compared with IDAC and lower doses of cytarabine66,67 or as 

repetitive courses compared with 1 cycle only.26 Despite this, not all related studies 

eventually demonstrate a significant prolongation in OS.22 In addition, the HOVON/SAKK 

group showed similar EFS and OS for patients treated with a cumulative dose of 13.4 g/m2 

cytarabine (ie, IDAC) compared with a more intensive treatment (26 g/m2 [ie, HiDAC]).22 

 In our series, intensive first-line treatment, consisting of repetitive courses of HiDAC 

(≥ 3) or ASCT performed after 2-3 HiDAC-based cycles, proved to be the most important 

factor in determining final outcome. We believe this is due to the high chemosensitivity of 

this particular form of AML. A considerable minority of selected patients also were treated 

with first-line allogeneic HSCT, mainly in less recent years, as a consequence of the 

presence at diagnosis of features usually linked to poorer prognosis or following incomplete 

or late response to treatment. Allogeneic HSCT was mostly chosen as an alternative to 

ASCT, depending on the availability of an HLA-matched donor. Although we believe the 

good outcome observed in patients who received first-line allotransplant in our series was 

mostly a consequence of patient selection and a surprisingly low NRM, we think it also may 

be a consequence of transplant conditioning and the graft-vs-leukemia effect. All of this 

considered, in line with experience with pediatric patients with CBF AML68 and following the 
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current approach by the Cancer and Leukemia Group B cooperative group,26 we believe that 

3 courses of HiDAC should remain the standard consolidation treatment of patients with CBF 

AML in first CR. Alternatively, ASCT has been proven to be safe and beneficial for selected 

patients presenting with features of aggressive disease.69-71 Despite the good results of our 

series, we do not suggest the use of first-line allogeneic HSCT due to the possibility to 

achieve comparable results with less toxic approaches. 

 Overall intensity of first-line treatment might be rationally modulated by the use of 

molecular MRD monitoring. In the minority of patients in our series for whom data had been 

systematically evaluated, we found a fundamental advantage in OS, EFS, and DFS for 

patients achieving molecular MRD negativity compared with patients never achieving it; on 

the other hand, we could not further refine this evidence by identifying a specific time point 

when molecular MRD negativity acquired significance. This further stresses the importance 

of first-line dose intensity in the eradication of the leukemic clone; in fact, most molecular 

CRs have been achieved without the use of allogeneic HSCT and any graft-vs-leukemia 

effect. Retrospective as well as prospective trials72-75 have proven the importance of 

molecular MRD monitoring as a tool to guide first-line treatment of patients with CBF AML. 

 As postulated by others14,26,76,77 and as in the 2008 WHO classification,6 we believe 

t(8;21) and inv(16) to be distinct biological entities. They have different characteristics at 

presentation: patients with t(8;21) had more frequent additional cytogenetic abnormalities 

and patients with inv(16) had higher WBC and lower platelet counts and more frequent 

hepatic, lymphonodal, splenic and bone marrow involvement. DFS and response to second-

line therapy proved to be overall in favor of better survival for patients with inv(16). In our 

opinion, these data address biological differences in the pathogenesis of the 2 forms: 

because CBF translocations are not enough to induce leukemogenesis,78,79 we speculate 

that additional multistep events might be more common in patients with t(8;21) than inv(16). 

This fact could also be implied by the importance of the KIT mutation in determining more 

aggressive disease in patients with t(8;21) but not inv(16), as in other studies.17,27,28,35 
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 The difference between patients with t(8;21) and inv(16), in our opinion, becomes 

clinically relevant especially when relapsing patients are analyzed. Although a high CR2 rate 

was achieved after rescue therapy in both cases, in our series ultimate survival following 

relapse was significantly poorer with t(8;21). This is in accordance with existing 

literature.14,26,44 Recently, Kurosawa et al12 reported the acquisition of additional cytogenetic 

abnormalities at relapse in patients with t(8;21) compared with those with inv(16). At the 

same time, a survival benefit from the use of second-line allogeneic HSCT was observed 

only for patients with t(8;21), as the result of a significantly poorer response to rescue 

therapy12. More recently, t(8;21) it has been demonstrated that AML blasts harbor alterations 

in the transcript levels of mitotic spindle kinases, such as checkpoint kinase 1 and aurora 

kinase A, which have been postulated to be responsible for an easier and more aggressive 

pattern of cytogenetic progression in t(8;21) than in inv(16) AML, despite similar initial 

genetics.33 In our cohort, allogeneic HSCT appeared to be the best approach to achieve 

long-term disease control in relapsing patients, despite high NRM and thanks to low RM 

compared with that seen for chemotherapy. 

 We acknowledge the limitations of our study: data were retrospectively collected over 

a long time period, molecular data and MRD monitoring were incomplete, and treatment was 

heterogeneous due to the collection of clinical records from different Institutions. Despite 

this, the fundamental criteria on which modern AML therapeutic regimens are based have 

not changed much in the last 2 decades, and we could benefit from a long available follow-

up. 

 In conclusion, we believe that our study contributes to the knowledge about this form 

of AML by highlighting the presence of a small group of patients with CBF AML, especially 

those with t(8;21), characterized by the presence of ≥ 3 additional cytogenetic abnormalities, 

who ultimately have a poor outcome despite intensive chemotherapy, including allogeneic 

HSCT in some cases. Furthermore, we found significant differences in the pathogenesis and 

outcome of patients with t(8;21) and inv(16). Finally, we demonstrated the importance of 

overall dose intensity of first-line treatment in determining ultimate cure. Based on these 
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results, we believe that proper intensive consolidation, possibly including first-line ASCT 

should be administered to all patients with CBF AML to improve final outcome. We found 

evidence indicating conserved chemosensitivity in elderly patients, a setting in which results, 

in our opinion, could be improved: future studies are warranted to refine more precise 

exclusion criteria for unfit elderly patients. 
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TABLES AND FIGURES 

Table 1. Patient characteristics. 

 All 
(n = 192) 

AML t(8;21) 
(n = 80) 

AML inv(16) 
(n = 112) 

P 

Age, median (range), years 44 (15-79) 41.8 (15-79) 45.1 (13-73) NS 

Patients ≥ 61 years, n (%) 26 (13.5) 9 (11.3) 17 (15.2) NS 

Male:female ratio 111:81 43:37 68:44 NS 

AML type, n (%)     

De novo 181 (94.3) 73 (91.3) 108 (96.4) NS 

Secondary 11 (5.7) 7 (8.7) 4 (3.6) NS 

Splenomegaly, n (%) 30 (15.6) 6 (7.5) 24 (21.4) 0.008 

Hepatomegaly, n (%) 41 (21.4) 13 (16.3) 28 (25.0) NS 

Lymphadenomegaly, n (%) 35 (18.2) 7 (8.8) 28 (25.0) 0.005 

Extramedullary disease, n (%) 15 (7.8) 3 (3.8) 12 (10.7) NS 

Granulocytic sarcoma, n (%) 6 (3.1) 4 (5.0) 2 (1.8) NS 

WBC (range), × 103/mm3 18.9 (1.2-656.0) 10.5 (1.2-289.4) 32.2 (1.7-656.0) <0.001 

WBC ≥ 30 × 103/mm3, n (%) 67 (34.9) 11 (13.8) 56 (50.0) <0.001 

WBC ≥ 100 × 103/mm3, n (%) 15 (7.8) 2 (2.5) 13 (11.6) 0.017 

Platelets (range), × 103/mm3 38.0 (4.0-586.0) 31 (4-586) 41.5 (6-331) 0.04 

Platelets ≤ 20 × 103/mm3, n (%) 50 (26.0) 27 (33.8) 23 (20.5) 0.016 

Hemoglobin (range),  g/dL 8.9 (3.1-15.0) 8 (3.4-13.6) 9.2 (3.1-15.0) 0.002 

Packed marrow (> 80%), n (%)  88 (45.8) 29 (36.3) 59 (52.7) 0.021 

Elevated LDH, n (%)  138 (71.9) 53 (66.3) 85 (75.9) NS 

AML, acute myeloid leukemia; LDH, lactate dehydrogenase; NS, nonsignificant; WBC, white 
blood cells. 



 

38 

Table 2. Additional cytogenetic abnormalities. 

 All 
 

(n = 83) 

t(8;21) 
 

(n = 42 [50.6%]) 

inv(16) 
 

(n = 41 [49.4%]) 

Single additional abnormality 43 (51.8) 25 18 

Trisomy 22 5 (11.6) — 5 

Chromosome 7 2 (4.7) — 2 

Chromosome 9 6 (13.9) 6 — 

Trisomy 8 4 (9.3) 1 3 

Chromosome 21 1 (2.4) — 1 

Chromosomes X or Y 20 (46.5) 18 2 

Mixed 5 (11.6) — 5 

Two additional abnormalities 31 (37.4) 12 19 

Three (or more) additional 

abnormalities 

9 (10.8) 5 4 

Data are presented as n (%). 
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Table 3. Univariate and multivariate proportional hazard modeling for potential factors 
impacting overall survival. 

 RR (95% CI) P RR (95% CI) P 

Age > 60 years 3.05 (1.69-5.51) < .001 4.52 (2.24-9.12) < .001 

Secondary AML 2.30 (0.98-5.39) .056   

Male 0.98 (0.58-1.66) NS   

Splenomegaly 1.02 (0.50-2.08) NS   

Hepatomegaly 1.13 (0.62-2.07) NS   

≥ 2 lymph nodes 0.41 (0.15-1.13) .084   

Extramedullary disease 1.44 (0.68-3.04) NS   

Granulocytic sarcoma 1.50 (0.47-4.80) NS   

WBC ≥ 30 × 103/mm3 1.07 (0.62-1.84) NS   

Platelets ≤ 20 × 103/mm3 2.24 (1.29-3.91) .004 1.99 (1.08-3.66) .027 

Elevated LDH  3.60 (1.12-11.57) .032 3.52 (1.07-11.60) .038 

DIC 0.70 (0.33-1.48) NS   

t(8;21) vs inv(16) 0.75 (0.45-1.26) NS   

≥ 3 additional cytogenetic 

abnormalities 

2.58 (1.02-6.49) .044 1.47 (0.48-4.48) NS 

Presence of subclones 1.15 (0.66-1.98) NS   

Mutated KIT 2.33 (0.61-8.8) NS   

Mutated FLT3 0.95 (0.28-3.17) NS   

Packed marrow 1.37 (0.79-2.38) NS   

Failure to achieve CR 

after induction therapy 

6.21 (2.92-13.22) < .001 5.43 (2.33-12.68) < .001 

The probability of dying while having the mentioned covariate (putative prognostic factor) is 

shown over the probability of dying while not having the covariate (hazard ratio). 

AML, acute myeloid leukemia; CR, complete remission; DIC, disseminated intravascular 

coagulation; FLT3, fms-like tyrosine kinase 3; LDH, lactate dehydrogenase; NS, 

nonsignificant; RR, relative risk; WBC, white blood cells. 
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Figure 1. Survival of patients with t(8;21) and inv(16) AML. 

 

AML, acute myeloid leukemia; DFS, disease-free survival; EFS, event-free survival; ns, 

nonsignificant; OS, overall survival.



 

41 

Figure 2. Survival according to additional cytogenetic abnormalities. 

 
AML, acute myeloid leukemia; DFS, disease-free survival; EFS, event-free survival; ns, 
nonsignificant; OS, overall survival. 
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Figure 3. OS and DFS according to dose intensity of first-line treatment. 

 
allo-HSCT, allogeneic hematopoietic stem cell transplant; ASCT, autologous stem cell 
transplant; DFS, disease-free survival; OS, overall survival. 
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Figure 4. Survival according to first-line allogeneic HSCT. 

 
DFS, disease-free survival; HSCT, hematopoietic stem cell transplant; NRM, nonrelapse 
mortality; ns, nonsignificant; OS, overall survival; RM: relapse mortality. 
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SUPPLEMENTARY TABLES AND FIGURES 

Supplementary Table 1. List of additional cytogenetic abnormalities. 

Patient # One additional cytogenetic abnormality 

1 46,XY [6]; 46,XY,del(7)(q21q22),inv(16)(p13q22) [14] 

2 46,XX [1]; 46,XX,t(8;21)(q22;q22) [2]; 46,t(8;21)(q22q22),del(9)(q?12q?21) [17] 

3 45,X, −Y,t(8;21)(q22;q22) [20] 

4 46,XY,inv(16)(p13q22) [13]; 47,XY,inv(16)(p13q22),+22 [7] 

5 46,XY [1]; 45,X, −Y,t(8;21)(q22;q22) [19] 

6 46,XY [1]; 46,XY,del(7)(q32),inv(16)(p13q22) [19] 

7 45,X, −Y,t(8;21)(q22q22) [20] 

8 47,XX,t(16;16)(p13;q22),+22 [20] 

9 46,XY,t(8;21)(q22q22),del(9)(q11) [20] 

10 45,X, −Y,t(8;21)(q22q22) [20] 

11 45,X, −Y,t(8;21)(q22q22) [20] 

12 45,X, −Y,t(8;21)(q22;q22) [20] 

13 45,X, −X,t(8;21)(q22q22) [20] 

14 46,XY,inv(16)(p13q22) [10]; 47,XY,+8,inv(16)(p13q22) [10] 

15 46,XX,inv(11)(p12p15),inv(16)(p13q22) [20] 

16 46,XX [4]; 46,XX,inv(16)(p13q22) [12]; 47,XX,inv(16)(p13q22),+22 [4] 

17 46,XY,inv(16)(p13q22),del(17q23) [20] 

18 45,X, −X,inv(16)(p13q22) [20] 

19 45,X, −Y,t(8;21)(q22q22) [18]; 46,XY [2] 

20 46,XY [12]; 45,X, −Y,t(8;21)(q22q22) [8] 

21 46,XY [8]; 46,XY,t(8;21)(q22;q22) [3]; 46,XY,t(8;21)(q22;q22),del(9)(q13q22) [9] 

22 46,XY [1]; 45,X, −Y,t(8;21)(q22;q22) [19] 

23 45,X, −X,t(8;21)(q22q22) [19]; 46,XX [1] 

24 46,XX [7]; 45,X, −X,t(8;21)(q22q22) [13] 

25 46,XX,t(8;21)(q22q22) [19]; 47,XX,+8 [1] 

26 46,XX,t(8;21)(q22q22) [19]; 46,XX,t(8;21)(q22q22),add(9)(q34) [1] 

27 47,XY,inv(16)(p13,q22),+22 [20] 

28 46,XY,inv(16)(p13;q22),t(7;15) [20] 

29 46,XX[8]; 47,XX,inv(16)(p13;q22),+22 [12] 

30 46,XY,t(8;21)q(22),−del(9)(q24) [20] 

31 45,X, −Y,t(8;21)(q22q22) [20] 

32 45,X, −Y,t(8;21)(q22q22) [20] 

33 46,XY,t(8;21)(q22q22),del(9) [20] 

34 46,XX [2]; 45,X, −X,t(8;21)(q22q22) [18] 

35 45,X, −X,t(8;21)(q22q22) [20] 

36 46,XY,inv(16)(p13q22) [15]; 46,XY,inv(16)(p13q22),+22 [5] 
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37 45,X, −Y,t(8;21)(q22q22) [20] 

38 45,X, −Y,t(8;21)(q22q22) [20] 

39 46,XX,inv(16)(p13q22),del16q [20] 

40 46,XY [1]; 46,XY,inv(16)(p13q22),+8 [19] 

41 46,XY,inv(16)(p13q22) [16]; 46,XY,inv(16)(p13q22), −21 [4] 

42 46,XY,inv(16)(p13q22),del(11) [20] 

43 46,XX,inv(16)(p13q22),+8 [20] 

 Two additional cytogenetic abnormalities 

44 46,XX,inv(16)(p13q22) [11]; 47,XX,inv(16)(p13q22),+22[7]; 

48,XX,+8,inv(16)(p13q22),+22 [2] 
45 45,X, −X,inv(7)(q22q36),t(8;21)(q22;q22) [20] 

46 46,XY[3]; 46,XY,inv(16)(p13q22) [15]; 46,XY,inv(16)(p13q22),+19,+22 [5] 

47 46,XY[1]; 46,XY,t(8;21)(q22;q22) [11]; 46,XY,del(2)(p21),t(8;21)(q22;q22) [6]; 

46,XY,t(8,21)(q22;q22),del(11)(q22;q32) [3] 

48 46,XX,t(8;21)(q22q22) [18]; 46,XX, −21,+der(21),t(8;21)(q22q22) [2] 

49 46,X, −Y,del(1)(q42),t(8;21)(q22;q22) [20] 

50 46,XX,del(X)(q22),t(8;21)(q22q22) [4]; 45,XX, −9,del(X)(q22),t(8;21)(q22q22) [16] 

51 46,XY,inv(16)(p13q22),1q+,10q− [20] 

52 46XX,t(16;16)(p13q22);add(15)(p13),add(21)(p13) [20] 

53 46XY,del(7)(q32),del(16)(q22),t(16;16)(p13q22) [20] 

54 45,X,t(8;21)(q22q22),del(Y),+8 [20] 

55 46,XY,inv(16)(p13q22),del(16)(q22),t(9;11) [20] 

56 45,X,add(7q),t(8;21)(q22q22) [20] 

57 46,XX [2]; 46,XX,inv(16)(p13q22) [10]; 46,XX,inv(16)(p13q22),+8,+21 [8] 

58 46,XX,inv(16)(p13q22) [2]; 46,XX,+14,inv(16)(p13q22),+21 [18] 

59 46,XY,inv(16)(p13q22),+22 [12]; 47,XY,inv(16)(p13q22),+22,t(9;19) [8] 

60 46,XX [4]; 45,X,t(8;21)(q22q22),del(9)(q22q34) [16] 

61 48,XY,+13,inv(16)(p13q22),+22 [20] 

62 46,XY,t(11;12)(q11;11.2),inv(16)(p13q22) [10]; 

47,XY,t(11;12)(q11;11.2),inv(16)(p13q22),+22 [10] 

63 46,XY [4]; 45X, −Y,t(8;10;21)(q22;p12;q22) [16] 

64 45,X, −X,t(8;21)(q22q22),del(9q?) [20] 

65 44,X, −X,t(8;21)(q22q22),del(13;14) [20] 

66 45,X, −Y,t(8;21)(q22q22),del(9)(q22) [20] 

67 46,XX,inv(16)(p13q22),del(7q)(q22q34),amp(11)(q23) [20] 

68 46,XX,inv(16)(p13q22) [9]; 47,XX,inv(16)(p13q22),+22 [10]; 

48,XX,inv(16)(p13q22),+8,+22 [1] 

69 46,XX [4]; 46,XX, −7,inv(16)(p13q22), −22 [16] 

70 46,XX,inv(16)(p13q22) [7]; 46,XX,inv(16)(p13q22),+8,t(5;20) [13] 

71 46,XX,inv(16)(p13q22) [3]; 46,XX,inv(16)(p13q22),+22 [13]; 

46,XX,inv(16)(p13q22),+22,del(7q) [4] 

72 48,XX,+8,inv(16)(p13q22),+2 [20] 
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73 inv(16)(p13q22),+8,+21 [20] 

74 46,XY,inv(16)p13q22) [3]; 48,XY,+8,inv(16)p13q22),+21 [17] 

 Three additional cytogenetic abnormalities 

 
 

75 46,X,i(X)(q10),t(8;21)(q22q22),del(9)(q12q22),+X,t(4;11)(q21;q23) [20] 

76 46,XY,t(8;21)(q22q22) [2]; 47,XY,t(8;21)(q22q22),+4 [10]; 

49,XY,t(8;21)(q22q22),+4,+6,+19 [8] 
77 45,X,t(8;21)(q22q22), −9,+8, −X [20] 

78 47,XY,+8,inv(16)p13q22) [9]; 47,XY,+8,t(9;17)(q34q21),inv(16)(p13q22) [8]; 

47,XY,+8,add(8)(q24),t(9;17)(q34q21),inv(16)(p13q22) [3] 
79 46,XY [3]; 47,XY,del(7)(q32q36),t(16;16)(p13q22),+22 [15]; 

47,XY,del(7)(q32q36),t(16;16)(p13q22),+21,+22 [2] 

80 46,XX,inv(16)(p13q22) [9]; 47,XX,+8,inv(16)(p13q22) [7]; 

47,XX,+8,+11,inv(16)(p13q22) [2]; 47,XX,+3,+8,+11,inv(16)(p13q22) [2] 

81 46,XX,t(8;21)(q22q22),del(9)(q22q34),t(10;18)(q22q23) [18]; 

47,XX,+X,t(8;21)(q22q22),del(9)(q22q34),t(10;18)(q22q23) [2] 

82 46,XX,t(8;21)(q22q22) [16]; 46,XX,t(8;21)(q22q22), −3,add(16)(q23),+21 [4] 

83 46,XY [1]; 46,XY,del(7),16−,+22(?) [19] 

Detailed karyotype at diagnosis of each patient presenting with additional cytogenetic 

abnormalities besides t(8;21)(q22q22) or inv(16)(p13q22)/t(16;16)(p13q22). The numbers in 

square brackets represent the number of observed mitoses bearing the detailed karyotype. 
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Supplementary Table 2. Molecular data regarding KIT, FLT3, and NPM1 status. 

 All 
 

KIT (n = 59) 
FLT3 (n = 101) 
NPM1 (n = 79) 

t(8;21) 
 

KIT (n = 20) 
FLT3 (n = 35) 
NPM1 (n = 32) 

inv(16) 
 

KIT (n = 39) 
FLT3 (n = 66) 
NPM1 (n = 47) 

Mutated KIT (D816) 7 (11.8) 3 (15.0) 4 (10.2) 

Mutated FLT3 TKD (D835) 4 (3.9) 2 (5.7) 2 (3.0) 

mutated FLT3 ITD 6 (5.9) 4 (11.4) 2 (3.0) 

mutated NPM1 2 (2.5) — 2 (4.2) 

Data are presented as n (%). 

FLT3, fms-like tyrosine kinase 3; ITD, internal tandem duplication; NPM1, nucleophosmin; 

TKD, tyrosine kinase domain. 
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Supplementary Table 3. Patient characteristics according to type of induction course. 

 
DA37 

(n = 25) 

More intensive 

induction therapy 

(n = 167) 

P 

Age (range), years 39.5 (15-68) 44.3 (15-79) NS 

Patients ≥ 61 years, n (%) 2 (8.0) 24 (14.4) NS 

Male:female ratio 15:10 96:71  

AML type, n (%)    

De novo 23 (92.0) 158 (94.6) NS 

Secondary 2 (8.0) 9 (5.4) NS 

Splenomegaly, n (%) 8 (32.0) 22 (13.2) .017 

Hepatomegaly n (%) 10 (40.0) 31 (18.6) .016 

Lymph nodes n (%) 4 (16.0) 31 (18.6) NS 

Extramedullary disease, n (%) 4 (16.0) 17 (10.2) NS 

Granulocytic sarcoma, n (%) 3 (12.0) 3 (1.8) .037 

WBC (range), × 103/mm3 12.9 (2.2-235.0) 21.4 (1.3-656.0) NS 

WBC ≥ 30 × 103/mm3, n (%) 5 (20.0) 62 (37.1) NS 

WBC ≥ 100 × 103/mm3, n (%) 1 (4.0) 14 (8.3)  

Platelets (range), × 103/mm3 29.0 (7.0-180.0) 38.0 (4.0-586.0) NS 

Platelets ≤ 20 × 103/mm3, n (%) 7 (28.0) 43 (25.7) NS 

Hemoglobin (range), g/dL 8.8 (3.7-12.8) 8.9 (3.1-15.0) NS 

Packed marrow, n (%) 9 (36.0) 79 (47.3) NS 

Elevated LDH, n (%) 19 (76.0) 119 (71.2) NS 

t(8;21):inv(16) ratio 13:12 67:100 NS 

AML, acute myeloid leukemia; LDH, lactate dehydrogenase; NS, nonsignificant; WBC, white 
blood cells. 



 

49 

Supplementary Table 4. Univariate and multivariate proportional hazard modeling for 
potential factors impacting overall survival—patients with t(8;21) only. 

 RR (95% CI) P RR (95% CI) P 

Age > 60 years 4.26 (1.87-9.70) .001 5.87 (2.31-14.93) < .001 

Secondary AML 2.82 (1.06-7.55) .039 1.92 (0.66-5.55) NS 

Male 0.72 (0.34-1.52) NS   

Splenomegaly 0.83 (0.20-3.51) NS   

Hepatomegaly 0.93 (0.35-2.46) NS   

≥ 2 lymph nodes 1.04 (0.25-4.43) NS    

Extramedullary disease 2.21 (0.76-6.41) NS   

Granulocytic sarcoma 2.38 (0.71-7.90) NS   

WBC ≥ 30 × 103/mm3 0.95 (0.33-2.76) NS   

Platelets ≤ 20 × 103/mm3 1.38 (0.60-3.14) NS   

Elevated LDH 4.94 (0.66-36.82) NS   

DIC 0.63 (0.19-2.11) NS   

t(8;21) vs inv(16) NA —   

≥ 3 additional cytogenetic 

abnormalities 

2.85 (0.98-8.29) .055 4.67 (1.43-15.18) .011 

Subclones 1.92 (0.89-4.10) .092   

Mutated KIT 12.52 (1.12-139.33) .04 Not considered for 

multivariate analysis 

 

Mutated FLT3 1.51 (0.40-5.71) NS   

Packed marrow 1.16 (0.53-2.53) NS   

Failure to achieve CR 

after induction therapy 

5.33 (2.01-14.17) < .001 9.58 (3.31-27.75) < .001 

The probability of dying while having the mentioned covariate (putative prognostic factor) is 

shown over the probability of dying while not having the covariate (hazard ratio). 

AML, acute myeloid leukemia; CR, complete remission; DIC, disseminated intravascular 

coagulation; FLT3, fms-like tyrosine kinase 3; LDH, lactate dehydrogenase; NA, not 

applicable; NS, nonsignificant; RR, relative risk; WBC, white blood cells. 
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Supplementary Table 5. Univariate and multivariate proportional hazard modeling for 
potential factors impacting overall survival—patients with inv(16) only. 

 RR (95% CI) P RR (95% CI) P 

Age > 60 years 2.32 (0.98-5.47) .054 3.32 (1.34-8.22) .009 

Secondary AML 1.16 (0.16-8.59) NS   

Male sex 1.31 (0.61-2.81) NS   

Splenomegaly 1.21 (0.52-2.84) NS   

Hepatomegaly 1.33 (0.61-2.93) NS   

≥ 2 lymph nodes 0.26 (0.06-1.11) .069   

Extramedullary disease 1.13 (0.39-3.27) NS   

Granulocytic sarcoma NA —   

WBC ≥ 30 × 103/mm3 1.41 (0.67-2.95) NS   

Platelets ≤ 20 × 103/mm3 3.26 (1.54-6.90) .002 2.91 (1.28-6.63) .011 

Elevated LDH   2.86 (0.68-12.07) NS   

DIC 0.77 (0.30-2.03) NS   

t(8;21) vs inv(16) NA —   

≥ 3 additional cytogenetic 

abnormalities 

1.60 (0.21-11.93) NS   

Subclones 0.73 (0.32-1.64) NS   

Mutated KIT 0.68 (0.08-5.59) NS   

Mutated FLT3 — —   

Packed marrow 2.01 (0.85-4.79) NS   

Failure to achieve CR after 

induction therapy 

7.03 (2.09-23.64) .002 2.46 (0.54-11.12) NS 

The probability of dying while having the mentioned covariate (putative prognostic factor) is 

shown over the probability of dying while not having the covariate (hazard ratio). 

AML, acute myeloid leukemia; CR, complete remission; DIC, disseminated intravascular 

coagulation; FLT3, fms-like tyrosine kinase 3; LDH, lactate dehydrogenase; NA, not 

applicable; NS, nonsignificant; RR, relative risk; WBC, white blood cells. 
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Supplementary Figure 1. Survival according to the type of induction treatment. 

 
DFS, disease-free survival; EFS, event-free survival; HiDAC, high-dose cytarabine; OS, 

overall survival. 
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Supplementary Figure 2. OS and DFS according to the achievement of molecular 
complete remission. 

 
CR, complete remission; DFS, disease-free survival; OS, overall survival. 
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Supplementary Figure 3. Survival of relapsing patients according to the type of 
second line treatment. 

 
HSCT, hematopoietic stem cell transplant; NRM, nonrelapse mortality; RM, relapse 

mortality; RS, relapse survival. 


