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Abstract

We adopt a stepwise approach to the analysis of a dynamic oligopoly
game in which production makes use of a natural resource and pollutes
the environment, starting with simple models where �rms�output is
not a function of the natural resource to end up with a full-�edged
model in which (i) the resource is explicitly considered as an input
of production and (ii) the natural resource and pollution interact via
the respective state equations. This allows us to show that the rela-
tionship between the welfare properties of the economic system and
the intensity of competition is sensitive to the degree of accuracy with
which the model is constructed.
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1 Introduction

The con�ict between individual incentives and the preservation of the envi-
ronment and natural resources, and the associated market failures, are well
known since Gordon (1954) and Hardin�s (1968) tragedy of the commons.
In the subsequent decades, the economic literature has produced countless
contributions concerning either the exploitation of natural resources or the
environmental externalities generated by industrial activities, but rarely - if
ever - both at the same time, although the interplay between growth and the
environment and the sustainability of our economic system are both generally
viewed as a circular model with feedback e¤ects.1

This partial approach to a single side of the problem at a time is quite
common in both static and dynamic applications of oligopoly theory to envi-
ronmental or resource economics. Some recurrent themes emerging from this
strand of literature can be quickly recollected so as to �x ideas. A cornerstone
of the discussion is the market failure associated with external e¤ects:

� Firms do not internalise environmental externalities, and therefore will
not spontaneously invest in green technologies. This prompts the design
of Pigouvian taxation to subminister the proper R&D incentives to
�rms.2

� For analogous reasons, �rms may overexploit natural resources, renew-
able or not.3

Another critical point concerns the pros and cons of any variation in
industry output. Any industrial economist would agree that market power is
detrimental to welfare because of high prices and low output levels. However,
expanding output puts additional pressure upon the environment and the
stock of natural resources. This reveals the presence of a tradeo¤between the
static e¢ ciency usually associated to marginal cost pricing and the dynamic

1This view is so largely shared in the profession, that it appears regularly in the in-
troductory chapters of textbook at any level (see, e.g., Pearce and Turner, 1989; Tisdell,
2009; and Anderson, 2010).

2See Downing and White (1986), Milliman and Prince (1989), Karp and Livernois
(1994), Poyago-Theotoky (2007), inter alia.

3Classical contributions in this vein are those of Clark and Munro (1975) and Levhari
and Mirman (1980). For a model of international trade with natural resource extraction,
see Copeland and Taylor (2009), inter alia. An overview of the debate is in Long (2010).
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e¢ ciency one should refer to in connection with the long-run sustainability
of the current economic system.
Here we set out to revisit these issues through a di¤erential game ap-

proach which, although being not properly a general equilibrium one, draws
explicitly the endogenous link between the dynamics of resource exploita-
tion and environmental externalities, to show that (i) pure pro�t incentives
can indeed give rise to investments in green technologies which are ruled
out in the conventional approach, and (ii) competition may actually exert
positive long-run welfare e¤ects, although with mixed feelings, as a cleaner
environment is accompanied by a lower residual stock of natural resources.
Our procedure will be the following. We will set out with the illustration of
simple setups alternatively accounting for the presence of either natural re-
sources or pollution, in open-loop games in which �rms control output levels.
Then, we will enrich the picture introducing a simple production function
accounting for the fact that the natural resource enters the productive activ-
ities of �rms as an input, and pollution may be subject to Pigouvian taxation
which can be used as an incentive for green R&D. Then, we will lay out a
comprehensive model capturing the interplay between the output and R&D
decisions of �rms on one side and the preservation of natural resources and
the environment on the other. Whenever appropriated, we will also dwell on
the optimal industry structure (i.e., the number of �rms) in the commons,
an issue that has received a considerable amount of attention in the early
debate on common property in oligopoly (on this, see Cornes and Sandler,
1983; Cornes, Mason and Sandler, 1986; and Mason and Polasky, 1997, inter
alia).
The remainder of the paper is structured as follows. In section 2, we o¤er

a step-by-step reconstruction of the standard approach, whereby resource
extraction and pollution are studied in isolation from each other. Then, in
section 3, we propose a fully �edged model taking into account the interplay
between state variables. Concluding remarks are in section 4.

2 Preliminaries: the standard approach

Here we summarise the acquired wisdom based on previous literature, where
either pollution or the exploitation of natural resources have been treated in
isolation from one another. Throughout, we will consider an industrial sector
existing over continuous time t 2 [0;1) :
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2.1 Natural resources I

The simplest model of the interplay between pro�t incentives and resource
extraction is the following. The market is supplied by n �rms o¤ering a homo-
geneous good produced through a renewable natural resource (say, forestry)
to deliver an intermediate or �nal commodity (say, timber or paper) to con-
sumers. The market demand for the �nal good is

p (t) = a�Q (t) ; Q (t) =

nX
i=1

qi (t) ; (1)

qi (t) being the instantaneous output of �rm i = 1; 2; 3; :::n: Therefore, the
game features n controls, q = (q1; q2; :::qn) ; one for each player. All �rms
share a symmetric technology with the same marginal cost c for extraction
and production, giving rise to a cost function Ci (t) = cqi (t) ; with a > c > 0:
This imposes the constraint Q (t) 2 [0; a� c] at any time t. Additionally,
market size a� c is assumed to be large enough to ensure the non negativity
of controls at all times during this and the subsequent versions of the game.
The instantaneous pro�t function of �rm i is �i (t) = (p (t)� c) qi (t) :
The only state variable appearing in this version of the model is the stock

of the natural resource x (t) � 0; which evolves over time according to the
following state equation:4

�
x (t) = �x (t)�

nX
i=1

qi (t) (2)

where � > 0 is the constant rate of reproduction.
The game is non cooperative and simultaneous play takes place at any

instant. The individual �rm has to

max
qi(t)

Z 1

0

�i (t) e
��tdt (3)

4We could model the state equation as

�
x (t) = �x (t)� �

nX
i=1

qi (t)

with � 2 (0; 1] : This, however, would not motify signi�cantly the qualitative predictions
of the our analysis. Therefore, we have imposed � = 1 to restrict the set of parameters.
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subject to the dynamic constraints (2), the initial condition x (0) = x0 �
n (a� c) = (n+ 1) =�,5 and the appropriate transversality condition. The dis-
count rate � > 0 is constant and common to all �rms.
Firm i�s Hamiltonian function is

Hi (t) = e��t

( 
a� qi (t)�

X
j 6=i

qj (t)� c

!
qi (t) + �i (t)

"
�x (t)�

nX
i=1

qi (t)

#)
(4)

in which �i (t) = e�t
i (t) is the co-state variable (in current value) associated
with the dynamics of the state. This being a linear state game, the open-loop
solution is subgame perfect (or equivalently, strongly time consistent).
The necessary conditions are6

@Hi

@qi
= e��t

 
a� c� 2qi �

X
j 6=i

qj � �i

!
= 0 (5)

�
�i = (�� �)�i (6)

together with the transversality conditions limt!1 
ix = limt!1 e
��t�ix = 0:

Now observe that (6) admits the solution �i = 0 at all times, whereby the �rst
order condition on the output level yields the static Cournot-Nash solution
qi = qN = (a� c) = (n+ 1) for all i. Then, imposing stationarity on

�
x; one

gets

xN =
nqN

�
=
n (a� c)

(n+ 1) �
; (7)

with @xN=@n > 0;which seems to indicate that increasing competition has
positive consequences for the preservation of the natural resource in the long
run.
The bottom line of this exercise is well known, as it states that �rms repli-

cate forever the equilibrium of the static Cournot game without internalising
the e¤ects of production on the existing amount of the natural resource.7

5Taking x0 > 0 as the initial condition would not ensure the sustainability of extraction
activities over t 2 [0;1) as the stock x (t) would become nil in �nite time.

6Henceforth, we omit the time argument for brevity. Mangasarian�s (1966) and Arrow�s
(1968) su¢ ciency conditions are also satis�ed. They are also omitted for brevity.

7This is the reason why we have taken the initial stock to be at least as large as the
Cournot-Nash industry output.
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The industry output is therefore increasing with n, and this causes, at any
time t; an increase in the rate of extraction as compared to pure monopoly,
due to the output restriction that is usually associated with monopolistic
sectors, as compared to any even slightly more competitive industries. On
the other hand, any increase in output lowers market price and brings about
an increase in consumer surplus CSN = QN=2: The balance between these
e¤ects is captured by the net e¤ect of a change in n on the social welfare
function8

SWN = n�N + CSN + xN (8)

with
@SWN

@n
=
(a� c) [n+ 1 + � (a� c)]

� (n+ 1)3
> 0 (9)

for all n. That is, competition is promoting social welfare, notwithstand-
ing the fact that it involves a higher exploitation rate at any time. The
next step consists in taking into consideration a slightly richer version of the
same problem, which explicitly acknowledges the presence of an endogenous
link between the natural resource and the output via a simple production
function.

2.2 Natural resources II

De�ne now the individual output of �rm i as qi = bix; bi being the instanta-
neous rate at which �rm i extract the resource and uses it in the production
of the intermediate or �nal good. This can be thought of as a production
function operating at constant returns to scale, using the natural resource
as the only relevant input. We shall see in the remainder of the section
that this seemingly simple transformation indeed has relevant consequences
on our understanding and interpretation of the problem at hand. As in the
previous version, we have n controls, b = (b1; b2; :::bn) ; one for each player,

8Note that the amount of natural resource enters the social welfare function with a
weight equal to one, i.e., the same attached to industry pro�ts and consumer surplus.
The ongoing debate on this point hasn�t yet produced a unanymous view (see, e.g., Stern,
2009, ch. 5). The need of guaranteeing the prosperity of future generations suggest that
one should attach to the preservation of natural resources at least the same importance
as traditional economic indicators strictly related to production and consumption.
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while there is a single state, x, whose dynamics is now

�
x =

 
� �

nX
i=1

bi

!
x; (10)

so that the insertion of a simple linear technology in the model establishes
a multiplicative e¤ect between state and control in the state equation which
was altogether absent in the previous version. The remainder of the setup is
unmodi�ed, so the Hamiltonian of �rm i is

Hi = e��t

" 
a� bix� x

X
j 6=i

bj � c

!
bix+ �i

 
� �

nX
i=1

bi

!
x

#
: (11)

The game is thus no longer a linear state one,9 but for the sake of compa-
rability we stick to the open-loop solution, requiring the following necessary
conditions:

@Hi

@bi
= e��tx

 
a� c� 2bix� x

X
j 6=i

bj � �i

!
= 0 (12)

�
�i =

 
�� � +

nX
i=1

bi

!
�i � bi

"
a� c� 2x

 X
j 6=i

bj + 2bi

!#
; (13)

while the transversality conditions are limt!1 e
��t�ix = 0:

To simplify calculations, henceforth we impose symmetry on controls and
co-states, bi = bj = b and �i = �j = � for all i; j: From (12) we obtain

b = max

�
a� c� �

(n+ 1) x
; 0

�
(14)

and, if b > 0;
� = a� c� b (n+ 1) x: (15)

Then, employing (10), we can write

�
b = �x

�
�+ (a� c� �)

�
x

(n+ 1) x2
: (16)

9Additionally, note that it is not de�ned in linear-quadratic form. Consequently, we
have no obvious conjecture as to the form of the value function.
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which, using (13-15) can be rewritten as

�
b =

(a� c) [� � �� b (n� 1)] + b [�+ (2nb+ �)n� 2 (n+ 1) �]x
(n+ 1) x2

(17)

Imposing stationarity on state and control, we identify the unique open-
loop Nash equilibrium, where:10

bi = bN =
�

n
8i ; xN = (a� c) (� � n�)

� [2� � (n+ 1) �] : (18)

Note that xN > 0 for all

� 2
�
0;
�

n

�
and � >

2�

n+ 1
: (19)

The same obviously holds for the individual output qN = bNxN as well as for
the industry output QN = nqN : Steady state individual pro�ts are

�N =
(a� c)2 (� � �) (� � n�)

n [2� � (n+ 1) �]2
> 08 � 2

�
0;
�

n

�
: (20)

Hence, the survival of �rms at the steady state requires indeed � 2 (0; �=n) :
Now observe that

@xN

@n
=

(a� c) (�� �)

� [2� � (n+ 1) �]2
< 0 (21)

for all � 2 (0; �) : In view of the previous result, this is surely the case for any
n � 1: This contradicts the result of the previous - and simpler - version of
this problem, as now it appears that a more intense competition throughout
the game leads to a lower amount of natural resource left over at the steady
state.
Now reconsider the social welfare function, de�ned as in (8). Its partial

derivative w.r.t. n is

@SWN

@n
=
(a� c) (� � �) [� (n+ 1 + � (a� c))� � (2 + � (a� c))] �

� [2� � (n+ 1) �]3
(22)

10The corresponding value of the co-state variable at the steady state Nash equilibrium
is

�N =
(a� c) (n� 1) �
n [2� � (n+ 1) �]

and the transversality condition limt!1 e
��t�ix = 0 is met thanks to exponential dis-

counting.
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which is positive i¤

� >
� (2 + � (a� c))

n+ 1 + � (a� c)
: (23)

However,

� (2 + � (a� c))

n+ 1 + � (a� c)
� 2�

n+ 1
=

�2 (a� c) (n� 1)
[n+ 1 + � (a� c)] (n+ 1)

> 08n � 2: (24)

Hence, the equilibrium level of social welfare monotonically decreases in n
once the interplay between the natural resource and the �rms�output has
been duly accounted for, although admittedly in a very simple manner.11

Once again, the sign of the partial derivative (22) is reversed as compared to
the previous setup. The foregoing discussion can be summarised in

Proposition 1 Endogenising the technological link between the exploitation
of the natural resource and the intermediate or �nal output of the industry
singles out the negative e¤ect of an increase in the intensity of competition
on the resulting equilibrium level of social welfare.

2.3 Pollution I

Let us now turn to an alternative scenario where any natural resources are
left out of the picture, and the focus is on the environmental consequences
of production (or consumption). Still, we consider the same n-�rm oligopoly
o¤ering a homogeneous good, which now generates an undesirable environ-
mental externality. Let s (t) � 0 be the stock of environmental pollution at
any instant. We assume that pollution follows the dynamic equation:

�
s = z

nX
i=1

qi �
nX
i=1

ki � �s (25)

that is, it increases with the industry output level Q =
Pn

i=1 qi at a constant
rate z > 0; while it decreases with the industry�s green R&D investments
K =

Pn
i=1 ki; ki being the instantaneous R&D e¤ort of �rm i at the cost

11This result relates the long-run e¤ects of increasing the population of �rms with the
discount rate. This aspect is a crucial feature of an ongoing debate concerning the need
of applying low discount rates to the well-being of future generation (see Stern, 2007; and
Weitzman, 2007, inter alia).
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�i = vk2i ; v > 0. Pollution by itself diminishes at the constant rate � � 0:
Hence, we are considering a single state, s and 2n controls, q = (q1; q2; :::qn)
and k = (k1; k2; :::kn) ; two for each player.
The market demand function is p = a � Q; while �rm i�s production

involves a cost function Ci (qi) = cqi; c > 0. The Hamiltonian of �rm i is

Hi = e��t

" 
a� qi �

X
j 6=i

qj � c

!
qi � vk2i + �i

 
z

nX
i=1

qi �
nX
i=1

ki � �s

!#
(26)

where �i = e�t$i is the co-state variable (in current value) associated with
s: Strategic interaction is simultaneous, and we shall focus on the open-loop
non cooperative Nash solution. This game is a linear state one, so that (i) the
open-loop Nash equilibrium is subgame perfect, and (ii) we may anticipate
that unregulated �rms will never spontaneously internalise the environmental
consequences of their productive activities at any time during the game. This
ultimately implies that they will not invest in R&D, as can be ascertained
through a quick examination of the necessary conditions:

@Hi

@qi
= e��t

 
a� c� 2qi �

X
j 6=i

qj � z�i

!
= 0 (27)

@Hi

@ki
= �e��t (2vki + �i) = 0 (28)

�
�i = (� + �)�i (29)

Since (29) admits the solution �i = 0 at all times,
12 this immediately entails

that kNi = 0 and qNi = (a� c) = (n+ 1) at any time t: The transversality
condition limt!1$is = limt!1 e

��t�is = 0 is also met. The resulting level of
pollution at the steady state is sN = n (a� c) z= [(n+ 1) �] ; with @sN=@n >
0:

2.4 Pollution II

As is well known, the way out of this impasse consists in introducing a
Pigouvian taxation/subsidization P proportional to the stock of pollution,

12Note that �i = 0 su¢ ces to ensure that the transversality condition limt!1 �is = 0
be satis�ed.
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say, P = �s, on all �rms alike (see, e.g., Benchekroun and Long, 1998, 2002),
� being the tax or subsidy rate, which we will take to be constant throughout
the game, for reasons that will be clari�ed below.13 This transforms the
Hamiltonian of �rm i into the following:

Hi = e��t

" 
a� qi �

X
j 6=i

qj � c

!
qi � vk2i � �s+ �i

 
z

nX
i=1

qi �
nX
i=1

ki � �s

!#
:

(30)
As before, �rms play simultaneously and non cooperatively at all times, tak-
ing now as given the Pigouvian policy set by the government. Observe that
a direct consequence of the presence of regulation is that

�
�i = (� + �)�i + � (31)

which does not admit the nil solution any more and therefore opens the way
for positive R&D investments and also in�uences �rms�output decisions:

qi = qN =
a� c� 2vzkN

n+ 1
; ki = kN =

�

2 (� + �) v
8i (32)

with qN > 0 provided a�c > z�= (� + �) : the optimal output qN is decreasing
with kN and the optimal R&D e¤ort kN is increasing with �; in such a way
that - if �rms are being taxed, i.e., for all � > 0 - R&D e¤orts are positive and
the industry output is lower than in the unregulated case (the opposite holds
of course if �rms are subsidised, which happens for � < 0). The resulting
level of pollution at equilibrium is

sN =
2v (a� c) (� + �) z � � (n+ 1 + 2vz2)

2� (n+ 1) (� + �) v
: (33)

Then, the question arises as to how the government should choose the
optimal �. Since � appears in the �rms��rst order conditions, the open-
loop solution of the Stackelberg game with the government leading would
obviously be subject to a problem of time inconsistency. To avoid it, one
may either solve the Stackelberg game via a degenerate Markov approach (see

13Therefore, we have a single state, s and 2n + 1 controls, i.e., q = (q1; q2; :::qn) and
k = (k1; k2; :::kn) ; two for each �rm, and the Pigouvian policy rate � for the government.
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Dockner et al., 2000, ch. 5), or simply calculate the value of � maximising
the steady state level of social welfare14 de�ned as

SWN = n�N + CSN � sN (1� n�) : (34)

This requires solving
@SWN

@�
= 0 (35)

yielding

�� =
(� + �) [(n+ 1) (n+ 1 + 2vz2)� 2� (a� c) vz]

� [n2 + 1 + 2 (1 + vz2)n]
(36)

which may take either positive or negative values depending on the relative
size of parameters fa; c; n; v; z; �; �g ; in particular n and a� c:We have that

SWN
��
�=��

> SWN
��
�=0

(37)

always, while

sign sN
��
�=��

� sN
��
�=0

= sign
�
2� (a� c) vz � (n+ 1)

�
n+ 1 + 2vz2

��
(38)

which delivers the following:

Proposition 2 For all

a� c 2
�
0;
(n+ 1) (n+ 1 + 2vz2)

2�vz

�
;

� > 0 and (i) SWN
��
�=��

> SWN
��
�=0
; (ii) sN

��
�=��

< sN
��
�=0

:
For all

a� c >
(n+ 1) (n+ 1 + 2vz2)

2�vz
;

� < 0 and (i) SWN
��
�=��

> SWN
��
�=0
; (ii) sN

��
�=��

> sN
��
�=0

:

The second claim appearing in the above Proposition states that, if mar-
ket size is su¢ ciently large (either because the reservation price a is high or
because the marginal cost c is low), the Pigouvian policy takes the form of a
subsidy leading to a level of pollution higher than it would be without regu-
lation. The increase in welfare, which obtains irrespective of whether �rms

14This is the route taken by Benchekroun and Long (1998, 2002).
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are being taxed or subsidised, obtains because of the output expansion that
is brought about by subsidization and ultimately increases consumer surplus.
This is a direct consequence of the aforementioned tradeo¤between the price
e¤ect and the external e¤ect which, provided the market is a­ uent enough,
paradoxically induces the regulator to opt for a higher consumer surplus even
though this entails a larger amount of pollution.15

It can be shown that @ SWN
��
�=��

=@n > 0 always.16 The analysis of the
e¤ects of a change in n on industry pro�ts can only be carried out numerically,
revealing that the industry concentration which maximises collective pro�ts
is decreasing in �: To see this, we �x a�c = 1; v = 3; z = 1 and � = 1=5; and
solve @ n�N

��
�=��

=@n = 0 for di¤erent values of �; obtaining (n is rounded to
the lower integer):

n = 58 for � =
1

5

n = 73 for � =
1

4

n = 99 for � =
1

3

n = 149 for � =
1

2

n = 224 for � =
3

4

n = 239 for � =
4

5

(39)

That is,

Remark 3 The higher is the environment�s degree of e¢ ciency in recycling
pollution, the larger is the population of �rms maximising industry pro�ts at

15It is worth noting that this mechanism would still exist in a simpler version of this
setup, without R&D investments. This is due to the fact that the con�ict between two
equally desirable objectives (lowering the price and reducing pollution) is entirely inherent
to production decisions only.
16The proof, trivial but lengthy, is omitted for brevity. It is however available from the

authors upon request.
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the steady state equilibrium in which a benevolent regulator adopts the socially
optimal Pigouvian policy.

3 The full model

We are now ready to investigate a full-�edged model in which the natural
resource enters explicitly in the production function of the intermediate or
�nal output, and productive activities generate a negative environmental
externality. To do so, we modify the state equations as follows.
We pose that pollution evolves according to the following equation:

�
s = zx

nX
i=1

bi �
nX
i=1

ki � �x; (40)

where the only detail that has changed as compared to the previous version is
that the environment is being cleaned at a rate � � 0 by the existing amount
of natural resource.17

The dynamics of the natural resource is

�
x =

 
� �

nX
i=1

bi

!
x� s; (41)

in which, note, the stock of pollution enters negatively.
All of the control variables have been already de�ned. Thus, the present

game features two state variables, s and x, and 2n controls, q = (q1; q2; :::qn)
and k = (k1; k2; :::kn) ; two for each player. We disregard the possibility of
regulation through a Pigouvian policy for reasons that will become apparent
below. The instantaneous pro�t function of �rm i is

�i = (p� c) bix� vk2i (42)

so that the individual �rm must

max
bi;ki

Z 1

0

�ie
��tdt (43)

17This applies to rain forests and the oceans absorbing CO2 emissions, while it doesn�t
apply to other natural resources, like the stock of �sh. On the contrary, the latter is
negatively a¤ected by pollution (as speci�ed in (2), (10) and (41)).
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subject to the dynamic constraints (40-41), initial conditions s (0) = s0 >
0 and x (0) = x0 > s= (� �

Pn
i=1 bi) ; and the appropriate transversality

conditions. Once again, we solve the game under open-loop information.
The �rm�s Hamiltonian function is

Hi = e��t

( 
a� bix� x

X
j 6=i

bi � c

!
bix� vk2i (44)

+'i

 
zx

nX
i=1

bi �
nX
i=1

ki � �x

!
+  i

" 
� �

nX
i=1

bi

!
x� s

#)
;

variables 'i = e�t� i and  i = e�t{i being the co-states (in current value) as-
sociated with s (t) and x (t), respectively. The maximization of (44) requires
meeting the following set of necessary conditions:

@Hi

@bi
= e��tx

 
a� c� 2bix� x

X
j 6=i

bj + z'i �  i

!
= 0 (45)

@Hi

@ki
= �e��t (2vki + 'i) = 0 (46)

�
'i = �'i +  i (47)

�
 =

 
bi + �� � �

X
j 6=i

bj

!
 +(� � zbi)'i� bi

 
a� c� x

 
2bi +

X
j 6=i

bj

!!
:

(48)
The associated transversality conditions are

lim
t!1

e��t'is = 0; lim
t!1

e��t ix = 08i: (49)

From (45), we obtain

 i = a� c� 2bix� x
X
j 6=i

bj + z'i (50)

and

�
bi =

x

�
z
�
'i �

�
 i � x

P
j 6=i

�
bj

�
� (a� c+ z'i �  i)

�
x

2x2
(51)
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while from (46) we get
'i = �2bki (52)

and therefore also
�
ki = �

�
'i
2b
= ��'i +  i

2b
: (53)

Before proceeding any further, it is worth noting that (53) implies:

Lemma 4 The interplay between state variables allows for the presence of
positive R&D e¤orts during the game.

Substituting (47), (48), (50) and (52) into (51) and (53), and imposing
symmetry across �rms, we can write the control equations as follows:

�
b = f(a� c) [� � �+ z � b (n� 1)] + 2vk [� + z (b (n� 1)� � � z)] +

b (n+ 1) [s� x (b� �+ z � 2 (nb� �))]g = [(n+ 1) x] (54)

�
k =

b (n+ 1) x+ 2v (�+ z) k � a+ c

2v
: (55)

This version of the control equations reveals a relevant property of the game,
namely that, at any time,

�
k > 0 if a� c < b (n+ 1) x+ 2v (�+ z) k: (56)

In other words, this condition says that the individual R&D e¤ort in green
technologies will increase provided market size is �small�. An equivalent read-
ing is that R&D e¤orts will increase if the population of �rms is large enough.
Either way, it boils down to saying that the pace of green innovation is pos-
itively related to the intensity of competition characterising this industry.18

Imposing stationarity on the system
�
�
x;

�
s;

�
b;

�
k

�
; we obtain the coordi-

nates of the unique Nash equilibrium of the open-loop game:

xN =
n (a� c) z

(n+ 1) �
; sN =

n (a� c) (�z � �)

(n+ 1) �
; bN =

�

nz
; kN = 0: (57)

18This result has a de�nite Arrovian �avour. For a summary of the debate between
Schumpeter (1942) and Arrow (1962) on the relationship between market power and in-
novation incentives, see, e.g., Tirole (1988).
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This steady state obviously coincides with the monopoly equilibrium if
n = 1, and it is admissible provided that � � �=z. Steady state output
and pro�ts are qN = (a� c) = (n+ 1) and �N = (a� c)2 = (n+ 1)2 ; i.e., the
standard Cournot-Nash pro�ts, and ' =  = 0.
Now we can examine the steady state social welfare level, de�ned as

SWN = n�N + CSN + xN � sN = (58)

n (a� c) [(2 (a� c+ 1) + n (a� c+ 2)) � + 2 (n+ 1) (1� �) z]

2� (n+ 1)2
:

The e¤ect of a change in n on welfare is described by

@SWN

@n
=
(a� c) [� (a� c+ n+ 1) + (n+ 1) (1� �) z]

� (n+ 1)3
; (59)

� 2 (0; 1] being a su¢ cient condition for @SWN=@n > 0 for all n. In this re-
gion (i.e., if the instantaneous regeneration rate of the natural resource is less
than 100%, which, realistically, will almost always be the case), any increase
in the intensity of competition generated by an increase in the population of
�rms is indeed bene�cial. More precisely, the overall e¤ect of a change in n
on SWN can be decomposed as follows:

@SWN

@n
=
@
�
n�N

�
@n

+
@
�
CSN

�
@n

+
@xN

@n
� @sN

@n
(60)

with
@
�
n�N

�
@n

< 0;
@
�
CSN

�
@n

> 0;
@xN

@n
> 0;

@sN

@n
< 0; (61)

whereby it appears that the negative e¤ect on industry pro�ts is more than
compensated by the increase in consumer surplus, the higher volume of the
natural resource and the lower level of pollution. Also, note the opposite sign
of the partial derivatives of sN and xN w.r.t. n: a cleaner environment goes
along with a higher exploitation of the natural resource in steady state, the
larger the population of �rms is.
If instead � > 1; @SWN=@n = 0 in

n� =
(� � 1) z � (a� c+ 1) �

� � (� � 1) z > 1 (62)
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for all

� 2
�
2 (� � 1) z
a� c+ 2

; (� � 1) z
�
: (63)

This discussion can be summarised in

Proposition 5 If � 2 (0; 1] ; then any increase in the intensity of compe-
tition exerts a welfare-increasing e¤ect. If instead � > 1; then the socially
optimal number of �rms is �nite, monopoly being Pareto-e¢ cient for all �
outside the interval �

2 (� � 1) z
a� c+ 2

; (� � 1) z
�
:

To ascertain the stability properties of the system, one has to inspect the
following Jacobian matrix:

J =

2666666666664

@
�
x

@x

@
�
x

@s

@
�
x

@b

@
�
x

@k
@
�
s

@x

@
�
s

@s

@
�
s

@b

@
�
s

@k

@
�
b

@x

@
�
b

@s

@
�
b

@b

@
�
b

@k

@
�
k

@x

@
�
k

@s

@
�
k

@b

@
�
k

@k

3777777777775
whose eigenvalues can be easily calculated in the special case of a single �rm
(i.e., n = 1), with

@
�
x

@x
= � � b;

@
�
x

@s
= �1; @

�
x

@b
= �x; @

�
x

@k
= 0 (64)

@
�
s

@x
= zb� �;

@
�
s

@s
= 0;

@
�
s

@b
= zx;

@
�
s

@k
= �1 (65)

@
�
b

@x
=

2 [v (z (� + z)� v) k � bs]� (a� c) (� � �+ z)

2x2
;
@
�
b

@s
=
b

x
;

@
�
b

@b
=

s+ x [2 (b+ �) + �� z]

x
;
@
�
b

@k
=
v [� � z (� + z)]

x
(66)
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@
�
k

@x
=
b

v
;
@
�
k

@s
= 0;

@
�
k

@b
=
x

v
;
@
�
k

@k
= �+ z: (67)

The resulting eigenvalues of J in fx�; s�; b�; k�g are:

"1 =
� +

p
�2 + 4�

2
> 0; "2 =

� �
p
�2 + 4�

2
< 0

"3 =
2�� � +

p
�2 + 4�

2
> 0

"4 = �� � 2�+
p
�2 + 4�

2
< 08 � < � +

p
�2 + 4�

2
: (68)

Accordingly, fx�; s�; b�; k�g is a saddle point equilibrium in the monopoly
case. Performing the same analysis in the general case of an oligopoly is,
however, cumbersome. Yet, we can work out some numerical examples. For
instance, one can �x

a� c = 1;n = 2; v = 1; z = 1; � =
1

30
; � =

1

10
; � =

1

100
(69)

to obtain

"1 = 0:2725; "2 = �0:2524; "3 = 0:0217; "4 = �0:0164; (70)

which again reveals saddle point stability - in this case, of the duopoly equi-
librium.

4 Concluding remarks

We have modelled the dynamic interplay between �rms�decisions and the
resulting welfare performance of an industry involving the exploitation of a
natural resource and negative environmental e¤ects. Towards this aim, we
have adopted a stepwise procedure, starting from the simplest settings to
end up with a complete model including all relevant variables. This has been
done with the purpose of illustrating how some of the main properties and
policy conclusions may change depending upon the degree of accuracy and
completeness which the model itself is endowed with. In particular, we have
focussed on the tradeo¤ between the opposite e¤ects of output expansions
on market price on one side and the intensity of resource exploitation and
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environmental externality on the other. In this regard, a key aspect one
has to bear in mind is the intensity of market competition, measured by the
size of the population of active �rms in the industry. The full-�edged model
we have constructed indicates that, for any realistic rate of reproduction
of the natural resource, any increase in the population of �rms is indeed
welfare-improving. A related issue we have also dwelled upon is whether
�rms may have any incentive to invest in green technologies in the absence
of taxation/subsidization. In this respect, our model suggests that such
an incentive does exist, due to competitive pressure, even if �rms do not
explicitly internalise the e¤ects of their activities.
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