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Abstract

Two parties bargaining over a pie whose size is determined by the in-
vestment decisions of both. The bargaining rule is sensitive to the invest-
ment behavior. If a symmetric investments pro�le is observed, bargaining
proceeds according to the Nash Demand Game; otherwise bargaining pro-
ceeds according to the Ultimatum Game. We are interested in the evolu-
tionary emergence of both an e¢ cient investment norm and a bargaining
norm. Under some conditions we prove that these norms co-evolve; when
this happens they support the e¢ cient investment and the egalitarian dis-
tribution of the surplus. In addition, when surplus requires that at least
one agent invests, then either both norms co-evolve or no norm evolves.

Key Words: evolution; norms; speci�c investment; hold-up problem.
Classi�cation Codes. C78, L41.

1 Introduction

It is well known that when an economic relationship requires some individual
speci�c investment but agents are not sure whether they will be able to catch
the bene�ts, investments that are individually rational might not be undertaken.
This is what happens in the so-called hold-up problem (Tirole 1986). This prob-
lem arises in scenarios where investments costs are sunk at the time the surplus
occurs; since sunk costs are not taken into account at the bargaining stage, the
ex post division of the surplus is insensitive to the level of investment. An eco-
nomically ine¢ cient outcome can then occur and an institutional arrangement
is needed.
However in sequential models with a bargaining stage following a production

stage some subgame perfect equilibria supporting the e¢ cient investment pro�le
can come to the fore even when agents bargain over the gross surplus. When
only one agent makes a speci�c investment, followed by the Nash Demand Game,
Troger (2002) and Ellingsen and Robles (2002) have shown that all the stochas-
tically stable equilibria are e¢ cient and a neat distributive norm evolves; when
the grid of possible investments gets very �ne, the evolved distributive norm
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virtually assigns all the surplus to the investor. When a multiplicity of sub-
game perfect equilibria occurs, the aforementioned papers show that evolution
can solve the hold-up problem.1 When the size of the pie is endogenous, it is
thus illegitimate to separate the analysis of the bargaining stage from the prior
investment stage and sunk costs matter in such a way that e¢ cient investment
incentives are provided (Troger, 2002).

However Troger (2002) and Ellingsen and Robles (2002) are concerned with
the case in which the pie depends on the investment of one part only. In this
paper we extend the analysis to two-sided relationship speci�c investment. Our
purpose is to investigate under what circumstances an e¢ cient norm of invest-
ment and a bargaining norm can endogenously evolve when the size of the pie
is determined by both agents. The basic model is developed and extended in
Dawid and MacLeod (2001; 2008) where two types of investments are allowed,
high and low, and only high investment is costly. At the end of the �rst stage
a surplus is realized and it depends on the investments pro�le. The e¢ cient
(net) surplus arises when both players have chosen the high investment. Before
bargaining the surplus is perfectly observed by both agents, although it cannot
be veri�ed by a court. In this context any eductive argument is of no help in
predicting the outcome of the game.
Dawid and MacLeod (2001) show that either a unique stochastically sta-

ble outcome fails to exist or, if it exists, it is not necessarily e¢ cient. This
result allows them to claim (page 161) that, in contrast to Troger (2002) and
Ellingsen and Robles (2002), when both parties might invest, the requirement
that norms of bargaining be stochastically stable can exacerbate the hold-up
problem. Their �ndings however only holds under some crucial assumptions:
(i) bargaining only occurs when asymmetric investments pro�les are observed;
(ii) agent interacts according to the Nash Demand Game; (iii) when symmetric
investments pro�les are observed, the total surplus is equally split. The evolu-
tionary dynamics considered by Dawid and MacLeod (2001) is an adaptation
of Young (1993) to extensive form games. However, though this extension is
not problematic with one sided investment (as in Troger (2002)), it engenders a
kind of cognitive bias with two sided relationship speci�c investment.2 A major
shortcoming of their evolutionary approach is that it prevents the study of the
emergence of a bargaining norm. In fact, since bargaining only occurs when
asymmetric investments pro�les are observed, a bargaining norm can evolve
only if the unperturbed model has some limit set supporting an heterogenous
investment behavior; however under their evolutionary dynamics only symmet-
ric investments pro�les are almost always observed.3 In order to overcome this

1 In a similar model Andreozzi (2008) shows that this result does not extend to the case of
heterogeneous investment costs.

2Speci�cally, under their evolutionary dynamics some agent can continue to believe that all
the opponents make the same investment (i.e. all choose high or low investment) even when
he has observed some bargaining outcome (which can happen only when high-low matches
occur).

3 In a companion paper we embed Dawid and MacLeod (2001) model into the evolutionary
dynamics considered by Noldeke and Samuelson (1993); see Bagnoli and Negroni (2010).
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problem, the basic model is extended in Dawid and MacLeod (2008) :

In this paper we follow a di¤erent route. The two key features of our ap-
proach are the following. First we assume that bargaining occurs at each invest-
ment pro�le but that the bargaining rule is sensitive to the investment behavior.
We think reasonable to assume that agents have the same bargaining power only
when a symmetric investment pro�le is observed; when instead an asymmetric
investment pro�le is observed, we deem more reasonable to give all the bargain-
ing power to the agent who has made the high investment. Therefore a Nash
Demand Game occurs when agents make the same investment and an Ultima-
tum Game occurs when only one agent makes the high investment. Second we
use the evolutionary framework put forward by Noldeke and Samuelson (1993)
which is more adequate for extensive form games since beliefs are free to change
by mutations. This framework assumes two populations of agents and, in every
period, every possible match between agents is allowed.
We show that, under some conditions, a bargaining norm and an invest-

ment norm coevolve. When these conditions are met then, for whatever grid of
possible claims, the bargaining norm supports an egalitarian division and the
investment norm supports the e¢ cient investment pro�le. In order to elicit a
norm based solution to the hold-up problem, the following two conditions are
required: (i) each equilibrium supporting an homogenous low investment pro�le
is Pareto dominated by some equilibria supporting di¤erent investment pro�les;
(ii) there exists some e¢ cient equilibrium such that nobody has the incentive to
make low investment when he believes to get almost the whole pie even when
one opponent deviates by claiming more.
When only the �rst condition holds then neither an investment norm nor

a bargaining norm evolve. When instead both conditions fail then, even if an
investment norm can exist, it cannot be the e¢ cient one. In order to give an
insight of this latter result suppose that the e¢ cient investment norm evolved
and only the �rst condition is met. This means that since no high-low matches
are observed, the beliefs concerning the bargaining outcome at high-low matches
can drift. Because of drift all agents of one population might deem to capture
almost the whole pie by choosing low investment in the low-high matches. Hence
when a single agent of the opponent population deviates by claiming a larger
demand, then by updating all agents in the �rst population are willing to make
the low investment so that the e¢ cient norm is overturned.
The aforementioned conditions can respectively be translated into conditions

on the investment cost and the degree of investment complementarity. When
investment are not complements, then for whatever investment cost both norms
do not evolve. Under the same condition Dawid and MacLeod (2001) prove that
no investment norm can emerge. Since, as we remarked before, they can not
study the emergence of a bargaining norm, our result can be seen an extension
of their �ndings.
Sharper results can be drawn when in order to get a surplus at least one

agent has to choose high investment. In this case, by a direct application of
our �ndings and contrarily to what emerge when the surplus is always equally
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split (the canonical case in which the hold-up problem is studied), we show that
either the stochastically stable outcome sustains the e¢ cient investment pro�le
and an egalitarian distribution or no norm evolves. Contrarily to Dawid and
MacLeod (2001) we can then conclude that with two sided relationship speci�c
investment, the requirement that norms of bargaining be stochastically stable
can downsize the hold-up problem.

The basic model is presented in Section 2. Section 3 describes the evolution-
ary dynamics and gives some preliminary results. The emergence of investment
conventions is the topic of Section 4 while Section 5 is concerned with bargaining
norms.

2 The model

Two risk neutral players A and B are engaged in a two stages game, �. In the
�rst stage both have to simultaneously decide among two types of investment,
H and L; when a player chooses H he incurs in a cost c: At the end of the �rst
stage, a surplus is realized and it is observed; each player can then correctly
estimate the opponent�s investment. The value of the surplus depends on the
speci�c investment each player has made at the beginning of the game. In
particular we denote by VH the surplus arising when both choose H; by VM the
surplus accruing when only one chooses H and lastly by VL when both choose
L: Obviously VH > VM > VL � 0:
In the second stage they bargain over the available surplus. The bargaining

rule depends on the investment pro�le. If both have chosen the same investment,
they are engaged in a Nash Demand Game; if they have chosen di¤erent invest-
ment, they are engaged in an Ultimatum Game. In both cases players demand
a fraction of the surplus. Let D (Vj) = f�; 2�; :::; Vj � �g where j 2 fH;M;Lg
denote the set of feasible demands. The bargaining is always well de�ned if
� < VL

2 : Moreover we assume that
VH
2 is divisible by �:

In the Nash Demand Game both players simultaneously make a demand y
and x. If the demands are compatible, each gets what he claimed; otherwise
they get nothing. When both choose H; the payo¤ are

�A =

8<: y � c if y + x � VH

�c if y + x > VH

and

�B =

8<: x� c if y + x � VH

�c if y + x > VH :

When both choose L; the structure of the payo¤s is similar but c = 0:
In the Ultimatum Game the player who has chosen H makes a demand; the

opponent, after observing this demand, can either accept or reject it. Suppose
HL is observed and A makes a demand y: If B accepts the payo¤s are y � c
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for A and VM � y for B; otherwise A gets �c and B nothing. The rules of the
Ultimatum game allows us to simplify the set of demands for the player who
has chosen L. In particular, when A chooses H and makes a demand y; the
set of actions for B is fVM � y; VMg where the �rst is equivalent to accept the
demand of the opponent and the second is equivalent to reject it.

In this setting, a pro�le of behavioral actions for player A must specify:
(i) the type of investment; (ii) the demand when both players choose H

(the action at HH); (iii) the demand when both players choose L (the action
at LL); (iv) the demand when A chooses H and B chooses L (the action at
HL); (v) whether to accept or reject any demand made by B; when in the �rst
stage B chooses H and A chooses L: Analogously for player B:

� always admits a subgame perfect equilibrium which supports the invest-
ment pro�le HH if VH � 2c > 2�: Notice however that the game admits a great
number of subgame perfect equilibria and that some of these support the invest-
ment pro�le LL. Throughout the paper we consider a class of games satisfying
the condition

VH � 2c > max (VM � c; VL) : (1)

This means that the investment pro�le HH is the e¢ cient one; this assump-
tion, together with VL > 2�; means that in the class of games considered some
subgame perfect equilibrium supporting the e¢ cient investment always exists.

3 Evolutionary dynamics

In this Section we apply to � the evolutionary dynamics put forward by Noldeke
and Samuelson (1993). For each player there is a �nite population of agents
of size N: In every period every possible match between agents occurs. This
means that each agents belonging to population A interacts with every agent
of population B; one at the time. An agent is described by a characteristic
which consists of a detailed plan of actions and a set of beliefs on the actions the
opponent can take at each information set. A state � is a pro�le of characteristics
on the overall population and z (�) is the probability distribution of outcomes
generated by �. The set of possible states, �; is �nite.

In each period, after the state is realized, with probability � each agent
in each population independently observes the distribution of outcomes z (�) :
This information allows the learning agent to update his conjectures so that,
at the information set reached in �; these are equal to the observed frequencies
of actions. Afterwards, given his new beliefs, he updates his action pro�le by
choosing, at all information sets, a best reply action.4 However, if at some infor-
mation set the learning agent has already played a best reply action, his action

4When the best reply contains more than one action, then one of these can be randomly
chosen according to a distribution probability with full support.
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does not change. With probability 1�� the single agent does not observe z (�)
so that his characteristic does not change. This learning mechanism engenders
a Markov process with transition matrix P on �: We denote by (�; P ) the un-
perturbed Markov process. We remark that under this evolutionary dynamics
every subset of agents has positive probability of revising.

With a slight abuse of notation we denote by (HH; yHH ; xHH) a terminal
node in which both agents have chosen H; agent A makes a demand yHH and
agent B makes a demand xHH : Analogously for the other terminal nodes. Let
us consider a state �t and suppose that all agent observe z (�t) : For every agent
i 2 A; action L is not preferred to action H if

pB (�t)
�eyiHH (�t)� eyiLH (�t)� c�+ (1� pB (�t)) �eyiHL (�t)� eyiLL (�t)� c� � 0;

analogously, for every agent i 2 B; action L is not preferred to action H if

pA (�t)
�exiHH (�t)� exiHL (�t)� c�+ (1� pA (�t)) �exiLH (�t)� exiLL (�t)� c� � 0:

Here we denote by pA (�t) (resp. pB (�t)) the frequency of agent A (resp. B)
who played H in �t and by eyiHH (�t) (resp. exiHH (�t)) the expected payo¤s of
agent i 2 A (resp. i 2 B) at the information set HH; given z (�t) : Analogously
for the other information sets.

De�nition 1 A set 
 � � is called a !�limit set of the process (�; P ) if:

8� 2 
; P rob f�t+1 2 
 j �t = �g = 1

8
�
�; �0

�
2 
2; 9s > 0; P rob

�
�t+s = �

0 j �t = �
	

> 0:

When a process enters into a !�limit set (
), it does not exit and wanders
forever in it; in this case we denote by � (
) the set of outcomes that can be
observed almost always: Since 
 is not unique the unperturbed Markov process
is not ergodic.
Besides updating, agents�beliefs and actions can change by mutations. In

every period each agent has a probability � of mutating; these mutations are
independently distributed across agents. When mutating, an agent changes his
characteristic according to a probability distribution assigning positive probabil-
ity on each possible characteristic. This generates a new Markov process with
transition matrix P (�) on �: We denote by (�; P (�)) the perturbed Markov
process. This is now an ergodic process. It is well known that for any �xed
� > 0; the process (�; P (�)) has a unique invariant distribution ��: It is standard
in the literature to focus on the limit distribution �� de�ned by �� = lim�!0 ��:
A state � is stochastically stable if �� (�) > 0: We denote by �S the set of
stochastically stable states; this is the set of states which have a positive prob-
ability in the limit distribution. Noldeke and Samuelson (1993) proved that the
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stochastically stable set is contained in the union of the !�limit sets of the
unperturbed process: Hence, in order to detect the stochastically stable set we
have �rst of all to characterize the !�limit sets of our model. This is the aim
of the following Proposition.

Proposition 2 All the !�limit sets have one of the following structures:
(a) it contains only one state and this is a self-con�rming equilibrium of �;
(b) it contains more states and

� (
) = f(HH; yHH ; xHH) ; (LL; yLL; xLL) ; (HL; yHL; xHL) ; (LH; yLH ; xLH)g

where in each investment pro�le the demands exhaust the surplus and the payo¤s
satisfy the following constraints:

(yHH � c� yLH) (yHL � c� yLL) < 0; (xHH � c� xHL) (xLH � c� xLL) < 0

(yHH � c� yLH) (xHH � c� xHL) < 0; (yHL � c� yLL) (xLH � c� xLL) < 0
(2)

Proof. See the Appendix

Example 1. Let us consider an economy populated by N = 100 agents,
half of these are of type A: The possible surpluses are VH = 18; VL = 3 and
VM = 6: The cost of high investment is c = 2 and � = 0:5: Consider a state
�� in which: (a) all agents play L; i.e. pA (�

�) = pB (�
�) = 0; (b) the expected

payo¤ of a single agent from playing H when the opponent plays L is not larger
than 3; i.e. eyiHL (��) � 3 for any i 2 A and exiLH (��) � 3 for any i 2 B; (c) in
LL half of players A make a demand equal to 1 and the others make a demand
equal to 2; i.e. b�A (��; 1) = b�A (��; 2) = 1

2 : The same for players B: Then �
� is

a self con�rming equilibrium and the set of outcomes almost always observed is
� (��) = f(LL; 1; 1) ; (LL; 1; 2) ; (LL; 2; 1) ; (LL; 2; 2)g :

Assume that the process is in some limit set 
 and a single mutation occurs
which alters the characteristic of a single agent (the mutant). If this mutation
does not alter the action prescribed and/or the beliefs hold by the mutant at
the information set currently reached, then the mutation is called drift. Since
the expected payo¤ of the others does not change, their characteristics do not
change too. Then by a drift we move from 
 to another limit set 
0 such that for
any � 2 
 there exists a state �0 2 
0 with the same distribution of outcomes,
i.e. z (�) = z

�
�0
�
:

De�nition 3 Consider a union of limit sets 
: This set is mutation connected
if for all pairs 
 and 
0 belonging to it there exists a sequence of limit sets
(
1 = 
;
2; :::;
n = 


0) such that (a) for any k 2 f1; :::; n� 1g ; 
k belongs
to this set and (b) every transition from 
k to 
k+1 needs no more than one
mutation:
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Let 
 = f�g be a self con�rming equilibrium and consider all the self con-
�rming equilibria �0 such that z (�) = z

�
�0
�
; denote the union of these equilibria

by � (�) : Since any two equilibria belonging to � (�) only di¤er for some beliefs
(and/or actions) held in some not reached information set, then there always
exists a path connecting these two equilibria and such that: (i) all the limit sets
involved in the path belong to � (�) ; (ii) every transition between adjacent equi-
libria requires one mutation. Hence the set � (�) is mutation connected. The
same argument holds for a more complex 
 satisfying point (b) of Proposition
2; in this case we denote by � (
) the union of these limit sets.
When the set of stochastically stable states (�S) only contains equilibria

supporting the same unique outcome, then we can speak of stochastically stable
outcome rather than stochastically stable set.

To give an insight, recall previous Example 1 and let �0 be a state which
di¤ers from �� by at least one of the following: (i) some beliefs and actions at
the information node HH; (ii) some beliefs and actions of some agents A at the
information node LH; together with some beliefs and actions of some agents B
provided that exiLH ��0� � 3; (iii) some beliefs and actions of some agents B at
the information node HL together with some beliefs and actions of some agents
A provided that eyiHL ��0� � 3: Obviously �0 is a self con�rming equilibrium with
the same distribution of outcomes than �; then in � (�) there always exists a
path from � to �0 such that �0 can be reached from � by a sequence of single
mutations.

We know from Proposition 2 that the considered evolutionary dynamics gives
rise to a large multiplicity of limit sets and that not all these are equilibria of the
extensive game5 . Di¤erently than Dawid and Mac Leod (2001), we cannot ex
ante exclude from the stochastically stable set any bargaining and investment
behavior. For instance, even if we observe an homogeneous investment pro�le,
we cannot exclude a priori any equilibrium of the Nash Demand Game. Mutatis
mutandis, the same holds true for an heterogeneous investment pro�le. How-
ever the unperturbed dynamics admits limit sets in which both investment and
bargaining behavior is uniform in each population. It is then possible for evolu-
tion to trigger an homogeneous behavior in one or both populations. When this
happens we say that a norm has evolved. In general, in an evolutionary model
a norm can be de�ned as a pattern of observable individual actions with the
property that for each agent it is optimal to adhere to it when each believes that
everybody else will conform. Accordingly; an investment norm has evolved if
all agents belonging to the same population make the same investment and the
investment behavior is correctly anticipated. Analogously a bargaining norm
has evolved if, at any reached information set, there exists a pair of demands
(y; x) which exhausts the gross surplus and the bargaining behavior is correctly
anticipated.
Proposition 2 is then of little help to pin down which behavior is more likely

to become the conventional one. Nevertheless in the next Section we shall
5From now on when we speak of equilibrium we refer to self-con�rming equilibrium.
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show that when looking for the stochastically stable outcomes, we can restrict
our attention to a small subset of equilibria in which (a) a single outcome is
observed and (b) each agent chooses investment H: This implies that a norm of
investment emerges and it supports the e¢ cient investment pro�le HH. This
remarkable result stems from a direct application of Ellison (2000). In particular
when his radius/modi�ed coradius Theorem holds, then the stochastically stable
set (�S) must be included in a union of limit sets with the property that more
than one mutation is needed to escape from it. Our �rst task (Lemma 4 and 5)
is then to explore whether for some union of limit sets (�) ; a single mutation is
enough to �y out from it; in this case when the condition for the aforementioned
Theorem holds, we know that � does not belong to �S .

Lemma 4 Consider a set 
 such that � (
) is not a singleton. There always
exists an equilibrium �0; with �

�
�0
�
a singleton, which can be reached from 
 by

a sequence of single-mutation transitions provided that VM � VL + c.

Proof. See the Appendix.

From now on we restrict our attention to the equilibrium sets supporting
only one outcome. Depending on the observed investment pro�le we can par-
tition these equilibrium sets into four subsets that we denote by �H ; �L;�HL
and �LH : Of course �H includes all the equilibria supporting the outcome
fHH;VH � xHH ; xHHg where xHH 2 D� (VH) : Analogously for the other sub-
sets.

Lemma 5 Consider one equilibrium and let �� be a di¤erent equilibrium be-
longing to � (�):
(a) if � 2 �L and VM � VL+c then a single mutation from �� is su¢ cient to

enter (with positive probability) into the basin of attraction of �0 2 �H provided
that xHH > c+ � and/or xHH < VH � c� �;
(b) if � 2 �L and VM � VL + c, then a single mutation from �� is su¢ cient

to enter (with positive probability) into the basin of attraction of �0 2 �LH[�HL
provided that at �0 the agent who has chosen H is better o¤ and the other is not
worse o¤ than at �;
(c) if � 2 �HL (resp. �LH), then a single mutation from �� is su¢ cient to

enter (with positive probability) into the basin of attraction of �0 2 �H provided
that at �0 agent A (resp. B) is not worse o¤ and agent B (resp. A) is better o¤
than at �.

Proof. See the Appendix.

These two Lemma holds when the net surplus arising when agents make
di¤erent investment choices is not smaller than the surplus arising when both
choose L (i.e VM � VL + c). From Lemma 4 we know that, when a limit set
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underpins a multiplicity of outcomes, then by a sequence of single mutations
we can reach an equilibrium sustaining only one outcome. Lemma 5 tells us
that: (i) starting from any � 2 �L; the process can reach a single equilibrium
belonging either to �H or to �LH (resp. �HL); (ii) starting from any � 2 �HL
(resp. �LH), the process can reach a single equilibrium belonging to �H . Hence,
when �S can be detected by Ellison�s Theorem, both these Lemma suggest that
a stochastically stable state could only support the HH investment pro�le.

4 Investment conventions

The conclusion of previous Section suggests to restrict our concern to the set of
equilibria �H : In this Section we �rst show that under some conditions there
exists a subset (�IH) of �H such that: (i) more than one mutation is needed to
escape from it and (ii) one mutation is enough to escape from the complementary
set (�H n �IH) : Then we are able to prove that, when �IH is not empty, the
stochastically stable set is included in it.
In order to characterize the set �IH some further de�nitions are needed:We

denote by xMA the largest demand agent B can make at the information node
HH such that agent A does not have any incentive to choose action L when A
his sure that all agents B play H and make a demand xMA :We denote by x

L
A the

largest demand agent B can make at the information node HH such that agent
A does not have any incentive to choose action L when A knows that N � 1
agents B play H and make demand xLA while one agent B deviates by asking a
larger demand. Thus:

xMA = max fx 2 D� (VH)jVH � x� c � VM � �g

xLA = max
�
x 2 D� (VH)j (VH � x) N�1N � c � VM � �

	
:

(3)

We denote by xMB the smallest demand agent B can make at the information
node HH such that this agent does not have any incentive to choose action L
when he is sure that all agents A play H and make a demand VH � xMB : We
denote by xLB the smallest demand agent B can make at the information node
HH such that this agent does not have any incentive to choose action L when
he knows that N � 1 agents A play H and make demand VH � xLB while one
agent A deviates by asking a larger demand. Hence:

xMB = min fx 2 D� (VH)jx� c � VM � �g

xLB = min
�
x 2 D� (VH)jxN�1N � c � VM � �

	
:

(4)

We assume that the population is su¢ ciently large and that the least demand
is su¢ ciently small; formally:

VH
N

< � (5)
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and

� < c: (6)

From (5) it follows that either xLA = xMA or xLA = xMA � � and that either
xLB = x

M
B or xLB = x

M
B + �:

Our aim is now to �nd under what conditions the range
�
xLB ; x

L
A

�
is not

empty. Consider the equilibrium � 2 �H in which the surplus is equally divided,
i.e. x = VH

2 = VH � x: Notice that when

x
N � 1
N

� c � VM � �; (7)

then xLB � x and xLA � x so that the range
�
xLB ; x

L
A

�
is not empty. When

instead condition (7) does not hold, the range
�
xLB ; x

L
A

�
is empty. Therefore

when condition (7) is satis�ed we de�ne the set �IH as

�IH =
�
� 2 �H j x 2

�
xLB ; x

L
A

�	
:

By de�nition when � 2 �IH each agent gets an equilibrium payo¤not smaller
that the maximum expected payo¤ attainable when he deviates by playing
L:Then any equilibrium in �IH dominates all the equilibria supporting other
investment pro�les. It is worth noticing that since x is divisible by � then
VH = x

L
A + x

L
B meaning that in �IH the least equilibrium demand is the same

for both agents.
Let �CH = �H��IH be the subset of equilibria of the game in which the

unique outcome is in HH but x =2
�
xLB ; x

L
A

�
: The next Lemma shows that when

�IH is not empty, then both �IH and �CH have some desirable features.

Lemma 6 Let (5)and (6) hold.
(a) When �IH is not empty more than one mutation is needed to escape

from �IH .
(b) One mutation is enough to escape from �CH :
(c) When �IH is not empty, this set can be reached from � 2 �CH by a

sequence of single mutations provided that VM � VL + c:

Proof. See the Appendix.

Important informations concerning the set of stochastically stable states are
obtained by collecting all the results so far derived which allow us to make use
of the su¢ cient condition developed by Ellison (2000).

Proposition 7 Let (5)and (6) hold. When �IH is not empty, then the stochas-
tically stable set is contained in �IH provided that VM � VL + c.

11



Proof. See the Appendix

To sum up, Proposition 7 says that in every stochastically stable state it
must be true that all agents choose investment H so that the bargaining follows
the rules of the Nash Demand Game. This means that choosing investment
H becomes the conventional way of playing the �rst stage of the game thus
ensuring an e¢ cient equilibrium. Moreover, when xLB = x Proposition 7 claims
that a stochastically stable outcome emerges and that each agent get half of the
e¢ cient surplus. When instead xLB < x; although we do not yet know how the
surplus will be distributed in the long run, in every stochastically stable state
everybody gets a payo¤ greater than the maximum payo¤ attainable by playing
L.

5 Bargaining conventions

In this Section we analyze the case xLB < x: We are able to show that, when
Proposition 7 holds; a stochastically stable outcome exists and the conventional
bargaining rule is egalitarian for whatever very �ne grid of possible claims. Also
the result of this Section stems from a direct application of Ellison (2000) and
exploits some results for the Nash Demand Game proved by Young (1998).

Proposition 8 Let �IH be not empty, VM � VL + c; N su¢ ciently large and
� su¢ ciently small; then a stochastically stable outcome always exists and the
distributional rule is egalitarian.

Proof. See the Appendix

Both Propositions 7 and 8 hold provided the set �IH is not empty; this, in
turn, holds when condition (7) is met, i.e.

VM �
�
� � VH

2

1

N
� c
�
+
VH
2
: (8)

According to Dawid and MacLeod (2008), the investments are complements
if the marginal e¤ect of action H when the opponent always plays H is greater
than the marginal e¤ect of action H when the opponent plays L; that is VM <
1
2 (VH + VL) : Therefore when the set �IH is not empty the investments are
complementary in the sense of Dawid and MacLeod (2008). However in general
investment can be complementary in the sense of Dawid and MacLeod (2008)
also when �IH is empty.

Example 2. We now provide one example in which we show how Propo-
sition 8 works. Consider an economy with the following parameters: N = 50;
VH = 18; VL = 3; c = 2 and � = 0:5: It is simple to see that conditions (5) and
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(6) are met. Let VM = 6: Since VM > VL + c; both Lemma 4 and 5 hold. In
order to characterize the set �IH we have to verify whether for the given value
of � the equilibrium outcome following the information node HH and such that
one player gets a payo¤ equals to (VM � �) is feasible. We denote by x�B (resp.
x�A) the share going to player B such that B (resp. A) gets an equilibrium payo¤
equals to (VM � �), in particular:

x�B = VM � � � c = 7:5

x�A = VH + � � c� VM = 10:5:
(9)

Since both x�B and x
�
A belong to D� (VH) ; then x

M
A = x�A and x

M
B = x�B . Hence

xLA = xMA � � = 10 and xLB = xMB + � = 8. The set �IH is thus not empty
and both Propositions 7 and 8 hold. This economy has a unique stochastically
stable outcome and it is egalitarian, i.e. (HH; 9; 9) :

Proposition 8 is our main result. Since it requires several conditions, it is
better to clear up its domain of application. To this aim we rewrite all the con-
ditions needed in terms of the investment cost, c; and assume that VH ; VL; � and
N are �xed. This allows us to explore how changes in the degree of investment
complementarity (VM ) and the cost of investment a¤ect the set of stochastically
stable equilibria.
The e¢ ciency condition (1) can be written as:

c < min (c1; c2)

where c1 � 1
2 (VH � VL) and c2 � VH � VM : Lemma 4, point (a) of Lemma 5

and point (c) of Lemma 6 requires that VM � VL + c; i.e.

c � c3 � VM � VL:

Lastly condition (7) ; ensuring that the set �IH is not empty, can be written as

c � c4 � VH
N � 1
2N

� VM + �:

When c > c4; since the set �IH is empty, an e¢ cient investment norm
can not evolve. To see this, suppose that the e¢ cient investment norm evolved.
This means that no high-low matches are observed; then the belief regarding the
outcome of bargaining in high-low matches can drift. Because of drift all agents
of one population might deem to capture almost the whole pie by choosing low
investment in the low-high matches. Hence when a single agent of the opponent
population deviates by claiming a larger demand, then by updating all agents in
the �rst population are willing to make the low investment so that the e¢ cient
norm is overturned.

13



Corollary 9 The following cases are possible.
(I) Let VL < VM < VL

2 + VH
4
N�1
N + �

2 : Then Proposition 8 holds when c 2
[0; c3] : When c 2 (c3; c4] the behavior is indeterminate. Lastly when c 2 (c4; c1)
if a norm of investment evolves, it cannot be the e¢ cient one:
(II) Let VL2 +

VH
4
N�1
N + �

2 � VM � VH
2
N�1
N +�: Then Proposition 8 holds when

c 2 [0; c4] : When c 2 (c4; c3] we can not observe neither a norm of investment
nor a norm of bargaining. Lastly when c 2 (c3; c1) if a norm of investment
evolves, it cannot be the e¢ cient one:
(III) Let VH

2
N�1
N + � < VM � 1

2 (VH + VL) : When c 2 [0; c3] we can not
observe neither a norm of investment nor a norm of bargaining. Lastly when
c 2 (c3; c1) if a norm of investment evolves, it cannot be the e¢ cient one:
(IV) Let VM > 1

2 (VH + VL) : For any c 2 [0; c2) we can not observe neither
a norm of investment nor a norm of bargaining.

Proof. See the Appendix.

A careful reading of Corollary 9 suggests that in the long run we can expect
to observe the e¢ cient norm of investment and a norm of distribution when
investment are complementary, the investment cost is su¢ ciently low and the
surplus arising when only one agent makes the high investment is not too large.
When instead investment are not complementary, we are sure that, for whatever
investment cost, we can not observe any norm. A similar conclusion, but limited
to the investment norm, can be found in Dawid and MacLeod (2001) ; our model
then allows to extend this negative result also to the bargaining norm.

5.1 A special case

A particular simple case obtains when the payo¤ at LL is equal to zero for
both players (i..e. VL = 0). This is tantamount assuming that in the �rst
stage the two possible actions are either to invest (H) or not invest (L) : In this
case a surplus arises when at least one agent invests and it seems plausible to
assume that VM > c: We only have to take into account values of c such that
c < min (c1; c2; c3) where now c1 = VH

2 and c3 = VM : In this case we have the
following result.6

Corollary 10 Let VL = 0: The following cases are possible.
(I) Let 2� < VM < VH

4
N�1
N + �

2 : Then Proposition 8 holds when c 2 [0; c3] :
(II) Let VH4

N�1
N + �

2 � VM � VH
2 : Then Proposition 8 holds when c 2 [0; c4] :

When c 2 (c4; c3] we can not observe neither a norm of investment nor a norm
of bargaining.
(III) Let VH2 < VM � VH N�1

2N +�: Then Proposition 8 holds when c 2 [0; c4] :
When c 2 (c4; c2) we can not observe neither a norm of investment nor a norm
of bargaining.
(IV) Let VM > VH

N�1
2N + �: For any c 2 [0; c2) we can not observe neither a

norm of investment nor a norm of bargaining.
6We omit the proof since it relies on simple computations.
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6

-VM

c

NN

NNHH

NN

Figure 1: the model with bargaining

Two are the main consequences of Corollary 10. First, either a norm of in-
vestment and a norm of bargaining co-evolve or no norm evolves. Second, when
norms co-evolve they support the e¢ cient investment and the egalitarian dis-
tribution. Hence although it is possible that the social forces do not trigger the
emergence of norms, nevertheless the traditional hold-up problem is overhauled.
Corollary 10 is illustrated in Figure 1 where we denote by HH the region in
which both norms coevolve and by NN the region in which no norm evolves.
Figure 1 is drawn under the assumption that � � VH

2N is negligible.

It might be useful to compare these results with the canonical case in which
the hold-up problem can arise. Suppose then that, for whatever investment
outcome, agents do not bargain and that the pie is equally split. The resulting
game can be represented by the following normal form in which we continue to
assume VL = 0: We still assume that the net surplus arising when both agents
invest is the greatest one and that the net surplus accruing when only one invests
is not negative, i.e. c < min (c1; c2; c3) : In this strategic framework, when there
is more than one pure Nash equilibrium, the stochastically stable equilibrium
coincides with the risk dominant one (Young (1993a)).

H L

H VH
2 � c; VH2 � c VM

2 � c; VM2

L VM
2 ;

VM
2 � c 0; 0

Few computations show that the game has either three Nash equilibria (two
in pure strategies and one in mixed strategies) or only one pure symmetric Nash
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-VM

c

NN

HHHH

LL

Figure 2: the model without bargaining

equilibrium. In particular, the investment pro�le HH is the unique stochasti-
cally stable equilibrium if c5 < c < min (c6; c7) where c5 = VM

2 ; c6 =
VH�VM

2

and c7 = VH
4 : The investment pro�le HH is the unique Nash equilibrium when

c < min (c5; c6) : Analogously, the investment pro�le LL is the unique stochas-
tically stable equilibrium if max (c5; c7) < c < c6. The investment pro�le LL is
the unique Nash equilibrium when c > max (c5; c6) : Lastly, when c6 < c < c5;
the game has two pure strategies asymmetric Nash equilibria, LH and HL; and
both are stochastically stable.
The canonical case is illustrated in Figure 2 where HH (respectively LL)

denotes the region in which the investment pro�le HH (respectively LL) is the
unique stochastically stable equilibrium and where NN denotes the region in
which the two pure strategies asymmetric Nash equilibria LH and HL are both
stochastically stable. In this last game, the hold-up problem arises when the
investment pro�le LL is the unique stochastically stable equilibrium. A direct
comparison of these two Figures allows us to argue that the main consequences
of adding a bargaining stage is that the region supporting the investment pro�le
LL disappears and the region supporting the investment pro�le HH shrinks.
Consequently the region in which no norm evolves enlarges. Contrarily to Dawid
and MacLeod (2001) we can then conclude that with two sided relationship
speci�c investment, the requirement that norms of bargaining be stochastically
stable can downsize the hold-up problem.

Before concluding we further simplify the model. We still assume that VL = 0
but that bargaining occurs only when HH is observed. When instead HL
(or LH) is observed, only one division occurs; speci�cally we assume that the
investing agent behave like a dictator by proposing the division (VM � �; �).
The not investing agent has no actions available. In this case norms can only

16



co-evolve; region NN in Figure 1 then disappears and it is replaced by region
HH.

6 Concluding remarks

The heart of the hold-up problem is that when an economic relationship requires
some individual speci�c investment but agents are not sure whether they will be
able to catch the bene�ts, investments that are individually rational might not
be undertaken. Ellingsen and Robles (2002) and Troger (2002) have shown that
when the size of the pie is endogenous and depends on the investment of one part
only, and agents are involved in a bargaining stage, then evolution can solve the
hold-up problem. In this paper we have extended Ellingsen and Robles (2002)
framework and we have explored under what circumstances an e¢ cient norm of
investment and an e¢ cient norm of bargaining can endogenously evolve when
the size of the pie is determined by both agents. Our model can be also seen as
a variant of Dawid and MacLeod (2001) in which two main ameliorations are
included. First we assume that agents always bargain but that the distribution
of the bargaining power is a¤ected by the outcome of the investment stage. Sec-
ond we use the evolutionary framework put forward by Noldeke and Samuelson
(1993) which is more adequate for extensive form games since it allows beliefs
to drift in not observable nodes. These changes are needed in order to better
understand the evolution of norms of division. We showed that, under some
conditions, a bargaining norm and an investment norm coevolve. When these
conditions are met then, for whatever grid of possible claims, the bargaining
norm supports an egalitarian division and the investment norm supports the
e¢ cient investment pro�le. In a simpler model in which a surplus arises only
when at least one agent chooses high investment we elicited a sharper result.
In this case, contrarily to what emerge when the surplus is always equally split
(the canonical case in which the hold-up problem is studied), we showed that
either the stochastically stable outcome sustain the e¢ cient investment and an
egalitarian distribution or no norm evolves. Contrarily to Dawid and MacLeod
(2001) we can then conclude that with two sided relationship speci�c invest-
ment, the requirement that norms of bargaining be stochastically stable can
downsize the hold-up problem.
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7 Appendix

The following preliminary results are needed in order to prove Proposition 2.

Lemma 11 Let fxLL;l (�)gkl=1 or fxHH;l (�)g
k
l=1) be the ordered sets of demands

made by B such that xLL;l (�) < xLL;l+1 (�) or xHH;l (�) < xHH;l+1 (�) : These
are the demands which can be observed by A in state �. Let fyLL;l (�)gkl=1 or
fyHH;l (�)gkl=1 be the sets of best (behavioral) responses of A. Then:

fyLL;l (�)gkl=1 � fVL � xLL;l (�)g
1
l=k

fyHH;l (�)gkl=1 � fVH � xHH;l (�)g
1
l=k

The same argument applies to the other population of agents:

Proof. See Lemma A.1 in Ellingsen and Robles (2002)).

Lemma 12 Let 
 be a !-limit set of (�; P ) : If (HL; yHL; xHL) 2 � (
) and/or
(LH; yLH ; xLH) 2 � (
) then:
(i) xHL = VM � yHL or yLH = VM � xLH ;
(ii) (HL; yHL; xHL) (resp. (LH; yLH ; xLH)) is the unique outcome which

supports the investment pro�le HL (resp. LH) in � (
) :

Proof. We only consider the pro�le HL. The same holds true for LH.
Point (i). Let � be a state such that: (a) � 2 
; (b) (HL; yHL; xHL) occurs

with positive probability in z (�) and xHL 6= VM�yHL. Let us suppose that only
B agents update their characteristics: they all will accept yHL. For whatever
belief on the behavior of the opponents, this action is a best reply for any
individual agent B; then it is impossible to return to the original state �. This
contradicts the assumption that � 2 
.
Point (ii). First we show that 
 can not include a state � in which multiple

demands are made at HL; then we show that 
 can not include two di¤erent
states supporting di¤erent outcomes following HL.
Let � be a state such that: (a) � 2 
 and (b) multiple demands are made be

agents A at HL. We already know from point (i) that at � all agent B accept
all the demands made by opponents. Suppose now that all agents A (but only
them) revise their characteristics. Then in HL any A will choose the maximum
demand observed. Hence it is impossible to return to the original state �. This
contradicts the assumption that � 2 
.
Now let � and �0 be two states such that: (a) both states belong to 
 and (b)

HL is observed, a single demand is made by A but yHL
�
�0
�
> yHL (�). Since

from �0 is impossible to return to � then the assumption � 2 
 is contradicted.
�
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Lemma 13 Let 
 be a !�limit set of (�; P ) : If at least one of the following
statement is true:

(i) f(HH; y; x) ; (HH; y0; x0)g 2 � (
) and either x 6= x0 or y 6= y0

(ii) f(LL; y; x) ; (LL; y0; x0)g 2 � (
) and either x 6= x0 or y 6= y0

then 
 is a singleton so that 
 is a self-con�rming equilibrium of �:

Proof. Consider a set 
 satisfying statement (i) and let � 2 
 be a state
in which at least one population (i.e. B) made multiple demands and suppose
that at least one of these demands (x�) is not a best reply to z (�). Suppose
that, after observing z (�) ; all agents who demanded x� revise; as a consequence
x� disappears. A new state � 2 
 is then reached in which the pro�le HH is
still observed. Suppose now that all A update; then, by Lemma 11, nobody will
make the demand fVH � x�g. These two demands have thus disappeared and it
is impossible to return to the original state �. This contradicts the assumption
that � 2 
. Therefore, if multiple demands are made, each must be a best reply
to z (�) :
Consider now an agent belonging to population A who has played H in �

and suppose this agent has the incentive to change his investment should he
know z (�). When this agent updates the distribution of the demands made by
population A in subgame HH di¤ers from the original one. This implies that
at least one demand made by some opponent (i.e. B) is no longer a best reply
when B updates. By applying the argument made in the paragraph above we
conclude that at least a pair of demands have disappeared and cannot reappear;
this contradicts the assumption that � 2 
 .
If 
 satis�es assertion (ii) we can draw the same conclusion for subgame LL.

By Lemma 12, since the set � (
) can include at most one outcome following
the pro�le HL or LH; then the state � must be a self-con�rming equilibrium of
the game �. �

Proof of Proposition 2
Assume that 
 is not singleton. We know from Lemmas 12 and 13 that if a

bargaining subgame is reached, then only one of its terminal node is observed
almost always.
First we show that � (
) must contain one outcome for every bargaining sub-

game. Of course � (
)must di¤er from f(HH; yHH ; VH � yHH) ; (LL; yLL; VL � yLL)g :
Suppose � (
) includes only the following outcomes: (a) (HH; yHH ; xHH) with
yHH +xHH = VH ; (b) (HL; yHL; xHL) with yHL+xHL = VM : In 
 a state � in
which both outcomes are observed must exist and it can not be an equilibrium.
We show that from � is possible to reach either the basin of attraction of one
equilibrium of the game or a state in which all bargaining nodes are observed.
Suppose some agents B update. If xHH�c > xHL than the updating agents will
choose H so that at the new state �0 the frequency of this action in population
B will increase:
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If at least one agent A has beliefs
�eyiLH� leading him not to prefer H to

L when all agent B play H; then from � we can reach a state in which all
investment pro�les are realized. This contradicts the assumption that � (
) =
f(HH; yHH ; xHH) ; (HL; yHL; xHL)g. Otherwise from state � it is possible to
reach the basin of attraction of one equilibrium of the game. If xHH � c � xHL
we get the same conclusion by using a similar argument. It is simple to see
that the same conclusion holds when � (
) includes any two di¤erent outcomes.
Therefore if 
 is a not a singleton all the bargaining nodes are visited almost
always meaning that � (
) includes four outcomes each of these is a subgame
equilibrium.

We now have to show that the payo¤s must satisfy the constraints (2). Notice
that a state � 2 
 in which all the investment pro�les are observed must exist.
Moreover when we allow all agents to update, all agents A will choose H:

pB (�) (yHH � yLH � c) + (1� pB (�)) (yHL � yLL � c) > 0; (10)

and all agents B will choose H:

pA (�) (xHH � xHL � c) + (1� pA (�)) (xLH � xLL � c) > 0: (11)

We can rewrite these conditions as

pB (�)A1 + (1� pB (�))A2 > 0

pA (�)B1 + (1� pA (�))B2 > 0:

If all expressions are null, then 
 is a singleton. Furthermore, when for some
population both expressions are either not negative or not positive, and at least
one is not null, then from � the process can arrive to a new state which is a
self-con�rming equilibrium.
Consider the case in which for one population (i.e. A) both expressions are

null. When B1 is strictly positive and B2 is strictly negative all B prefers H if
pA (�) > p

�
A where:

p�A =
c+ xLL � xLH

(xHH � xHL)� (xLH � xLL)
: (12)

Otherwise when B1 is strictly negative and B2 is strictly positive all B prefers
H if pA (�) < p�A: In both cases when all B agents update they will choose the
same investment. Hence a state which is an equilibrium of the game can be
reached from �.

A similar argument is applied when both expressions B1 and B2 are null. In
this case the threshold value of pB (�) is p�B which is now given by:

p�B =
c+ yLL � yHL

(yHH � yLH)� (yHL � yLL)
: (13)
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We are left with the case in which for each population the product of the
corresponding two expressions is strictly negative. However, when A1 and B1
have the same sign, a similar argument allows us to reach the same conclusion.
Indeed, suppose that both A1 and B1 are strictly positive: this implies that
all B prefer H if pA (�) > p�A and all A prefer H if pB (�) > p�B . Hence, for
whatever values of pA (�) and pB (�) ; starting from � the process can reach an
equilibrium when one population at the time revises.
The remaining possible case occurs when (a) B1B2 < 0 and A1A2 < 0 and

(b) A1B1 < 0. This last case coincides with (2) in the main text. �

Proof of Lemma 4
In this proof when multiple demands are observed at some homogenous

pro�le, we denote respectively by fxJJ;l (�)gkl=1 and fyJJ;l (�)g
k
l=1 the ordered

sets of demands made by B and A (in these cases J 2 fL;Hg). In all other
cases we denote the pair of demands by (yJJ;1;VJ � yJJ;1).

I) Consider an equilibrium � in which only one pro�le is realized and multiple
demands are made. Suppose, for instance, that only LL is observed at �. Let
a single agent B switch from xLL;k (�) to xLL;1 (�). Let all agents A update;
then they will make a demand yLL;k (�) = VH � xLL;1 (�). Hence we arrive at a
new equilibrium �0 in which only LL is observed and only the pair of demands
(VL � xLL;1 (�) ; xLL;1 (�)) occurs. We get a similar conclusion when we assume
that at � only HH is realized and multiple demands are made.

II) Suppose now that at the equilibrium � two pro�les are observed. This
implies that in one population the same type of investment is made. We give
the proof only when HH and HL are observed. The other remaining cases are
similar.

II.1) Consider �rst the case in which multiple demands are made following
HH. Since � is an equilibrium, the following conditions must be always met:

pB (�)
�
yHH;1 � eyiLH (�)� c�+ (1� pB (�)) �yHL � eyiLL (�)� c� � 0; 8i 2 A

(VH � yHH;k)� c = VM � yHL; 8i 2 B:

Consider an equilibrium �1 2 � (�) in which
�
yHH;1 � eyiLH (�1)� c� > 0

for all A: When yHH;1 � c > �; the population can get from � to �1 2 � (�)
through a sequence of single-mutations. At �1 let a single agent A mutate from
yHH;k (�1) to yHH;1 (�1) and let all agents B revise; as a consequence they all
will choose H. Therefore the process enters into a new equilibrium �0 where
�
�
�0
�
= fHH; yHH;1 (�) ; VH � yHH;1 (�)g. When instead yHH;1 � c � �, the

inequality yHL � eyiLL (�1) � c � 0 must hold for all A: Suppose a single A
mutates from yHH;k (�1) to y where y > yHH;k (�1) and let all agents B update:
as a consequence they all will choose L. Therefore the process arrives at a new
equilibrium �0 where �

�
�0
�
= fHL; yHL; VM � yHLg.
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II.2) Consider now the case in which a single demand is made following HH.
Consider an equilibrium �1 2 � (�1) in which yHL � eyiLL (�1) � c � 0

for all A: When yHL � c � � the population can get from � to �1 2 � (�)
through a sequence of single-mutations. At �1 let a single agent A mutates
from yHH;1 (�1) to y where y > yHH;1 and let all agents B revise; as a conse-
quence they will choose L. Hence the process arrive at a new equilibrium �0

where �
�
�0
�
= fHL; yHL; VM � yHLg. When instead yHL � c < �; then: (a)

under the asumption that VM � VL + c; the subgame (HL; VM � �) at � is not
reached; (b) yHH;1 � eyiLH (�1) � c � 0 for every A. By drifting all agents B
are led to accept the maximum feasible demand made by A in HL so that a
new equilibrium �1 is reached. Sure enough �1 2 � (�). Suppose now that a
single agent A changes his demand from yHL to (VM � �). When all agents A
update, they observe that all B have accepted the demand (VM � �) ; therefore
in HL their best response is yHL = VM � �. When all agent B update they will
choose H being xHL = �: Hence the process arrive at the equilibrium �0 where
�
�
�0
�
= fHH; yHH;1; VH � yH;1g.

III) Suppose now that at the equilibrium � all investment pro�les are ob-
served. Since � is an equilibrium the following conditions must be satis�ed:

pB (�) (yHH;1 � yLH � c) + (1� pB (�)) (yHL � yLL;1 � c) = 0

pA (�) (xHH;1 � xHL � c) + (1� pA (�)) (xLH � xLL;1 � c) = 0:

We may rewrite these conditions as

pB (�)A
0
1 + (1� pB (�))A02 = 0

pA (�)B
0
1 + (1� pA (�))B02 = 0

We argue that when the second expression (A02 or B
0
2) is not positive for at

least one population then the process, through a sequence of single-mutations,
can arrive at one equilibrium in which a smaller number of investment pro�les
are realized. In order to see this suppose, for instance, that A02 < 0; then, when
VM � VL + c; we get yHL < VM � �. Therefore in � the subgame (HL; VM � �)
is not reached. A drift can lead all agents B to accept the maximum feasible
demand of the opponent at HL. A new �1 2 � (�) is then reached. Suppose
now that at this new equilibrium a single agent A mutates his demand from yHL
to VM � �. When all agents A revise they will play H and will make a demand
yHL = VM � �. Let now all agents B update. Since each agent B knows that
xHL = � and that all A have played H; then his best reply depends on the sign
of (xHH;1 � � � c). However it is simple to see that whatever is the value of
(xHH;1 � � � c) ; the process can arrive at a new equilibrium in which a smaller
number of investment pro�les is realized. If at this new equilibrium two invest-
ment pro�les are realized, then by a further sequence of single transition (see
the arguments above) the process can arrive at an equilibrium which supports
a unique outcome.
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When both A02 and B
0
2 are positive, a single mutation occurring in population

A is enough to move the process from � to a new equilibrium �0 where:

�
�
�0
�
= fLH; yLH ; VM � yLHg : (14)

The mutation needed depends on how many demands are observed at HH
and at LL. In particular:
(i) when multiple demands are made at HH; it is enough that one agent A

mutate from yHH;k (�) to yHH;1;
(ii) when only one demand is made at HH but multiple demands are ob-

served at LL; it is enough that one agent A mutate from H to L and make a
demand yLL;k (�) in LL;
(iii) when at both pro�les HH and LL only one demand is observed, it is

enough that one agent A mutate from H to L and make a demand yLL;1 (�) in
LL;

IV) The remaining case occurs when 
 is not singleton. Under the assump-
tion VM > VL+ c; at least one of the following two subgames (LH; VM � �) and
(HL; VM � �) is never reached. The same argument used above implies that the
population can get from 
 to �0 through a sequence of single-mutations. �

Proof of Lemma 5
(a) Let � be an equilibrium belonging to �L and suppose VM � VL + c and

xLL (�) < VL � � (for at least one population this is always true). From �;
by a sequence of single mutations, the process can arrive at a new equilibrium
�� 2 � (�) in which for every agent A and B it is true that: (i) eyiHH (��) = yHH
and yHH > c + �; (ii) at the subgame (LH; VM � �) each agent A accepts (i.e.
he chooses �); (iii) exiHH (��) = VH � yHH and (VH � yHH) � exiHL (��) � c �
0. Suppose now that an agent B mutates by playing H and makes a demand
VM � � in LH. When all agents B update they will choose H since all agents A
have accepted the demand VM � �:Suppose now that all agents A revise. Since
yHH > c + �; they will play H. Hence the process arrive at a new equilibrium
�0 2 �H where �

�
�0
�
= fHH; yHH ; VH � yHHg :

(b) Let � be an equilibrium belonging to �L and suppose VM � VL + c and
xLL (�) < VL � �. From �; by a sequence of single mutations, the process
can arrive at a new equilibrium �� 2 � (�) in which for every agent A it
is true that: eyiHH (��) � eyiLH (��) � c < 0 and eyiLH (��) = yLH � yLL but
(VM � yLH)� c > xLL; at the subgame (LH; VM � yLH) each agent A accepts
(i.e. he chooses yLH). Suppose now that an agent B mutates by playing H
and makes a demand VM � yLH in LH. When all agents B update, they will
choose H since population A have accepted the demand VM � yLH . Suppose
now that all agents A revise. Since eyiHH (��) � yLH � c < 0 they will con-
tinue to play L. Hence the process arrive at a new equilibrium �0 2 �LH in
which the pair of demand is (yLH ; VM � yLH). Assume now VM = VL + c and
xLL (�) = VL � �. From �; by a sequence of single mutations, the process can
arrive at a new equilibrium �� 2 � (�) in which for every agent B it is true that:
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exiHH (��)� exiHL (��)� c < 0 and exiHL (��) = xHL but (VM � xHL)� c > �: At
subgame (HL; VM � xHL) each agent B accepts (i.e. he chooses xHL). Suppose
now that an agent A mutates by playing H and makes a demand (VM � xHL)
in HL. When all agents A update they will choose H since population B have
accepted the demand VM � xHL: Suppose now that all agents B revise. SinceexiHH (��)�xHL�c < 0 they will continue to play L. Hence the process arrives at
a new equilibrium �0 2 �HL in which the pair of demand is (VM � xHL; xHL).
(c) Let � be an equilibrium belonging to �HL. At � the pair of demands

(yHL; VM � yHL) is observed. Let �0 be an equilibrium where only the pro�le
HH is reached and the pair of demands (yHH ; VH � yHH) are made where
yHL � yHH < (VH � VM + yHL)�c. From �; by a sequence of single mutations,
the process can arrive at an equilibrium �� 2 � (�) in which all agent A have
beliefs such that eyiHH (��) = yHH and yHH � eyiLH (��) � c > 0. Suppose now
that an agent B mutates by playing H and making a demand (VH � yHH) in
HH. Let all agents B revise; they will choose H. When agents A update the
process arrives at a new equilibrium �0 2 �H in which the pair of demand is
(yHH ; VM � yHH) : �

Proof of Lemma 6
Point (a). Consider some � 2 �IH and let fVH � x; xg be the observed pair

of demands. We show that a single mutations transition is not enough to push
the process into the basin of attraction of a di¤erent equilibrium which does not
belong to �IH :

I) First of all we show that a single mutation from H to L does not enable
the process to enter into the basin of attraction of a di¤erent equilibrium even
if each agent expects to get: (i) the maximum payo¤ at LL; (ii) the maximum
payo¤when he plays L but the opponent still plays H; (iii) the minimum payo¤
when he plays H but the opponent shifts to L.
From the de�nition of �IH and the assumption that VM > VL; when a single

mutation occurs in one population, updating would not cause other agents in
the same population to imitate. Moreover this single mutation does not lead
agents in the other population to play L since for any x 2

�
xLB ;x

L
A

�
; it is true

that the condition

N � 1
N

[(VH � x� c)� (VM � �)] + 1

N
[(� � c)� (VL � �)] > 0 (15)

holds for any A and the condition

N � 1
N

[(x� c)� (VM � �)] + 1

N
[(� � c)� (VL � �)] > 0 (16)

holds for any B: Hence a single mutation from H to L does not trigger a tran-
sition to a di¤erent equilibrium.

II) We now show that a single mutation from x to x0(resp. from VH � x to
y0) does not enable the process to enter into the basin of attraction of a di¤erent

24



equilibrium. Suppose each agent expects to get the maximum payo¤ when he
plays L and the opponent chooses H. Let an agent B change only his demand
to x0. Obviously no agents B imitate the mutant when revising. Consider the
population A and allow them to update. By Lemma (11) their best response is
either (VH � x) or (VH � x0).
If x0 > x agent A expects to get (VH � x) N�1N �c when he demands (VH � x)

and (VH � x0) � c when he demands (VH � x0) : It is simple to see that under
Assumption (5) the former payo¤ is greater than the latter one. Hence agents A
will not change their demand when updating. Moreover, since (VH � x) N�1N �
c � (VM � �) ; then updating will not cause agents A to play action L.
If x0 < x agent A expects to get (VH � x) � c when he demands (VH � x)

and 1
N (VH � x

0)� c when he demands (VH � x0) : It is simple to see that under
Assumption (5) the former payo¤ is greater than the latter one. Hence agents
A will not change their demand when updating. Moreover, since (VH � x)�c >
(VM � �) ; then updating will not cause agents A to play action L. The case
in which an agent A mutates from VH � x to y0 is symmetric. Hence a single
mutation from x to x0(resp. from VH � x to y0) does not trigger a transition to
a di¤erent equilibrium.

Taken together, these results imply that whatever single mutation we con-
sider, this does not trigger a transition to a di¤erent equilibrium. Moreover the
population returns to an equilibrium �0 2 � (�) as soon as the mutating agent
revises.

Point (b). Consider some � 2 �CH and let fVH � x; xg be the observed pair
of demands. We show that a single mutation transition is enough to enter into
the basin of attraction of an equilibrium �0 in which �

�
�0
�
= fLL; VL � xLL; xLLg :

Point (c) then follows from Lemma 5.
In order to full describe the transition from � to �0 we have to take into

account four cases: (1) x > xMA ; (2) x = xMA and xLA = xMA � �; (3) x < xMB ;
(4) x = xMB and xLB = xMB + �. Since case (3) and case (4) are respectively
symmetric with respect to case (1) and case (2), we give the proof for these
latter cases only.

Case (1): x > xMA :
At � the following inequality must hold:

Population A Population B

(VH � x� c)� eyiLH (�) � 0 x� c� exiHL (�) � 0
VH � x� c < VM � � x� c > VM � �:

(17)

From �; by a sequence of single mutations, the process can arrive at a new
equilibrium �1 2 � (�) in which for every agent it is true that: (i) exiLL (�1) = xLL
and exiLH (�1) = �; (ii) eyiLL (�1) = VL � xLL and eyiHL (�1)� c� (VL � xLL) < 0.
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Suppose an agent A mutates by playing L and accepting the demand made
by his opponent at LH. Let all agents A update. Since the mutating agent
gets VM � �; all A imitate and play L. When agents B revise they will play
L and demand xLL. The process then arrives at a new equilibrium �0 where
�
�
�0
�
= fLL; VL � xLL; xLLg.

Case (2): x = xMA and xLA = x
M
A � �:

At � the following inequality must hold for agents A :�
VH � xMA � c

�
� VM � �

�
VH � xMA

�
N�1
N � c < VM � �: (18)

From �; by a sequence of single mutations, the process can arrive at new
equilibrium �1 2 � (�) in which for every agent it is true that: (i) exiLL (�1) = xLL
and exiLH (�1) = xLH ; (ii) xLH � xLL � c < 0; (iii) eyiLL (�1) = VL � xLL andeyiLH (�1) = (VM � �); (iv) eyiHL (�1) � (VL � xLL) � c < 0: Suppose an agent B
mutates by demanding x0 > xMA at HH. When agents A update all them will
choose L since, for whatever best action at HH, the expected payo¤ by playing
H is now smaller that VM � �. When all agents B revise they will play L and
demand xLL. The process then arrive at a new equilibrium �0 2 �L.
Lastly point (c) follows by a direct application of point (a) of Lemma 5. �

Proof of Proposition 7
Before giving the proof we brie�y introduce the radius modi�ed coradius

criterion (Ellison (2000)). Let � be a union of limit sets (
) ; these sets can
be mutation connected or not. The radius R (�) is the minimum number of
mutations needed to exit with positive probability from the basin of attraction
of �. Consider an arbitrary state � =2 � and let (z1; z2; ::; zT ) be a path from
� to � where 
1;
2; ::
r is the sequence of limit sets through which the path
passes consecutively. Obviously 
i =2 � for i < r and 
r � �. Furthermore
it may be that a limit set can appear several time but not consecutively. The
modi�ed cost of this path is de�ned by:

c� (z1; :::; zT ) = c (z1; ::; zT )�
r�1X
i=2

R (
i)

where c (z1; ::; zT ) is the total number of mutations over the path (�; z1; z2; ::; zT ).
Let c� (�;�) be the minimal modi�ed costs for all paths from � to �. The
modi�ed coradius of the basin of attraction of � is then:

CR� (�) = max
�=2�

c� (�;�) :

Theorem 2 of Ellison (2000) shows that every union of limit sets � with R (�) >
CR� (�) encompasses all stochastically stable states.
We are now ready to give the proof of Preposition 7. By Lemmas 4, 5 and

6, points (b) and (c), we can deduce that for any � =2 �IH the minimal modi�ed
costs for all paths from � to �IH is equal to one, whatever is the number of
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limit sets the path goes through. Therefore CR� (�IH) = 1. Since we know
from point (a) of Lemma 6 that R (�IH) > 1; by a direct application of Ellison�s
result it follows that all stochastically stable states are included in �IH . �

Also Proposition 8 follows by a direct application of Ellison (2000). To this
end we need: (i) the radius of � (�), i.e. the smallest number of mutations
required to destabilize the outcome supported by �; 8� 2 �IH ; (ii) to �nd an
equilibrium belonging to �IH such that R (� (�)) > CR� (� (�)). From now
on write �x as shorthand for an equilibrium belonging to �IH and in which
the distribution (VH � x;x) is realized. The following two Lemmas gives the
relevant details for detecting R (� (�x)) for every x 2

�
xLB ;x

L
A

�
:

Lemma 14 The minimum number of mutations required to get from � (�x) to
an equilibrium which supports a di¤erent investment pro�le is:

rA (x) =
�
N
�
1� VA��+c

x

��
if x < VH

2

rB (x) =
j
N
�
1� VA��+c

VH�x

�m
if x > VH

2

(19)

where bse denote the least integer greater than s when s is not an integer and
(s+ 1) otherwise.

Proof. Suppose p1 agents B mutate by playing L and p2 agents B mutate by
claiming x0 > xMA . For a given pair (p1; p2) agents A have the largest incentive
to change into L if their belief are such that: (i) they expect to get the maximum
payo¤ both in a match LL and in a match LH; (ii) they expect to obtain the
minimum payo¤ in a match HL. Consider the equilibrium e�x 2 � (�x) in which
for all agents:(i) eyiLL = VL� �; eyiLH = VM � � and eyiHL = �; (ii) exiLL = exiLH = �
and in the subgame fHL; �g all agents B accept. When at e�x some agents B
mutate and these mutations induce all agents A to play L, then with positive
probability the process enters into the basin of attraction of the equilibrium �0

such that �
�
�0
�
= fLL; VL � �; �g. Sure enough after updating all agents A

decide to play L if

N � p1
N

(VM � �) + p1
N
(VL � �) > �H

�e�x; p1; p2� (20)

where the LHS is the expected payo¤ by playing L and the RHS is the expected

payo¤ by playing H. However �H
�e�x; p1; p2� depends on which is the best

demand in a match HH. In particular

�H (:) =

8><>:
N�p2�p1

N (VH � x) + p1
N � � c if N�p2�p1

N�p1 (VH � x) � (VH � x0)

N�p1
N (VH � x0) + p1

N � � c if N�p2�p1
N�p1 (VH � x) < (VH � x0)

(21)
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The minimum number of mutations in population B comes from the com-
parison between the solutions of two constraint minimization problems. In both
problem the objective function is p1+p2: In the �rst (resp. second) problem we
contemplate the case in which the best action in HH is VH �x0 (resp. VH �x).
Both problems require p1 = 0 as a solution; moreover pM1

2 = N
�
x0�x
VH�x

�
is the

solution of the �rst problem and pM2
2 = N

�
1� VM��+c

VH�x

�
is the solution of the

second one. Since pM1
2 > pM2

2 ; the minimum number of mutations in the pop-
ulation B involve that: (i) mutating agents only change their demands in the
HH pro�le; (ii) these mutations cause agent A to shift to action L when the
best action in the match HH continues to be (VH � x). Hence:

rB (x) =

�
N

�
1� VM � � + c

VH � x

��
(22)

and
rB = min

x
rB (x) = rB

�
xLA
�
: (23)

We now suppose that some agentsAmutate. As before two kind of mutations
must be considered: p1 agents A mutate by playing L and p2 agents A mutate
by demanding (VH � x0) where x0 < xLB . In this case we look for an equilibriumb�x 2 � (�x) in which for all agents:(i) exiLL = VL��; exiLH = � and exiHL = VM��;
(ii) eyiLL = eyiHL = � and in the subgame fLH; �g all agents A accept. It is easy to
see that if some mutations of agents A occurs at b�x and these mutations induce
all agents B to play L; then with positive probability the process enters into the
basin of attraction of the equilibrium �0 such that �

�
�0
�
= fLL; �; VL � �g.

After updating all agents B decide to play L if

N � p1
N

(VM � �) + p1
N
(VL � �) > �H

�b�x; p1; p2� (24)

where

�H (:) =

8><>:
N�p2�p1

N x+ p1
N � � c if N�p2�p1

N�p1 x � x0

N�p1
N x0 + p1

N � � c if N�p2�p1
N�p1 x < x0:

Proceeding as before, the minimum number of mutations in the population A
is

rA (x) =

�
N

�
1� VM � � + c

x

��
(25)

and

rA = min
x
rA (x) = rA

�
xLB
�

(26)

By comparing (22) and (25) we get rB (x) < rA (x) if x > VH
2 : �
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The next Lemma provides the minimum number of mutations required to
make a transition from an equilibrium with outcome fHH;VH � x; xg and
x 2

�
xLB ; x

L
A

�
to one equilibrium with outcome fHH;VH � x0; x0g. Along this

transition the investment does not change.

Lemma 15 For � su¢ ciently small, the minimum number of mutations needed
to get from � (�x) to an equilibrium with the same investment pro�le but di¤erent
demands is:

r+B (x) =
j
N
�

�
VH�x

�m
if x < VH

2

r�A (x) =
�
N
�
�
x

��
if x > VH

2

(27)

where r+B (x) is the number of mutations needed for the transition from � (�x)
to � (�x+�)whereas r

�
A (x) is the number of mutations needed for the transition

from � (�x) to � (�x��). Moreover r
+
B (x) is a strictly increasing function of x

and r�A (x) is a strictly decreasing function of x.

Proof: By a direct application of Young (1993). �

Collecting these last results we can derive the radius of the set � (�x) for
any x 2

�
xLB ;x

L
A

�
. These informations will be used in the Proof of Proposition

8. Recall that for any x 2
�
xLB ;x

L
A

�
it is always true that

(VH � (x+ �))� c � VM � � (28)

and
(x� �)� c � VM � �: (29a)

Thus from (28) and (29a) we infer respectively that:

r+B (x) � rB (x)

r�A (x) � rA (x) :
(30)

For any x 2
�
xLB ;x

L
A

�
; it follows from Lemma (14) and Lemma (??) that

R (� (�x)) = r+B (x) if x < VH
2

R (� (�x)) = r�A (x) if x > VH
2 :

(31)

These conclusions hold true also when either x = xLB = x
M
B + � or x = x

L
A =

xMA � � (remember that VH
2 2

�
xLB ;x

L
A

�
). Hence we can not generally say what

is the easiest transition when either x = xLB = x
M
B or x = xLA = x

M
A . However

since rB
�
xMA
�
< r+B

�
xMA
�
and rA

�
xMB
�
< r�A

�
xMB
�
; then:
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R
�
�
�
�xMB

��
= min

�
r+B
�
xMB
�
; rA

�
xMB
��

R
�
�
�
�xMA

��
= min

�
r�A
�
xMA
�
; rB

�
xMA
��
:

(32)

Moreover the monotonicity of r�A (x) and r
+
B (x) ensures that R

�
�
�
�xMB

��
�

r+B
�
VH
2 � �

�
and R

�
�
�
�xMA

��
� r�A

�
VH
2 + �

�
when VH

2 2
�
xLB ;x

L
A

�
. We are

now ready to give the Proof of Proposition 8.

Proof of Proposition 8
Let x � VH

2 and consider the set of equilibria � (�x). Our aim is to detect
the stochastically stable outcome when x 2

�
xLB ;x

L
A

�
:

Suppose xLB 6= xMB (resp. xLA 6= xMA ). Let �x 2 �IH be an equilibrium. When
x < x then the minimal modi�ed costs from �x to � (�x) is associated with the
path �x ! �x+� ! ::: ! �x�� ! � (�x) : Conversely, when x > x the minimal
modi�ed costs is associated with the path �x ! �x�� ! ::: ! �x+� ! � (�x) :
Hence

c� (�x; � (�x)) = r+B (x) if x < VH
2

c� (�x; � (�x)) = r�A (x) if x > VH
2 :

(33)

By the monotonicity of r+B (x) and r
�
A (x) we obtain

CR� (� (�x)) = max
�
r+B (x� �) ; r

�
A (x+ �)

�
:

Since
R (� (�x)) = r

+
B (x) = r

�
A (x) > CR

� (� (�x)) (34)

it follows from Ellison (2000) that the only stochastically stable states belong
to � (�x) and thus the unique stochastically stable outcome is

�
HH; VH2 ;

VH
2

	
.

Suppose now xLB = xMB (resp. xLA = xMA ) Since for whatever value of

R
�
�
�
�xMB

��
(resp. R

�
�
�
�xMA

��
) CR� (� (�x)) does not change, the unique

stochastically stable outcome continues to be
�
HH; VH2 ;

VH
2

	
. �

The following Theorem is needed in order to prove Corollary 9.

Theorem 16 (Ellison (2000)) Let (Z;P; P (")) be a model of evolution with
noise. If for some limit set 
 and some state � =2 
 we have R (
) = c� (�;
)
then �� (�) > 0 implies �� (
) > 0.

Before giving the proof of Corollary 9 it is worth recalling that in our model,
for any limit set 
; R (
) = 1: Moreover the support of the limit distribution
(��) is contained in the union of all limit set of the unperturbed process. Hence,
if for two limit sets 
 and 
0 we have c� (
;
0) = 1; then �� (
) > 0 implies
that �� (


0) > 0.

30



Proof of Corollary 9.
We give the proof for point I and point II only.
Point I). When VM < VL

2 +
VH
4
N�1
N + �

2 then 0 < c3 < c4 < c1 < c2. Hence
for any c 2 [0; c3] Proposition 8 holds. When c 2 (c3; c4], although some results
continue to hold, we are not able to say which pattern of behavior is most
probable and/or least probable to be observed in the long run. This vagueness
mainly comes from the fact that Lemma 4 is not longer true. Therefore, in order
to apply the radius/modi�ed coradius Theorem, we have to compute R (
)
for any limit set 
 not singleton. However since we have several limit sets
not singleton and since many kinds of mutations are possible, this task is too
demanding for the purpose of the present paper. Hence we say that in this range
the long run behavior is indeterminate.
When c 2 (c4; c1) we know that �IH = ;. It follows from point (b) of

Lemma 6 that for any � 2 �H there exists at least one equilibrium �0 2 �L such
that c�

�
�; �0

�
= 1. Since R

�
�0
�
= 1 then, by appealing to the aforementioned

Ellison�s Theorem, if a norm of investment evolves it cannot be the e¢ cient one
because if �� (�) > 0 then also ��

�
�0
�
> 0:

Point II). When VL
2 +

VH
4
N�1
N + �

2 � VM � VH
2
N�1
N + � then 0 < c4 < c3 <

c1 < c2. Hence for any c 2 [0; c4] Proposition 8 holds and for any c 2 (c3; c1) if a
norm of investment evolves it cannot be the e¢ cient one (see argument above).
The only remaining case is when c 2 (c4; c3] : In this case we know that for any
limit set 
:
(i) if � (
) is not singleton there exists at least one equilibrium �0; with �

�
�0
�

singleton, such that c�
�

; �0

�
= 1 (Lemma 4);

(ii) if 
 2 �L there exist at least two equilibria, �0 and ��, with di¤erent
distributional rule but both belonging to either �H or (�HL [ �LH) and such
that c�

�

; �0

�
= c� (
; ��) = 1 (points (a) and (b) of Lemma 5);

(iii) if 
 2 �HL (resp. �LH) there exist at least two equilibria, �0 and ��,
with di¤erent distributional rule but both belonging to �H such that c�

�

; �0

�
=

c� (
; ��) = 1 (point (c) of Lemma 5);
(iv) if 
 2 �H there exist at least two equilibria, �0 and ��, with di¤erent

distributional rule but both belong to either �L or �HL (resp. �LH) and such
that c�

�

; �0

�
= c� (
; ��) = 1 (point (b) of Lemma 6 and point (b) of Lemma

5);
Let 
 be a limit set such that �� (
) > 0: By collecting previous informations

we conclude that: (i) if � (
) is not singleton, then ��
�
�0
�
> 0 where �

�
�0
�
is

singleton; (ii) if 
 2 �L; then ��
�
�0
�
> 0 and �� (�

�) > 0 where �0 and ��

both belong to either �H or �HL [ �LH ; (iii) if 
 2 �H then ��
�
�0
�
> 0 and

�� (�
�) > 0 where both �0 and �� belong to either �L or �HL [ �LH ; (iv) if


 2 �HL (resp. �LH) then ��
�
�0
�
> 0 and �� (�

�) > 0 where both �0 and ��

belong to either �H or �L. Hence when c 2 (c4; c3] a investment norm and
bargaining norm cannot evolve in the long run.

The remaining two points use similar arguments by noticing that c4 < 0 <
c3 < c1 < c2 at Point III) and c4 < 0 < c2 < c1 < c3 at Point IV). �
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