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Abstract

Goal of this paper is to analyze and forecast realized volatility through
nonlinear and highly persistent dynamics. In particular, we propose a
model that simultaneously captures long memory and nonlinearities in
which level and persistence shift through a Markov switching dynamics.
We consider an efficient Markov chain Monte Carlo (MCMC) algorithm
to estimate parameters, latent process and predictive densities. The in-
sample results show that both long memory and nonlinearities are sig-
nificant and improve the description of the data. The out-sample results
at several forecast horizons, show that introducing these nonlinearities
produces superior forecasts over those obtained from nested models.
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1 Introduction

It is well known that accurately measuring and forecasting financial volatility

plays a central role in many pricing and risk management problems. With high

frequency intra-daily data sets becoming widely available, more accurate esti-

mates of volatility can be obtained. Realized volatility (RV), i.e. the sum of

intra-day squared returns, reduces the noise in the volatility estimate consid-

erably compared to other volatility measures such as squared or absolute daily

returns. Thus, volatility becomes in some sense observable and can be modeled
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directly rather than being treated as a latent process both in a GARCH or in a

stochastic volatility setup.

Many empirical regularities on RV have been well documented in the recent

literature and a detailed review has been provided in McAleer and Medeiros

(2008b) for instance. One of the most relevant is that RV dynamics exhibits long

memory or high persistence, as evidenced, amongst others, in Andersen et al.

(2003), Corsi (2009) and Koopman et al. (2005). For this reason linear fraction-

ally integrated models (ARFIMA) are generally used to capture this feature.

A flexible strategy to model serial dependencies for RV has been proposed in

Barndorff-Nielsen and Shephard (2002) through a superposition of ARMA(1,1)

processes. However, Granger and Ding (1996) found out that persistence in

volatility tends to be non constant over time and in particular Longin (1997)

provided evidence of an usually higher level of persistence when volatility is low,

thus suggesting presence of nonlinearities.

On the other hand, it is well known that long memory can be overestimated

when regime shifts or structural breaks are not taken into account. In fact

these are confounding factors and distinguishing between them can be rather

troublesome (Diebold and Inoue, 2001). However, recent statistical tests aim-

ing at disentangle the effects of long memory and level shifts has been proposed

in Baillie and Kapetanios (2007) and in Ohanissian et al. (2008). In particu-

lar, Baillie and Kapetanios (2007) found presence of nonlinearity together with

long memory in realized volatilities for currencies, whereas Ohanissian et al.

(2008), in their empirical application, provide evidence that realized volatility

of exchange rates such as DM/$ and Yen/$ is properly described by a true long

memory process. This latter result seems to be in contrast with Perron and Qu

(2009), who claim that short memory models with level shifts are appropriate

to describe volatility. Similarly, Carvalho and Lopes (2007) model volatility

with a short memory switching regime dynamics, Chen et al. (2008) propose

a range-based threshold heteroskedastic model, whereas He and Maheu (2009)

propose a GARCH model subject to an unknown number of structural breaks.

It seems to be still an open question whether to decide if long memory is
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spurious or not. It thus appears of obvious interest to joint modeling both

features into a single time series model. In this way it is also possible to check

whether the benefits of combining long memory and nonlinearities represent an

improvement in forecasting accuracy.

Recently, some time series models have been suggested to combine long

memory and nonlinearities to describe conditional variances. Probably, the

first contributions in this direction are, respectively, Martens et al. (2004) and

Hillebrand and Medeiros (2008) where they build from an ARFIMA model by

allowing for smooth level shifts, day of the week effects and leverage. A different

strategy has been proposed in McAleer and Medeiros (2008a) by introducing a

multiple regime smooth transition extension of the Heterogeneous Autoregres-

sive (HAR) model of Corsi (2009).

In this paper we consider a different strategy to model abrupt changes in

the conditional mean and time varying long range dependency. We base our

analysis on a Markov switching model in line with the seminal work of Hamilton

(1989) in which level shifts are modeled through a binary non observable Markov

process and in which the parameters, including the degree of persistence, are

state dependent. Persistence is introduced through a standard ARFIMA model.

Furthermore, we also think it is important to include exogenous regressors

in the model’s specification. Following Bandi and Perron (2006) we consider the

implied volatility as a predictor, since it is proven to be an unbiased long run

forecast of future RV, once controlling for a fractionally cointegration relation.

We focus on Bayesian estimation techniques and goodness-of-fit indicators to

assess the in-sample performance of our model. We also put particular attention

to the forecasting ability of the proposed models.

We base our empirical analysis on the 5 minutes intra-daily series of Standard

& Poor’s 500 (S&P500) stock index over the period January 2000 to 28 February

2005. Our results evidence that implied volatility is important to predict RV and

also that, in the short run, long memory together with nonlinearities improve

the forecasting performance. In the long run the ARFIMA effect seems to be

dominant with respect to the switching regime mechanism.
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The remainder of the paper is organized as follows. Our data set is described

in Section 2, whereas the Markov switching models considered are defined in

Section 3. Our inferential solution is outlined in Section 4. The forecasting

methodology is explained in Section 5 and empirical results based on simulated

and real data are illustrated respectively in Section 6 and in Section 7.

2 Realized and Implied Volatility

Realized volatility is an efficient and unbiased measure of the actual volatility

based on the quadratic variation of a stochastic process. Theoretical and empir-

ical features on this subject have been deeply investigated in Barndorff-Nielsen

and Shephard (2002) and in Andersen et al. (2003). Consider for instance a

simple continuous time model for the log-price of a financial security

p(t + τ) = µ(t + τ)dτ + σ(t + τ)dW (t + τ) 0 ≤ τ ≤ 1, t = 1, 2, . . .

in which W (t) is a standard Brownian motion. Using well known results on

stochastic processes, it can be proved that daily returns, rt = p(t) − p(t − 1),

are Gaussian with conditional distribution

rt|Ft ∼ N
(∫ 1

0

µ(t + τ − 1)dτ ,

∫ 1

0

σ2(t + τ − 1)dτ

)
,

where the variance is known as Integrated Volatility at day t, namely, IVt.

It can be proved that, in absence of microstructure noise, i.e., the observed

prices are not affected by measurement errors, IV can be consistently estimated

by the realized volatility, defined as

ŷt = RVt =
Nt∑

j=1

[pj,t − pj−1,t]
2
, j = 1, . . . , Nt, t = 1, . . . , T (1)

in which pj,t is the j -th observation at day t and Nt is the number of intra-daily

observations.

In case of microstructure noise, the true prices p∗t,j are affected by measure-

ment errors, and then pj,t = p∗j,t + εj,t. As a main consequence, the realized

volatility estimator diverges, in case data are sampled too frequently over the
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day (Bandi and Russell, 2008). However, as suggested in Andersen and Boller-

slev (1998) and in Andersen et al. (2001), in practical applications the realized

volatility is still a valid estimator when data are sampled at a lower frequency

with respect to the tick-by-tick, since the microstructure noise become negli-

gible and then a sampling frequency ranging between 5 to 30 minutes can be

a reasonable choice. See also Brownlees and Gallo (2006) for a more accurate

treatment on data handling with ultra-high frequency data.

We also consider in our study the CBOE Volatility Index (VIX) that is a

measure of the market’s expectation of 30-day volatility implied by at-the-money

S&P500 Index option prices provided by the Chicago Board Options Exchange.

It is computed by averaging the weighted prices of S&P500 puts and calls over

a wide range of strike prices. Since VIX is referred to option contracts, it can

be seen as a market’s predictor of the expected volatility.

The S&P500 index data set consists on 5 minutes intra-daily observations

whereas the VIX index is observed on a daily basis from 1 January 2000 to 28

February 2005. Prices of S&P500 have been provided by Olsen and Associates

in Zurich and realized volatility has been thus computed through formula (2)

in which Nt = 288. We have removed from our sample days in which market

has been closed, such as the three weeks after September 11, week-ends and US

holidays, leading to a total amount of T = 1274 trading days. The VIX index

has been downloaded from the CBOE website1.

Following Bandi and Perron (2006), we consider the annualized realized stan-

dard deviation yt =
√

252×ŷt

100 and the annualized VIX which is also multiplied by√
252
365 in order to account for the difference between trading days and calendar

days in a year. Descriptive statistics are reported in Table 1 whereas Figure 1

displays the dynamics of the volatility measures. In particular from Figure 1 we

observe high volatility levels at the beginning of 2000, from October 2000 until

March 2001 and from April 2002 to March 2003. From Table 1 it is clear that

both time series are highly persistent since the Fractional Integration parameter

d is always larger than 0.35.
1The data set for VIX is available at http://www.cboe.com/micro/vix/introduction.aspx
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Table 1: Descriptive statistics of RV and VIX. We report also the estimated d
of the ARFIMA(0,d,0) model obtained through Maximum Likelihood.

Realized Volatility Implied Volatility (VIX)
Mean 0.15891 0.18512
Median 0.14255 0.17632
Std. Dev. 0.076078 0.052924
Skewness 1.6990 0.66155
Kurtosis 4.8575 0.086316
Minimum 0.025933 0.092231
Maximum 0.66168 0.37457
d 0.381337 0.499673
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S&P500 Annualized Realized Standard Deviation

2001 2002 2003 2004 2005
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Figure 1: Realized standard deviations and VIX index data from 01/03/2000
to 28/02/2005, estimated densities and autocorrelation function.

3 A switching regime model for long memory
realized volatility

We propose a long memory switching regime process based on a mixture of

two ARFIMA(0, di, 0), i = 0, 1 dynamics, in which 0 identify periods with low
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volatility whereas 1 indicate high volatility.

Our specification is similar in spirit to Ray and Tsay (2002), in which they

first propose an ARFIMA model with random level shifts but with constant

d and, second, an ARFIMA model with time varying persistence levels2 but

constant parameters. Here we consider a Markov regime switching model in

line with Hamilton (1989) in which the mixture components are fractionally

integrated. In our general parameterisation, we allow, even though we do not

strictly require, that all the parameters are regime dependent, thus allowing for

level shifts together with time varying persistence. The model is specified as

follows

yt = µSt + βStXt + (1− L)−dSt εt εt ∼ N (
0, σ2

St

)
, (2)

in which yt, t = 1, . . . , T are the realized volatilities and St, t = 1, . . . , T

is an unobservable two states {0, 1} first order Markov chain with transition

probability matrix Π = {πij} , i, j = 0, 1. In our exercise, Xt, t = 1, . . . , T

is the implied volatility index VIX. We will label this model by Model 1.

We also consider the following priors µ0 ∼ N (0, 0.5), µ1 ∼ N (1, 0.5), βi ∼
N (0, 0.5), d0 ∼ N (0.1, 0.01) d1 ∼ N (0.3, 0.01), σ2

i ∼ IG(2.5, 0.75) and finally

pij ∼ Beta(5, 95), for i, j = 0, 1. Long memory parameters are also constrained

in the interval (0, 0.5). Furthermore, to avoid label switching, a common issue

with mixture models, we impose σ2
1 > σ2

0 . This parameterisation encompasses

many other special cases, and in particular we consider a model with common β

and persistence, i.e. d0 = d1 = d, but regime-dependent levels and conditional

variances, namely Model 1 A,

yt = µSt + βVIXt + (1− L)−dεt εt ∼ N (
0, σ2

St

)
, (3)

and the non switching ARFIMA(0, d, 0) with exogenous regressor VIX, that is

Model 1 B, defined as

yt = µ + βVIXt + (1− L)−dεt εt ∼ N (
0, σ2

)
. (4)

2In particular Ray and Tsay (2002) suggest a persistence level that shifts according to a
Markovian process.
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We also estimate the same models described above by constraining β0 =

β1 = β = 0, i.e. we omit the exogenous regressor and we call them respectively

Model 2, Model 2 A and Model 2 B. Finally Model 3 is a pure Markov

switching model defined as

yt = µSt
+ εt εt ∼ N (

0, σ2
St

)
(5)

4 MCMC methodology

Our goal is to jointly estimate long memory dynamics and the latent process.

Inference for this model is not obvious, since the latent process S = (S1, . . . , ST )

is not observable and also because there is not a standard method to estimate

the long range parameters di, i = 0, 1.

Inference for regime switching models can be performed in the classical as

well as in the Bayesian framework and many inferential techniques have been

proposed to numerically evaluate the likelihood function. A detailed review on

this topic can be found in Kim and Nelson (1999) and in Frühwirth-Schnatter

(2006). Furthermore, there is not a unique estimator available for di, i =

0, 1 and a detailed review on inference for long memory parameters has been

provided by Palma (2007).

In this paper we focus on MCMC methods for inference. Our solution is

based on the idea of Chan and Palma (1998), that prove that the exact likelihood

of an ARFIMA process can be recursively computed by means of the Kalman fil-

ter in a finite number of steps even though the system has an infinite dimensional

representation. Furthermore, to make the computations feasible, the Kalman

recursions are based on the truncation of the infinite Moving Average (MA)

representation of a long memory process. For instance, the ARFIMA(0,d,0)

model has a linear MA representation given by

yt =
∞∑

j=0

Γ(j + d)
Γ(j + 1)Γ(d)

εt−j εt ∼ WN(0, σ2) (6)

Chan and Palma (1998) consider the approximation of eq. (6) based on a trun-

cation of order M that can be written in state space form. Ray and Tsay (2002)
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exploited this representation to derive inference for long memory processes with

random level shifts in an MCMC setup. It is worth noting that the ARFIMA

dynamics can also be written through an autoregressive representation, even

though Palma (2007) suggests that an MA approximation guarantees computa-

tional advantages.

In a switching regime setup, conditionally on the whole regimes vector S, we

can represent the dynamics defined in (2), by the time varying parameter state

space system given as follows




εt+1

εt

...

εt−M+1




︸ ︷︷ ︸
αt+1(M+1)×1

=




0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0
...

... . . .
...

...

0 0 . . . 1 0




︸ ︷︷ ︸
T(M+1)×(M+1)




εt

εt−1

...

εt−M




︸ ︷︷ ︸
αt

+




εt+1

0
...

0




︸ ︷︷ ︸
ut+1(M+1)×1

(7)

yt = µSt + βStXt +
[

1 π1(dSt) π2(dSt) . . . πM (dSt)
]

︸ ︷︷ ︸
Zt 1×(M+1)

αt. (8)

in which πj(dSt) = Γ(j+dSt )

Γ(j+1)Γ(dSt ) . Given this state space representation and con-

ditional on S, inference for the parameters can be derived by applying standard

results on MCMC for ARMA models. Seminal contributions on this field are

Albert and Chib (1993) and McCulloch and Tsay (1993) whereas relevant gen-

eralizations have been successively proposed in Billio et al. (1999) and in Kim

and Nelson (1999). Furthermore, Ray and Tsay (2002) propose a Gibbs sampler

algorithm to take into account long range dependencies together with random

level shifts. However, to our knowledge, MCMC methodologies have never been

implemented for ARFIMA model with switching regime parameters.

We propose an MCMC algorithm to simulate from the posterior distribution

of (θ,S) where θ = (µi, βi, σi, di, p01, p10) , i = 0, 1, is the parameter’s vector.

In the following we will call θj the generic j -th element of θ. Finally Y contains
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the observable realized volatilities, whereas X holds the exogenous regressor’s

realization.

The basic idea behind MCMC is to simulate a trajectory of a Markov chain

{θ(j),S(j)}n
j=1 from a given starting point (θ(0),S(0)), with limiting invariant

distribution3 p(S,θ|Y ,X). Once convergence is achieved, the algorithm pro-

vides a sample of serially dependent draws for θ and S, which can be used to

perform inference. More precisely, estimates of the latent factors and of the

posterior mean of θ are given by averaging over the realization of the chain, i.e.

P̂ r(St = 1) = n−1
∑n

j=1 S
(j)
t and θ̂ = n−1

∑n
j=1 θ(j). To account for the serial

correlation in the draws, the numerical standard error of the sample posterior

mean is estimated using the procedure implemented in Kim et al. (1998).

Moving the whole vector (θ,S) in block can be difficult, since it is highly

multivariate. A possible strategy is to divide it into sub-components and then

update them one-at-a-time. As suggested in Shephard (1994) and Carter and

Kohn (1994) amongst others, updating the whole latent process S in block

from its joint conditional distribution should reduce the autocorrelation be-

tween states and then speed up the convergence of the chain to its invariant

distribution. Here, we take care of the regime switches by providing an efficient

algorithm based on the multi-move Gibbs sampler proposed in Chib (1996) to

update the states S, whereas parameters are updated individually. We can

summarize the algorithm as follows

• Initialize the chain at (θ(0),S(0))

• At step j = 1, . . . , n

– Update θ one-at-a-time from p(θi|S(j−1),θ
(j)
−i− , θ

(j−1)
−i+ ,Y ,X) through

Metropolis-Hastings, where θ−i− are the first (i-1) elements of θ and

θ−i+ are the elements form the (i+1)-th to the last.

– Draw S(j) in block from p(S|θ(j), Y , X), using the method of Chib

(1996);
3See Robert and Casella (1999) ch. 6-7 for a general treatment on the conditions needed

to achieve convergence of MCMC algorithms.
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In the next subsections we will describe in detail the algorithm.

4.1 Updating the parameters

Simulating p01 and p10 is straightforward, since it is easy to show that their

conditional posterior distributions are Beta. Updating σ2
i i = 0, 1, is also easy,

since their conditional posterior are Inverse Gamma. However, to identify the

two states, we need to impose that σ2
0 < σ2

1 . This leads to a constrained condi-

tional posterior distributions that are truncated, but can be simulated trough

the accept-reject algorithm of Philippe (1997). Sampling µi, βi and di, i = 0, 1

is more involved, since their conditional distributions are not known in closed

form4. We propose to update each of these parameters in turn, using the

Metropolis-Hastings algorithm. At the j -th step of the algorithm we simulate

θi with unknown full conditional using the following scheme

1. Sample θ∗i from a proposal q(θi|θ(j−1)
i ).

2. Define α(θ(j−1)
i , θ∗i ) = min

(
p(θ∗i )p(Y |θ∗i ,X,S(j),θ

(j)
−i− ,θ

(j−1)
−i+

)q(θ
(j−1)
i |θ∗i )

p(θ
(j−1)
i )p(Y |θ(j−1)

i ,X,S(j),θ
(j)
−i− ,θ

(j−1)
−i+

)q(θ∗i |θ(j−1)
i )

, 1
)

3. Sample u from U(0, 1).

4. If u ≤ α(θ(j−1)
i , θ∗i )

then θ
(j)
i = θ∗i

otherwise θ
(j)
i = θ

(j−1)
i .

Here p(θi) is the prior distribution for the i -th parameter, p(Y |θ, X,S)

is the likelihood of the model conditioned on S, θ−i− and θ−i+ . Evaluating

p(Y |θ, X,S) is not trivial and is computationally demanding. However, since

the model can be written in the state-space form provided by eqs. (7)-(8), we

exploit the Kalman filter recursions.
4Billio et al. (1999) provide a closed form expression for the full conditional for µi, i = 0, 1.

We use a Metropolis-Hastings approach since it gives equivalent results.
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4.2 Updating S

We update S in block, moving the vector according to the algorithm proposed in

Chib (1996). The method is based on the following decomposition of p(S|Y ,θ),

that is,

p(S|Y , θ) = p(ST |Y , θ) . . . p(St|Y , St+1, . . . , ST , θ) . . . p(S1|Y , S2, . . . , ST , θ),

(9)

where, in particular p(St|Y , St+1, . . . , ST , θ) can be written as

p(St|Y , St+1, . . . , ST , θ) ∝ p(St|y1, . . . , yt, θ)p(St+1|St,θ)

p(St|y1, . . . , yt−1, θ)p(yt|y1, . . . , yt−1,θ)p(St+1|St, θ).

The distribution p(St|y1, . . . , yt−1) can be decomposed as

p(St|y1, . . . , yt−1) =
1∑

j=0

p(St|St−1 = j, θ)p(St−1 = j|y1, . . . , yt−1, θ)

whereas p(St|y1, . . . , yt, θ) is given by

p(St|y1, . . . , yt, θ) ∝ p(St|y1, . . . , yt−1)p(yt|y1, . . . , yt−1, θ).

Numerical evaluation of p(yt|y1, . . . , yt−1,θ) is provided by applying the

Kalman filter to the state space approximation described by equations (7) and

(8) whereas p(St|y1, . . . , yt−1) and p(St|y1, . . . , yt, θ) can be computed recur-

sively by setting p(S1|y0,θ) = p(S1|θ), i.e., the stationary distribution of the

Markov chain. Once computed all these quantities it is possible to simulate ST

from p(ST |Y , θ) that is a Binomial random variable, and finally, all the remain-

ing states can be directly simulated from p(St|Y , St+1, . . . , ST , θ), starting from

ST−1 until S1.

4.3 Forecasting

MCMC allows to easily approximate the density forecasts of yT+1, . . . , yT+h for

a given horizon h > 0. At each Gibbs iteration, we can simulate a future trajec-

tories of latent and observed processes, i.e., yT+1, . . . , yT+h and ST+1, . . . , ST+h
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given θ. To take into account uncertainties about future realizations of the ex-

ogenous regressors, we first suppose, for instance, that it follows an ARFIMA(0, dx, 0)

process, that is

Xt = µx + (1− L)−dxεt εt ∼ N (
0, σ2

x

)
.

To simplify the notation we indicate future realizations of X, S and Y as

Xh = (XT+1, . . . , XT+h), Sh = (ST+1, . . . , ST+h) and Y h = (yT+1, . . . , yT+h)

respectively whereas θX = (µx, dx, σ2
x).

Simulating from p(yT+i|X, Y , θ), i = 1, . . . , h can be done as follows:

• At the j -th Gibbs iteration set θ = θ(j);

– Simulate θ
(j)
X from p(θX |X);

– For i = 1, . . . , h

∗ Draw S
(j)
T+i from p(ST+i|S(j)

T+i−1,θ
(j));

∗ Draw X
(j)
T+i from p(XT+i|X, . . . , X

(j)
T+i−1,θ

(j), θ
(j)
X );

∗ Draw y
(j)
T+i from p(yT+i|Y , Y

(j)
T+i−1, X, X

(j)
T+i,S, S

(j)
T+i, θ

(j), θ
(j)
X );

– End for.

• Record (y(j)
T+i)

h
j=1.

The sequences y
(j)
T+i, j = 1, . . . , n, i = 1, . . . , h can be used to estimate the

predictive densities p(yt+i|Y ).

5 Forecasting methodology and in-sample goodness-
of-fit

To compare the out-of-sample predictive accuracy of the models, we use the

Weighted Likelihood Ratio test (WLR) proposed in Amisano and Giacomini

(2007) that compares density forecasts computed through classic or Bayesian

techniques. The key requirement for the WLR test is that all the forecasts

are based on a finite estimation window, that is, the recursion of the h-steps-

ahead, h ≥ 1, density forecasts are obtained using a fixed sample of size N . In
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practice, the first h-steps-ahead forecast is based on (y1, . . . , yN ), the second on

(y2, . . . , yN+1), until the last one, that is based on (yT−N−h+1, . . . , yT−h). We

thus obtain a sequence of K = T −N − h− 1 density forecasts.

The comparison between two models, namely Mi and Mj , is based on

the weighted difference of two loss functions called scoring rules, defined as

Li(yt+h) = fi(yt+h) and Lj(yt+h) = fj(yt+h), in which fi(·) and fj(·) are the h-

steps-ahead density forecasts for Mi and Mj whereas yt+h is the actual future

observation. The test is thus based on

WLRt+h = ω(ỹt+h)[log f̂i(yt+h)− log f̂j(yt+h)]

where ỹt+h is the standardized observation, f̂i and f̂j are the predictive densities

estimated by means of (yt−N+1, . . . , yt) under models Mi and Mj and finally

ω(·) is a weight that allows to emphasize some specific region of the support of

the density forecasts5. In the MCMC setup these predictive densities can be

easily estimated as described in Section 4. Note that a positive difference means

a superior predictive accuracy of model i versus model j. Following Amisano

and Giacomini (2007), a test for equal performance of h-steps-ahead density

forecasts fi(·) and fj(·) can be formulated as a test of the hypothesis system

H0 : E[WLRt+h] = 0 vs. H1 : E

[
T−h∑

t=N

WLRt+h

Kh

]
6= 0

and the associated statistic is

th =
1

Kh

∑T−h
t=N WLRt+h

âvar(WLRt+h)

where âvar(WLRt+h) is a consistent estimate of the long range asymptotic

variance of the numerator, that can be estimated by using estimators robust to

heteroskedasticity and autocorrelation (see Newey and West, 1987 for instance).

Under technical conditions it can be proved that th
a∼ N (0, 1).

We also consider the Root Means Square Error (RMSE) together with the

Mean Absolute Error (MAE), that is, for model i RMSEi =
√

1
Kh

∑T−h
t=N ε2t+h|t, i

5For example if we are more interested on the center of the distribution ω(y) = φ(y), where
φ is the standard normal density function.
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and MAEi = 1
Kh

∑T−h
t=N |εt+h|t, i|, where εt+h|t,i = yt+h|t,i − yt+h and in which

yt+h|t,i is the out-of-sample forecast of model i.

For in-sample comparisons, we consider as goodness-of-fit statistic the De-

viance Information Criteria (DIC), proposed in Spiegelhalter et al. (2002). Some

extensions of DIC to missing data and mixture models have been studied in

Celeux et al. (2006). The DIC is defined as a combination of a classical esti-

mate of fit, based on the likelihood function p(Y |θ) and a penalty term, pD,

that represents the complexity of the model. More precisely pD is defined as

pD = Eθ|Y [−2 log p(Y |θ)] + 2 log
[
p(Y |θ̂)

]

in which θ̂ can be the estimated posterior mean, the median or the mode. In

our application, the DIC criterion is defined as

DIC = −2 log p(Y |θ̂, Ŝ, X) + pD

in which θ̂ is the posterior mean obtained from the MCMC recursions, whereas

Ŝ is the posterior mode of p(S|Y ). It is worth noting that the best model is

the one with smaller DIC. We estimated Eθ|Y [−2 log p(Y |θ,S,X)] using the

MCMC output, that is,

Êθ|Y [−2 log p(Y |θ,S, X)] ≈ −2
n

n∑

i=1

p(Y |θ(i),S(i), X).

6 Simulation Results

In this section we provide some illustrative examples to show the performance

of the algorithm. Detailed results of our procedure are reported in Appendix A.

We first simulate a time series of length T = 1000 from the ARFIMA(0, d, 0)

model

(1− L)d(yt − µ) = εt εt ∼ N (0, σ2)

and in which the true parameters are µ = 1, d = 0.4 and σ2 = 0.75. Results are

reported in Table 8, based on 10,000 iterations of the MCMC algorithm with

a burn-in of 2,500. Since estimates are based on the state space representation

15



provided by equations (7)-(8), our first goal is to determine the truncation pa-

rameter M . Chan and Palma (1998) and Ray and Tsay (2002) suggest to use an

MA(10) approximation for a time series of length 1000. Our evidence suggests

that a reasonable tradeoff between accuracy and computational burden can be

based on MA(20) or AR(20) approximations. In particular we refer to a Moving

Average approximation since, as suggested in Palma (2007), it should simplify

the Kalman recursions. In particular empirical results guarantee accurate esti-

mates of the parameters involved, in particular for the long range persistence

d.

We also consider a Monte Carlo analysis for the switching regime long mem-

ory model,

(1− L)d(yt − µSt) = εt εt ∼ N (0, σ2
St

),

for different levels of persistence d, ranging between 0.2 and 0.4, keeping the

other parameters fixed to, respectively, µ0 = 1, µ1 = 4, σ2
0 = 0.25, σ2

1 =

2, π01 = 0.04 and π10 = 0.1. Posterior’s mean results and estimated latent

processes are shown in Appendix A, Table 9 to 12 and in Figure 3 to 6. Our

findings can be summarized as follows:

• In all the experiments, the estimate of d is accurate, and this is true in

particular when the persistence is high. As in the non-switching experi-

ment, a reasonable precision level is achieved for a truncation parameter

M = 20. We also prefer MA approximations, in line with Palma (2007),

since for low levels of persistence, i.e. d = 0.2 and d = 0.3, we obtain more

precise estimates for d.

• For all the simulations, the estimates of the probability of being on state

i=0,1, namely P̂ (St = i) are satisfactory, as evidenced in Figure 3 to

6, since they fit accurately the true latent process St. In particular this

finding is independent on the truncation M and on the different type of

approximations (AR or MA).

• On the other side, the estimates of the parameters associated to the high

16



level of volatility, i.e. St = 1 are imprecise and in particular we under-

estimate the intercept µ1 whereas we overestimate σ2
1 . This ill behavior

is common for different M and AR or MA approximations. Some further

results, not reported here, suggest that this lack of identification is likely

due to the small number of contiguous observation labeled by 1. In partic-

ular if we consider simulations with more contiguous observations labeled

by 1, we obtain more precise estimates also for µ1 and σ2
1 .

7 Empirical Application: S&P500 realized volatilty

The empirical analysis is based on 5 minutes returns of the Standard & Poor’s

500 index (S&P500) observed from 1 January 2000 to 28 February 2005. Our

MCMC procedure has been written using the Ox c© 5.0 language of Doornik

(2001) combined with the state space library ssfpack of Koopman et al. (1999)

used to evaluate the likelihood function.

We run the algorithm for 7500 iterations discarding the first 2500. In our

experience this choice for the burn-in is more than adequate, even though our

aim is to completely remove the effect of the initial values. Results for the model

considered are reported in Table 2. An estimate of the switching regime process

for the different models is given in Figure 2.

From Table 2 we notice that all the models including VIX outperform the

others, in terms of smaller DIC and higher average likelihood, thus stressing the

importance of the implied volatility as a predictor. A careful look at Table 2

also evidences that parameters of Model 1 characterizing conditional means

and variances, i.e. µi and σ2
i , are sensibly different across regimes, whereas βi

and di are quite stable. These results are consistent with He and Maheu (2009)

who find a partial structural break on the NASDAQ volatilities specification

in which only the intercept of the conditional variance equation has breaks.

For this reason Model 1 and Model 1 A are substantially equivalent from

a goodness-of-fit perspective. It is interesting to note that the non-switching

long memory model with VIX, namely Model 1 B, provides the better fit in
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terms of DIC, even though the average likelihood of its switching counterparts

are larger. This result can be likely explained by an high penalty factor pD that

account for the superior complexity of Model 1 and Model 1 A. However, on

closer inspection, when parameters are free to move across regimes, we obtain

sensibly different estimates, thus suggesting some misspecification in Model 1

B.

Regarding long memory, we notice that for models in class 1, the estimates

of di are quite moderate compared with the descriptive results of Table 1. This

finding is consistent with Bandi and Perron (2006) and can be easily explained

by the impact of VIX that is characterized by strong persistence. It is also

confirmed by results on models of class 2, by observing that the persistence

parameters almost double, moving from about 0.20 to 0.40. The higher level

of persistence d is observed for Model 2 B, in which the regime shifts are not

considered. This result suggests that the long range persistence absorbs the

effect of the nonlinearities characterizing the data. We observe that models of

class 1 and 2 behave in a similar way, and in particular it appear that the non-

switching models provide a superior fit. However, a more accurate look at Table

2 suggests a clear moving of the conditional variance parameters and a sensitive

level shift explained by the Markov switching dynamics, thus suggesting that

the more appropriate models are Model 1 A and Model 2 A. Analysis on

Model 3 evidences that the exclusion of long memory can be also troublesome,

since the model provide a poor fit.

Figure 2 evidence that all the models considered provide similar estimates of

the regimes, by detecting a systematic regime of high volatility at the beginning

and at the end of 2000, at the beginning of 2001 and during mid 2002. Apart

for the pure switching model, all the others detect an occasional spike dated

3 November 2004. These results are in line with a graphical inspection of the

original data set.

We now provide and analyze the forecasting performance of the models con-

sidered. Our full sample consists on T = 1241 observations and we consider a

fixed estimation window of N = 950. In our analysis, we consider the follow-
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Figure 2: S&P 500: Realized volatility and estimated posterior probability of
Pr(St = 1|Y ). On the upper panel the observed realized volatility. From second
to sixth row we report P̂ r(St = 1|Y ) for all the switching models introduced in
Section 3.
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ing forecasting horizons, h = 1, 5, 10 and 20, corresponding to one trading day,

one and two weeks and a trading month, leading to a sequence of, respectively,

Kh = 291, 287, 282, 272 prediction densities. For the model with the exogenous

regressor we compute the forecasts by fixing the future realization of VIX to

its actual realization, namely Mod 1 (fix VIX), and forecasting this index by

hypothesizing an ARFIMA(0, dx, 0) model, i.e. Mod 1 (fore VIX). Results

on forecasting are reported in Tables from 3 to 7.

In particular Table 3 presents some classic forecasting accuracy indicators,

namely RMSE and MAE. There is a clear evidence that models of class 1 provide

the better forecasting performance even at longer horizons. Of course, the

choice of the future VIX realization as a predictor plays a crucial role in finding

these results. In this case VIX seems to be more important than the Markov

switching dynamics, as evidenced by the results obtained for Model 1 B, that

is characterized just by long memory and the implied volatility index. On the

other hand, when VIX is not assumed to be known and is evaluated through the

scheme presented in Section 4.3, we obtain a general forecasting impoverishment,

mainly in the short run. In fact, uncertainties about modeling future VIX

sensibly contribute to increase forecasting errors on RV. However, this lack of

performance is attenuated in the long run, when the long memory dynamics

appear to be more relevant also in the forecast of VIX itself.

Models of class 2 provide satisfactory forecasting performances. In partic-

ular results based on Model 2 A, that is characterized by long memory and

switching regimes, evidence the need to joint modeling nonlinearities and high

persistence. The results on Model 2 A are valid both in the short as well as

in the long run even if, with h = 20, Model 2 B appear to be superior. This

finding suggests that long memory is determinant for longer horizon forecasts.

This evidence is also confirmed by the results on the pure switching model, i.e.

Model 3, for which the RMSE sensibly increase with h.

The results based on RMSE and MAE for different h are also supported

by pairwise forecasting comparisons computed through the Diebold and Mar-
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iano tests6 (Diebold and Mariano, 1995). We also consider the WLR test of

Amisano and Giacomini (2007), as evidenced in Table from 4 to 7 where we

report the pairwise comparisons and the associated p-values on parenthesis. A

deeper analysis on WLR evidence that VIX is a good predictor of the S&P 500

realized volatility, provided that also VIX is accurately forecasted. Furthermore

it is evident that long memory and nonlinearities, even when VIX is not consid-

ered, improve the forecasting performance of the proposed model. In particular,

according to WLR test, the best model of class 2 is the long memory switching

regime with state dependent level, variance and persistency. Furthermore, long

memory become important in the long range.

6These results are not reported here for conciseness but are available upon request.
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A Monte Carlo Study

A.1 Non-switching ARFIMA model

We first consider a simple long memory model

(1− L)d(yt − µ) = εt εt ∼ N (0, σ2).

Table 8: Simulation Results: Estimates for non-switching long memory
model, AR(M) and MA(M) approximations.

MA(10) MA(20) MA(50) AR(10) AR(20) AR(50)
µ = 1.00 1.10778 1.08841 1.06435 1.05364 1.00888 0.91845

[0.90,1.36] [0.82,1.33] [0.72,1.41] [0.74,1.35] [0.65,1.34] [0.46,1.32]
d = 0.40 0.36710 0.38143 0.36941 0.41132 0.38971 0.36542

[0.31,0.44] [0.32,0.44] [0.30,0.43] [0.35,0.47] [0.33,0.46] [0.30,0.43]
σ2 = 0.75 0.80088 0.77027 0.76209 0.76150 0.73795 0.73263

[0.70,0.94] [0.68,0.87] [0.67,0.86] [0.67,0.86] [0.65,1.34] [0.64,0.82]

A.2 Switching ARFIMA model

Case 1: d = 0.4

Table 9: Simulation Results: Estimates for switching long memory model,
AR(M) and MA(M) approximations.

MA(10) MA(20) MA(50) AR(10) AR(20) AR(50)
µ0 = 1.00 1.15943 1.19887 1.20683 1.24693 1.25602 1.24462

[1.060,1.256] [1.100,1.297] [1.109,1.304] [1.139,1.356] [1.152,1.358] [1.139,1.349]
µ1 = 4.00 2.93593 2.77586 2.71657 2.71689 2.67341 2.65610

[2.635,3.259] [2.499,3.069] [2.455,2.994] [2.444,3.004] [2.406,2.949] [2.395,2.920]
d = 0.40 0.36935 0.39807 0.41950 0.45200 0.44717 0.45415

[0.319,0.418] [0.348,0.450] [0.360,0.475] [0.387,0.496] [0.387,0.495] [0.393,0.496]
σ2
0 = 0.25 0.44633 0.43034 0.41869 0.41835 0.41661 0.42144

[0.369,0.533] [0.351,0.522] [0.339,0.513] [0.338,0.513] [0.336,0.508] [0.340,0.516]
σ2
1 = 2.00 2.61606 2.66735 2.63564 2.59117 2.56555 2.56267

[2.205,3.078] [2.253,3.143] [2.241,3.099] [2.186,3.077] [2.161,3.041] [2.173,3.023]
π01 = 0.04 0.04435 0.04745 0.04721 0.04875 0.04858 0.04986

[0.029,0.062] [0.031,0.065] [0.031,0.066] [0.032,0.067] [0.032,0.067] [0.033,0.069]
π10 = 0.10 0.08453 0.0851 0.08183 0.08737 0.08552 0.08517

[0.055,0.118] [0.056,0.119] [0.054,0.114] [0.058,0.121] [0.057,0.120] [0.056,0.120]
DIC 3194.0 3275.7 3241.8 3142.9 3025.7
log lik. -1522.6 -1539.9 -1536.9 -1485.48 -1431.8 -1270.4
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Figure 3: Simulation Study: True vs. estimated posterior probability
Pr(St = 1|Y ). On the two upper panels the simulated time series yt and
the true (simulated) latent process. On the lower left panels the estimates of
Pr(St = 1|Y ) based respectively on the MA(10), MA(20) and MA(50) ap-
proximation whereas on the right side the estimates based on the AR(10),
AR(20) and AR(50) approximation.
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Case 1a: d = 0.4

Table 10: Simulation Results: Estimates for switching long memory model,
AR(M) and MA(M) approximations.

MA(10) MA(20) MA(50) AR(10) AR(20) AR(50)
µ0 = 1.00 0.97493 0.99159 1.01338 1.01569 1.02992 1.03415

[0.880,1.065] [0.902,1.083] [0.927,1.098] [0.926,1.103] [0.937,1.123] [0.941,1.131]
µ1 = 4.00 2.72005 2.59200 2.54199 2.58324 2.49881 2.48401

[2.404,3.045] [2.283,2.913] [2.252,2.843] [2.301,2.876] [2.222,2.798] [2.207,2.775]
d = 0.40 0.34790 0.37333 0.40632 0.40999 0.41413 0.41924

[0.294,0.399] [0.311,0.431] [0.341,0.468] [0.340,0.480] [0.346,0.482] [0.341,0.488]
σ2
0 = 0.25 0.39642 0.39143 0.38893 0.38744 0.38714 0.39534

[0.336,0.467] [0.325,0.466] [0.326,0.462] [0.325,0.460] [0.324,0.460] [0.328,0.473]
σ2
1 = 2.00 2.99332 2.96153 2.93313 2.87833 2.82423 2.81129

[2.555,3.505] [2.544,3.464] [2.516,3.415] [2.464,3.357] [2.416,3.316] [2.409,3.285]
π01 = 0.04 0.03953 0.04004 0.03946 0.04031 0.04009 0.04050

[0.025,0.056] [0.025,0.057] [0.025,0.057] [0.025,0.057] [0.025,0.057] [0.026,0.058]
π10 = 0.10 0.06714 0.06285 0.06085 0.06450 0.06116 0.06119

[0.042,0.097] [0.038,0.092] [0.037,0.088] [0.040,0.093] [0.037,0.089] [0.037,0.090]
DIC 3103.4 3157.9 3156.4 3006.1 2958.1 2630.2
log lik. -1498.90 -1511.9 -1512.5 -1459.6 -1411.4 -1247.93
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Figure 4: Simulation Study: True vs. estimated posterior probability
Pr(St = 1|Y ). On the two upper panels the simulated time series yt and
the true (simulated) latent process. On the lower left panels the estimates of
Pr(St = 1|Y ) based respectively on the MA(10), MA(20) and MA(50) ap-
proximation whereas on the right side the estimates based on the AR(10),
AR(20) and AR(50) approximation.
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Case 2: d = 0.3

Table 11: Simulation Results: Estimates for switching long memory model,
AR(M) and MA(M) approximations.

MA(10) MA(20) MA(50) AR(10) AR(20) AR(50)
µ0 = 1.00 1.14714 1.14508 1.13702 1.15911 1.14901 1.17972

[1.047,1.242] [1.046,1.242] [1.036,1.239] [1.062,1.262] [1.045,1.252] [1.059,1.300]
µ1 = 4.00 3.48637 3.31538 3.1059 3.24453 3.12499 3.01907

[3.135,3.848] [2.987,3.657] [2.816,3.413] [2.944,3.560] [2.817,3.434] [2.734,3.329]
d = 0.30 0.31519 0.32095 0.36684 0.38767 0.38885 0.37157

[0.256,0.376] [0.259,0.382] [0.298,0.436] [0.314,0.465] [0.307,0.465] [0.293,0.456]
σ2
0 = 0.25 0.44889 0.43766 0.40878 0.43316 0.41203 0.40775

[0.371,0.537] [0.360,0.524] [0.330,0.499] [0.352,0.525] [0.329,0.499] [0.324,0.501]
σ2
1 = 2.00 2.55694 2.60950 2.57918 2.58254 2.54352 2.53587

[2.127,3.048] [2.197,3.081] [2.210,3.020] [2.178,3.047] [2.156,2.975] [2.164,2.990]
π01 = 0.04 0.03962 0.03951 0.03865 0.04059 0.04001 0.04035

[0.026,0.055] [0.025,0.056] [0.024,0.056] [0.026,0.057] [0.025,0.057] [0.025,0.058]
π10 = 0.10 0.07832 0.07059 0.05991 0.07013 0.06397 0.06254

[0.051,0.110] [0.045,0.099] [0.036,0.088] [0.045,0.100] [0.040,0.093] [0.038,0.093]
DIC 3186.3 3124.5 3107.5 3077.0 2956.5 2558.3
log lik. -1488.2 -1500.1 -1503.39 -1470.7 -1412.1 -1243.6
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Figure 5: Simulation Study: True vs. estimated posterior probability
P̂ r(St = 1|Y ). On the two upper panels the simulated time series yt and
the true (simulated) latent process. On the lower left panels the estimates of
Pr(St = 1|Y ) based respectively on the MA(10), MA(20) and MA(50) ap-
proximation whereas on the right side the estimates based on the AR(10),
AR(20) and AR(50) approximation.
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Case 3: d = 0.2

Table 12: Simulation Results: Estimates for switching long memory model,
AR(M) and MA(M) approximations.

MA(10) MA(20) MA(50) AR(10) AR(20) AR(50)
µ0 = 1.00 1.03062 1.12445 1.19104 1.06611 1.19145 1.23316

[0.699,1.262] [0.815,1.299] [0.957,1.339] [0.714,1.278] [0.894,1.342] [1.048,1.361]
µ1 = 4.00 3.52414 3.34930 3.18270 3.38849 3.23531 3.02713

[3.084,3.982] [2.956,3.785] [2.823,3.587] [2.967,3.902] [2.829,3.715] [2.697,3.412]
d = 0.20 0.17883 0.21348 0.24151 0.19933 0.24001 0.28200

[0.098,0.274] [0.132,0.294] [0.158,0.324] [0.094,0.304] [0.137,0.336] [0.180,0.376]
σ2
0 = 0.25 0.40635 0.42176 0.44022 0.40820 0.42669 0.44354

[0.340,0.483] [0.352,0.501] [0.364,0.528] [0.336,0.489] [0.352,0.510] [0.365,0.535]
σ2
1 = 2.00 2.27277 2.47698 2.59751 2.36020 2.53550 2.59272

[1.768,2.804] [2.010,2.975] [2.182,3.054] [1.786,2.888] [2.065,3.009] [2.196,3.048]
π01 = 0.04 0.04358 0.04402 0.04433 0.04404 0.04269 0.04546

[0.029,0.059] [0.029,0.061] [0.029,0.062] [0.029,0.060] [0.028,0.060] [0.029,0.064]
π10 = 0.10 0.08592 0.08210 0.07773 0.08331 0.07825 0.07412

[0.058,0.118] [0.054,0.113] [0.050,0.108] [0.056,0.114] [0.051,0.110] [0.048,0.104]
DIC 3099.7 3194.7 3236.7 3071.9 3005.0 2770.8
log lik. -1452.3 -1490.4 -1526.5 -1432.4 -1409.0 -1285.1
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Figure 6: Simulation Study: True vs. estimated posterior probability
Pr(St = 1|Y ). On the two upper panels the simulated time series yt and the true
(simulated) latent process. On the lower panels the estimates of Pr(St = 1|Y )
based respectively on the MA(10), MA(20) and MA(50) approximation.
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