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Abstract  --  This paper presents an IDS(VGS,VDS) model to

represent PHEMT behavior in the reverse )0( <DSV ,

and forward zone )0( >DSV .  The model predicts with

high accuracy the measured data as well as higher orders

derivatives of the transconductance over a large range of

VDS bias.  These characteristics are important for the

analysis of intermodulation distortion using harmonic

balance or Volterra series.  Using  the improved

IDS(VGS,VDS)  model along with an empirical model to

simulate the nonlinear behavior of gate-source capacitance,

CGS,  and gate-drain capacitance, CGD,  a GaAs FET

nonlinear model suitable for intermodulation analysis of

amplifiers, switches and resistive mixers is presented

I. INTRODUCTION

Accurate linear and nonlinear models of
MESFET, HEMT and PHEMT are needed in the
development of monolithic microwave integrated circuits
(MMICs), since tunability in this technology is limited.
Control circuits such as SPDT (switches), attenuators and
low distortion mixers (resistive mixers) are examples of
new applications of MMICs. A good GaAs FET
nonlinear model must be capable of describing the
transistor behavior in the saturation region for amplifiers,
linear region for control circuits, and reverse zone for
resistive mixer applications.

A common problem encountered in microwave
circuit using GaAs FET is the intermodulation distortion
(IMD).  IMD phenomena are produced by transistor
nonlinearities such as IDS(VGS,VDS), CGS(VGS,VDS) and
CGD(VGS,VDS).  However, IDS(VGS,VDS) is considered the
more important nonlinearity giving rise to the distortion
phenomenon. Many different models have been
developed for modeling the IDS(VGS,VDS) characteristics
of PHEMT’s operated in the forward region (VDS >0, IDS

>0) [1]-[6]. In applications such as resistive mixers, the
transistor is driven by an RF signal from the forward
region (VDS >0, IDS >0) to the reverse region (VDS <0, IDS

<0). For this kind of application some of the classical
models referenced above fail to predict the IDS(VGS,VDS)
curves in the reverse zone, as well as the higher order
derivatives of transconductance and conductance, so that
new models are needed.

Based on Chen et al [3] model for a GaAs FET,
an improved IDS(VGS,VDS) nonlinear model suitable for
analyzing high gain amplifiers,  switches  (SPDT),  or
resistive mixers is presented in this work. The
IDS(VGS,VDS) model allows accurate prediction of the
higher order derivatives of the transconductance, Gm,
with respect to the gate-to-source voltage VGS , in the
forward and reverse zone.  The parameters of the model
can be obtained directly from the IDS(VGS,VDS) curve
measurements, and the extraction procedure is simple.
Furthermore, using the  empirical model [11] for
modeling CGS(VGS,VDS) and CGD(VGS,VDS)  along with
the improved IDS(VGS,VDS) model, a nonlinear model
suitable for intermodulation analysis of amplifiers,
switches and resistive mixers is also presented.

II. THE NEW IDS(VGS,VDS) MODEL

The model proposed in [3] calculates the I-V curves

and its higher order derivatives for VDS > 0 as follows:
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The model is suitable for analyzing amplifiers;
however, it fails in the analysis of the resistive mixer,

where the transistor works with 0≤DSV .  Under this

condition, all the coefficients aij in (5) are complex
number.  Therefore, a poor prediction of the IMD during
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large signal analysis is expected. In other words, the
model is inappropriate for analyzing the performance of
resistive mixers designed with PHEMT devices.  To
overcome this problem, it is necessary to understand why
the aij becomes complex. The coefficients aij in (5) arise
from the two polynomials of Eqs. (4-5). This suggests to
consider the function ψ.  So, combining Eqs. (1) and (3),

( )DSGS VV ,ψ  can be calculated as
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It should be noted that (6) becomes complex number
when the argument of the natural logarithm takes
negative values, and this happens when the transistor is
biasing at VDS < 0, because IDS(VGS,VDS) < 0 also
becomes negative.  To avoid ψ  becoming complex

number, it is necessary that:
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and therefore

                   ( ) 1exp −= ψdsoI             (9)

With this modification, the model predicts the
IDS(VGS,VDS)  curves from the reverse to the forward
region as well as the higher order derivatives of GM and
GDS.

III. RESULTS

On-wafer PHEMTs with gate length of

mLg µ25.0=  were used in this study. A LRM (Line-

Reflect-Match) calibration was performed on a HP8510C
network analyzer using picoprobes (model 50A-GSG-
150P). DC measurements were performed at room
temperature using a computer controlled measurement
system formed with Tektronix equipment (models
PS5004, PS5010 and DM5120).

   

Fig. 1.  DC curves for a HP PHEMT. VDS range from:    -0.5 to
0.5 linear step of 0.1V, VGS = -0.8, -0.6, -0.4, -0.2,   -0.1, 0, 0.2,
and 0.4V.  Measured (dot),  solid (simulated)

To validate the improved model, we compared
the measured IDS(VGS,VDS)  curves and their higher order
derivatives with the values predicted by the model. As
mentioned in the last section, the model predicts well the
IDS(VGS,VDS) curves as well as their higher order
derivatives.  Fig. 1 shows the experimental data along
with the modeling of IDS(VGS,VDS) for values from VDS of
-0.5V to 3V.  On the other hand, Figs. 2 show the
measured and simulated of transconductace, GM.  To
accomplish the DC validation, figures 4(a) - 4(c) show
the modeling of the first and second derivatives of the
transconductance at three different VDS. Once the I/V
model had been validated, the second step was to code
the new model in ADS, in order to be used in the
nonlinear equivalent circuit model presented in Figs.3.
Prior to CGS and CGD extraction, parasitic capacitances
CPG and CPD were extracted using the Dambrine
procedure [8]. The parasitic resistances RS, RD, RG and
the parasitic inductances LS, LD and LG were determined
following the Reynoso method [9]. Once all parasitic
elements were extracted, the intrinsic elements were
determined using the Berroth and Bosh method [10]. To
simulate the nonlinear behavior of CGS(VGS,VDS) and
CGD(VGS,VDS) we used the model proposed in [11].  The
nonlinear equivalent circuit model shown in figure 3a
was used to simulate the reverse and linear region, and
the one presented in figure 3b was used to simulate the
saturation region. To take into account the dispersion of
the output conductance, a parallel Rds – C branch was
added [12].

In figure 5(a) – 5(d) we compare the measured Sij at
different VDS with the Sij predicted by the PHEMT
nonlinear model. Good agreement between the simulated
behavior and the experimental data is achieved up to 50
GHz. Finally in figure 6-7 shows the simulated power
performance (harmonics) of the PHEMT biased at
VDS=0.2, 0.4, 1.4 and 1.6V. The results in figure 7 show
an error in the second and the third harmonic, thermal
effects related with deep level trap could be an
hypothesis to explain this error.  All the simulation was
performed at VGS=-0.45V and at 5GHz.
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Fig.  2.  Measured (dot) and modeled (solid) GM Vs VGS, VDS =
-0.5, -0.3, 0.5, 1.0, and 2.4V.

IV. CONCLUSIONS

A new nonlinear GaAs FET model for
IDS(VGS,VDS) has been introduced.  The main feature of
the model is its ability to predict the PHEMTs I/V
characteristics in the reverse zone. Furthermore, the
model predicts the IDS(VGS,VDS) curves and their
derivatives with high accuracy. These characteristics
make the model very attractive for application in the
design of amplifiers, switches and resistive mixers,
Simulation with ADS show good agreement with
measured S parameters in the reverse and forward region.
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Fig.  4.  First and second derivatives of GM. a) VDS = -0.3V, b) VDS = 0.4V , c) VDS =  2.4V.
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