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Abstract 

We use a multiple-factor credit risk model to provide new estimates of default probabilities in a sample 

of Italian Small and Medium-sized Enterprises. Results show that, on average, SMEs are riskier than 

large businesses within the retail segment. It is possible to distinguish different segments inside the 

SMEs’ population based on geographical location, sector of activity and juridical status. 
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1. Introduction 

 On January 1, 2007 the New Basel capital accord (Basel II) will be implemented in all 

European countries. The new accord substituting Basel I introduces capital requirements rules for 

banks depending on different degree of riskiness of the borrowers. The assignment of ratings to each 

firm allows to define a different capital absorption and - more in general - will deliver creditworthiness 

on the basis of objective criteria, less prone to idiosyncratic characteristics or subjective to the non-

economic terms. 

 A large body of literature has grown addressing several issues of the Basel II Accord, primarily 

lead by the need to establish a sound method to estimate the probability of default (PD), as well as to 

study the effects of the accord on the total capital absorption from bank's perspective. 

 In the present paper we take a perspective rather different with respect to the existing literature: 

we consider a sample of 3,900 firms with a turnover less than or equal 5 millions of euros and the PD 

by using a definition more ample than what has been typically used in the literature. We distinguish 

among firms having no financial distress at all from firms with several types of financial distress 

including for example, delay in mortgage payments for more than 90 days, but also delayed 

repayments. In particular, the event "default" includes loans classified as non performing, substandard 

and loans past due 90 days, and also the event of delayed payments by the firm for a period between 30 

and 90 days. This information is not disentangled from defaults defined in a narrower sense and can be 

interpreted at least as an early warning to the bank in order to detect future situations of stress in loan 

repayments and possibly defaults. Because of this feature, we believe that the model developed is 

suitable to assign an early score to the credit quality of a customer, being helpful in anticipating the 

event of default. 
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 We develop such a credit risk model for retail portfolios of loans granted to SME firms. We 

implement a logit estimation through a stepwise variable selection process. The model is specified both 

in ratios (with respect to total asset value) and in levels and results are not vulnerable to the model 

specification. Secondly, earning performance ratios are highly significant and negatively correlated 

with PD1. Third, regional and sectorial effects modify substantially the PD on Italian market. We show 

that the qualitative variable capturing the firm-bank relationship plays an important role in predicting 

the PD: the longer is the relationship between the bank and a specific firm, the lower is firm's PD. We 

elaborate our results by conditioning the model with respect to different juridical structures: in 

particular we differentiate out estimates whether the firms are cooperative firms or share corporate. 

Also on this case significant differences emerge. 

 One of the main point of the Basel II accord is given by the different treatment of firms of 

different size. In fact, the assignment of a rating to a firm is a common (albeit different) exercise of 

large corporations. The novelty of Basel II is the opportunity to define a rating also for smaller firms, 

not listed on Stock market. The recent literature on Basel II accord has been mainly concerned with the 

evaluation of capital requirements and rating evaluation of the firms of large and medium size. 

However, for some countries SMEs represent the backbone of the economy, constituting an important 

contribution to their GDP and to the sustainability of their employment levels. Small and micro-firms 

represent a substantial part of the Italian economy (almost 90 percent of total firms). The largest part of 

Italian firms are in fact owned by families and are of small size, with a turnover smaller than 5 millions 

of euros. Therefore, it is extremely important to evaluate the impact of the Basel II accord in for the 

small firms. The main concern derives from the general perceptions that SMEs carry higher risk and 

imply higher capital requirements than under Basel I. After several evaluations and simulations, the 

rules of capital requirements have been weakened with respect to the original version. Under the recent 

version, the SMEs with turnover less than 5 millions of euros (the sample employed in this study) are 
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classified under the retail sector, implying a capital requirement less severe for all the rating class, if 

compared with the other firms' size. Within the retail segment, we show that the probability of default 

appears to be inversely correlated with firm's size, where firm's size is measured both in terms of 

number of workers and in terms of volume of sales. Saurina and Trucharte (2004) obtained a similar 

result for Spanish economy measuring firm’s size by its volume of sales. 

 A consequence of Basel II Accord for the banks is that if SME are classified as retail, the credit 

must be managed as a retail exposure: the exposure must be one of a large pool of exposures which are 

managed by the bank on a pooled basis. The model we are going to estimate is based on a sample of 

firms assembled by one of the largest Italian bank in order to be representative of his retail portfolios. 

This is a novelty, since most of existing studies draw samples from national registers, which collect 

data on balance sheets and income statements, without constructing representative samples of banks' 

portfolios. 

 The literature on Basel II in general finds that both for Europe and US, the new Basel Capital 

Accord will have beneficial effects on banks capital requirement for the SME segment.  In general, it is 

found that under the Standardized Approach, there are no advantages in computing capital 

requirements if the SMEs are considered as corporate (8% capital requirement, as before).  On the other 

hand, if SMEs are classified as retail, the risk weight is reduced to 75% (from 100%), implying a 

capital requirement equal to 6%2. For this reason, it is particularly important to have design a credit risk 

model for the retail able to carefully discriminate among various risk categories, in order to identify an 

adequate capital requirement. For Italian economy, Altman and Sabato (2004) evaluate the capital 

requirement for the SMEs segment to be 4.88%, 8.245% for firms with a turnover within the range 5-

25 millions of Euro, and 9.656% for the range 26-50 millions of Euros. Lusignani and Bocchi (2004) 

instead, find an average capital requirement equal of 7.65%. Our study does not deal with the issue of 

capital requirements, because of the broader definition of "default", that overestimates the probability 
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of default since it includes delayed payments and not proper defaults, according to the definition of 

Basel II Accord. 

 The rest of the paper is organized as follows. In Section 2, we briefly review the main aspects of 

credit risk measurement. Main features of dataset are enlightened in Section 3. Section 4 provides the 

structure of the developed credit risk model, and the main results regarding the estimated PD for Italian 

SMEs by means of using default information contained in a retail portfolio of a commercial bank. 

Section 5 draws some conclusions. 

2. Literature review 

 Traditional models of credit risk measurement focus on estimating PD and typically define 

"default" as the event of bankruptcy, liquidation or insolvency. The most commonly used traditional 

credit risk measurement methodology is discriminant analysis, which has been applied successfully to 

forecast firms’ default. Multiple discriminant credit scoring analysis was pioneered by Altman (1968) 

with z-score model: discriminant analysis identifies financial variables that have statistical explanatory 

power in differentiating defaulting firms from non-defaulting firms. Once the models’ parameters are 

obtained, loan applicants are assigned a z-score assessing their classification as good or bad3. In the 

original version, Altman used linear discriminant analysis (LDA) to predict up to 3 years in advance 

bankruptcy in a sample of 33 sound and 33 unsound manufacturing firms, using five economic 

financial variables. Altman, Hadelman and Narayan (1977) extend z-score approach, including seven 

explanatory variables and find supporting evidence of predictive ability of LDA on an out-of sample 

set. 

 Several studies has been conducted to improve Altman’s results, using different parametric, 

semiparametric and non parametric approach. Among parametric approach4, logit models5 are 

commonly used for scoring purposes both in economic literature and in studies conducted by Central 

Banks in Italy, Germany, Austria, France, United Kingdom. Altman and Narayanan (1997) surveyed 
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the use of credit scoring models throughout the world, pointing out that all studies limited attention to 

quantitative data only and found that financial ratios measuring profitability, leverage, and liquidity had 

the highest statistical explanatory power in differentiating defaulted from non-defaulted firms6. 

 A number of studies has been conducted on European data sets7. Platt and Platt (1990) applied a 

logit analysis to predict bankruptcy with interesting results in terms of classification performance. 

Laitinen (1999) predicted default using a data set on 3,200 Finland firms and selecting 15 variables out 

of 35; in the out of sample set sensitivity is 93.75% with specificity equal to 96.35%. Dietsch and Petey 

(2004) develop a one-factor credit risk model to assess estimates of stationary default probabilities and 

asset correlation for class of small medium firm, in order to assess the effects of new regulation of 

Basel II. Authors use data on internal ratings assessment from two large European financial 

information providers for an average 5-year period. Results show that, on average, SMEs are riskier 

than large businesses; asset correlations in the SME population are very weak (1-3%) and decrease 

with size. Moreover, they do not find evidence supporting a negative relationship between asset 

correlations and PD across rating grades as assumed by Basel II; in particular over French data, the 

correlation increases with PDs, while the relationship is unclear over German data. The authors 

explained the results in terms of segmentation on the basis of credit quality: while the segment of firms 

with good credit quality defaults are driven by positions in the business cycle, the one with average 

credity quality is populated by firms where defaults depend on specific factors of management and 

access to productive and financial resource; for subprime segment firms with low credit quality tend to 

be sensitive to macroeconomic conditions. Then this explains the non-monotonic relationship between 

average PD and asset correlations. 

 We focus our attention on studies on Italian firms8. Cannata, Fabi and Laviola (2002) provide 

an empirical estimation of PD using a logistic model. The data set consists of quantitative, but not 

qualitative information on a sample of 180,000 Italian firms, collected by Company Accounts Register 
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(CERVED) and Credit Register (of the Bank of Italy). Default is defined as the event of non 

performing loan for the first time in a certain year by lending bank; this is a narrower definition with 

respect to the one used in Basel II, since it does not include substandard loans and loans past due 90 

days. A stepwise procedure is used to select significant explanatory variables and the procedure is run 

conditionally on the economic sectors (manufacturing, trade, construction) across which SMEs are 

distributed. They show that SMEs are characterized by higher PDs, with an average PD of 1.6 for 

SMEs with sales less than 5 million euro. Using the estimated logistic model, Fabi, Laviola and 

Marullo Reedtz (2003, 2005) show that Basel II Accord will lead to a substantial decrease in capital 

requirements for banks using Internal Rating Based (IRB) foundation approach; the capital requirement 

reduction is estimated to be 21% for portfolios constituted by corporate firms, 25% for SMEs, and 29% 

for SMEs with sales less than 5 million euro. Other studies apply logit model to examine the effect of 

Basel II Accord on capital requirements for Italian banks. Bocchi and Lusignani (2004) perform an 

analysis on 75,000 SMEs (according to Basel Committee, April 2003), obtained by pooling data of 15 

medium sized banks. 24% of firms in the sample are classified as corporate SMEs and the remaining 

76% retail SMEs9. This study estimates the PD using a logit model at a-point-in-time basis, assuming 

Exposition At Default (EAD) equal to zero and a Loss Given Default (LGD) of 43%. Default is defined 

as the occurrence of non-performing loans, substandard loans, but past due for more than 90 days are 

not included. In the period under scrutiny, two third of exposures are associated with firms with PD 

less than 2%. Because at a PD of 2% capital requirement is evaluated at 8%, as in Basel I Accord, the 

new Capital Accord will reduce capital requirements for higher proportion of SMEs firms. The authors 

provide evidence of the negative relationship between firm size and PD, assumed by Basel II Accord, 

since the PD distribution by rating classes of retail SMEs lies to the right of the one derived for 

corporate SMEs. 
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 A number of papers tried to assess the effect of Basel II on credit pricing. Using data from Bank 

of Italy, Maino and Masera (2004) show using simulation techniques that the cost of credit should stay 

the same for averaged rated SMEs (i.e. for those SMEs rated BB), which is in line with market 

evaluation of risk. On the contrary, SMEs rated below BB will experience a sharp increase in the cost 

of credit. The main effect on the cost of credit due to Basel II will be to stop cross-subsidization among 

SMEs, since banks will be able to discriminate across firms on the basis of PDs: less efficient and 

productive SMEs, with higher PD, will pay a higher cost of credit, reflecting the higher risk banks 

incurred in financing them. 

 

3. Dataset 

 The data base we use in our empirical study is provided by a large commercial Italian bank, 

whose lending activity is concentrated on the Italian market. The data set displays unique features with 

respect to all the other studies available on Italian firms, as Fabi et (2003), Bocchi and Lusignani 

(2004), Altman and Sabato (2004). 

 The data set is representative of the retail portfolio of the commercial bank, from which the 

sample is drawn. It is designed to replicate the distribution of exposures of the bank's overall retail 

portfolio both by region, by sector of activity and by firm's size. This offers the possibility to evaluate 

credit risk for retail portfolios, within the Basel II framework, using similar data available for the bank 

internal credit risk evaluation system. This constitutes an absolute novelty for studies conducted on 

Italian firms, since all studies available use information on samples drawn from CERVED's company 

accounts register, where balance sheets and income statements of a large set of Italian firms are 

collected, without any reference to the actual bank portfolios. 

 The data set contains detailed financial information on 3,900 firms whose annual sales are less 

than 10 millions Euro, classified as SMEs under the broad definition adopted in the latest consultation 
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document (Basel Committee, April 2003). The sample is however concentrated on "retail SME" 

firms10: 98% of the sample firms have annual sales less than 5 millions Euros and exposure with the 

bank of less than one million Euros. 

INSERT TABLE 1 

 From the inspection of table 2, 95% of firms in the data set have a number of workers less than 

4, confirming that the data set is concentrated on small firms. Additionally, more than 90% of firms 

have the legal form11 typically chosen by firms with small business, as shown in Table 3. The 

geographical location of firms is displayed by Table 4: more than three quarters of firms in the sample 

are located in the Northern and Central part of Italy. The data set displays a higher proportion of firms 

located in the Northern and Central part of Italy, with respect to average Italian historical data; a 

possible explanation consists in the fact that the bank's headquarters are located in Northern Italy. 

Table 5 shows the distribution of firms by sector of activity: firms are more concentrated in 

manufacturing, service and distribution sectors. 

INSERT TABLE 2 

INSERT TABLE 3 

INSERT TABLE 4 

INSERT TABLE 5 

 The estimates of PD captured in this work are obtained within the framework of internal rating-

based models; in particular we use the logit family of statistical models. A logit model is applied to the 

population of firms in order to assess their PD. This procedure often relies on quantitative and 

qualitative information; our qualitative information is limited to data on the characteristics of bank-firm 

relationship, even after the default. 

 In the following, the default is defined in a broader perspective with respect to Basel II 

framework: the event "default" includes loans classified as non performing, substandard and loans past 
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due 90 days, but also the event of delayed payments by the firm. For this reason we rename the default 

as the variable "stress". Stress is equal to 0 for all sound firms and 1 for the unsound ones. 

 The definition of default is broader with respect to the ones envisaged by the Basel Committee 

and used in empirical studies on Italian firms12, as it includes firms which are not up to date with 

payments of bank debts, but are not necessarily going bankrupt. This information is not disentangled 

from defaults defined in a narrower way and can be interpreted as an early warning to the bank in order 

to detect future and more serious problems of loan repayment. Because of this feature of the event 

"default", we believe that the model developed is suitable to assign an early score to the credit quality 

of a customer and therefore it could be helpful in order to anticipate the event of default at an 

intermediate stage in the process of credit quality assessment. This implies that the probability of 

default will be higher than the usual models. Note that this implies that rating classes are not 

comparable. 

 The geographical distribution of sound and unsound firms is reported in table 6, while table 7 

reports sound and unsound firms distribution with respect to firm's size. 

INSERT TABLE 6 

INSERT TABLE 7 

4. Main results 

 We develop a credit risk model for retail portfolios of loans granted to SME firms. From a 

methodological perspective, according to the nature of data available and methodological research 

results as in Crouchy, Galai and Mark (2001), a logit regression is used. The estimation procedure is 

applied to all 3900 firms in the sample. We implement a stepwise variable selection process, based on a 

likelihood-ratio test and 20 significant explanatory variables are selected out of about 50 ratios 

proxying for profitability, liquidity, financial structure, size and geographical location of the 

enterprises. 
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 Descriptive statistics and the correlation matrix between regressors are shown in Tables 8 and 9, 

while Table 10 reports our main econometric results under logit regression. We first describe results for 

all the right-hand variables excluding quality variable on bank-firm relationship and then move to 

comment on this topic. 

INSERT TABLE 8 

INSERT TABLE 9 

INSERT TABLE 10 

 The economic theory predicts that the firm will experience increasing difficulties to repay the 

debt the higher is the level of total debts or the higher is the proportion of short term debt with respect 

to total debt: the more indebted the firm, the higher will be the cost of credit, and the lower firm's 

profit, other things equal, and the lower will be the ability of the firm to repay a given debt. We include 

as explanatory variables in the logit regression total debt level of the firm (TD/TA) and the ratio of 

short term debt versus total debts (SD/TD), as proxies of the financial structure. TD/TA and SD/TD 

have a positive and significant impact on PD, i.e. the higher total debts, the higher PDs and the higher 

short term debt proportionally to total debts, the higher PD. 

 Also liquidity affects the probability of default: the higher cash flows (or other measures of 

liquidity), the less likely the firm will be in a situation of financial distress that prevents from repaying 

the debt, i.e. the higher cash flows, the lower is the probability that the firm runs out of cash in the short 

term and therefore the lower the probability to go bankrupt. In our estimates, all explanatory variables 

measuring liquidity (NSF/TA and CF/TA) enter with a negative sign, coherent with economic 

theoretical predictions, except for net self-financing flow. The regressor NSF/TA is rather puzzling: the 

variable has a positive significant effect on PD. However, at a deeper level of analysis, more than one 

third of firms in the sample have negative net self-financing flow, which means that the entrepreneur 

distracts financial funds from the firm; this phenomenon may occur more likely in small family 
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business in a situation of financial distress: the entrepreneur may sell a firm's asset, as the car, in order 

to distract funds from creditors in this case. We control for positive levels of net self-financing flow by 

introducing the dummy variable NSF_P, which takes value 1 in case net self-financing flow is positive. 

It turns out that the dummy variable is highly significant, with negative sign, as expected. 

 Moving to the regressors varying with individual firm's profitability, we expect that the higher 

is firm's profitability, as the earning ratios, the higher is the ability of the firm to attract new 

investments and generate liquidity to repay debts, and the less likely the firm will default. As expected, 

ROI is highly significant and negatively correlated with PD, i.e. the higher is the profitability of an 

investment, the lower is the probability of default of the firm, all other things equal. Analogous result is 

established for EBIDTA/TA. The return on equity (ROE) has no statistically significant effect on PD, 

contrary to the result established in Altman and Sabato (2004). This result is probably due to low 

weight of the equities for very small firms. 

 The PD appears to be inversely correlated with firm's size; in other terms, the smaller the 

obligor the greater its probability of default. In this study, firm's size is measured both in terms of 

number of workers (NW) and in terms of volume of sales (S/TA). For Italian data, the size assumption 

made by the banking industry and by Basel Committee is confirmed. Saurina and Trucharte (2004) 

obtained a similar result for Spanish economy measuring the size of the obligor by its volume of sales; 

it is worth to note, however, that this result emerges at the aggregate level, using default information 

contained in the Spanish Credit Register and for the banking system as a whole and not for a 

homogenous retail portfolio of a commercial bank. Additionally, we insert the dummy variable XS for 

firms with a turnover under 250,000 euro, which has a positive significant sign at 5% level. This 

implies that firms with very small sales have a higher probability of default, all other things equal; this 

result adds further evidence confirming the negative relation between PD and firm's size. 
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 Firms are more likely to default when they are limited liability companies (SRL) or limited 

liability cooperative organisations (SCRL). Firms which choose this juridical structure are, 

unsurprisingly, small business run by families or entrepreneurs beginning a new business. 

Firm’s age contributes in a significant way to predict PDs: the older is the firm, the higher its 

probability of default. The result can be explained in the light of cycle life theory, according to which a 

firm with a longer history of business has a lower capability to innovate and be competitive on the 

market, and therefore it is closer to the decision to shut down. 

 We insert sectorial dummies: manufacturing and transportation sectors are riskier, other things 

equal. We check also whether regional location of a firm exerts a different effect in the prediction of 

PD for different sectors of activity: manufacturing and building sectors have a lower PD in Northern 

Italy, while services are less risky in Southern Italy. The last result can be surprising at first sight: it 

may reflect a higher relative efficiency of service sector with respect to the other productive sectors in 

Southern Italy or, rather a lower competitive pressure on service sector. 

 Even if the data set offers detailed information regarding balance sheets and financial variables, 

the qualitative variable BFR still plays an important role in predicting the probability of default. The 

quality of the relationship is measured by the duration of bank-firm relationship, which captures 

whether the quality of business relation between bank and firm goes on after a default. The variable 

contributes in a significant and negative way to explain PD according to Table 10: the longer is the 

relationship between the bank and a specific firm, the lower is firm's PD. In this case the bank relies on 

a longer history of observations of the firm and is better able to evaluate firm's financial situation and 

solvency perspectives and to discriminate whether the firm is experiencing only a temporary situation 

of financial distress or a more permanent crisis. In fact, if the bank continues to offer financing to the 

firm, she believes that the firm has concrete opportunities to repay the debt, according to the evolution 

of its financial situation. The role of bank-firm relationship is especially interesting in the light of the 
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definition of default, which includes delays in repayments of loan even for a period of less than 90 

days. 

 The estimates of PD are used to aggregate sample firms on a scale of 13 PD segments, each 

corresponding to a range of probability of default; the number of segments is chosen to assure a 

satisfactory differentiation among classes and a low degree of concentration in terms of both numbers 

of firms represented and amounts. From the inspection of Table 11, we find that the average estimated 

PD is higher with respect to standard models, but this is not surprising given the definition of the event 

default. Even if a comparison with usual rating classes is not possible, we believe that results in table 

11 show that the estimated model allows to predict future situation of stress. However, because we 

cannot disentangle from default definition events as delayed loan repayments, we are not able to 

evaluate the marginal contribution of this information to the overall estimate of PD. 

INSERT TABLE 11 

 The estimation performed in this exercise has only annual validity, but does not represent an 

average for a period constituted by many years; this is true even in the light of the difficulty to have 

good quality information on the past for a so wide data set. The estimated PDs contain predictive 

elements only in the way past helps to explain future behaviours. On the other side, banks have 

prospective information on firms' situation and on competitive environment and can modify the 

estimates in a coherent way on the basis of quantitative methodology. As shown in Table 11, the 

estimated average PD appears higher with respect to other studies on Italian firms; this is due to the 

definition of "default" used and shows that the credit risk model estimated is suitable to assign an early 

score to firms in a situation in financial distress, that may or may not lead to non performing loans as 

defined in Basel II Accord. 

 The overall performance is also assessed using the power curve, considering the results of the 

model in the year of estimation. This curve measures the discriminatory power of the function; that is, 
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the overall ability of the model to distinguish sound from insolvent firms. A related measure is the 

accuracy ratio, the ratio of the area between the power curve and the random model to the area between 

a perfect model and the random model. The model produced an accuracy ratio of 84.58% for year 

2005, quite a good value with respect to standard point of system. The value of accuracy ratios 

mentioned in studies regarding Italy and other countries normally ranges between 50 and 70%; for 

example, in Fabi et (2005) the accuracy ratio is estimated to be around 65% or 74% in Cannata et 

(2004). 

 

INSERT FIGURE 1 ABOUT HERE 

 

4.1 Robustness analysis 

 We check for robustness in several directions. First, we consider restricted versions of the 

model, where we specify three alternative estimation equations; in each specification we consider a 

subset of explanatory variables, in one we limit our attention to either economic performance ratios 

variables or liquidity variables or debt structure variables. We perform likelihood ratio tests on 

restricted models and in all three cases we reject the null hypothesis that the omitted variables in the 

general model (estimated according to Table 10) have no impact on PDs. 

 Second, the model is robust to an alternative specification of the explanatory variables in levels, 

instead of ratios. Results are not vulnerable to the different specification: all the signs of explanatory 

variables are confirmed, except for NSF/TA that loses significance. Moreover, we do not experience 

any loss in the predictive power of the overall model. 

INSERT TABLE 12 

 Third, the model is robust to alternative specifications of the underlying statistical model. Table 

13 reports statistical significance of explanatory variables for a similar probit specification. As shown 
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in Table 13, previous results are robust to an alternative specification of statistical model, including 

performance measured in terms of accuracy ratio. 

INSERT TABLE 13 

 The model is robust to heteroskedacity of errors in the logit and probit specification, as shown 

in the following tables: 

INSERT TABLE 14 

INSERT TABLE 15 

The model is robust to probit estimation, when we control for heteroskedastic variance in the form 

Var(ɛ)=exp(γ′z) 

The model is robust to the inclusion in error variance of clusters of explanatory variables, in particular 

we include subset of variables measuring liquidity or economic performance and all results in Table 10 

are confirmed. 

 

4.2 Alternative specification 

 In previous section a logit model is developed and estimated on the overall dataset. In this 

section, we check for robustness in terms of prediction errors, by examining the model specification on 

various subsamples. Because of richness of dataset we aim to show whether the overall model captures 

more specific characteristics of some subsample. We consider three main characteristics observable at 

firm's level: the economic sector, the legal form and the geographical location. 

 First, we estimate a separate regression model for each of the following four economic 

sectors13: construction, commerce, services14 and manufacturing. A stepwise procedure is run 

conditionally on economic sectors, in order to select significant explanatory variables. 

INSERT TABLE 16 
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 From inspection of table 16, a subset of explanatory variables in Table 10 constitutes the main 

building block which has explanatory power across economic sectors. Four main variables turn out to 

be crucial in order to assess credit riskiness: AGE as a proxy of individual characteristics of the firm, 

TD/TA and S/TA as financial economic variables, and BFR as a qualitative variable. The results are 

quite unsatisfactory for construction, probably because of the bad quality data of the sector, a common 

problem in empirical literature. Restricting our attention in manufacturing, commerce and service 

sectors, the main results in Table 10 are relatively stable across economic sectors. However, the 

submodels produce quite a good accuracy ratio, ranging from 82.66% for manufacturing to 87.24% for 

commerce. Despite unsatisfactory results, the accuracy ratio is 83% for building sector. 

 Second, we control for geographical location: the estimation procedure is applied to all firms in 

the sample divided into three main geographical areas: Northern Italy, Central Italy and Southern Italy. 

We create a dummy variable indicating whether the firm is located in Northern15, Central or Southern 

Italy and a separate logit regression model is estimated for each area. Results are reported in Table 17. 

INSERT TABLE 17 

 Parameters of the model are quite stable in Northern and Central Italy, confirming main results 

shown in Table 10. The model is instead relatively unstable for Southern Italy, a problem commonly 

experienced in empirical works on Southern Italy. A good estimation performance is confirmed even 

for geographical submodels, that produce an accuracy ratio equal to 80.39% in the North, 87.58% in 

Central Italy and 91% in the South. 

 Regarding legal form of firm, we limit our attention to firms in the form of limited liability 

company (SRL) and limited liability cooperative society (SCRL), that constitute 98% of the sample. 

We run a logit regression conditional on being either a limited liability company or a limited liability 

cooperative society. 

INSERT TABLE 18 
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 We provide a comparative analysis of credit risk associated with loans granted either to no 

profit or for profit SME firms. This analysis constitutes a useful starting point for credit  risk 

assessment for cooperative firms on Italian market and becomes particularly important in the light of 

the recent possibility granted to no profit firms to raise financial funds on capital markets under certain 

conditions. As it can be noted, cooperative firms located in Central Italy appears to be less risky than 

the ones located in Northern and Southern Italy; in Central Italy the cooperative movement is more 

deeply rooted in the economic system and appears to have a competitive advantage in terms of higher 

financial stability. Accuracy ratio is 97.5% for limited liability cooperative association, albeit the quite 

low number of defaults reduces the reliability of this result. 

 

5. Conclusions 

 According to Basel II Accord, the trend in retail credit decision making is strongly toward 

increased reliance on econometric models of credit risk measurement. Retail lending has gradually 

shifted from relationship lending to transactional (portfolio-based) lending. One problem with 

transactional lending is that if all banks use the same or similar models, certain borrowers may be 

rationed out of the market with a higher probability than with relationship lending. Moreover, model 

risk may cause increased correlations in bank returns, engendering cyclical fluctuations in the financial 

condition of the banking sector, with potentially macroeconomic consequences. 

 A great heterogeneity appears to be on credit risk modelling: no standard model emerge from 

literature, while several proposals use different parametric, semiparametric and non parametric models, 

stressing on both explicative and predictive capabilities. We estimated a credit risk model to assign an 

early score to firms going through a situation of financial distress. 

 In this setting, several financial ratios have a significant effect on PD: sales, EBIDTA and ROI 

affect negatively PD; on the contrary, proxies for financial structure and debt level affect PD positively. 
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Size matters also within the retail segment: smaller firms in the SMEs sectors have a higher credit risk, 

all other things equal. Moreover, the legal form has a significant effect on PD: limited liability and 

cooperative limited liability firms are riskier, other things equal. Finally, sector and geographical 

location matter. 
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Appendix 
 
 
 

Table 1: Sample distribution of sales 
 

Sales (in thousands of 
euros) 

Percentual 
Frequency 

<=250 25.54 
251-500 18.94 

501-1,000 22.05 
1,000-5,000 32.11 

5,001-10,000 1.36 
 
 

Table 2: Sample distribution of number of workers per firm 
 
 

Number of workers Percentual 
Frequency 

0-3 95.33 
4-10 1.69 

10-20 1.57 
>20 1.41 

 
 

Table 3: Sample distribution of legal form 
 
 

Legal form Percentual 
Frequency 

SPA  1.98 
SCRL 7.47 
SRL 90.55

 
 

Table 4: Sample distribution of geographical location of firms 
 
 

Regions Percentual 
Frequency 

NORTH 29.18 
NORTH EAST 22.41 
NORTH WEST 12.22 

CENTER 23.31 
SOUTH 12.89 
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Table 5: Sample distribution of sectors of activity 
 
 

Sectors Percentual 
Frequency 

OTHER SECTORS 0.69 
AGRICULTURE 1.59 

TRANSPORTATION 5.13 
CONSTRUCTION 9.27 

SERVICES 23.23 
COMMERCE 28.88 

MANUFACTURE 31.21 
 
 

Table 6: Sample distribution of the event stress across regions 
 
 

Region /stress 0 1 Total 
NORTH 1,042 95 1,137 

NORTH EAST 811 62 873 
NORTH WEST 435 41 476 

CENTER 818 90 908 
SOUTH 454 48 502 

Total 3,560 336 3,896 
 
 

Table 7: Sample distribution of the event stress across firm’s size 
 
 

Sale (in thousands of 
euro) / stress 

0 1 Total 

<=250 887 108 995 
251-500 662 76 738 
501-100 804 55 859 

1,001-5,000 1,159 92 1,251 
5,001-10,000 48 5 53 

Total 3,560 336 3,896 
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Table 8: Variable description and descriptive statistics 
The table shows the descriptive statistics for variables used in the regression for each .  
Bank-firm relationship: BFR takes value 1 if the bank has a high quality lending relationship for one 
year and 2 for at least two years. 
Firm specific characteristics: AGE measures firm’s months of activity, classified into 5 classes: 
class 1: <23 months 
class 2: 24-71 
class 3: 72-143 
class 4: 144-288 
class 5: >288 
NW measures number of workers hired by a firm, classified into 4 classes: 
class 1: 0-3 workers 
class 2: 4-10 
class 3: 11-20 
class 4: >20 
Debt structure: SD/TD is measured by the ratio between short-term debt and total debt. TD/TA is the 
normalised total debt level with respect to total asset value. 
Liquidity: NSF/TA is the ratio of the flow of net self financing (owned as reserve by a firm) and total 
asset value. CF/TA is the ratio of cash flows and total asset value. S/TA is the ratio of annual sale 
volume and total asset value. XS is a dummy variable that takes value 1 if firm’s annual sale volume is 
less than 250,000 euro and 0 otherwise. S is a dummy variable that takes value 1 if firm’s annual sale 
volume is less than 500,000 euro. 
Economic performance: EBIDTA/TA measures the ratio of EBIDTA and total asset value. ROI is the 
measure of the return on investment, according to standard definition. 
North is a dummy variable that takes value 1 if the firm is located in a region in Northern Italy and 0 
otherwise. South is a dummy variable that takes value 1 if the firm is located in a region in South Italy 
and 0 otherwise. 
Transport is a dummy variable that takes value 1 if the firm operates in the transportation sector and 0 
otherwise. Service is a dummy variable that takes value 1 if the firm operates in the service sector and 0 
otherwise. Manufacture is a dummy variable that takes value 1 if the firm operates in the 
manufacturing sector and 0 otherwise. 
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Regressors Mean Standard deviation Minimum Maximum 
BFR 1.761 0.427 1 2 
AGE 2.601 1.246 1 5 
NW 1.090 0.444 1 4 
SD/TD 0.813 0.205 0 1 
TD/TA 0.908 0.628 0 1 
NSF/ TA 0.004 0.412 -13.957 9.667 

 
 

NSF_P 0 .485 0.499 0 1 
CF/TA 0 .031 0.451 -13.957 14.667 

 
S/TA 2.152 2.595 0.0133 62.5 
 
XS 

0.256 0.436 0 1 

S 0.189 0.391 0 1 
EBIDTA/ 
TA 

0.087 0.475 -13.587 15.333 
 

ROI     
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Table 9: Correlation matrix among regressors 
 

           
 BFR AGE NW SD/TD TD/TA NSF/TA NSP_

P 
CF/TA S/TA XS S EBIDTA

/TA 
ROI 

BFR 1.0000             
AGE 0.0692 1.000            
NW -0.0010 0.080 1.0000           
SD/TD -0.0636 -0.019 -0.0068 1.0000          
TD/TA -0.1398 -0.021 -0.0304 0.0145 1.0000         
NSF/ 
TA 

0.0959 0.020 0.0124 -0.0201  -0.574 1.0000        

NSF_P 0.0660 0.023 0.0613   -0.0165 -0.112 0.2317 1.0000       
CF/TA 0.0951 0.008 0.0083   -0.0180 -0.511 0.8179 0.1478 1.0000      
S/TA -0.0486 -0.057 -0.0308   0.1285 0.1668 -0.0008 -

0.0404 
0.0100 1.0000     

 
XS 

-0.0700 -0.104 -0.1182   -0.0631 0.0796 -0.0492 -
0.1266  

-
0.0581

-0.0675 1.0000    

S -0.0145 -0.039 -0.0888   0.0084 -0.006   -0.0046 -
0.0350 

-
0.0014

-0.1116 -0.282 1.0000   

EBIDT
A/TA 

0.1073 -0.017 -0.0065   0.0110 -0.421 0.6908  0.1138 0.7324 0.0428 -0.068 0.0041 1.0000  

ROI 0.0438 -0.005  0.0859   -0.0003 -0.071 0.0732 0.2208 0.0975 -0.0281 -0.146 -0.0351 0.0734 1.000 
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Table 10: Credit Risk Model for Italian SMEs under Logit Specification 
 

Dependent variable: stress Coefficient 
(standard error) 

Elasticity 
(standard error) 

BFR -2.362*** 
(0.137) 

-3.991*** 
(0.242)   

AGE 0.379*** 
(0.059) 

0.947*** 
(0.148)     

NW -.583*** 
(0.209) 

-0.609*** 
(0.218) 

SD/TD 0.867** 
(0.351) 

0.676** 
(0.274) 

TD/TA 0.376*** 
(0.104) 

0.328*** 
(0.091) 

NSF/ TA 1.370*** 
(0.372) 

0.005*** 
(0.001) 

NSF_P -0.418*** 
(0.143) 

-0.194*** 
(0.066)  

CF/ TA -0.927** 
(0.389) 

-0.027** 
(0.011) 

CF-1/TA 0.618* 
(0.360) 

0.009* 
(0.005) 

S/ TA  -0.136*** 
(0.044) 

-0.280*** 
(0.090) 

XS 0.290* 
(0.177) 

0.071* 
(0.043) 

S 0.364** 
(0.184) 

0.066** 
(0.033) 

EBITDA/TA -0.482** 
(0.205) 

-0.040** 
(0.017) 

ROI -0.0006*** 
(0.0002) 

-0.301*** 
(0.116) 

SRL 1.494** 
(0.647) 

1.298** 
(0.562) 

SCRL 1.332* 
(0.701) 

0.095* 
(0.050) 

Transport 0.455* 
(0.265) 

0.022* 
(0.0131) 

Manufacture 0.528*** 
(0.153) 

0.158*** 
(0.046) 

Manufacture*North -0.507** 
(0.238) 

-0.046** 
(0.022) 

Construction*North -1.030* 
(0.546) 

0.028* 
(0.015) 

Service*South -2.069* 
(1.041) 

-0.043** 
(0.022) 

Constant -1.355* 
(0.808) 

 

Log-likelihood -851.88671 
Pseudo R2 25.53% 
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Number of observations 3,890 
Area under ROC 84.52% 

Notes:  
*** indicates significance at 1% level  
**   indicates significance at 5%  
*     indicates significance at 10% 
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Table 11: Firm Distribution across risk class 
 
 

Risk Class Average Class 
Default 

Probability 

Number of 
stress==1 

Number of 
stress==0 

Number of firms 
per class 

1 0.0075 0 300 300 
2 0.0114 3 296 299 
3 0.0154 5 294 299 
4 0.0197 7 292 299 
5 0.0245 6 294 300 
6 0.0305 14 285 299 
7 0.0378 11 288 299 
8 0.0471 12 287 299 
9 0.0623 9 291 300 

10 0.0940 19 280 299 
11 0.1721 26 273 299 
12 0.3091 77 222 299 
13 0.9505 147 152 299 
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Table 12: Comparison Credit Risk Models in Ratio and in Levels 

 
Dependent variable: stress Model in ratios (normalised 

wrt TA) 
Model in levels 

BFR + *** + *** 
AGE + *** + *** 
NW -  *** -  *** 
TA  + *** 

SD/TD + *** + *** 
TD/TA + *** + *** 
NSF/TA + *** + 
NSF_P -  * - 
CF/A -  *** -  *** 
S/A - *** -  *** 
XS +** + 

EBITDA/TA -  ** -  ** 
ROI -  *** -  *** 
ROE - - 
SRL +** + ** 

SCRL +* + * 
 

Notes:  
*** indicates significance at 1% level  
**  indicates significance at 5%  
* indicates significance at 10%  
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Table 13: Credit Risk Model for Italian SMEs under Probit Specification 

 
  Dependent variable: 
stress 

Coefficient 
(robust standard error) 

Elasticity 
(robust standard error)

BFR -1.200*** 
(0.069) 

-4.495*** 
(0.303) 

AGE 0.190*** 
(0.031) 

1.052*** 
(0.178)     

NW -0.268*** 
(0.102) 

-0.623*** 
(0.237) 

SD/DT 0.565*** 
(0.178) 

0.976*** 
(0.310) 

TD/TA 0.211*** 
(0.053) 

0.408*** 
(0.104) 

NSF/ TA 0.748*** 
(0.202) 

0.006*** 
(0.002) 

NSF_P -0.225*** 
(0.073) 

-0.232*** 
(0.076)  

CF/ TA -0.498** 
(0.215) 

-0.032** 
(0.014) 

CF-1/TA 0.342* 
(0.198) 

0.011* 
(0.007) 

S/ TA        -0.070***  
(0.021) 

-0.318*** 
(0.098) 

XS 0.155* 
(0.091) 

0.084* 
(0.049) 

S 0.194** 
(0.095) 

0.078** 
(0.038) 

EBITDA/ TA -0.289*** 
(0.111) 

-0.053** 
(0.021) 

ROI -0.0003*** 
(0.0001) 

-0.372*** 
(0.133) 

SRL 0.747** 
(0.312) 

1.438** 
(0.603) 

SCRL 0.654* 
(0.341) 

0.103* 
(0.054) 

Transport 0.276* 
(0.080) 

0.027* 
(0.015) 

Manufacture 0.276*** 
(0.140) 

0.183*** 
(0.054) 

Manufacture*North -0.228* 
(0.122) 

-0.046* 
(0.025) 

Construction*North -0.476* 
(0.258) 

0.028* 
(0.015) 

Service*South -1.049** 
(0.484) 

-0.049** 
(0.023) 

Constant -0.917** 
(0.400)

 

Log-likelihood -852.81166 
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Pseudo R2 25.45% 
Number of observations 3,890 
Area under ROC 84.61% 

Notes:  
*** indicates significance at 1% level  
**  indicates significance at 5%  
* indicates significance at 10%  

 
Table 14: Goodness of fit in case of heteroskedastik errors 

 
Goodness of fit (logit version) – controlling for 

error heteroskedasticity 
 

Log likelihood -851.88671 
Wald Chi 2 (22) 407.1 

Prob>chi2 0.000 
Pseudo R2 25.5% 
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Table 15: Credit Risk Model for Italian SMEs under Logit Specification and Robust standard 
errors 

  Dependent variable: 
stress 

Coefficient 
(robust standard error) 

Elasticità 
(robust standard error)

BFR -2.354*** 
(0.142) 

-3.979*** 
(0.249)   

AGE 0.376*** 
(0.049) 

0.940*** 
(0.123)     

NW -0.551*** 
(0.223) 

-0.576*** 
(0.234) 

SD/TD 1.173** 
(0.362) 

0.915** 
(0.282) 

TD/TA 0.381*** 
(0.136) 

0.332*** 
(0.119) 

NSF/ TA 1.371*** 
(0.336) 

0.005*** 
(0.001) 

NSF_P -0.423*** 
(0.141) 

-0.197*** 
(0.065)  

CF/ TA -0.924** 
(0.349) 

-0.027** 
(0.010) 

CF-1/TA 0.618* 
(0.329) 

0.009* 
(0.005) 

S/ TA        -0.136***  
(0.041) 

-0.280*** 
(0.084) 

XS 0.274* 
(0.165) 

0.067* 
(0.040) 

S 0.356** 
(0.173) 

0.065** 
(0.031) 

EBITDA/ TA -0.482** 
(0.214) 

-0.040** 
(0.018) 

ROI -0.0006*** 
(0.0002) 

-0.306*** 
(0.111) 

SRL 1.490** 
(0.681) 

1.295** 
(0.592) 

SCRL 1.335* 
(0.734) 

0.095* 
(0.052) 

Transport 0.460* 
(0.278) 

0.023* 
(0.014) 

Manufacture 0.530*** 
(0.152) 

0.159*** 
(0.046) 

Manufacture*North -0.500** 
(0.251) 

-0.046** 
(0.023) 

Construction*North -1.000* 
(0.529) 

0.027* 
(0.014) 

Service*South -2.051* 
(1.036) 

-0.043** 
(0.022) 

Constant -1.634* 
(0.838) 

 

Log-likelihood -850.66963 
Wald Chi 2 (22) 584.0 
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Prob>chi2 0.000 
Pseudo R2 25.64% 
Number of observations 3,890 
Area under ROC 84.52% 

Notes:  
*** indicates significance at 1% level  
**   indicates significance at 5%  
*     indicates significance at 10%. 
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Table 16: Comparison of Credit Risk Model for Italian firms conditional on Economic Sectors  
under Logit Specification 

Dependent 
variable: stress 

 
MANUFACTURE 

 
COMMERCE 

 
CONSTRUCTION 

 
SERVICE 

BFR -2.307*** 
(0 .225) 

-3.001*** 
(0.311) 

-2.48*** 
(0.566) 

-2.129*** 
(0.262) 

AGE 0 .391*** 
(0 .089) 

0.572*** 
(0.115) 

0.448** 
(0.229) 

0.486***(0 
.115) 

NW -0.675 
(1.312) 

-11.730*** 
(0.531) 

 -17.177*** 
(0.495) 

SD/TD 0 .296 
(0 .587) 

1.672** 
(0.756) 

0.614** 
(1.366) 

1.401** 
(0.692) 

TD/ TA 0 .980*** 
(0.304) 

0.504** 
(0.198) 

4.490** 
(2.059) 

0.343** 
(0.169) 

NSF/ TA 2.389 *** 
(0 .791) 

2.057*** 
(0.771) 

5.968 
(4.584) 

0.399 
(0.711) 

NSF_P -0.411* 
(0 .236) 

-0.592** 
(0.293) 

-0.050 
(0.604) 

-0.168 
(0.284) 

CF/ TA -2.075*** 
(0 .852) 

1.151 
(0.930) 

-1.978 
(5.781) 

-1.676* 
(0.953) 

CF-1/TA 1.775 
(1.1521) 

-0.194 
(0.660) 

0.874 
(5.519) 

1.607* 
(0.918) 

S/ TA -0.214** 
(0.093) 

-0.290*** 
(0.092) 

-0.141 
(0.176) 

-0.140* 
(0.073) 

XS -0.664 
(3.059) 

-22.431*** 
(0.920) 

 -35.215*** 
(0.714) 

S -0.472 
(2.071) 

-11.127*** 
(1.430) 

 -17.302*** 
(1.253) 

EBITDA/ TA -0.002 
(0.548) 

-3.336*** 
(0.676) 

-0.778 
(1.347) 

0.444 
(0.313) 

ROI -0.0004 
(0.0003) 

-0.001** 
(0.0005) 

0.00003 
(0.0007) 

-0.0005 
(0.0005) 

SRL 0.289 
(1.125) 

0.982 
(0.922) 

 21.607*** 
(0.375) 

SCRL -0.153 
(1.304) 

0.558 
(1.245) 

 21.69063 

North -0.487** 
(0.249) 

0.617** 
(0.308) 

-1.622** 
(0.698) 

0.159 
(0.271) 

South 0.036 
(0.299) 

0.271 
(0.376) 

-1.074 
(1.097) 

-0.697 
(0.517) 

Constant 1.299 
(4.779) 

33.028 3.838 
(2.359) 

29.51603 

Log-likelihood -318.531 -204.733 -56.166 -229.135 
Pseudo R2 23.72% 37.09% 35.56% 20.86% 
Number of 
observations 

1,215 1,122 313 1,104 

Area under ROC 82.92% 90.18% 86.19% 81.82% 
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Notes: 
*** indicates significance level at 1% 
**   indicates significance level at 5% 
*     indicates significance level at10% 
 
Table 17: A cross regional comparison for Credit Risk Model for Italian SMEs firms under Logit 

Specification 
 

Dependent variable: 
stress 

NORTH CENTRE SOUTH 

BFR -1.985*** 
(0.170)  

-2.985*** 
(0.321)  

-3.591*** 
(0.513)               

AGE 0.455*** 
(0.068) 

0.272** 
(0.117) 

0.770*** 
(0.215) 

NW 0.599 
(1.339) 

-20.808*** 
(0.529) 

-16.681*** 
(0.689) 

SD/TD 0.783* 
(0.422) 

2.715*** 
(0.886) 

0.837 
(1.004) 

TD/TA 0.548*** 
(0.140) 

-0.012 
(0.210) 

0.563 
(0.420) 

NSF/TA 1.512*** 
(0.483) 

1.868* 
(1.103)    

3.110 
(2.110)   

NSF_P -0.381** 
(0.179) 

-0.396 
(0.298) 

-0.516 
(0.443) 

CF/ TA -0.811 
(0.601) 

-1.575 
(1.108) 

-4.142 
(2.821) 

CF-1/ TA 0.679 
(0.539)        

-0.175 
(0.672) 

4.461 
(2.816) 

S/TA -0.236*** 
(0.061) 

-0.143* 
(0.080) 

-0.124 
(0.130) 

XS 2.614 
(3.218) 

-43.415*** 
(0.955)   

-32.806*** 
(1.028) 

S 1.965 
(2.004) 

  

EBITDA/TA -0.672** 
(0.298) 

-0.606 
(0.410) 

  0.816 
(1.565) 

ROI -0.0006** 
(0.0003) 

-0.0003 
(0.0005) 

-0.0007 
(0.0007) 

SRL 0.385 
(0.660) 

24.763*** 
(0.790) 

21.075 
(0.734) 

SCRL 0.103 
(0.738) 

24.063   21.75088 

Manufacture 0.332* 
(0.197) 

0.554* 
(0.297)  

0.650 
(0.432) 

Transportation 0.540 
(0.352) 

1.007* 
(0.597) 

0.176 
(0.743) 

Service 0.235 
(0.216) 

-0.416 
(0.506) 

-2.426 
(1.276) 

Constant -4.468 
(4.685) 

39.04709 28.48124 
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Log-likelihood -555.177 -188.6558 -89.1796 
Pseudo R2 19.61% 35.40% 43.41% 
Number of observations 2483 895 495 
Area under ROC 81.24% 88.38% 93.01% 

   
    

Notes: 
*** indicates significance level at 1% 
**   indicates significance level at 5% 
*     indicates significance level at 10% 
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Table 18: Comparison of Credit Risk Model for Italian SCRL and SRL firms under Logit 
Specification 

Dependent variable: 
Stress 

SCRL SRL 

 Coefficient 
(standard 

error) 

Elasticity 
(standard error) 

Coefficient 
(standard 

error) 

Elasticity 
(standard 

error) 
BFR -4.474*** 

(1.349) 
-7.988 
(2.410) 

-2.418*** 
(0.142)  

-4.072 
(0.251) 

AGE         0.607* 
(0.391) 

        1.460 
(0.940) 

        0.463*** 
(0.057) 

1.156 
(0.143) 

NW       -1.427 * 
(0.930) 

      1.630 
(1.062) 

      -0.611 *** 
(1.200) 

-0.627 
(1.231) 

SD/TD     -3.344* 
(2.057) 

    -2.641 
(1.625) 

    1.047*** 
(0.364) 

0.817 
(0.285) 

TD/TA      5.463*** 
(1.553) 

     5.228 
(1.487) 

     0.329*** 
(0.102) 

0.285 
(0.089) 

NSF/ TA    8.929 *** 
(3.355) 

   -0.218 
(0.082) 

   1.429 *** 
(0.425) 

   0.005 
(0.001) 

NSF_P -4.072*** 
(1.674) 

-1.733 
(0.712)

-0.351*** 
(0.145) 

-0.164 
(0.068)

CF/ TA -0.134 
(0.634) 

0.003 
(-0.013) 

-1.117** 
(0.480) 

-0.033 
(0.014) 

CF-1/TA -0.261   
(3.648) 

0.006  
(-0.089) 

0.419 
(0.433) 

0.008 
(0.008) 

S/ TA -1.597*** 
(0.491) 

-4.782 
(1.471) 

-0.184*** 
(0.045) 

-0.367 
(0.090) 

XS 4.022 *** 
(1.494) 

1.049 
(0.362) 

-0.438  
(2.708) 

-0.402 
(2.483) 

S 5.226*** 
(1.804) 

-0.03 
(0.674)

0.096 
(1.636)

0.002 
(0.026)

EBITDA/TA -0.279 
(1.731) 

-0.004 
(0.028) 

-0.460** 
(0.227) 

-0.039 
(0.019) 

ROI -0.00005 
 (0.001) 

-0.716 
 (0.309)

-0.0005*** 
(0.0002) 

-0.301 
 (0.119)

North -2.687 ** 
(1.162) 

0.716 
(0.309) 

-0.227 
(0.153) 

-0.064 
(0.043) 

South 4.950*** 
(1.614) 

0.704 
(0.229) 

-0.157 
(0.202) 

-0.019 
(0.025) 

Transport 7.810** 
(2.331) 

0.919 
(0.274) 

0.377** 
(0.294) 

0.017 
(0.013) 

Services 2.697 *** 
(1.355) 

1.185 
(0.596)

-.022 
   (0.196)

-0.004 
(0.040)

Manufacture 2.084 *** 
(1.588) 

0.274 
(0.209) 

0.411 *** 
(0.152) 

0.129 
(0.048) 

Constant -6.497** 
(3.298) 

 0.782 
(3.924)

 

Log-likelihood -26.1191 -799.418 
Pseudo R2 61.25% 24.65% 

Number of observations 389 3522 



 39

Area under ROC 97.74% 83.79% 
     
Notes: 
*** indicates significance level at 1% 
**   indicates significance level at 5% 
*     indicates significance level at 10% 
 
 
 
                                                 
1 Altman and Sabato (2004) do not find any evidence about statistical significance of earning performance ratios. 
 
2 It is probably worth to remember that the Basel II accord can be implemented under several variants: the Foundation 
Approach (F-IRB), with a fixed Loss Given Default (LGD), and the Advanced approach, where the LGD is estimated as the 
risk parameters. 
3 The z-score itself can be converted into a PD. 
 
4 There are four methodological forms of multivariate credit scoring models: (1) the linear probability model, (2) the logit 
model, (3) the probit model, and (4) the multiple discriminant analysis model. 
 
5 See Barniv and McDonald (1999), who pointed out that 178 articles in accounting and finance journal in the period 1989-
1996 applied a logit model for scoring purposes. 
 
6 See Allen, De Long, Saunders (2004) for a detailed review on credit risk measurement 
 
7 See Baetge et all.(1988) Von Stein and Ziegler (1984) for studies on Germany. See Marais (1979), Earl and Marais (1982) 
for studies on England and Fernandez (1988) on Spain. 
 
8 See Altman, Marco and Varetto (1994) for an early application of Altman model on Italian data. 
9 According to Basel II Accord, a firm is classified as a corporate SME in case of annual sales between 5 and 50 million 
euro and a bank exposure above 1 million euro and as a retail SME in case of annual sales below 5 million euro and bank 
exposure less than 1 million euro. 
 
10 This distinction has significance for the calculation of capital requirements, since Retail SMEs are eligible for the 
application of a different, and more favourable weighting schedule given that requirements specified by Basel Committee 
are met. See BCBS for detailed references. 
 
11 In Italy the main legal forms adopted for the constitution of a firm are Società per Azioni (SPA), Società a Responsabilità 
Limitata (SRL) and Società Cooperativa a Responsabilità Limitata (SCRL). A SPA is a limited liability firm, with a 
minimum social capital of 120,000 euro. A SRL is a limited liability firm, with a minimum social capital of 10,000 euro.  A 
SCRL is a limited liability cooperative firm, with a minimal number of partners equal to 9 and special bounds on the 
maximal percentage of earnings allowed to be distributed among partners. 
12 Among others, Bocchi and Lusignani (2004), Fabi-Laviola and Marullo Reedtz (2003). 
 
13 We limit our attention to these four sectors due to lackness of data: we are not able to estimate a separate model for 
agriculture and other sectors, whose firms constitute around 1% of total firms in the sample. 
 
14 We merge together observations on transportation and services, due to lack of data on defaults for firms active in 
transportation sector (which turned out to be not enough in order to estimate a separate model). 
15 We merge together in only one area, called "North" the North Eastern, North Western and Northern areas. Note that we 
run logit regression conditionally on North Eastern Italy, North Western Italy and Northern Italy separately and we do not 
obtain any statistically significant differences across these areas. 
 
 


