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ABSTRACT

We study the joint movements of the returns on futures for crude oil, heating oil
and natural gas. We model the leptokurtic behavior through the multivariate
GARCH with dynamic conditional correlations and elliptical distributions intro-
duced by Pelagatti and Rondena (2004). Energy futures markets co-vary strongly.
The correlation between the futures prices of natural gas and crude oil has been
rising over the last 5 years. However, this correlation has been low on average over
two thirds of the sample, indicating that futures markets have no established tradi-
tion of pricing natural gas as a function of developments on oil markets.

JEL classification: C22, G19.
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“For decades, natural gas prices (as well as those of gasoline, heating oil, propane,
et cet) have hinged off crude oil. But as more investors pile into an energy market
that no longer holds the crude benchmark sacred, it looks like gas is poised to cut
the cord.”

‘Crude Oil-Natural Gas Price Connection Unraveling?’ in Trader Daily, May 2007

1. Introduction

Energy commodities are widely priced in financial markets through futures on crude oil,

natural gas and heating oil. Although a large amount of research has been devoted to

studying the comovements between energy spot prices, little effort has been dedicated

to the study of the joint movements among the prices of energy futures. Like most

financial assets, energy futures exhibit changes in volatility through time. This feature

makes the use of the GARCH framework of Engle (1982) especially valuable. Assets are

also typically characterized by extreme observations of prices that make the empirical

distribution non-normal. For instance, Bollerslev (1987) shows that the t distribution

performs better in order to capture the higher observed kurtosis of some selected ex-

change rates.

In this paper, we model the conditional correlation between prices of energy futures

traded in the New York Mercantile Exchange. We use the Dynamic Conditional Cor-

relation model — DCC — proposed by Engle (2002). However, since leptokurtosis is a

key feature of the data, we resort to the extension of the DCC proposed by Pelagatti

and Rondena (2004), and focus on elliptically-contoured distribution for the returns.

The results indicate that the correlation over the last 5 years between the the futures

prices of natural gas and crude oil has been rising. However, the correlation has been

weak on average over two thirds of the sample. This suggests that futures markets have

no established tradition of pricing natural gas as a function of the developments on oil

markets.

This paper is organized as follows. Section 2 provides a general overview of mul-

tivariate GARCH models, with a focus on the DCC model. Section 3 discusses the

properties of the dataset and the results. Section 4 proposes some concluding remarks.

2. An overview of multivariate garch models

We model a vector rt of returns on energy futures as

rt = µt + ǫt, (1)

where µt indicates the conditional mean, and ǫt denotes the residuals. Conditioning on

information up to time t − 1, the multivariate model for the second moments takes the
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form:

ǫt = H
1/2
t zt (2)

where Ht has dimension n× n. The conditional mean is usually a function of its lagged

values. For the vector zt, E[zt] = 0 and Var[zt] = I, where I is a suitable identity matrix.

Parametrizing a multivariate GARCH needs to ensure positive-semidefiniteness of

Ht. Bollerslev (1990) proposes to model the conditional covariances as proportional to

the conditional standard deviations, the so-called constant correlation model. Assuming

known constant correlations, the model gives

Ht = VtFVt (3)

Vt = diag(h
1/2
11,t, . . . h

1/2
nn,t) (4)

and F contains the (time-invariant) conditional correlations. Bollerslev (1990) rewrites

each of the conditional variances as:

hii,t = ωiσ
2
it (5)

where ωi is a scalar. It should be noted that positive-definitess of Ht follows from both

F being positive definite, and the conditional variances being all positive. The estimates

of h
1/2
ii,t can be obtained from univariate GARCH-type models. This implies that there

can be heterogeneity in the source of the conditional variances. Given the conditional

variance matrix, one then estimates the constant correlations from the multivariate

model.

Engle (2002) modifies the constant-correlation model by allowing for time-dependent

conditional correlations in the DCC model, where Ht = VtFtVt. The matrix Vt follows

from the recursion

V 2
t = diag(ωi) + diag(νi) ⊗ ǫt−1ǫ

′

t−1 + diag(γi) ⊗ V 2
t−1 (6)

where ⊗ denotes element-by-element multiplication. The expression for the conditional

correlation matrix becomes

Ft = diag(q
−1/2
11,t , . . . q

−1/2
nn,t )Qtdiag(q

−1/2
11,t , . . . q

−1/2
nn,t ). (7)

The matrix Qt is symmetric positive definite

Qt = S ⊗ (11′ − A − B) + A ⊗ ut−1u
′

t−1 + B ⊗ Qt−1, (8)
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and the standardized error ut is

ut = V −1
t ǫt. (9)

It can be proved that the matrix S is equal to the unconditional correlation matrix, and

that it can be estimated from ut. The matrices A and B are often reduced to scalars in

order to limit the number of parameters to be estimated.

When the number of stocks is large, Pelagatti and Rondena (2004) suggest that a

three-step procedure can be employed to estimate the DCC model. First, the set of

parameters {ωi, νi, γi} can be obtained from the maximum-likelihood maximization of

the univariate GARCH models. Estimates of Vt are computed from the recursion 6,

along with the standardized residuals ut. Then, the correlation matrix Ft is estimated

from equation 7. Finally, given Ft and Vt, the likelihood function

L =
T

∑

t=1

[

log(c) −
1

2
log |Ft| − log |Vt| + log

(

g(utF
−1
t u′

t))
)

]

(10)

is maximized to obtain the estimates of A and B. The function g (·) is the density

generator, and refers the distributional assumption on the residuals.

Pelagatti and Rondena (2004) extend the DCC model through fat-tailed elliptically

contoured — or leptokurtic — distributions. They focus on the multivariate Student’s

t distribution

f(ǫt) =
Γ [(θ + ϑ)/2]

[π(θ − 2)]ϑ/2 Γ(θ/2)|Ht|1/2

∣

∣

∣

∣

1 +
ǫ′tH

−1
t ǫt

θ − 2

∣

∣

∣

∣

−(θ+ϑ)/2

, (11)

and on the multivariate Laplace

f(ǫt) =
2

(2π)ϑ/2|Ht|1/2

(

ǫ′tH
−1
t ǫt

2

)θ/2

κv

(

√

2ǫ′tH
−1
t

)

(12)

with a modified Besel function κv.

2.1. Testing for constant conditional correlation

The main advantage of the constant correlation model consists in parsimony, i.e. it in-

volves a lower number of parameters to be estimated than the dynamic correlation model.

However, this aspect should be weighed against the costs of eventual mis-specification.

Engle and Sheppard (2001) propose a test for the constancy of the conditional corre-

lations. They apply the idea underlying the DCC model. Their null and alternative
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hypotheses are

H0 : Ft = F, (13)

H1 : vec[Ft] = vec[F ] + ̟1vec[Ft−1] + . . . ̟mvec[Ft−m]. (14)

This procedure requires defining the auxiliary vector-autoregression

ŵt = ω0 + ω1ŵt−1 + . . . ωmŵt−m (15)

ŵt = vec(l̂t l̂
T
t − In), (16)

where l̂t is a vector of standardized residuals:

l̂t = F̂−1/2V̂ −1
t ǫ̂t. (17)

The null implies that the coefficients ωι of equation 15 equal zero. The test statistics is

asymptotically distributed as a χ2(m − 1).

3. Results

We use daily data on futures prices on light crude oil, natural gas and heating oil traded

in the New York Mercantile Exchange between November 1 1990 and November 22 2005.

The futures are front month. The sample includes 3929 observations. Log-returns are

computed as rt = 100 ∗ log(yt/yt−1), where yt indicates the price.

Figures 1-3 depict the series of returns. The QQ plots suggest that there are consid-

erable deviations from the normality assumption for all the returns. Table 1 shows that

all the returns are skewed left, which implies that the empirical density is fat-tailed.

The estimated kurtosis is largely in excess of 3, which indicates a peaked distribution.

The Jarque-Bera test statistics rejects the null of normality very strongly. Table 1 re-

sports also the normality test of Anderson and Darling (1952). This is a modification of

the Kolmogorov-Smirnov test, and gives more weight to the tails than the Kolmogorov-

Smirnov test itself. Also in this case, there is a rejection of the null of normality. As an

additional step of preliminary investigation, we implement a test for general nonlinear

dependence, namely the BDS test of Brock et al. (1996). The p−values of the BDS test

statistics provide strong evidence against the indpendence and identical distribution for

each of the returns. We also test for the presence of ARCH effects in each series using

the Lagrange Multiplier test of Engle (1982). Table 2 reports large rejections of the null

of no ARCH. Finally, the test of Engle and Sheppard (2001) shows that the correlation

structure should be time-varying. Summing up, the evidence suggests that the returns

can be well characterized by heteroskedasticity, and approximated through a distribu-
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tion with fat tails. The correlation structure between the returns is not constant over

time.

The multivariate model of volatility is estimated on the residuals from a vector

autoregression. The Bayesian and Schwartz Information Criteria point to the adequacy

of a VAR of order 2. The estimated coefficients of the VAR are reported in table 3.

The subsequent issue concerns the selection of the distribution of errors for the GARCH

model. We computed the values of the likelihood corresponding to different distribution

functions. These are reported in table 4. The results confirm the relevance of the t

distribution, which largely outperforms the normal. It should be noted that, for less

than four degrees of freedom, estimation is unfeasible and runs into numerical problems.

The low number of degrees of freedom suggests that heavy tails is a key feature of the

model.

Table 5 reports the estimated parameters of alternative specifications for the DCC

GARCH. The constants A and B are restricted to scalars. The estimates change largely

across distributions. Figure 4 plots the conditional variances. The returns on crude oil

and on heating oil are characterized by two peaks in volatility. These correspond to the

spike in prices due to the first Gulf War. There are two other peaks in the volatility of

futures prices on heating oil. The first one occurs in 1997, and anticipates cold Winter

temperatures both in Europe and in the U.S. This is also marked by a U.S. attack into

southern Iraq following an Iraqi-supported invasion of Kurdish safe areas The second

one affects also crude oil futures, and relates to an increase in spot prices of three times

between January 1999 and September 2000 due to strong world oil demand and OPEC

oil production cutbacks. Although global events are key determinants of oil prices, prices

of natural gas are mostly determined by domestic determinants, such as developments

in the distribution network and weather conditions. For instance, the plot shows that

a third peak is located around December 2000, and is due to an especially cold Winter

and fall in inventories

Figure 5 reports the conditional covariances. The second panel on the upper-right

side indicates that futures prices on crude and heating oil have moved very closely on

average. The largest drop in covariance corresponds to the U.S. strike on Iraq of 1997,

to which heating oil prices responded strongly despite the lack of reaction of crude oil

prices. The second stylized facts emerging from figure 5 has to do with the correlation

among the returns on natural gas and crude oil. A Reuters headline of May 4 2007

reports that “(b)uyers and sellers alike are wrestling with whether to break a decades-

old practice of pricing natural gas on the basis of the dominant commodity oil”.1 The

upper-right panel of figure 5 shows that the correlation between the futures prices of

1The article is titled ‘Buyers, sellers puzzle over gas-oil price divorce’, and is written by
Barbara Lewis.
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natural gas and crude oil has risen over the last 5 years. However, the correlation has

been weak on average over two thirds of the sample. This suggests that futures markets

have no established tradition of pricing natural gas as a function of the developments in

oil markets.

4. Conclusion

This paper proposes studies the conditional correlation between prices of energy futures

traded in the New York Mercantile Exchange. We find that leptokurtosis is a key feature

of the data. Hence, we resort to the extension of the DCC proposed by Pelagatti and

Rondena (2004), and focus on elliptically-contoured distribution for the returns.

Our results suggest that the correlation between the futures prices of natural gas

and crude oil has risen between 2001 and 2006. However, this correlation has been weak

on average before 2001. This finding indicates that the widely-held belief that prices of

natural gas are set according to oil prices finds no ground within futures markets.
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Figure 1—: Returns on crude oil futures
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Figure 2—: Returns on natural gas futures
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Figure 3—: Returns on heating oil futures
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Figure 4—: Estimates of conditional variance
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Figure 5—: Estimated conditional correlations
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Table 1: Sample statistics

Crude oil Natural gas Heating oil
Minimum -40.04 -37.57 -39.09
Maximum 14.23 32.43 13.99
Mean 0.013 0.041 0.016
Stand. dev. 2.30 3.61 2.38
Skewness -15.52 -35.64 -1.75
Kurtosis 29.85 13.65 27.40

Jarque-Bera 1.2e5
[0.0]

1.9e4
[0.0]

9.9e4
[0.0]

Anderson-Darling 45.9413
[0.0]

n.a. 47.2272
[0.0]

BDS(2) 5.7092
[1.13e−8]

8.7307
[0]

6.7412
[1.57e−11]

Correlations
Crude oil Natural gas Heating oil

Crude oil 1 0.21 0.75
Natural gas 0.21 1 0.26
Heating oil 0.75 0.26 1

Legend: p-values are in brackets. The BDS test was computed by setting the largest
dimension to 2, and the length of the correlation integral to one times the standard
deviation of the series. These values are chosen so that the first-order correlation
integral estimate lies around 0.7
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Table 2: Tests of Engle (1982) and Engle and Sheppard (2001)

Lag Engle (1982) Engle and Sheppard (2001)

Crude oil Natural gas Heating oil
1 37.79

[0.0]
12.20
[0.0]

7.54
[0.0]

28.53
[0.0]

2 54.20
[0.0]

19.79
[0.0]

15.46
[0.0]

33.96
[0.0]

3 162.23
[0.0]

98.04
[0.0]

56.79
[0.0]

45.49
[0.0]

4 164.56
[0.0]

125.59
[0.0]

56.74
[0.0]

45.52
[0.0]

5 164.72
[0.0]

131.20
[0.0]

56.97
[0.0]

52.70
[0.0]

Legend: p-values are in brackets.

15



Table 3: Estimates of the VAR(2)

Coefficient
Crude oil (t-1) 0.018

[0.735]

Crude oil (t-2) −0.043
[−1.714]

Natural gas (t-1) 0.013
[1.171]

Natural gas (t-2) 0.036
[3.293]

Heating oil (t-1) −0.061
[−2.499]

Heating oil (t-2) −0.007
[−0.283]

Constant 0.018
[0.470]

Legend: t coefficients are in brackets.
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Table 4: Maximized values of the likelihood

Distribution L̂

Normal -25053.87
Laplace -27530.95
t(1) n.a.
t(2) n.a.
t(3) n.a.
t(4) -24245.36
t(6) -24274.28
t(6.5) -24287.34
t(7) -24301.06
t(7.5) -24315.07
t(8) -24329.13
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Table 5: Estimated coefficients of the DCC t(6) model

Coefficient estimates
Parameter t(4) t(6) t(8) Normal Laplace

ω(Crude oil) 0.0491 0.0419 0.0398 0.0405 0.0447
ν(Crude oil) 0.0522 0.0461 0.0451 0.0623 0.0534
γ(Crude oil) 0.9447 0.9439 0.9435 0.9317 0.9424
ω(Natural gas) 0.1718 0.1598 0.1616 0.2725 0.1846
ν(Natural gas) 0.0790 0.0712 0.0706 0.1037 0.0815
γ(Natural gas) 0.9165 0.9135 0.9114 0.8847 0.9112
ω(Heating oil) 0.0875 0.0749 0.0716 0.0751 0.0835
ν(Heating oil) 0.0651 0.0583 0.0576 0.0804 0.0677
γ(Heating oil) 0.9266 0.9250 0.9240 0.9088 0.9226
A 0.0248 0.0253 0.0256 0.0277 0.0257
B 0.9626 0.9624 0.9623 0.9558 0.9613
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