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ABSTRACT. We consider the problem of assessing the similarity of 3pebasing Reeb
graphs from the standpoint of robustness under perturmtieor this purpose, 3D objects
are viewed as spaces endowed with real-valued functiorife thie similarity between the
resulting Reeb graphs is addressed through a graph edihdést The cases of smooth
functions on manifolds and piecewise linear functions orylpedira stand out as the most
interesting ones. The main contribution of this paper is tiduction of a general edit
distance suitable for comparing Reeb graphs in these sitfittgs edit distance promises
to be useful for applications in 3D object retrieval becanfsigs stability properties in the
presence of noise.

1. INTRODUCTION

The significant increase of available 3D models, enableddyem technology, strongly
motivates 3D retrieval using content-based methods. 3Pestetrieval is generally the re-
sult of a pipeline of basic steps [TV08]. In afirst step, shiaa¢ures are computed from the
3D models, and encoded in shape signatures. Different tffgsape signatures have been
proposed in the literature for this task, the most commoegmates being graph-based,
transform-based, statistics-based and view-based ne[B#&E 05]. In a second step, the
similarity between 3D models is assessed by evaluatingidtante between the associ-
ated shape signatures: the smaller the distance, the nrmaitarghe shapes [CGKO03]. In a
third step, given a query model, the target models are sartedier of increasing distance
between their signature and that of the query model.

In this paper we focus on the second step of the shape rédtpipeine, assuming that
Reeb graphs have been chosen as shape signatures in thefirdtee goal of this paper is
to investigate theoretical aspects of the definition of threlarity concept for Reeb graphs.

The Reeb graph is defined for shapes modeled as spaces endibivedalar functions.

It is obtained by shrinking each connected component of @l Iest of the function to
a single point [Ree46]. Often, vertices of the Reeb graphlaveled by the value of
the function at the corresponding level set. If the funci®oonstructed from geometric
information, such as a height function or a distance fumctibe Reeb graph captures
both topological and geometric features of a 3D model, tlmmskining global and local
information on its shape. Reeb graphs have been used azativeftool for shape analysis
and description tasks since [SKK91, SK91]. Indeed, the Rgaph has a number of
characteristics that make it useful as a search query fortjBcts [BGSFO08]. First, a
Reeb graph always consists of a one-dimensional graphtsteuand does not have any
higher dimension components such as the degenerate sthttogan occur in a medial
axis. Second, by defining the function appropriately, it ésgble to construct a Reeb
graph that is invariant to translation and rotation, or evere complicated isometries of
1
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the shape. Last but not least, as aforementioned, Reebsyadiptv for capturing global
and local features.

One of the most important questions is whether Reeb graghobust against pertur-
bations that may occur because of noise and approximationsen the data acquisition
process. Over the years, starting back with [HSKKO01] untrenrecently with [BB13], a
number of heuristics have been developed so that the Regh @nas out to be resistant to
connectivity changes caused by simplification, subdivisiod remesh, and robust against
noise and certain changes due to deformation.

The problem of studying the stability of Reeb graph from tieotetical standpoint has
recently attracted significant interest in the area of Togicll Data Analysis (TDA) and
more broadly speaking in Computational Topology. Indekd,duccess of TDA in appli-
cations is strongly connected with the stability propertié its tools such as persistence
diagrams [CSEHO7]. Therefore, it is natural to address thblpm of stable comparison
of Reeb graphs using techniques rooted in TDA, and in pdati¢a Persistence Theory.

The first paper in this direction was [DFL12], where an edgtaiice between Reeb
graphs of smooth curves endowed with Morse functions isthtced and shown to yield
stability. More recently, in [DFL16], also Reeb graphs ofo&th surfaces have been shown
to satisfy stability with respect to an appropriate editatise. A drawback of this approach
is that the set of admissible edit operations changes as sgefpam curves to surfaces.
Another result in the context of Reeb graph stability is thectional distortion distance
between Reeb graphs proposed in [BGW14], with proven statdedescriminative prop-
erties. The functional distortion distance applies to aewiclass of objects than the edit
distances of [DFL12, DFL16] and is intrinsically continsgwhereas the edit distances
are combinatorial. The authors of [dSMP15] address thetiuesf a distance function
stable under perturbations of the input data using methwoas €ategory theory, and pro-
pose to compare Reeb graphs through the interleaving destdn [BMW15] it has been
proved that the functional distortion distance and therieéving distance on Reeb graphs
are strongly equivalent on the space of Reeb graphs, in thieematical sense. The paper
[BYM *13] about a stable distance for merge trees is also pertiog¢hé stability problem
for Reeb graphs: merge trees are known to determine comi®s, which are Reeb graphs
for simple domains.

The first contribution of this paper is the definition of a séedit operations that is
general enough for defining an edit distance between Regihgithat applies to many
different settings, from that of Morse functions on smoatinves and surfaces to that of
piecewise linear functions on polyhedra. Indeed, the piesselinear case is certainly the
most relevant one in applications to 3D model retrieval. &precisely, we introduce
a combinatorial dissimilarity measure, called an editafise, between labeled graphs,
applicable in particular to Reeb graphs. The basic ideaiddiveled graphs of two shapes
can be transformed into each other by a finite sequence ofpditations. Each such
sequence has a cost that depends on how much we must varyiubeofithe label at the
vertices of the graph during the transformation. Thus oulr dgidtance between graphs
belongs to the family of Graph Edit Distances [GXTL10], widased in pattern analysis.

The second contribution of this paper is that we prove thattit distance we obtain,
when applied to Reeb graphs of Morse functions of smoothesuov surfaces, yields the
stability property in that it is never greater than the ektdithe difference of the associated
functions, measured by the maximum norm. The proof thatdngesedit distance would
also yield the stability property for Reeb graphs of pies@iinear functions on compacta
polyhedra instead will be postponed to an extended verditrisowork.
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The paper is organized as follows. Section 2 focuses on mmattieal aspects of Reeb
graphs. Section 3 introduces our method, i.e. comparistetbefed graphs using the edit
distance. In Section 4 we discuss the stability properti¢isi® edit distance in the smooth
case. A final discussion on the obtained results and theefutlated research concludes
the paper.

2. MATHEMATICAL BACKGROUND ON REEB GRAPHS

The more general definition of a Reeb graph is the topologiefihition. It applies to
any topological spac¥ endowed with any continuous functidn

Definition 2.1. Thetopological Reeb grapbf f is the quotient spac¥/ ~¢ where, for
everyx,X € X, x~¢ X if and only if x andX’ belong to the same connected component of

().

Intuitively, this corresponds to shrinking each connecthponent of a level set of the
function to a single point.

Appropriate assumptions oX and f ensure that the topological Reeb graph is well
behaved. For example, in a private communication, D. Govheiniversity of Ljubljana
showed us that it is sufficient that is Hausdorff and compact to guarantee tRdt~¢
is also Hausdorff and compact. However, such general pliepeto not guarantee that
X/ ~+ can be triangulated by a 1-dimensional simplicial compéessociating withX/ ~
the combinatorial structure of a graph. In order to obtaioralinatorial Reeb graph, more
restrictive assumptions on the function are needed. Conumoices are that is Morse or
piecewise linear. In view of this shift from the topologit¢althe combinatorial definition
of a Reeb graph, it is useful to introduce some notations.

In this paper, we define mbeled graphas a pair(I',¢) with I a finite graph, and
¢:V(I') — R a function that endows each vertex [ofwith a scalar value. The graphs
considered here are allowed to have multiple edges and.lddpseover, for simplicity,
we always suppose that they are connected. We denodébyandE(I") the vertex and
edge sets df, respectively. lec E(I") is an edge incident to the verticesv, € V(I), we
say thaty; andv, are adjacent and we write= e(v1,V). As usual, we define théegree of
avertex ve V(I'), denoted by dey), as the number of edges B(I") incident onv, each
loop counting as two edges. Also we say thayele if any, has length mwithm> 2, if it
contains exactlyn edges in the graph. Isomorphic graphs will be consideretieasame
graph. We review the definition of labeled graph isomorphism

Definition 2.2. We say that two labeled graptis, ¢), (I, ¢') areisomorphic and we write
(F,0) = (I, ¢), if there exist a bijectior® : V(I') — V(') and a bijection¥ : E(I') —
E(I'") such that,
e e=g(vy,Vp) isin E(T) if and only if W(e) = e(d(v1), P(v2)) isin E(I) (i.e. ®
preserves the edges), and
o foreveryve V(IN), £(v) = ¢/(P(v)) (i.e. P preserves the labels).

When a labeled graph is obtained as the combinatorial Regih @faa functionf, we
denote it by writing(I" ¢, £¢).

2.1. Reeb graphs of simple Morse functions.In the mathematical literature, the case of
Reeb graphs of simple Morse functions on smooth compactfoldsiappears as the most
commonly studied (cf., e.g., [BFOA4]).
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We recall that a smooth functioh: .# — R defined on a manifold is Morse if all of its
critical points are non-degenerate, i.e. the Hessian étalrpoints is non-zero; moreover,
it is said to be simple if it is injective on the set of its arii points.

Theorem 2.3 ([Ree46]) Let.# be a compact n-dimensional manifold and f a simple
Morse function defined ar#. The quotient space?/ ~ can be triangulated by a finite
and connected simplicial complex K of dimension 1, suchttfeavertex set of K bijectively
corresponds to the critical points of f.

As a consequence of the previous result, we can idenify ~¢ with a combinato-
rial Reeb graph ¢ whose vertices correspond to the O-simplices and the edgbe t1-
simplices oK. Moreover, the vertices df; can be labeled by the functidn:V(I's) — R
induced by restricting : .# — R to its critical points. We call the paif ¢, /1) the labeled
Reeb graph of the manifoldZ. An example of labeled Reeb graph is depicted in Figure
1.

ai

a
ap

FIGURE 1. Left: the height functionf : .# — R; center: the surface/; right: the
associated labeled Reeb graph, ¢1).

Let us focus on manifolds of dimension 1, i.e., curves, amdedision 2, i.e., surfaces.
The stability of labeled Reeb graphs of curves via an ediadie has been proven in
[DFL12], that of surfaces in [DFL16]. In both the cases, fay simple Morse functions
f,g defined on the same manifold, the edit distance was defined as

r

de((M1,05),(Fg.bg)) = _ inf )iZC(Ti),

whereSvaries in a set of arbitrarily long sequences of elementafgrahationsTy, . .., Ty,
necessary to transforir ¢, /) into (g, {g), up to isomorphims. Each edit has a cost
¢(T;) depending on its own type. What distinguishes the case oésudrem that of surfaces
is the type of admissible elementary deformations. In thetReeb graph of a closed curve
has only vertices of degree 2, while the Reeb graph of a sulfas only vertices of degree
1 or 3. Figure 2 and Figure 3 illustrate the elementary deédions for curves and surfaces,
respectively, together with their costs. In each figureclbldots represent vertices whose
degree needs to be exactly the same as it appears in the fidhereas circled white dots
represent vertices whose degree can be higher. Moreobef,Values are represented by
means of the height, and vertices are allowed to coincidenerer this makes sense.

For both curves and surfaces, the edit distaticgields the stability of Reeb graphs.

Theorem 2.4([DFL12, DFL16]). Forevery fg:.# — R, simple Morse functions defined
on a connected, closed (i.e. compact and without boundarigntable smooth manifold
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# of dimension 1 or 2, it holds that

de((Ft,4¢), (Mg, 4g)) < [If — 0|,
with || f —gf[e = max|f(p) —g(p)|-
pe.#

(Tt l5) (Tg,g) (T, 5) (g, 4g) (T, l¢) (Fg,4g)
V2 V2 V2 V2 Vo
V2
B Uo Uz R
E—— — -«
D
up V] Vi
Vi Vi Vi V1 %

c(B) = [lg(u1) — Ly(U)[/2,¢(D) = [£1(u1) — £t (Uz)]/2
¢(R) = max,ey(ry) [€5(v) — £g(V)|

FIGURE 2. Elementary deformations for Reeb graphs of curves and thsis co

(Tt,05) (Tg,4g) (Tt,05) (Fg.lg) (Tt,05) (Tg.lg)
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rf,/f rng rf 1) rgfg; (T, 05) (Fg,4g)
Vg V4
V3 V3
Uz
te uig —
Kz U1
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c(B) = Mg(ul) —Eg(u2)|/2, C(D) = [ (ug) — € (U2)| /2
C(R) = maxey r) €1 (V) —£g(V)|
C(Ki) = max{| £ (u1) — £g(un)], [+ (u2) — Lg(U2)[}

FIGURE 3. Elementary deformations for Reeb graphs of surfaces andabsis.
2.2. Reeb graphs of PL functions. Following [RS72], a polyhedroK is a subset of some

R", whose pointx € X have cone neighborhoods ¥y N(x) = xxL(X) = {A - X+ -y:
y e L(x),A,u > 0,A+ pu =1}, with L(x) compact. Moreoverf : X — R is a piecewise
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linear (briefly, PL) function if for eactx € X, f(A -X+pu-y) =A - f(X)+ u- f(y) when
yeL(X),A,u>0A+pu=1.

Let X be a polyhedron anfl: X — R a PL function. It can be shown th&t/ ~+ is an
abstract polyhedron of dimension not greater than 1. Héheejbeds into a polyhedron
R¢ of dimension at most 1 ilR" for somen. Moreover,f : X — R naturally induces a PL
function f : Ry — R.

For the sake of brevity, we postpone the proof of these factstextended version of
this paper. However, we refer the reader to [EHPO8] for a fpirothe case wheiX is a
manifold, andf is injective on the vertices of a simplicial complex triateging X.

To define a combinatorial version of the Reeb graph that tautgo be a special in-
stance of a labeled graph, for a cone neighboriépd = x* L(x) of x in X, we set

L= ={yeL®): f(y) < f(x)},LT(x) ={yeL(): f(y)>f(x)}.

As usual, we denote b the Oth Betti number, that is, the number of (arcwise) con-
nected components.

Definition 2.5. We say thatx € X is a Reeb-regular poinbf f if Bo(L™(x)) = 1 and
Bo(LT (X)) = 1 for every cone neighborhodd(x) = x* L(x) of x in X. Moreover, we say
thatx € X is aReeb-critical poinof f if it is not Reeb-regular.

Definition 2.6. We call the pair(I';,¢;) thelabeled Reeb graptbriefly, Reeb graphof
the PL functionf : X — R if ' is the graph whose vertex 9é{I' ;) is the set of Reeb-
critical points off : Rt — R, and whose edge sE(I ¢ ), if non-empty, is given by the set of
maximal 1-simplices of any triangulation B§; moreover/s : V(') — R is the function
that coincides withf on the Reeb-critical points df.

We observe that, by construction(if¢, /¢ ) is alabeled Reeb graph, thEp contains no
loops, even though it may contain cycles, anddfV ('t ), thenfo(L~(v)) - Bo(LT(v)) #1
for some cone neighborhood neighborhd®d@) = v« L(v) of vin I . Moreover,/s takes
different values on pairs of adjacent verticeszjiandv, are adjacent i ¢, thents (v1) #

Ef (Vz).

3. THE EDIT DISTANCE BETWEEN LABELED GRAPHS

In this section we definedit operationson labeled graphs and prove that any two la-
beled graphs can be transformed into each other by a finiteeseg of edit operations,
called aredit sequenceNext, we define the cost of an edit sequence and our edindista

Edit operations on labeled graphs are of four types: 1. fiwgey, 2. deletions, 3.
slidings, and 4. relabelings. These operations are foyndalined in Definitions 3.1-3.4.

(1) Insert operations:

Vi Vi
Iy le I
— u o —>» o— o — cO
v v u % v
o
V2 V2

Definition 3.1. Let (I',¢) be a labeled graph.
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e We define avertex insertion(ly) to be any transformatiom of (I',¢) such
that, for a fixed edge(vi,v2) € E(I), with £(v1) > ¢(v2), T(I,¢) is a labeled
graph(r’,¢') defined as follows:

- V([ =V ()ui{u}
— E(I) = (E(") —{e(v1,v2) }) U {e(va, ), e(u,v) };
- €/|V(r) =/ andé(vl) > f/(U) > E(Vz).

e We define aredge insertion(l¢) to be any transformatiof of (I',¢) such
that, for a fixed vertex € V(I'), T(I, £) is the labeled grapti™’, ¢') defined
as follows:

- V([ =V (r)u{u}
- E(I") =E(M)u{e(v,u)};
— U y(ry =L andl'(u) = £(v).

¢ We define doop insertion(l;) to be any transformatioh of (I, ¢) such that,

for a fixed vertexv € V(I'), T(I',¢) is the labeled graplil’, /') defined as

follows:
- V(") =V(r);
- E(M) =g u{ev,v)};
-0 =

(2) Delete operations:

Vq Vi
u — o—e —3>» o <) —> °
Dy v u De v v D, v
[+
V2 V2

Definition 3.2. Let (I', /) be a labeled graph.

e We define avertex deletion(D,) to be any transformatiof of (I',¢) such
that, for fixed edges(vi, u),e(u,v2) € E(I"), with u a vertex of degree 2, and
0(v1) > £(u) > £(v2), T(T, ) is the labeled graptr”’, ¢) defined as follows:

- V() =V()—{u};
— E(I") = (E(T) — {e(ve u),e(u,v2)}) U {e(ve, v2)
— U=ty

e We define aredge deletioifDe) to be any transformatioh of (I, ¢) such that,
for a fixed edges(v,u) € E(I"), with u a vertex of degree 1, angv) = ¢(u),
T(I,¢) is the labeled grapfi™, ¢') defined as follows:

= V(M) =V(r) = {u};
- E(M) =E(MN) —{e(vu)};
= C=Llyr)-qu-

e We define doop deletion(D;) to be any transformation of (I, ¢) such that,
for a fixed edgee(v,v) € E(I"), T(I",¢) is the labeled grapfl”’, ¢') defined as

follows:
= V(") =V(r);
- ;Z/(F’z =E() —{e(v.v)};

(3) Slide operation:
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Vi

Vi
AN
>
V3

Vo Vo V3

Definition 3.3. Let (I',¢) be a labeled graph.
¢ We define aredge slidingSg) to be any transformation of (I, ¢) such that,
for fixed edge®(v1,V2), e(v2,v3) € E(I"), with eitherf(vy) > £(v2) = £(v3), or
0(v1) < £(v2) = £(v3), T(I',¢) is the labeled graplT”’, ) defined as follows:

- V() =V(r);
— E() = (E(T) — {e(va,v2) }) U {e(va,v3) };
-0 =1

(4) Relabel operation:

V1
Vi
Ry I
-—>
V2
V2

Definition 3.4. Let (I', /) be a labeled graph.
e We define arelabeling (Ry) to be any transformatiof of (I',¢) such that
T(T,¢) is a labeled grapfi™’, ¢') defined as follows:
= V(M) =V(r);
- E(M) =E(N);
— Foreveryu,ve V(IN), if £(u) < ¢(v), then?'(u) < ¢'(v).

We now introduce the concept of inverse of an edit operation.

Definition 3.5. Let T be an edit operation such th@atl,¢) = (I"",¢'). Let us identify

T(I,¢) with (I, ¢') via the pair of bijectiong®, W) inducing the isomorphism. We define
theinverse operatiof T, denoted byl ~1, as the edit operation that acts on the vertices,
edges, and labels ¢f’,¢') as follows:

e if T is a delete operation that removes one vertex (edge, losp,)rehenT 1
is an insert operation that adds the same vertex, with the $alel (edge, loop,
resp.), and vice versaTf is an insert operation;

e if T is a slide operation that changes adjacencies among thréeese thenT —1
is a slide operation that changes adjacencies among thethearevertices in the
inverse way;

e if T is arelabel operation that changes labels to the verticEstbenT 1 is again
a relabel operation that changes labels to the same veittitles inverse way.

Remark3.6. Definition 3.5 implies that, it (I, ¢) = (I, ¢"), thenT (I, ¢/) = (T, ¢).

Applying an edit operation to a labeled graph produces agéabeled graph. Thus, we
can apply edit operations iteratively. We use this fact mniext Definition 3.7. Given an
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edit operationT of (I',¢) and an edit operatioh’ of T(I",¢), the compositio’T means
applying firstT and thenT’.

Definition 3.7. We call anedit sequencef the labeled graphil',¢) any finite ordered
sequenceS= (Ty, Ty,..., Ty) of edit operations such thag is an edit operation acting
on (I, ¢), and for every X k < n, T is an edit operation acting of_1Tx_2--- T1(I, £).
We denote by§(I', ¢) the result of the editing®,T,_1 - - - T1 applied to(I", ¢). Moreover, if
S=(Ty,...,Ty) is such thag(I",¢) = (I'",¢'), then theénverse sequenasf Sis S (I, ¢') =
(T, 6), whereS™* = (T 1,..., T, 1),

In what follows, we write” (I, ¢), ("', ¢')) to denote the set of edit sequences turning
the labeled grapli, ) into the labeled graptr”’, ¢') up to isomorphisms:

L((F,0),(T ) ={S=(T,...,Ta),n>1:9[,¢) = (")}

In the following part of the section we prove that, for anyrpai labeled graphs,
(F,0), (', ¢, the set((T',£),(I"",¢")) is non-empty. To do so, we reduce our problem
to the similar one treated in [DFL16], where labeled grapdsgetonly vertices of degree 1
or 3, the vertices of degree 3 are only up- or down-forks, &edet are neither loops nor
vertices with equal labels.

We recall that in a labeled graph, a vertexf degree 3 is called anp-fork (resp.,
down-forl, if two of its adjacent vertices (possibly coincident)y sa,v», are such that
£(v1),£(v2) > £(V) (resp.£(v1),£(v2) < £(v)), and the third, says is such that(vs) < £(v)
(resp.,£(v3) > £(v)). Hence, in both the cases, there exists at least one veljazemt to
v with a label higher thaiéi(v) and at least one vertex adjacenttwith a label lower than
£(v).

W
W3 q q kvf

FIGURE 4. The edit sequence that splits a vertex of degree greateBtima a number
of up- or down-forks

Lemma 3.8. For any labeled graphil', £), there exists an edit sequence S such tiBt S
is a labeled grapHT™’, ¢’) with the following properties:
e the vertices of ' are either of degree 1, or up- or down-forks of degree 3. In
particular, I'" has no loops.
e (' isinjective on \(I").

Proof. Without loss of generality, we can assume thatinjective onV (I"), otherwise we
apply a relabel operation foto achieve injectivity. Moreover, we can assume thétas
no loops, after applying appropriate loop deletions.

Now we show that each vertaof I that is neither of degree 1, nor an up- or down-fork
of degree 3, can be removed or transformed into a vertex hatlelaimed properties. More
precisely, letv be any vertex i . We consider the following cases.

e Case defy) = 0: We can take the edit sequenge- (T1,Ty), with T; the edge
insertion that inserts a vertex with the same label as and the edge(u,v), and
T, a relabeling Rthat changes the label af In S(I', ) the verticess andv are of
degree 1.
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e Case defy) = 2: We observe that either{it € V(') : e(w,v) € E(I),{(w) <
()} <2or#HweV(l):ewv)eE(),¢(w)>{(v)} <2. Hence, we can take
the edit sequenc8= (Ty, T), with T; the edge insertion that inserts a vertex
with the same label ag and the edge(u,v). Thus, inTy(I",¢), the vertexv is of
degree 3. Moreover, ifiv e V(M) : e(w,v) € E(I"),4(w) < £(V)} < 2, then we
chooseT; to be a relabeling such thétu) < ¢(v), otherwise, we choos® such
that/(u) > £(v). As a resulty has turned into an up- or down-fork and the other
vertices ofl” have changed neither adjacencies nor labels.

e Case defy) > 3: Possibly after a relabeling, we can suppose that at wasiftthe
vertices adjacent to, sayvi, Vo, are such that(vy), £(v2) > £(v) or £(v1),£(V2) <
£(v). Let us consider the first case, the other being analogouswie. ., wi_»
the other vertices adjacent Yo We transform(I",¢) through the edit sequence
S=(T1, T2, T3, Ta), where the edit3i’'s , withi =1,...,4, are sequences taken as
follows (see also Figure 4)I; = StIZ, where [ is the edge insertion that inserts
a vertexu; of degree 1, with the same label\gsand the edge(uy,v), while §
is the edge sliding that removes the edgew; ) and inserts the edggus,w1);

T, = Ryle, Where | is the edge insertion that inserts a vertexf degree 1, with
the same label ag, and the edge(u;, w), while R, is the relabeling that relabels
w in such a way that, if(w;) > ¢(uy) before, ther?(w) < ¢(up) after, while if
£(wy) < £(up) before, ther?(w) > ¢(uy) after; T3 = 2152 K12, where { is
the vertex insertion that inserts a verigxof degree 2 betweenandu;j_1, with
the same label ag, thus removing the edge(v,u;_1), and inserting the edges
e(v,u;),e(uj,uj_1), while S is the elementary deformation that removes the edge
e(v,w;j) and inserts the edggu;,w;); T4 = R, where R is the relabeling that
relabels the verticesy, ..., U in such a way that it§(I", ¢), £(v) > £(ux_») >
...>{(u1). Recalling that(v1), £(v2) > ¢(v), the vertex is of degree 3 and an up-
forkin S(I", ¢), while uy, ..., ux_» are of degree 3 and up- or down-forks3(t, ¢),
depending on the labels of;, ..., wi_». Also in this case, all these operations do
not change neither the labels nor the adjacencies of ventitthe original graph
different fromv and its adjacent vertices.

O

Proposition 3.9. Let (I',¢), (I, ¢') be two labeled graphs. The sef((I",¢), (I, ¢')) is
non-empty.

Proof. Let us apply Lemma 3.8 to botti,¢) and ("', ¢'), for example starting from the
lowest to the highest vertex, and c&8land S the edit sequences such tI&f,¢) and
S(I,¢) are labeled graphs whose vertices have different labetsdagree 1 or 3, in this
case being up- or down-forks.

Under these assumptions, [DFL16, Prop. 23] applieS(fa¢) andS(I"',¢'). More
precisely, lettingn,m > 0 be the number of linearly independent cyclessr, ¢) and
S(T,¢), respectivelyS(T, £) can be transformed into a labeled grdph, /1) with exactly
two vertices of degree 1, andcycles of length 2, whileS(I’,¢') can be transformed
into a labeled grapli™’, ¢}) with exactly two vertices of degree 1, antcycles of length
2. It is sufficient to apply a finite sequence of elementarydeations of birth-, death-,
relabeling-, K-, K»>- and Ks-types (see Figure 3).

To prove our claim, we start by showing in Figure 5 (rows 1{®tteach elementary
deformation of birth, death, df;-type can be obtained also by applying a finite sequences
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of the edit operations introduced in Definitions 3.1-3.4e Teformation of relabeling type
is already a particular case of the relabeling operatiomddfhere.

V2 V2 V2 V2
Iy le U2
— — Uo Ry
uq Uq -
Dy De th
Vi Vi Vi V1
Vg Vg V4 Vg Vg
Vo V3 Vo V3 Vo V3 Vo V3 Vo V3
u
2 R uz Vi, Sep u¥Vd, Sy w¥Hu, Ry up :
Uy 2
o
Vi V1 V1 Vi Vi

v, v v v
4 va 4 Vs 4 Vs 4

vV V,
3 % V3
u2
<&> Uz Ui & uz u1 <§> Uz ui <&> Uy
uy
u2
V2 V2 V2 V2
\41 Vi Vi Vi v V2
1
FIGURE 5. The elementary deformations in Figure 3 can be obtained aesegsi

of edit operations. Top row: elementary deformation of B- andypes. Center row:
elementary deformation d€;-type. Bottom row: elementary deformationkj- andKs-

types.

As a consequence, it holds that(S(T", ), (M1, ¢1)) and.”(S(I",¢'), (', ¢})) are non-
empty.

Now, to show that”((I',¢), (I, ¢')) is also non-empty, we consider the following two
cases: (i) the case whem= n, and (ii) the case whem # n.

(i) If m=n, then there is a bijectio® : V(I'1) — V(I'}) preserving adjacencies.
Hence, it is sufficient to take the relabelif of the vertices that, for every €
V(I1), changes the labéj (v) into the label} (P(v)).

(ii) If m#n, then we can assume that- m. LetV (1) = {Vo,V1,V, ..., Vn, Vi, Vny1}
andV (I'}) = {uo,ug, Uy, ... ,Um, U, Ums1} as in Figure 6 (leftmost and rightmost
graphs). We consider the sequer®e= (T1,...,Tg) € L ((T1,¢1), (I}, ¢))) de-
fined as follows T, is the relabel operation that relabels the up-fofks,, ..., v, €
V(") in such a way that their labels 1 (I"1, ¢1) are the same agn;1,...,Vn, re-
spectively; T, is the sequence of edge slidings that delete the eel(g?s/jﬂ),
with j =m+1,...,n, and add the edge®vj,vj;1), with j =m+1,...,n; Tz is
the sequence of vertex deletions that remove the vertiges. ..., v;; Ts is the
sequence of loop deletions that remove the e@ggsv;), with j =m+1,...,n;
Ts is the sequence of vertex deletions that remove the veriges. . ., vy; finally,
Te is a relabel operation analogous to that used in the case (i).

In conclusion,# ((I't,¢1), (g, 4q)) CONtains at least the edit sequeri€eS’,S~1), prov-
ing that it is non-empty. O
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Vo Vo Vo Vo Vo Vo
Uo
Vi Vi \%1 A% Vi Vi Uy
Vi Vi Vi Vi Vi Vi u.
L T2 . T3 D Ta b Ts o, Te ']
P —, — . — f— = —
Vm Vm Vm Vm Vm Vm(‘g Um
\/m \/m \/m \/m \/m \/m
\V/m+1 Vm+1 \/m+1 Vm+1 V'm+1 Vm+1 Vm+1 U,
m+1
: : : : : Um1
Vi Vi A Vi A Vi Vi
v
n
Vn+1 Vnil Vi1 Vi1 Vni1 Vni1 @

FIGURE 6. How to transform the leftmost Reeb graph into the rightmost one

The rest of the section is devoted to define our edit distadée start introducing the
cost of an edit sequence.

Definition 3.10. Let S= (Ty,...,Ty) € (T, 0),(I",£)). Set([,£) = (T1,41), (I, ¢) =
(Mnt1,lng1), and (g, biv1) = Ti(Fi, 6) fori=1,....n. SettingJs(v) = {i € Npy1:v e
V(T)}, thecostof Sis taken to be

c(S = max (maxﬁi(v)— min Ei(v)>.
veUM v () \i€ls(v) i€Js(v)

Remark3.11 By Definition 3.10, we have:
(i) if Tes((,0),(I,¢))is an insert, deletion, or slide operation, theg) = 0;
(i) if Te.Z((T,0),(r,¢))is arelabel operation, thesfT) > 0;
(iii) for every edit sequenc8e .7 ((I',¢), (I, ¢")), c(S71) = c(9).

The following example illustrates how to compute the cosirodit sequence.

Example 3.12. Let us consider the sequenge= (ly,le,R,) displayed in the first row of
Figure 5 that takes the leftmost grafih, ¢1) to the rightmost graplI4, ¢4). By Remark
3.11, we get(S) = c(Ry), with R,(T"3,¢3) = (4, ¢4). Henceg(S) is the maximum between
max{¢3(u1),4(u1)} —min{¢3(u1), ¢4(u1) } and max/s(uz),4(uz) } —min{¢3(uz),4(u2)},
that is

C(S) = max{ég(ul) 754(U1),€4(U2) 753(U2)}.

Definition 3.13. The edit distancebetween any two labeled grapts, ¢) and (I, ¢') is
defined to be

r,0,(re)) = inf c(S).

&((M,0),(M )= inf  o(S)

Proposition 3.14. The edit distancég is a pseudo-metric on isomorphism classes of la-
beled graphs.

Proof. By Proposition 3.9¢9¢ is a real number. The coincidence property can be verified
by observing that the relabel operatidrthat does not change any label, il ¢,¢;) =
(F¢,¢5), has cost(T) = 0, yielding & = 0. The symmetry property holds because, for
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every edit sequenc®c .7 ((I',€), (I, ), c(S™) = ¢(S) andS(T", ¢) = (I, ') if and only
if (F,¢)=S1(",¢). Finally, the triangle inequality can be proved in the saddway.
(I

The edit distance is not a metric because different labetaghs (for example, two
graphs connected by an editing sequence involving no retgdsations) can have zero
distance.

4. THE STABILITY PROPERTY IN THE CASE OFMORSE FUNCTIONS

The goal of this section is to show the robustness of Reekhgreyith respect to per-
turbations of the function. In this work, we only considee tase of Morse functions on
curves or surfaces. We do not face with the same problem ioabe of manifolds with a
dimension higher than 2, while the case of PL functions olpedra is postponed to an
extended version of this paper.

As mentioned before (see Theorem 2.1), the edit distalacbetween Reeb graphs
of curves or surfaces endowed with simple Morse functiondiegs the stability of Reeb
graphs with respect to function perturbations. Now we shwt the general edit distance
Je inherits the same stability property from thatdpf.

In this section, to avoid confusion, we add the supersbfipd the edits defined for Reeb
graphs of Morse functions to distinguish them from thoseohiiced for general labeled
graphs. The cost of an edit will be always denoted:jthe presence of the supersciipt
in the considered edit signaling that the cost must be coedpas explained in Figures 2,
3.

Proposition 4.1. Let.# be a connected, closed, orientable, smooth manifold ofrtiioa
lor2. Let f:.# — R be a simple Morse function arffi ¢, /¢ ) the associated labeled Reeb
graph. The following statements hold:

(i) For every elementary deformationMl there exists an edit sequence S such that
S(Me,01) = TM(T,¢5) and S) < c(TM).

(ii) For every deformation %, there exists an edit sequence S such ttia F¢) =
SM(r,4¢) and S) < c(SM).

Proof. Let us prove statemerft) in the case when/ is a closed curve. LET™ be an
elementary deformation of birth-type. The case wh&his of death-type can be shown
analogously. Let us calll',¢¢) = (F1,¢1) andTM(T'¢,4¢) = (s, 4s5) the leftmost and
the rightmost graph in Figure 7, respectively. As recalladar Figure 2, the cost of this
deformation isc(TM) = fs(tz)fs(t),

Vo Vo Vo Vo Vo
lv le u
2
U2 o &, Uy LBy
y y Uy uy
DV De Uj_
Vi \%1 V1 \1 %1

FIGURE 7. The elementary deformations in Figure 2 (left) can be obtaasskquences
of edit operations introduced in Definitions 3.1-3.4.
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Let S= (ly,le, &, Ry) be the edit sequence displayed in Figure 7 such${iat, (1) =
(Fs,¢5), with |V(r1,f1) = (r2752>, |e(r2,f2) =~ (r3,£3), &(F3,€3) ~ (r4,€4) R\,(F4,€4) =
(Fs,¢5). The cost ofSis c(S) = ¢(R,) because of Remark 3.11. Hence, by an argument
analogous to that used in Example 3.£25) = max(Y4(uy) — ¢5(u1), £a(Up) — f5(U2)).
Settingla(uy) = £4(up) = SUER) e gete(S) = ¢(TM).

The proof of statemen() in the case when# is a surface is based on a similar ar-
gument to the one considered above. The different typeseoiettary deformationsM
are displayed and their costs are recalled in Figure 3. Fcin ehthese elementary de-
formations, Figure 5 shows an edit sequence suchSfiat, ¢¢) = TM (¢, 4¢). In par-
ticular, if we setls(ur) < f3(uy) = l3(Up) = /4(“1)7;’4(”2) < £4(up) in the first row, and
01(U), 5(Up) < £2(Up) = £p(up) = 2l haltl) _ W) tsl) g, (uy), £5(uy) in the sec-
ond and third row, in all the cases, we obtai) = c(TV).

Let us now consider a deformati@f = (TM,..., TM) acting on the Reeb graghit, )
of a manifold.# of dimension 1 or 2, and recall that the cos&ffisc(') = s, c(TM).
We prove statemerii) by induction onn. If n=1, i.e. the deformatio§) reduces to
the elementary deformatiofi, then the claim follows from statemefit). Let us as-
sume that, for anp > 1, there exists an edit sequereuch thaS (¢, £¢) = M (I, ¢¢)
andc(S) < c(gY). We consider a deformatiof, , = (TM,..., TV, TM,), whereS{ =
(TM,...,TM), andTM, is a certain elementary deformation. By the inductive agsum
tion and statemerit), the edit sequence®= (S, S’) is such thaS(I"¢, (1) =2 . | (T, ¢5),
wheneverS' is an edit sequence such tH&{(S(I'+,¢r)) = TM,(S(I't,¢1)) that we can
take with a cost(S') < c(TM,). It is sufficient to show that(S) < c(S,). Let us
call (T¢,¢¢) = (I1,¢1) andi'V' . -TlM(Fl,él) = (M1, lke1), withk=1,....n+1, and as-
sume that(S) = |4 (v) — £;(V)|, with ve U2V (M), i, j € Js(v). Ifi,j € {1,...,n+1}
ori,j € {n+1,n+2}, thenc(S) = ¢(S) or ¢(S) = c(S’), respectively, and the claim
follows; if i € {1,...,n+1} and j = n+ 2, then we can state thate V(I'n+1) and
c(S) = [6i(V) = Lns2(V)] = [6(V) = fnra(V) +€nya(V) — fni2(V)|. Hence,c(S) < [6i(v) —
bt (V)] + [fns2(V) — f2(V)] < o(S) +0(S") < o(Fh ). O

Corollary 4.2. Let.# be a connected, closed, orientable, smooth manifold of Sioa
1 or 2. For every simple Morse functionsgf: .# — R, we have

%((Ft,1),(Fg,fg)) < [If —glleo-

Proof. The claim follows from Proposition 4.1 and Theorem 2.1. |

5. CONCLUSIONS

In this paper we presented a general edit distance betwbelethgraphs that can be
applied to compare Reeb graphs. In particular, it allows@mparison of Reeb graphs of
Morse functions and PL functions. We also proved that, inctee of Morse functions of
curves or surfaces, this comparison is stable with respewite in the functions.

The proof of the stability property for manifolds of dimeasihigher than 2 and for PL
functions on polyhedra requires further investigation asltlbe the subject of our future
research. In particular, considering our strong interegtoducing an algorithm able to test
the proposed framework, the problem of stability in the pigise linear context actually
represents our main priority. For example, we believe thaitequality

O((Mt,41),(Tg,lg)) < I — gl
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holds true in the case when the considered PL nfags X — R are defined by extending
injective functions defined on the vertices of a fixed simplicomplexK such thatX =
|K|, while requires much more effort without fixing any simpéictomplex or when the
assumption of injectivity is removed. Moreover, furthevastigations will concern also
the case of robustness with respect to perturbations ofrttlerlying space.
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