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Abstract

We investigate the issue of strategic substitutability/complementarity in a

Cournot differential game with sticky prices. We show that first order condi-

tions do not produce instantaneous best reply functions. However, we identify

negatively sloped reaction functions in steady state, with the open-loop best

reply being flatter than its closed-loop counterpart.

JEL classification: C73, D43, D92, L13.

Keywords: complementarity/substitutability, differential games, reac-

tion functions, price stickiness



1 Introduction

The issue of super-/submodularity has been investigated mostly in static

games, and refers to the slope of reaction functions in the (stage) game,

as initially pointed out by Bulow, Geanakoplos and Klemperer (1985).1 A

potential development of this discussion consists in investigating whether

the same properties can be reconstructed in a differential game, and to what

extent.2

To the best of our knowledge, only Jun and Vives (2004) have consid-

ered intertemporal strategic complementarity/substitutability. They com-

pare steady states of open-loop and stable closed-loop equilibria in a general

symmetric differential duopoly model with adjustment costs, as in Reynolds

(1987) and Driskill and McCafferty (1989). One of the most interesting result

appears in the “mixed” case of price competition and production adjustment

costs: the strategic complementarity of the static game turns into an in-

tertemporal strategic substitutability, given that, from the standpoint of any

given firm, a price cut today makes the rival smaller in the future by raising

its short-run marginal cost.

1The concept of economic complementarity has recently emerged as a leading theme

of economic research and has benefitted from the development of the theory of super-

modular games, introduced by Topkis (1978) and based on lattice-theoretic arguments.

The analysis has been focused on games with strategic complementarities and their use

in industrial economics (Vives, 1990; Milgrom and Roberts, 1990 and Amir, 1996) and in

comparative statics analysis (Milgrom and Shannon, 1994). In the presence of comple-

mentarity relationships between different units of a global system, a separate study of any

unit alone, ceteris paribus, could lead to a wrong interpretation of the phenomenon under

consideration.
2See Dockner et al. (2000) and Mehlmann (1988) for the theory of differential games

and its appications to economics.
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A related issue is that of conjectural variations. Dockner (1992) shows

that any closed-loop (i.e., subgame perfect) equilibrium coincides with a con-

jectural variations equilibrium. Using a Cournot model with linear demand

and quadratic production costs, he proves that the dynamic conjectural vari-

ations consistent with the closed-loop equilibrium are negative constants

which, depending upon the level of the discount rate, vary between zero

and the consistent conjectures characterising the static version of the same

game.

The aim of the present paper is to identify best reply functions in a

Cournot differential game with sticky prices à la Simaan and Takayama

(1978) and Fershtman and Kamien (1987). In general, a dynamic game

of the type proposed here may either generate instantaneous best replies di-

rectly from the first order conditions on controls, or yield best replies at the

steady state only. The emergence of the first or the second case ultimately

depends upon whether the first order condition taken w.r.t. the output level

of any given firm contains the outputs of her rivals or not. In the model

we investigate, the second case holds both under the open-loop solution and

the closed-loop one. This implies that, at any time during the game, each

firm has a dominant strategy independent of the rivals’ behaviour. A proper

strategic interaction only emerges when one imposes stationarity on the dy-

namics of state and control variables. At the steady state, best replies are

negatively sloped, with closed-loop best replies being always steeper than

open-loop ones, to indicate that strategic interaction is stronger in the for-

mer case than in the latter. Moreover, we also show that, if price stickiness is

infinitely high, the types of equilibria coincide with the perfectly competitive

outcome which can be computed in the static model.

The plan of the paper is as follows. Section 2 introduces the issue of
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identifying reaction functions using a general differential game framework.

The sticky price game, and its open-loop and closed-loop solutions are inves-

tigated in section 3. Section 4 concludes.

2 Preliminaries

Consider a generic differential game, played over continuous time, with t ∈
[0,∞).3 The set of players is P ≡ {1, 2, ...N}. Moreover, let xi(t) and ui(t)

define, as usual, the state variable and the control variable pertaining to

player i. Assume there exists a prescribed set Ui such that any admissible
action ui(t) ∈ Ui. The dynamics of player i’s state variable is described by
the following:

dxi(t)

dt
≡ .
xi(t) = fi (x(t),u(t)) (1)

where x(t) = (x1 (t) , x2 (t) , ...xN (t)) is the vector of state variables at time

t, and u(t) = (u1 (t) , u2 (t) , ...uN (t)) is the vector of players’ actions at the

same date, i.e., it is the vector of control variables at time t. That is, in

the most general case, the dynamics of the state variable associated with

player i depends on all state and control variables associated with all players

involved in the game. The value of the state variables at t = 0 is assumed to

be known: x(0) = (x1 (0) , x2 (0) , ...xN (0)) .

Each player has an objective function, defined as the discounted value of

the flow of payoffs over time. The instantaneous payoff depends upon the

choices made by player i as well as its rival, that is:

πi ≡ πi (x(t),u(t)) . (2)

3One could also consider a finite terminal time T. The specific choice of the time horizon

is immaterial to the ensuing analysis, provided that terminal conditions are appropriately

defined.
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Player i’s objective is then, given uj (t) , j 6= i :

max
ui(·)

Ji ≡
Z ∞

0

πi(x(t),u(t))e
−ρtdt (3)

subject to the dynamic constraint represented by the behaviour of the state

variables, (1), ui(t) ∈ Ui and initial conditions x(0) = (x1 (0) , x2 (0) , ...xN (0)) .
The Hamiltonian of player i is:

Hi (x(t),u(t)) ≡ e−ρt [πi (x(t),u(t)) + λii(t) · fi (x(t),u(t))+
+
X
j 6=i

λij(t) · fj (x(t),u(t))] , (4)

where λij(t) = µij(t)e
ρt is the co-state variable (evaluated at time t) that

firm i associates with the state variable xj (t) .

The interesting property, in the present perspective, is summarised by

the second cross-derivative w.r.t. controls:

∂2Hi

∂ui∂uj
(5)

Two cases are possible:

• If
∂2Hi

∂ui∂uj
6= 0 (6)

then the first order condition (FOC)

∂Hi

∂ui
= 0 (7)

yields the instantaneous best reply function of player i against any

admissible choice of player j at any time t, and

sgn

µ
∂2Hi

∂ui∂uj

¶
(8)

is the slope of such best reply function.
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• If instead
∂2Hi

∂ui∂uj
= 0∀j 6= i, (9)

then the FOC does not yield an instantaneous best reply function. The

necessary and sufficient condition for (9) to hold is additive separability

of the Hamiltonian of player i w.r.t. control variables. In this situation,

it must be nonetheless true that the expression ∂Hi/∂ui contains the

co-state variables. Hence, in order to solve for the equilibrium path of

ui, one has to take the derivative of (7) w.r.t. t. This yields:

·
ui = zi

µ ·
λii,

·
λij,

·
xi,

·
xj

¶
(10)

where
·
xi,

·
xj are given by state equations (1), and the dynamics of the

co-state variables λii and λij comes from the co-state equations:

−∂Hi

∂xi
−
X
j 6=i

∂Hi

∂uj

∂u∗j
∂xi

=
·
λii − ρλii (11)

If (11) contains (ui, uj) , then, by substitution, we will observe
·
ui =

wi (ui, uj). Imposing
·
ui = 0, one obtains u

∗
i = vi (uj) representing the

best reply against the choice of j in the steady state equilibrium.

The difference between the two cases lies in the fact that while in the

first case we observe an instantaneous reaction function characterising the

optimal behaviour of player i at any time during the game, in the second

case we only observe player i’s best reply at the steady state equilibrium,

while i’s optimal behaviour during the transition to the steady state can be

characterised in terms of states and co-states only, regardless of any player

j’s control. This amounts indeed to saying that along the path to the steady

state each player has a dominant strategy. This discussion is summarised by:
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Remark 1 If player i’s Hamiltonian is additively separable w.r.t. controls,

then ∂2Hi/∂ui∂uj = 0 and each player i has a dominant strategy at every

instant.

To better illustrate this point, we resort to a model with sticky prices à

la Fershtman and Kamien (1987).

3 Sticky prices

This model dates back to Simaan and Takayama (1978) and Fershtman and

Kamien (1987). Consider an oligopoly where, at any t ∈ [0,∞), N single-

product firms produce quantities qi(t), i ∈ {1, 2, ...N}, of the same homoge-
neous good at a total cost Ci(t) = cqi(t) + [qi(t)]

2 /2, c > 0. In each period,

market demand determines the notional price level:

bp(t) = A−
NX
i=1

qi(t).

In general, however, bp(t) will differ from the current price level p(t), due to

price stickiness, and price moves according to the following equation:

dp(t)

dt
≡ ·
p = s {bp(t)− p(t)} (12)

Notice that the dynamics described by (12) establishes that price adjusts

proportionately to the difference between the price level given by the inverse

demand function and the current price level, the speed of adjustment being

determined by the constant s ∈ [0,∞).
This amounts to saying that the price mechanism is sticky, that is, firms

face menu costs in adjusting their price to the demand conditions deriving

from consumers’ preferences: they may not (and, in general, they will not)
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choose outputs so that the price reaches immediately bp(t), except in the limit
case where s tends to infinity.

The instantaneous profit function of firm i is:

πi(t) = qi(t) ·
·
p(t)− c− 1

2
qi(t)

¸
. (13)

Hence, the problem of firm i is:

max
qi(t)

Ji =

Z ∞

0

e−ρt qi(t) ·
·
p(t)− c− 1

2
qi(t)

¸
dt (14)

subject to (12) and to the conditions p(0) = p0, and p(t) ≥ 0 for all t ∈
[0,∞) .
We solve the game by considering - in turn - the open-loop solution and

the closed-loop memoryless solution.4

3.1 The open-loop solution

Here we look for the open-loop Nash equilibrium, i.e., we examine a situation

where firms commit to a production plan at t = 0 and stick to that plan

forever.

The Hamiltonian function is:

Hi(t) = e−ρt ·
(
qi(t) ·

·
p(t)− c− 1

2
qi(t)

¸
+ λi(t)s

"
A−

NX
i=1

qi(t)− p(t)

#)
,

(15)

where λi(t) = µi(t)e
ρt, and µi(t) is the co-state variable associated to p(t). In

the remainder of the section, superscript OL indicates the open-loop equi-

librium level of a variable. Consider the first order condition (FOC) w.r.t.

4For a thourough analysis of open-loop, memoryless closed-loop and fedback solutions,

see Cellini and Lambertini (2004).
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qi(t), calculated using (15):

∂Hi(t)

∂qi(t)
= p(t)− c− qi(t)− λi(t)s = 0 . (16)

This yields the optimal open-loop output for firm i, as follows:5

qi(t) =

 p(t)− c− λi(t)s if p(t) > c+ λi(t)s

0 otherwise.
(17)

Observe that, on the basis of (16-17), one cannot write a best reply function

for player i against his rivals at time t.

The adjoint condition for the optimum are:

−∂Hi(t)

∂p(t)
=

·
µi ⇔

·
λi = λi(t)(s+ ρ)− qi(t) , (18)

while the transversality condition requires:

lim
t→∞

µi(t) · p(t) = 0 . (19)

Differentiating (17), we obtain:

·
qi =

·
p− s

·
λi (20)

which, using (18), can be rewritten as follows:

·
qi =

·
p− s [(ρ+ s)λi(t)− qi(t)] . (21)

Now, substitute into (21) (i) the law of motion of the price,
·
p = s {bp(t)− p(t)} ,

with bp(t) = A − qi(t) −
P

j 6=i qj (t) , and (ii) sλi(t) = p(t) − c − qi(t) from

(17). This yields:

·
qi = s

"
A− qi(t)−

X
j 6=i

qj (t)− p (t)

#
− (s+ ρ) [p(t)− c− qi(t)] + sqi(t) = 0

(22)

5In the remainder, we consider the positive solution. Obviously, the derivation of the

steady state entails non-negativity constraints on price and quantity, that we assume to

be satisfied.
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in:

q∗i (t) =
s
P

j 6=i qj (t)− sA− (s+ ρ)c+ (2s+ ρ)p(t)

s+ ρ
. (23)

Now imposing stationarity on (12), we obtain:

·
p = 0 in p∗ = bp = A− qi(t)−

X
j 6=i

qj (t) (24)

which can be plugged into (23), yielding:

q∗i =
(s+ ρ)

³
A− c−Pj 6=i qj

´
3s+ 2ρ

. (25)

Expression (25) is the best reply function of firm i at the open-loop equilib-

rium, with slope:
∂q∗i
∂qj

= − s+ ρ

3s+ 2ρ
< 0 . (26)

This allows us to state the following:

Lemma 2 At the open-loop equilibrium, the best reply function of firm i

is negatively sloped for all s, ρ ∈ [0,∞) . In absolute value, the slope is ev-
erywhere decreasing in s. In the limit, as s tends to infinity (or ρ tends to

zero), ∂q∗i /∂qj = −1/3, while as s tends to zero (or ρ tends to infinity),

∂q∗i /∂qj = −1/2.

Now we can introduce the symmetry condition qj(t) = qi(t) for all j, so

as to obtain:

dq(t)

dt
= sA+ (s+ ρ)c− (2s+ ρ)p(t) + [ρ−Ns] q(t) (27)

Note that dq(t)/dt = 0 is a linear relationship between p(t) and q(t). This, to-

gether with dp(t)/dt = 0, also a linear function, fully characterise the steady
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state of the system. The dynamic system can be immediately rewritten in

matrix form as follows:
·
p

·
q

 =
 −s −sN
−(2s+ ρ) ρ− sN




p

q

+


sA

sA+ (s+ ρ)c

 (28)

As the determinant of the above 2 × 2 matrix is negative, the equilibrium
point is a saddle, with

qOL =
(A− c)(s+ ρ)

(s+ ρ)(N + 1) + s
; pOL = A−NqOL . (29)

As in the duopoly case described by Fershtman and Kamien (1987 pp. 1159-

61), also here the static Cournot-Nash equilibrium price and output
©
pCN , qCN

ª
obtain from (29), in the limit, when ρ → 0 or s → ∞. For all positive lev-

els of the discount rate and for any finite speed of adjustment, the static

Cournot price (output) is higher (lower) than the open-loop equilibrium price

(output). Moreover, for either ρ→∞ or s→ 0, the open-loop steady state

equilibrium
©
pCN , qCN

ª
exactly replicates the perfectly competitive outcome

that would emerge from the static model, for any N ≥ 1 (see Fershtman and
Kamien, 1987, Proposition 1, p. 1156):

lim
s→0

qOL = lim
ρ→∞

qOL =
A− c

N + 1
; lim
s→0

pOL = lim
ρ→∞

pOL =
A+Nc

N + 1
. (30)

From Lemma 2, we know that in such a case ∂q∗i /∂qj = −1/2; hence, one
may ask why the price coincides with marginal cost in a game with negatively

sloped best replies, and, even more striking, in the monopoly setting which

obtains when N = 1. The intuitive explanation is that, if s = 0, then firms

are unable to affect the notional price through any change in output levels,

which is the only available instrument to influence the variation of the current

price level. Therefore, independently of market structure, when the current
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price is infinitely sticky, firms are obliged to behave as price-takers, as if they

were supplying a perfectly competitive market. This of course holds for a

monopolist as well. In the static game, it can be easily ascertained that the

perfectly competitive outcome is reached only when N tends to infinity.

Finally, if either s tends to infinity or ρ tends to zero, the open-loop

steady state equilibrium coincides with the static Cournot-Nash equilibrium

where qCN = (A− c) / (N + 2) , as it can be verified using qOL in (29).

3.2 The closed-loop solution

The closed-loop memoryless solution remains to investigate. We use super-

script CL to denote the closed-loop equilibrium levels of the relevant vari-

ables. The Hamiltonian of firm i is given by (15), with the same initial and

transversality conditions. The first order condition w.r.t. qi, calculated using

(15), obviously coincide with condition (16) calculated in the open-loop case:

∂Hi

∂qi
= p− c− qi − λis = 0 . (31)

This yields the closed-loop output for firm i, as follows (again, in the remain-

der we shall consider only the positive solution):

qCLi =

 p− c− λis if p > c+ λis

0 otherwise.
(32)

Note that the kinematic equation of qCLi is described by (20), as in the open-

loop case. The adjoint conditions for the optimum are:

−∂Hi

∂p
−
X
j 6=i

∂Hi

∂qj

∂qCLj

∂p
=

·
λi − ρλi (33)

Now consider that
∂Hi

∂qj
= −λis ;

∂qCLj

∂p
= 1 . (34)
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Therefore: X
j 6=i

∂Hi

∂qj

∂qCLj

∂p
= − (N − 1)λis (35)

is the additional term in the co-state equation, characterising the strategic

interaction among firms, which is not considered by definition in the open-

loop solution.

Equation (33) may be rewritten as
·
λi = (Ns+ ρ)λi−qi. This expression,

together with sλ(t) = p(t)−c−qi(t) and ·
p = s

n
A− qi(t)−

P
j 6=i qj (t)− p(t)

o
,

can be substituted into (20) to obtain:

·
qi = [qi(t) + c] (ρ+Ns)− p (t) [ρ+ s (N + 1)]− s

X
j 6=i

qj (t) (36)

with
·
qi = 0 in:

q∗i (t) =
p (t) [ρ+ s (N + 1)]− c (ρ+Ns) + s

P
j 6=i qj (t)

ρ+Ns
. (37)

Now, imposing the stationarity on price,
·
p = 0, and substituting into (37),

we can write:

q∗i =
(ρ+Ns)

³
A− c−Pj 6=i qj

´
2ρ+ s (2N + 1)

(38)

that represents the best reply of firm i under the closed-loop solution. On

the basis of the above expression, we have:

∂q∗i (t)
∂qj(t)

¯̄̄̄
CL

= − ρ+Ns

2ρ+ s (2N + 1)
;

¯̄̄̄
∂ [∂q∗i (t)/∂qj(t)]

∂s

¯̄̄̄
= − ρ

[2ρ+ s (2N + 1)]2
< 0 .

(39)

This entails that the closed-loop best reply has the same qualitative proper-

ties of the open-loop one, while the limit behaviour differs, since:

lim
s→0

∂q∗i (t)
∂qj(t)

¯̄̄̄
CL

= lim
ρ→∞

∂q∗i (t)
∂qj(t)

¯̄̄̄
CL

= −1
2
;

lim
s→∞

∂q∗i (t)
∂qj(t)

¯̄̄̄
CL

= lim
ρ→0

∂q∗i (t)
∂qj(t)

¯̄̄̄
CL

= − N

2N + 1
. (40)
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Note that N/(2N + 1) > 1/3 for all N > 1, which entails that

Lemma 3 If price adjustment is instantaneous, the associated best reply at

the closed-loop memoryless equilibrium is steeper than the static Cournot best

reply for all N > 1.

The above Lemma entails that the limit of the optimal output and price

levels at the closed-loop equilibrium cannot coincide with the equilibrium

output and price generated by the static game. To ascertain this property,

we may invoke symmetry, and rewrite (36) as follows:

·
q = ρ (c− p+ q) + s [A− p+ q −N (p− c)] (41)

As in the open-loop case,
·
q = 0 is a linear relationship between p and q. This,

together with
·
p = 0, which is also a linear function, yields

pCL =
A [ρ+ s (N + 1)] +N (ρ+ sN) c

(N + 1) ρ+ (N2 +N + 1) s
; (42)

qCL =
(A− c) (ρ+ sN)

(N + 1) ρ+ (N2 +N + 1) s
.

as the unique steady state of the system. The dynamic system can be imme-

diately rewritten in matrix form to verify that the pair
©
pCL , qCL

ª
is stable

in the saddle sense. The proof of this is omitted for the sake of brevity.

Using (42), we may compute:

lim
s→0

qCL = lim
ρ→∞

qCL =
A− c

N + 1
; lim
s→0

pCL = lim
ρ→∞

pCL =
A+Nc

N + 1
; (43)

lim
s→∞

qCL = lim
ρ→0

qCL =
N (A− c)

N2 +N + 1
; lim
s→∞

pCL = lim
ρ→0

pCL =
A (N + 1) + cN2

N2 +N + 1
.

(44)

Clearly, the output and price levels in (44) are, respectively, larger and

smaller than the corresponding equilibrium values for the static game.
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From expression (30) and (43), we immediately draw the following impli-

cation:

Proposition 4 If the price is infinitely sticky, both the open-loop equilibrium

and the closed-loop memoryless one coincide with perfect competition for all

N ≥ 1.

Note that this result is not true in general for any closed-loop equilib-

ria. For instance, the feedback equilibrium investigated in Fershtman and

Kamien (1987) and Cellini and Lambertini (2004) does collapse into perfect

competition in the limit.

Our last result concerns the comparative evaluation of the slope of the

best reply across settings. Evaluating (26) against (39), we find:¯̄̄̄
∂q∗i (t)
∂qj(t)

¯̄̄̄
CL

>

¯̄̄̄
∂q∗i (t)
∂qj(t)

¯̄̄̄
OL

(45)

for all N > 1.

Proposition 5 The best reply associated with the closed-loop equilibrium is

steeper than the best reply associated with the open-loop equilibrium for all

N > 1.

The reason is that, when taking into account feedback effects (35) for the

closed-loop solution, by definition each firm becomes more sensitive to the

rival’s behaviour, which makes her best reply steeper than in the open-loop

game. For a given intercept of the best reply function, this would imply

that firms produce more at the open-loop solution than at the closed-loop

one. However, comparing equilibrium outputs in the two settings, we have

that qCL > qOL, as we know from Fershtman and Kamien (1987) and Cellini

and Lambertini (2004). This is due to the fact that, indeed, the intercept of
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the closed-loop best reply is larger than the intercept of the open-loop best

reply, to such an extent that the resulting equilibrium outputs are higher in

the closed-loop case.

4 Conclusion

We have investigated the issue of intertemporal strategic interaction in differ-

ential games. We have considered a Cournot model with sticky prices where

first order conditions do not identify best replies at any time during the

game. They only emerge in steady state, where one can check that (i) reac-

tion functions are negatively sloped, (ii) the feedback effects accounted for

in the closed-loop solution entail that, in such a case, best replies are steeper

than under the open-loop solution; (iii) this notwithstanding, steady state

outputs at the closed-loop equilibrium are larger than the corresponding out-

put levels at the open-loop equilibrium, due to the fact that closed-loop best

replies are steeper but shifted outwards w.r.t. open-loop best replies. Finally,

in the case of infinitely sticky prices, then both types of equilibria replicate

the perfectly competitive outcome generated by the static model.
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