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Abstract

We investigate a dynamic Cournot duopoly with intraindustry trade, where

firms invest in R&D to reduce the level of iceberg transportation costs. We

adopt both open-loop and closed-loop equilibrium concepts, showing that a

unique (saddle point) steady state exists in both cases. In the open-loop model,

optimal investments and the resulting efficiency of transportation technology

are independent of the relative size of the two countries. On the contrary, in

the closed-loop case, a home market effect operates so that the firm located

in the larger country invests more than the rival located in the smaller one.

Policy implications are also evaluated.
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1 Introduction

Transport and communication costs are at the heart of many international trade issues

because they put a wedge on transactions across borders. The traditional view is that

national borders affect trade because their existence is associated with discriminatory

policies and physical distance. In this framework distance is not conceived only in

terms of physical space, but it also includes a broad category of features such as

language, different legal systems across borders, local consumer tastes, i.e., everything

that may constitute an economic and social impediment for the exporting firm.

Starting from McCallum (1996), recent empirical research on trade reveals a sur-

prisingly high degree of market fragmentation that gives rise to border effects and to

the so-called “home bias” effect. Obstfeld and Rogoff (2000) refers to the home bias

as one of the “six major puzzles in international macroeconomics”. In their view, the

interaction between iceberg transport costs and the elasticity of substitution between

domestic and foreign goods accounts for much of the observed home bias. Anderson

and Marcouiller (1999) propose a different explanation for the home bias, relying on

the consideration that the rule of law is much weaker when trade is international.

Along the same line, Turrini and van Ypersele (2002) point out that the home bias

can be explained by differences in legal systems, so that legal costs are higher when

business is done abroad rather than at home.

Nonetheless, the issue of transport costs has not received sufficient attention in

the literature, perhaps because of steadily declining communication and shipment

costs.1 However, the persistence of many home biases confirms that the question of

transport costs is not a secondary one and needs further and deeper investigations.

In this paper, we analyze the strategic behavior of firms located in different coun-

tries that open up to trade and face an additional cost when delivering abroad. As a

stylized fact, firms that export their goods abroad face costs that are not only due to

1Harley (1980) and O’Rourke and Williamson (1999) document the sharp declines in both ocean

and overland transportation costs.
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physical distance, but also to the access to a foreign network of communication and

distribution. Hence, they might be willing to invest in transport and communication

technology to increase the penetration into foreign markets.

We consider a duopoly Cournot game with firms facing the possibility of investing

in transport and communication R&D (TCRD). By investing in TCRD, a firm may

have an easier access to the foreign market, thus increasing her market share. As

usual, transport and communication costs are of the ‘iceberg’ form introduced in the

literature by Samuelson (1954) and widely used in trade theory thereafter.

Both the open-loop and the closed-loop equilibria are investigated.2 In the former,

the resulting steady state investment efforts and the efficiency levels of transportation

technologies depend only upon time discounting, depreciation and the efficiency of

TCRD. This is due to the fact that, in the open-loop setting, firms design an invest-

ment plan at the outset and stick to it until they reach the steady state, regardless

of the strategic interaction taking place in between. Accordingly, the relative size

of the two countries does not influence the investment behaviour and the resulting

performance of firms’ transportation technologies at equilibrium. On the contrary, in

the closed-loop equilibrium firms explicitly account for strategic interaction through

reciprocal feedback effects at any point in time. This yields optimal investment ef-

forts and equilibrium technologies that do depend upon the relative size of the two

markets. In particular, each firm’s optimal investment path toward the equilibrium

is positively affected by the size of the foreign country, all else equal. This can be

labelled as a ‘foreign market effect’, for the sake of contrasting this finding with the

well known ‘home market effect’ whereby a firm located in the larger market sells

more than the firm located in the smaller market (see Krugman, 1990, inter alia).

When firms only control sales in order to maximise profits, then, intuitively, market

shares on the international market place go along with the relative size of countries.

2For an introduction to differential oligopoly games, see Cellini and Lambertini (2003). For a

more detailed treatment of differential game theory, see Dockner et al. (2000).
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However, if firms are required or allowed to endogenously determine their respective

ability to reach the foreign market, then the size of the latter may matter more than

the size of the home market.

On the other hand, we find that the larger is the home market, the lower will

be the efficiency of the transportation technology employed by a firm in the closed-

loop steady state equilibrium. This reveals the presence of a ‘home market effect’

operating at equilibrium. This can be interpreted in the usual sense, as the funds for

R&D activities are raised by sales, which in turn are positively affected by the size

of the domestic country.

A domestic policy maker aiming at improving his country’s social welfare may

adopt two alternative measures (or a combination of both). He may modify either

the instantaneous cost of investment, or the efficiency of the R&D technology, through

subsidies or taxation. In both cases, a taxation policy should be adopted so as to

reduce excess investment characterising the closed-loop equilibrium.3

The remainder of the paper is organized as follows. The setup is laid out in

section 2. Open-loop and closed-loop equilibria are investigated in section 3. Section

4 analyses policy implications. Concluding remarks are given in section 5.

2 The model

We consider a model of bilateral trade between two firms selling a homogeneous good.

We assume that firm i is located in country A while firm j is located in country B.

Market competition takes place as a Cournot game where each firm chooses the profit

maximizing quantity for each country separately (Brander, 1981). Time is continuous

and denoted by t, with t ∈ (0,∞).
Firms face an additional transport cost only when shipping the final good abroad.

3This phenomenon is widely accounted for in the literature since Brander and Spencer (1983).

We don’t dwell upon the possibility for a policy maker to adopt tariffs or quotas, in view of the

recent guidelines of GATT and WTO.
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This amounts to saying that transport costs only affect international trade. We model

transportation costs as in Samuelson (1954), i.e. using the iceberg metaphor.

Consider the following indirect demand system:

pA(t) = aA − qiA(t)− qjA(t)

sj (t)
(1)

pB(t) = aB − qjB(t)− qiB(t)

si (t)
(2)

where qiA(t) (qjB(t)) denotes the quantity produced by firm i (j) for domestic con-

sumption and qjA(t) (qiB(t)) represents the quantity produced by firm j (i) for foreign

consumption;
qjA (t)

sj (t)
, with sj (t) > 1 ∀t ∈ [0,∞), represents the share of firm j’s

good that arrives in country A at time t, and similarly for
qiB(t)

si (t)
. Finally, aA and aB

stand for market-sizes, both supposed to be constant over time.

On the supply side, production exhibits constant return to scale. For the sake of

simplicity, we normalize unit costs to zero. Instantaneous profits are then given by:

πi(t) = pA(t) qiA(t) + pB(t)
qiB(t)

si (t)
− β [ki(t)]

2 (3)

πj(t) = pB(t) qjB(t) + pA(t)
qjA(t)

sj (t)
− β [kj(t)]

2 (4)

where ki(t) and kj(t), respectively, represent the amount of effort made by firm i

and firm j at time t in order to reduce the percentage of quantity lost on the way.

Parameter β > 0 is an inverse measure of TCRD productivity.

As a result of such activities, each firm increases the fraction of good that reaches

foreign market. We assume that si (t) and sj (t) evolve over time according to the

following kinematic equations:

·
si (t) =

∂si(t)

∂t
= [αki(t)− δsi(t)] [1− si(t)] (5)

·
sj (t) =

∂sj(t)

∂t
= [αkj(t)− δsj(t)] [1− sj(t)] (6)

where δ ∈ [0, 1] denotes the depreciation rate, which is common to both firms and con-
stant over time; α > 0 is a constant parameter positively affecting the accumulation

process.
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We assume that firm i aims at maximizing the discounted profit flow:

Πi(t) =

Z ∞

0

πi(t) e
−ρtdt (7)

w.r.t. controls ki(t) and the market variables qiA (t) and qiB (t), under the constraint

given by the state dynamics (5). Firm j follows a specular dynamic optimization

program. The discount rate ρ > 0 is assumed to be constant and common to both

firms.

3 Solution of the Game

The current value Hamiltonian function for firm i writes:

Hi = e−ρt
n
πi(t) + λii(t)

·
si (t) + λij(t)

·
sj (t)

o
dt (8)

where λii(t) = µii(t)e
ρt and λij(t) = µij(t)e

ρt, µii(t) being the co-state variable asso-

ciated to si(t). Firms play simultaneously. Firm i’s first order conditions (FOCs) on

controls are:4

∂Hi

∂qiI
= 0⇒ qiI =

1

2

µ
aI − qjI

sj

¶
; I = A,B (9)

∂Hi

∂qiJ
= 0⇒ qiJ =

si
2
(aJ − qjJ) ; J = A,B (10)

∂Hi

∂ki
= 0⇒ λii =

2βki
α (1− si)

(11)

along with the transversality and initial conditions:

lim
t→∞

µiisi = 0, si(0) > 1. (12)

Note that the above FOCs do not contain λij, therefore we set λij = 0 for all

t ∈ [0,∞). Moreover, (9) contains sj, i.e., the state variable of the rival, meaning
that the open-loop solution and the closed-loop memoryless solution do not coincide.

Consequently, we deal with the two solution concepts.

4For the sake of brevity, in the remainder we omit the indication of time as well as exponential

discounting.
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3.1 Open-Loop Nash Equilibrium

The outcome of the open-loop game is summarised by the following:

Proposition 1 The open-loop game reaches a unique steady state at:

kOLi =
ρ+ δ

α
; sOLi =

ρ+ δ

δ
.

The equilibrium
©
kOLi , sOLi

ª
is a saddle point.

Proof. Under the open-loop solution concept, we can specify the firm i’s co-state

equation as follows:

−∂Hi

∂si
=

.

λii − ρλii ⇔ (13)

.

λii =
qiJ [si (aJ − qjJ)− 2qiJ ] + λii [ρ+ αki − δ (2si − 1)] s3i

s3i
.

Now, by using (11), one obtains the dynamics of investment:

.

ki =
α

2β

h .
λii (1− si)− λii

.
si
i

(14)

which can be simplified by using the co-state equation (13) and the system (9-10):

.

ki = ki (ρ+ δ − δsi) (15)

The steady state equilibrium requires
n .

ki = 0,
.
si = 0

o
, yielding:

kOLi =
ρ+ δ

α
; sOLi =

ρ+ δ

δ
(16)

Since under open-loop solution concept, by definition, feedback effects are not ac-

counted for, the equilibria we find are such that the size of the country does not play

any role. Indeed, kOLi and sOLi depend only upon intertemporal parameters.5

As to the issue of stability, on the basis of symmetry, we can look at a single

firm in isolation. Using the two differential equations (5) and (15), we can write the

Jacobian matrix of firm i:
5This can be shown to hold as well in a similar setup without trade (see Colombo, Lambertini

and Mantovani, 2003).
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JOL =


∂
·
si

∂si

∂
·
si

∂ki

∂
·
ki

∂si

∂
·
ki

∂ki

 =
 −δ + 2δsi − αki α (1− si)

−δki ρ+ δ − δsi


The trace and determinants of JOL are:

Tr
¡
JOL

¢
= ρ+ 1− δ > 0

∆
¡
JOL

¢
= ρδ (2si − 1)− αρki + δ2 [si (3− 2si)− 1]

which, evaluated at
©
kOLi , sOLi

ª
, simplifies as follows:

∆
¡
JOL

¢
= −ρ (ρ+ δ) < 0.

This concludes the proof.

Equilibrium outputs are:

qOLiA =
aA
3
; qOLiB =

aBs
OL
i

3
=

aB (ρ+ δ)

3δ
;

qOLjA =
aAs

OL
j

3
=

aA (ρ+ δ)

3δ
; qOLjB =

aB
3
;

(17)

while profits are:

πOLi =
a2A + a2B
9

− β (ρ+ δ)2

α2
> 0 iff

a2A + a2B
9

>
β (ρ+ δ)2

α2
. (18)

3.2 Closed-Loop Nash Equilibrium

Here we take into account the feedback between player i’s strategy and player j’s

state variable. This will lead to an equilibrium characterized by subgame perfection.

We specify the firm i’s co-state equation:

−∂Hi

∂si
− ∂Hi

∂qjJ

∂q∗jJ
∂si

=
.

λii − ρλii (19)

along with the transversality and initial conditions:

lim
t→∞

µiisi = 0, si(0) > 1. (20)
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The partial derivatives appearing in (19) are:

∂Hi

∂si
=
2q2iJ − qiJ (aJ − qjJ) si + λii [(2si − 1) δ − αki] s

3
i

s3i
(21)

∂Hi

∂qjJ
= −qiJ

si
;
∂q∗jJ
∂si

=
qiJ
2s2i

(22)

Optimal output levels are as in (17), i.e., qCLiI = aI/3 and qCLiJ = aJs
CL
i /3. Now,

by using (14), (17) and the co-state equation (19), we can write:

.

ki =
36βkisi (ρ− δsi + δ)− a2j (si − 1)α

36βsi
(23)

However, steady state solutions are cumbersome, therefore they cannot be intu-

itively interpreted. Hence, we proceed as follows. We impose
.

ki = 0 to determine an

equilibrium relation between ki and si:

kCLi (si) =
a2J (si − 1)α

36βsi [ρ− δ (si − 1)] (24)

Notice that, here, steady state expressions involve the size of the countries as well

as parameter β, unlike what we have observed in the previous section, treating the

open-loop solution. Indeed, kOLi and sOLi depend only on intertemporal parameters,

while kCLi and therefore also sCLi are explicitly affected by the size of the foreign

market as well as the efficiency of R&D activity, as (inversely) measured by the

cost parameter β. This clearly reflects the fact that the closed-loop solution conveys

more information than the open-loop one, by explicitly taking into account the rival’s

reaction.

The following can be shown to hold:

Proposition 2 The steady state defined by {
.

ki = 0,
.
si = 0} is a saddle point.

Proof. See the Appendix. ¥

An intuitive illustration of saddle point stability can be obtained from the phase

diagram of firm i, as it is described in Figure 1.
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Figure 1 : The phase diagram for firm i
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Some intuitive comparative statics can be carried out on kCLi (si) :

∂kCLi (si)

∂α
> 0 ;

∂kCLi (si)

∂β
< 0 . (25)

More interesting is the following:

∂kCLi (si)

∂aJ
> 0 (26)

which tells that the locus of the optimal investment shifts upwards with the size of

the foreign market. We can label this as the foreign market effect: the larger is the

foreign market, the higher is the incentive to carry out R&D activity to improve the

efficiency of transportation, for any given level of the iceberg cost si. However, we

are about to show that, in equilibrium, any upward shift of the locus
.

ki = 0 brings

about a decrease in the steady state investment, due to the shape of
.
si = 0.

Moreover, from (24), we also draw the following implication:

10



Lemma 3 The condition si = sj, is sufficient to ensure that, along the path to the

steady state, kCLi > kCLj for all aI < aJ , and conversely.

The effect of si on kCLi (si) is also relevant:

∂kCLi (si)

∂si
=

a2J
£
ρ+ δ (si − 1)2

¤
α

36βs2i [ρ− δ (si − 1)]2
> 0 ,

which proves the following:

Lemma 4 The locus of the optimal investment in TCRD, kCLi (si) , shifts upwards

for any given increase in si.

This is due to the fact that, the smaller is the fraction of exports that can actually

reach the foreign market, the higher is the incentive for firm i to invest in order to

improve the efficiency of the transportation technology.

We are now in a position to derive the implicit profit levels (for a given level of si)

under the closed-loop solution concept. Before doing this, from a direct comparison

between (16) and (24), it is easy to prove that the optimal effort in TCRD is higher

under the closed-loop than under the open-loop solution (see Colombo, Lambertini

and Mantovani, 2003).

This result is in line with the kind of R&D activity at stake, which aims at increas-

ing the percentage of output that reaches the foreign market. Moreover, we confirm

the conventional wisdom that firms invest more when using closed-loop decision rules

than open-loop ones (see, e.g., Reynolds, 1987).

The steady state profits accruing to firm i are:

πCLi (si) =
a2I + a2J
9

− a4J (si − 1)2 α2
1296βs2i [ρ− δ (si − 1)]2

(27)

Proposition 5 If aI ≥ aJ then sCLi > sCLj and kCLi > kCLj .

Proof. First, we plug kCLi (si) into
.
si and impose

.
si = 0, to get:

sCLi =
ρ+ δ

3δ
+
3βδ2Ψ+ 3

r³
Φ+
√
3Θ
´2

18βδ2
3
p
Φ+
√
3Θ

(28)
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where:

Ψ ≡ 12β (ρ+ δ)2 − α2a2J

Φ ≡ 27β2δ3 £8β (ρ+ δ)3 − α2a2J (ρ− 2δ)
¤

Θ ≡ β3δ6
n
27β

£
8β (ρ+ δ)3 − α2a2J (ρ− 2δ)

¤2 − £12β (ρ+ δ)2 − α2a2J
¤3o

.

Now it can be checked that sCLi = sCLj at aI = aJ , while s
CL
i > sCLj for all aI >

aJ (and conversely). Then, from (5-6), notice that one can write kCLi = δsCLi /α.

Therefore, if sCLi > sCLj , then it must be true that kCLi > kCLj . ¥
The above proposition states that, in steady state, the firm located in the larger

country has a comparatively higher incentive to invest in TCRD than the firm located

in the smaller country. We label this as the home market effect. While the foreign

market effect outlined above matters along the path to the steady state, the home

market effect emerges in steady state only. The explanation is the following. Along

the optimal investment path, the firm focusses its efforts upon the attempt to improve

its ability to export, i.e., what matters is the size of the other country. This is

represented by the fact that kCLi (si) is a function of aJ but not of aI . In steady

state, firms only invest in order to preserve the equilibrium, i.e., the status quo.

In this situation, firm i’s ability to invest so as to make up for the depreciation rate

ultimately depends upon its capacity to raise resources to finance R&D activity. This

is essentially determined by its domestic market. In this sense, the features of the

steady state equilibrium recall the well known home effect already highlighted in the

existing literature (Helpman and Krugman, 1985; Krugman, 1990).

The foregoing analysis can be described graphically, by referring to Figure 2.
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Figure 2 : The phase diagram drawn for aI > aJ
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In the figure, we assume aI > aJ , so that the locus
.

ki = 0 lies everywhere to

the right of
.

kj = 0, and below it. then, note that a unique locus
.
si = 0 appears,

in that the parameters affecting the state dynamics are fully symmetric across firms.

Therefore, the inequality aI > aJ directly implies both kCLi > kCLj and sCLi > sCLj .

4 Policy Implications at the Closed-Loop Equilib-

rium

The social welfare enjoyed by country I in the steady state associated with the closed-

loop equilibrium is:

SWCL
I = πCLi + CSCL

I (29)
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where CSCL
I is the instantaneous consumer surplus:

CSCL
I =

£
aI − pCLi

¤
2

·
"
qCLiI +

qCLjI

sj

#
=
2a2I
9

(30)

and πCLi is given by (27). Therefore, welfare can be written for a generic si, as follows:

SWCL
I (si) =

a2I
3
+

a2j
9
− a4J (si − 1)2 α2
1296βs2i [ρ− δ (si − 1)]2

We want to investigate the responses of SWCL
I (si) to different policy measures.

Assume that the government of country I may choose between two kinds of policies:

(i) an R&D subsidy to affect the instantaneous investment costs, through a reduction

of β; (ii) an R&D subsidy affecting the accumulation process, through an increase of

α. Consider, first, policy (i). Its marginal effect on welfare is given by:

∂SWCL
I (si)

∂β
=

a4J (si − 1)2 α2
1296β2s2i [ρ− δ (si − 1)]2

> 0 (31)

Therefore, a marginal increase in β improves welfare. This can be explained as follows.

An increase in β reduces kCLi (si) , as we know from (25). This suggests that firms

invest too much in R&D as compared to what would be socially optimal, given the

output levels chosen on the basis of profit maximisation.

As to policy (ii), its effect is given by:

∂SWCL
I (si)

∂α
= − a4J (si − 1)2 α

648βs2i [ρ− δ (si − 1)]2
< 0 (32)

Likewise, a marginal decrease in α yields a welfare improvement, since it slows down

the R&D investment.

In line of principle, the two measures could obviously be implemented together.

However, this may not be possible. In order to understand which one should be

preferred, we consider the following:¯̄̄̄
∂WCL

I (si)

∂α

¯̄̄̄
=
2β

α

¯̄̄̄
∂WCL

I (si)

∂β

¯̄̄̄
(33)

It is immediate to draw from it:
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Proposition 6 For all β > α/2, it is preferable to reduce the investment efforts of

firms by reducing the productive efficiency of R&D activity, rather than increasing

the cost of R&D investment, and vice versa.

That is, a welfare-improving reduction of excess investment typically emerging

in Cournot markets (as in Brander and Spencer, 1983; Spencer and Brander, 1983),

can be attained through several forms of taxation, affecting either the perceived cost

of R&D activity to be accounted for in instantaneous profits (parameter β), or the

performance of R&D activity itself (parameter α).

5 Concluding remarks

We have analysed a dynamic Cournot duopoly with intraindustry trade, where firms

invest so as to reduce the level of iceberg transportation costs. We have derived both

open-loop and closed-loop equilibria, showing that a unique (saddle point) steady

state exists in both cases. In the open-loop model, optimal investments and the

resulting efficiency of transportation technology are independent of the relative size

of the two countries. On the contrary, in the closed-loop case, a home market effect

operates so that the firm located in the larger country invests more than the rival

located in the smaller one.

In order to reduce the excessive amount of R&D effort by the domestic firm, a

policy maker aiming at enhancing domestic social welfare may adopt two different

types of R&D taxation, or a mix thereof.
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Appendix

Proof of Proposition 2. The dynamic system is described by the following differ-

ential equations:
.

ki =
36βkisi (ρ− δsi + δ)− a2j (si − 1)α

36βsi
(a1)

·
si =

∂si(t)

∂t
= [αki − δsi] [1− si] (a2)

yielding the Jacobian matrix for the closed-loop case:

JCL =


∂
.

ki
∂ki

∂
.

ki
∂si

∂
.
si

∂ki

∂
.
si

∂si

 =
 ρ− δsi + δ −36βkis

2
i δ + a2jα

36βs2i

−α (si − 1) −δ + 2δsi − αki

 (a3)

The determinant of JCL is:

∆
¡
JCL

¢
= −36βs

2
i

¡
ρδ − 2siρδ + ραki − 3siδ2 + 2s2i δ2 + δ2

¢
+ a2jα

2 (si − 1)
36βs2i

(a4)

and
©
kCLi , sCLi

ª
is a saddle point if ∆

¡
JCL

¢
< 0. Now, from (24), one can plug

kCLi (si) into (a4) to obtain:

∆
¡
JCL

¢
= −α

2a2j (ρ+ δ) (si − 1)2 − 36βδs2i (2si − 1) (ρ+ δ − δsi)
2

ρ+ δ − δsi
. (a5)

The non-negativity of (24) requires si < (ρ+ δ) /δ, i.e., the open-loop solution for si.

Therefore, in general, we can write:

si =
ρ+ δ − ε

δ
, (a6)

where ε is positive and small. In correspondence of (a6), the determinant rewrites as:

∆
¡
JCL

¢
= −α

2a2j (ρ+ δ) (ε− ρ)2 − 36βε2 (ρ+ δ − ε) (2ρ+ δ − 2ε)
δ2

(a7)

with

lim
ε→0

= −α
2a2j (ρ+ δ) ρ2

δ2
< 0 (a8)

which proves that, in the left neighbourhood of the open-loop solution for si, the

closed-loop equilibrium is a saddle point. Alternatively, one can plug (28) into (a5)
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and give plausible numerical values to (aj, α, β) , to verify that ∆
¡
JCL

¢
< 0 for all

δ, ρ ∈ [0, 1] .
Concerning the second order conditions, we apply Arrow’s sufficiency theorem

(1968); see also Chiang (1992, ch. 8). The Hessian matrix of firm i is:

Hi =

 λii
2

µ
α2λii
b

+ 4δ

¶
0

0
α2λijλjj

b
+ 2λijδ

 (a9)

Since the determinant of the above 2 × 2matrix is positive, the matrix is negative
definite. Hence, second order conditions are satisfied.
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