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1. Introduction 1 

How do consumption and investment respond to uncertainty shocks? What role does 

uncertainty play in macroeconomic fluctuations? Is macroeconomic uncertainty a possible cause of 

weak recovery after adverse shocks, or is it rather a consequence of negative economic conditions? 

Over the last decade, questions like these have become increasingly important, as an attempt is 

made to better understand the role of uncertainty in shaping the global financial crisis.  

Quantitative results rely on different estimates of the unobservable, time-varying macro-

economic uncertainty, the measure of which is neither unique nor objective. Hence the question of 

how to proxy uncertainty has attracted increasing interest in recent years, as witnessed, for example, 

by the papers of Bachmann et al. (2013), Bekaert et al. (2013), Bloom (2009), Julio and Yoox 

(2012), Jurado et al. (2015), Rich and Tracy (2010), and Rossi and Sekhposyan (2015). The 

different measures of uncertainty formulated to date broadly follow three alternative approaches 

(see also Bloom, 2014).  

The first approach is “finance-based”, as it utilizes somewhat sophisticated methods to 

process the financial information thrown up by stock market volatility (see e.g. Bekaert et al., 2013, 

Bloom, 2009, Gilchrist et al., 2014, and Knotek and Khan, 2011), under the assumption that 

financial volatility can be a guide to the state of macroeconomic uncertainty even though not all 

individuals invest in the stock market (Romer, 1990), or share the same information that financial 

market actors have access to.  

The second approach is “forecasts-based”, as it estimates uncertainty by relying on the 

concept of the economy’s predictability and on the measurement of the discrepancy between 

professional forecasts, under the assumption that the lack of predictability and a large discrepancy 

between forecasters' views reflect (and are both perceived as signs of) a more uncertain economy. 

As with the previous approach, a large variety of methods are employed: see Bachmann et al. 

(2013), Jurado et al. (2015), Rich and Tracy (2010), Rossi and Sekhposyan (2015), Scotti (2013), 

and Segal et al. (2014).  

The third approach is “news-based”. Given the question "how does the average citizen 

comprehend the implications of stock market volatility and economic predictability underlying 

his/her uncertainty?", the answer is "media is the messenger" (see Alexopoulos and Cohen, 2009). 

Therefore, the degree of uncertainty in a given period can be proxied by the frequency with which a 

lengthy list of words related with uncertainty appears in journalistic articles. The assumption is that, 

                                                           

1 Paper presented at the 35th International Symposium on Forecasting of the International Institute of Forecasters, 
Riverside, June 21-24, 2015. We are grateful, without implication, to Nick Bloom, Joshy Easaw, Carlo Favero, 
Alessandro Girardi, Giuseppe Parigi, and Barbara Rossi for their comments, as well as to conference participants.  



4 
 

when certain causes of uncertainty matters, they are likely to be reported by journalists through the 

use of certain words. More specifically, it is assumed that the media are able to gauge any 

uncertainty indicated by market outcomes, professional economists and political debate, and to 

draw the general public’s attention to this uncertainty through the recurrent use of specific words. 

This approach - which is similar to the narrative analysis designed to identify monetary and fiscal 

policy shocks (see, for example, Romer and Romer, 2004, and Ramey, 2009) - leads to the news-

based uncertainty measures formulated, for example, by Alexopoulos and Cohen (2009), Baker et 

al. (2015), and Knotek and Khan (2011). 

The three previous approaches all have their pros and cons. On the one hand, the pre-

selection of directly observable specific events are easy to perceive but somewhat arbitrary. On the 

other hand, the methodological approaches that extract uncertainty estimates from latent processes 

are statistically and economically sound, but are also very complex black boxes not strictly related 

to observable indicators of uncertainty. 

 This paper has two aims. The first is to introduce a new uncertainty indicator (GT) that 

methodologically belongs to the class of news-based measures, but that replaces the more 

traditional counting of words reported by the press with the intensity of Internet searches. In short, 

GT shifts from word counts to individual searches, i.e. it focuses on the receiver (individuals) rather 

than on the channel through which the message is conveyed (press, media). While the traditional 

news-based measure uses journalists’ feeling about uncertainty and how they communicate it by 

using specific words, our measure is based on how Internet users explicitly manifest their 

uncertainty by searching for specific words with greater/less frequency. Higher levels of uncertainty 

are likely to result in a greater appetite for knowledge, and consequently in a more intense use of 

tools capable of gathering further information. In particular, we assume that the intensity of Internet 

searches is related to the uncertainty about the outcome of a specific political or economic event 

weighted by its subjective relevance as perceived by individuals. In this way, the intensity of 

Internet searches reflects uncertainty regarding the occurrence of an event, and the consequences of 

that event, which in principle may also be certain to occur. Google Trends is the tool we use to 

assess the search intensity of terms linked with economic and policy news, and to understand the 

level of information that individuals need in order to increase their awareness. To the best of our 

knowledge, this is the first time that Google Trends has been used to measure in a comprehensive 

way the need for information within the context of the measurement of uncertainty.2 

                                                           

2 Our choice of Google Trends is motivated in Section 2.2. Preliminary realizations were independently implemented by 
Squadrani (2013) and BBVA (2012); a simplified use of Google Trends, based on the single search term "economy" can 
be also found in Dzielinski (2012). By contrast, Google Trends is regularly used within the context of forecasting in 
order to provide predictors: see, for example, Choi and Varian (2012), and D'Amuri and Marcucci (2012).  
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 The second aim is to rectify the lack of comparisons, over a common time span, of the main 

features of the uncertainty measures for the U.S., to disentangle the signals that each of them uses to 

depict macroeconomic uncertainty, and to better understand their relationship with the economic 

cycle. In doing so, we also include our brand new Google-based index in the comparative analysis. 

Results show that Internet searches can provide the measures of macroeconomic uncertainty 

with fresh information. Therefore, the answer to the main question of the paper is that Internet 

search activity is a friend of the alternative uncertainty measures because it is able to capture 

individuals' perceived uncertainty not embodied in the other indicators. For example, we show that, 

in a situation of increasing uncertainty, Internet searches and press coverage follow different time 

paths. Internet searches sometimes peak before press coverage (as in the case of fiscal policy 

issues), while at other times their causality is either reversed (as in the case of monetary policy 

issues), or vanishes when they are for the best part contemporarily related (as in the case of 

questions of entitlement programs).  

The comparison of the macroeconomic effects of alternative uncertainty measures (i.e. 

finance-, forecasts- and news-based) shows that they are influenced by model parameter breaks due 

to in-sample events.  

The paper is organised as follows. Section 2 presents both the conceptual framework and the 

technical issues of our new “search-based” Google Trends uncertainty index (GT). Section 3 

analyses the dynamic interaction between our series of Internet searches and those news-based 

searches in Baker et al. (2015), in order to understand whether media coverage drives Internet 

searches, and whether such searches continue even after press coverage wanes. Section 4 surveys 

the “fantastic five” uncertainty indicators (i.e. those that are most frequently used in the literature, 

and that are publicly available on a monthly basis) by allocating them to the aforementioned three 

methodological approaches. Moreover, the section compares their statistical features at both 

univariate (persistence, seasonality and variability over time) and multivariate (Granger causality 

and contemporaneous correlation) levels. Section 5 focuses on the interaction between alternative 

uncertainty measures (including GT) and certain key macroeconomic variables (such as output and 

employment). Section 6 offers our conclusions.  

2. The making of GT, the new index of uncertainty based on Google Trends 

This section motivates our new uncertainty measure based on Google’s search volumes (in 

Section 2.1) and describes the steps taken to create it (in Section 2.2). Given that search volumes 

reflect individuals’ need for information about specific terms, their listing and wording is of 

paramount importance. We have chosen to extract Google Trends series with 184 queries closely 
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related to the 210 search terms used by Baker et al. (2015), henceforth BBD, to make “Newsbank”, 

that is the Categorical Newsbank version of BBD news-based economic policy uncertainty index 

(EPU, see more details in Section 4.1). Newsbank is exclusively based on news data, and is 

developed starting from specific policy area uncertainty sub-indexes.3 The 184 single series can be 

aggregated into 8 Newsbank policy categories, and the latter are summed up into the macro-

economic index, GT.4  

2.1 - The conceptual framework of the GT index 

The science of uncertainty quantification (see, among others, Der Kiureghian and Ditlevsen 

(2009)) establishes that uncertainty may be either aleatory (statistical) or epistemic (systematic). 

Aleatory uncertainty is irreducible: it arises naturally from perceiving real-life facts (that is, from 

"observing the system"), since it represents unknowns that randomly differ each time we examine 

those facts. Epistemic uncertainty represents the lack of knowledge about potentially knowable 

things that are unknown in practice.5 In both cases, we are faced with a lack of knowledge. In order 

to measure this lack of knowledge, we have to assume that there are “hidden” variables which can 

better inform individuals about the issues in question, and enable them to distinguish the truth from 

among the possible alternatives: the larger the set of possible alternatives, the greater the non-

specificity resulting in uncertainty. Moreover, uncertainty may be also driven by ambiguity and 

conflict (that is, by a lack of consensus or by disagreement): the more mutually exclusive items of 

evidence individuals have, or the more even the strength of the disagreeing items of evidence is, the 

greater the conflict.6 

Both non-specificity and conflict are mostly due to the poor quality of the information 

available (Harmanec, 1999), and this fact inevitably fuels individuals’ need to gather further 

information in order to bridge the gap between what is known and what needs to be known so as to 

be able to make better decisions; see also the discussion in Bloom (2014). This point is widely 

acknowledged in various fields. For example, in the field of economic psychology (see, for 

example, Lemieux and Peterson, 2011), individuals respond to greater uncertainty by intensifying 

                                                           

3 This index is based on the count of articles from the Access World News Newsbank (“Newsbank”) - a database of 
about 2,000 national and regional newspapers in the US. See the complete list of queries in the appendix to Baker et al. 
(2015) and on their website (www.policyuncertainty.com/categorical_terms.html). The 184 Google Trend queries we 
defined after rearrangements and validation of BBD search terms are listed in Appendix A1. 
4 Macroeconomic GT and data by category are obtained using the common-term aggregation procedure. Technical 
details are in Appendix A2. 
5 For example, with regard to uncertainty in official economic statistics, Manski (2015) considers uncertainty as the lack 
of knowledge deriving from an incomplete understanding of the information provided about an economic concept, or 
from the lack of clarity of the concepts themselves. 
6 The economic rationale of this point is modelled in Ilut and Schneider (2014). 
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their search for more information. Similarly, sticky information models predict that “more volatile 

shocks [in other words, greater uncertainty] lead to the more frequent updating of information, since 

inattentiveness is more costly in a world that is rapidly changing”, Reis (2006, p. 803). 

If uncertainty can be reduced by increasing knowledge, the intensity of search for more 

knowledge can be used to measure the level of uncertainty. In other words, higher levels of 

uncertainty lead to a greater appetite for increased knowledge, and consequently result in a more 

intense use of tools capable of gathering further information. In recent years the Internet has 

become an effective means of collecting and divulging information for an increasing number of 

people, and thus data regarding internet searches could prove useful in measuring uncertainty. 

Google Trends is one possible instrument with which to gather data on Internet searches. 7  

We think that this framework can motivate our proposal of transitioning from a “news-

based” to a "search-based" approach (intensity of Internet searches). 

2.2 – Pros and Cons to the utilization of Google Trends data and how we dealt with 

Google Trends provides an index of the volume of queries on Google since 2004. This index 

is called the Search Volume Index - in symbols SVIst – and it measures the volume of queries for a 

generic search term (or group of terms) s in a given region (in our case the U.S.A.) at time t: 

 ����� = ���	��
	×��[�,�] × 100 = ���	
��
	×���	�[�,�]����	 ��
	� �

× 100   (1) 

where	� �� 	is the number of searches for s within period t; the periodicity of observations is 

weekly or monthly, depending on the search term’s popularity.8 The division by	� !� , the total 

number of Google searches within the same period t, is done in order to prevent SVIst from being 

affected by the overall increase in Internet users over time. Moreover, SVIst time series are bounded 

between 0 and 100 because time series are scaled by the maximum value of  svst / svGt  from 0 to T 

(i.e. over the download period), and then are multiplied by 100. Google Trends only provides 

observations for those search terms exceeding a minimum threshold of popularity, otherwise they 

are set to zero; therefore zero SVIst indicates either no or insignificant searches for s at time t.  

                                                           

7With regard to the composition and relevance of Internet usage over the US population, note that in 2015 Internet users 
in North America represented 88% of the country’s population (see www.internetworldstats.com). Furthermore, Google 
is the leading search engine, with a worldwide market share of 68.5% in May 2015 (see www.netmarketshare.com). 
However, the risk of incurring in population bias exists, and there are also other issues relating to the use of social 
media data: see Ruths and Pfeffer (2014). 
8Search terms with low popularity are only available on a monthly basis. In our database, weekly Google Trends series 
are converted into monthly format by averaging them on the basis of the month in which the week begins. 
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SVI indicators have their pros and cons. On the positive side, they are freely available, 

measured at very high frequency, regularly updated, and early released. In addition, being peak-

normalised, the SVIs' sensitivity to extreme values is per se sharply reduced, while other ways of 

treating extreme values (such as outlier-trimming) can bias the original data structure (see e.g. 

Konig and Ohr, 2012). The normalization approach, in fact, produces indexes the changes in which 

proxy distances from their peaks, while differences across s are independent of their relevance over 

total Google traffic. An increase in the required information about term s is not measured by an 

increase in its share, but rather by an increase in its level towards 100. Therefore, SVIst indexes are 

short-term indicators, measuring how close the need for information about s at time t is to its 

highest point, rather than structural indicators identifying the most searched-for terms.  

On the negative side, such indicators are subject to sampling variability, which depends on 

the day of the download (Choi and Varian, 2012). Therefore, it is impossible to replicate the search 

volumes exactly due to the fact that they may differ slightly from one download day to the next. 

Following Da et al. (2011), who report that correlation is usually greater than 0.97 for series 

downloaded several times, we argue that the SVIs for a search term only change very slightly from 

one day to another, especially when considering highly popular terms.9 Moreover, the lack of 

information about the relevance of each SVI is a problem involving the aggregation of individual 

search terms' volumes into groups of overall means, as we do not know the weights of those sums.10 

Here we just note that both the aggregation of our 184 search terms in 8 categories 

representing 8 policy areas comparable with BBD index, and the sum of these categories into the 

macroeconomic GT is made using the common-term approach.11  The intermediate level of 

aggregation in categories is motivated by the need of comparing by component news- and search-

based indicators (i.e. BBD and GT) without available data on single BBD search terms. 12 Hence, the 

information flows between alternative media (newspapers, BBD, and Google searches, GT) will be 

studied, in the next Section 3, at the level of aggregation by categories.  

                                                           

9 In order to address this sampling issue, we downloaded SVIs for more than 200 terms from Google Trends on 13 
consecutive days (from the 8th to the 20th of June, 2014), and then computed sample correlation among the series in 
relation to different days. We found that sampling problems (identified as a correlation lower than 0.9) arise mainly in 
the presence of series containing zeros (i.e. low popular series).Therefore, we do not consider this as a relevant issue, 
because in the aggregation process the weight of low popularity series is negligible. 
10 Alternative SVI aggregation procedures are described in Appendix A2. 
11 Details are in Appendix A2. 
12 In fact, the category is the highest level of disaggregation available for both sources (BBD and GT), apart from two 
terms for which we report comparisons at single search term level in Appendix A4. 
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3. How uncertainty flows? Comparing Google Trends and Newsbank by category 

Little attention has been paid to analysing the relationships between press coverage and the 

information found on the Internet.13 In this section, by taking advantage of the availability of two 

consistent data sources (BBD's Newsbank series by category and the corresponding Google 

Trends), we try to shed some light on how newspaper reports and Internet searches interact in 

response to uncertainty shocks in order to deepen the knowledge by component of the news-based 

and GT indicators of macroeconomic uncertainty.  

3.1 – The methodological framework 

The basic ingredients are two sets of series measuring searches for the same terms from a 

particular policy category: ctBBD  (BBD's news-based counts), and ctGT  (Google Trends search 

volumes); where c = 1, 2, .., 8 (policy categories), and t are monthly observations over the period 

2004m1-2014m12, i.e. T = 132 months. Although referring to the same search terms, these two 

variables are different: ctBBD  measures uncertainty as the frequency with which certain terms are 

mentioned in the newspapers (reflecting journalists' decision to focus their readers’ attention on 

certain issues rather than on others), while ctGT  defines uncertainty as the frequency with which 

the same terms are used in Google searches. Therefore, according to the ctBBD  series, journalists 

are the messengers of the state of uncertainty, which they communicate by using specific words 

whereas, according to ctGT , Google users manifest their uncertain mood by searching in a 

more/less intense manner using those same words. 

The dynamic relationships between these variables can be assessed within the context of the 

VAR model. Suppose that, for the cth category, the k-dimensional stationary VAR(p) process cty  

consists of the m-dimensional process ctz  and the (k − m)-dimensional process ctx  with non-singular 

white noise covariance matrix Σε c 
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where, in our bivariate context: k=2 and m=1; ),( ′= ctctct GTBBDy  is the vector of the 

variables of interest for the cth category; scalars µc and matrices Ac are heterogeneous parameters 

(they are allowed to differ across categories); and ),(),( 21 ′=′= GT
ct

BBD
cttctcct εεεεε  is the vector of 

                                                           

13 Some empirical research has focused on modelling the ways information is divulged via the Internet, and the speed at 
which this happens in matters far removed from the question of uncertainty: see, for example, Eberth et al. (2014). 
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the random shocks to BBD and GT uncertainty measures for c. The lag length p is first set by using 

the AIC criterion (starting from p=13), and the corresponding residuals are tested for white noise 

errors (otherwise p is slightly altered until the white noise residuals target is met). The joint 

stationarity of all the variables listed in the VAR model, i.e. that the system (2) has full rank, can be 

assessed by using the Johansen (1995) trace test: if the sequence of null hypotheses of reduced rank 

is always rejected, then the data support the stationarity assumption. Finally, seasonal dummies are 

included in the VAR models when they are significant.  

The analysis using the VAR system (2) relies on two basic concepts: Granger- and 

instantaneous-causality. Granger causality involves the assessment of the null hypotheses: 

0,12 =icA  for i = 1, 2, ..., p (which implies that BBD is not Granger caused by GT), and 0,21 =icA  

for i = 1, 2, ..., p (which implies that GT is not Granger caused by BBD).14 In our context, the 

Granger causality from BBD to GT for a certain category c implies that past news-based shocks are 

related to present Google searches: past newspaper headlines lead people to increase their 

knowledge of the events in question even after the news shock has occurred, i.e. people still feel - 

after the shock - the need for further knowledge about c. In other words, the news-based measure of 

the uncertainty category c - informing people about what is happening now - leads to Google 

searches. Conversely, the Granger causality from GT to BBD for a certain category c implies that 

past Google searches inform journalists about their readers’ persistent interest in past headlines 

regarding c, and thus newspapers tend to satisfy this continued need for knowledge about the 

evolution of c. In this second case, Google searches – signalling readers' interest in c – drives the 

news-based measure of the uncertainty category c.  

Although we must be very cautious in interpreting the outcomes of Granger causality 

statistical tests in behavioural terms, for the sake of brevity we shall now label the Granger causality 

from BBD to GT as the "news-pooled" uncertainty, and the Granger causality from GT to BBD as 

the "query-driven" uncertainty. Having found the direction of Granger causality for each category 

(where such direction exists), the outcomes may be expanded by replacing, in the bivariate VAR, 

the Google Trends measure for c with its sub-groups and/or single search terms, thus utilizing the 

information concerning the most relevant terms within each sub-group.15 

Given that VAR residuals are not orthogonal, i.e. the covariance matrix Σε c is usually not 

diagonal because these models are in reduced form, the presence of a significant instantaneous 

                                                           

14 When the Johansen's test does not reject the null of reduced rank (i.e. that not all the variables in VAR are stationary), 
the Granger causality must be tested by following the Toda and Yamamoto (1995) approach. This is the way we 
followed for the sub-groups 20-21-22 of the Entitlement Programs category, and for the sub-groups 23-24 of the Trade 
Policy category; see Appendix A3. 
15 Details are in Table A2.1 summarising the results of the Bayesian aggregation approach in Appendix A2. 
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correlation between BBD and GT shocks ( 0)( 21 ≠′ tctcE εε ) means that the two measures of 

uncertainty for c are coincident, i.e. they reflect the same timing. 

3.2 – Empirical results by policy category 

The main results produced by using VAR system (2) are summarised in Table 1.16 The two 

columns and three rows of the table delimit six areas (cases) in which the 8 categories are allocated. 

Along the columns, we classify the categories as cases of high/low instantaneous correlation 

(degree of coincidence), depending on whether the value of such correlation is greater or less than 

0.25 (a figure denoting its “high” 1% significance). Along the rows, we classify the 8 categories 

into three cases: the case of news-pooled uncertainty (i.e. when BBD Granger causes GT), the case 

of query-driven uncertainty (i.e. when GT Granger causes BBD), and finally the case of no-

dynamically-related uncertainty (i.e. when Granger causality is not significant in either direction). 

Table 1 here 

The results shown in Table 1 can be summarized as follows. "Fiscal policy" and "Sovereign 

debt and currency crisis" are carefully monitored by people, as Internet searches increase as soon as 

shocks occurs, even though newspapers do not place much emphasis on them. Moreover, Internet 

activity and newspaper mentions also overlap significantly, since the instantaneous correlation 

coefficient is always high (in the 0.40-0.50 range). The same result is broadly found also in the case 

of "Healthcare", albeit with considerably lower significance and intensity.  

If we further the VAR analysis by trying to establish what the main drivers (at the level of 

individual search term) of the detected query-driven uncertainty are, the results in Appendix A3 

suggest the following answers. With regard to fiscal policy, the most reactive Google queries are 

"Debt ceiling"17 and "Government deficits", while the "Sovereign debt and currency crisis" GT 

dynamics is mostly driven by the term "Sovereign debt", although "Currency devaluation" and 

"Euro crisis" also play a significant role. In this context, the "Health care" GT category leads the 

news-based shock mainly because of the one search term "Affordable Care Act".  

The direction of the Granger causality is reversed in the case of "Monetary policy" and 

"Regulation", since it seems that people start looking for more information about the search terms in 

these categories only after newspapers have begun to mention them, i.e. news-based shocks drive 

Google searches. In this context, the term "Trade policy" behaves rather similarly, albeit with a 

considerably lower level of instantaneous correlation, which probably denotes the general public’s 

                                                           

16 The detailed outcomes are reported in Appendix A3. 
17 The analysis of the search term "debt ceiling" is studied further in Appendix 4.  
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limited attention to the news shocks in this category (the correlation coefficient here is about 0.10, 

against values of 0.55 and 0.31 recorded in the previous two cases, respectively). 

Finally, "Entitlement programs" and "National security and war" do not show any Granger 

causality from press and media reports to Google searches or viceversa. However, they behave 

differently as far as the degree of simultaneity is concerned. In fact, for "Entitlement programs", the 

news and Google are strongly correlated (above 0.40), thus denoting a substantial overlap, in the 

same month, of press reports and internet searches; in the case of "National security and war", on 

the other hand, the instantaneous correlation is about half the previous figure, suggesting that the 

need for knowledge that feeds the Google searches is not related to newspaper headlines to any 

significant degree, probably because readers already know a lot about the matter in question. 

BBD recently released data regarding news coverage of two specific search terms: 

"Government shutdown" and "Debt ceiling". This offered us the possibility for testing whether the 

comparison between news coverage (BBD) and Internet searches (GT) indicators at the category 

level is affected by problems deriving from aggregating possible heterogeneous search terms. 

Overall, in this context of highly disaggregated comparisons, some findings resulting from analyses 

conducted at the category level are confirmed. The first finding is the coincidence of news coverage 

and Internet searches in relation to many uncertainty shocks. The second one concerns journalists’ 

attention to their reader's needs: the persistence of news coverage following large shocks, can 

indeed be interpreted not only as a consequence of journalists' individual tastes, but also as an 

attempt to feed their readers’ desire for information with increasingly more fresh news.18 

4. A state-of-the-art assessment of macroeconomic uncertainty measures 

This section compares our GT index with what we called the “fantastic five” uncertainty 

indicators, because they are among the most popular, commented-on measures in the press and in 

the literature. Moreover, they are comparable with our GT index because they have also been 

publicly available on a monthly basis for a sufficiently long time to cover a large number of 

historical events. 

After presenting the “fantastic five” (in Section 4.1), we analyze, comparatively with GT, 

their statistical features at both univariate (persistence, seasonality and variability over time) and 

multivariate (Granger causality and contemporaneous correlation) levels (in Sections 4.2, and 4.3 

respectively).  

                                                           

18 Details are reported in Appendix A4. 
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4.1 – Introducing alternative proxies: the “fantastic five” 

We consider, as the “fantastic five”: 19 

- two finance-based indexes, (i) the CBOE Volatility Index, VIX (see Chicago Board Options 

Exchange, 2009), and (ii ) the corporate bond spreads, SPREAD, of Bachmann et al (2013); 

- two forecast-based measures, (iii ) the one-months ahead macro-uncertainty indexes, PREDICT1, 

of Jurado et al. (2015), and (iv) the measure of disagreement in business economists, FDISP, of 

Bachmann et al. (2013); 

- one news-based policy index, (v) the Economic Policy Index, EPU, of Baker et al. (2015), in the 

specific form of the HNEWS. This index is coupled with our search-based policy index GT. 

Although often considered as alternatives, these measures were introduced in the original under 

specific, different names. For example, SPREAD is defined in general terms as an “uncertainty 

measure”, FDISP as a “business-level uncertainty” measure, PREDICT1 as a measure of 

“macroeconomic uncertainty”, and the EPU as a measure of “policy-related economic uncertainty”. 

 While proxy (v) was essentially commented on, together with GT, in Sections 2 and 3, some 

observations can be made with regard to the other four proxies. The (i) VIX is used in many 

empirical studies, for example in Bloom (2009). But one caveat that emerges from the use of the 

VIX to proxy uncertainty concerns its ability to represent macroeconomic uncertainty, since it is 

based on stock market information alone. According to Bekaert et al. (2013), the VIX does not only 

reflect uncertainty but can be broken down into uncertainty and risk-aversion.20 Since risk aversion 

accounts for a sizeable part of the VIX,21 even more caution should be taken when considering it as 

a proxy of macro-economic uncertainty. Of course, the same criticisms of the use of financial 

information to proxy whole-economy uncertainty features (which also embody non-financial 

information) also apply to the (ii ) SPREAD proxy as well. Moreover, Gilchrist et al. (2014) use 

credit spreads to measure the degree of financial market friction - rather than uncertainty - and in 

this context their results suggest that credit spreads are an additional channel through which 

uncertainty fluctuations may spread to the real economy.22  

                                                           

19 Details of their computation are given in Appendix A5. 
20 In particular, they show that the uncertainty component of VIX can be defined as the expected stock market variance 
estimated using a projection model which includes the lagged squared VIX and past realized volatility, whilst risk-
aversion can be defined as the difference between the squared VIX and the estimated VIX uncertainty component. 
21 For this reason, the VIX is usually referred to as the “investor fear gauge” (see, for example, Whaley 2000). 
22 Gilchrist et al. (2014) assume that credit spreads reflect the endogenous effects of informational and contractual 
friction deriving from an (exogenous) uncertainty shock, which they measure using high-frequency firm-level stock 
market data. However, their Figure 4 suggests that the latter measure is highly countercyclical and moves in tandem 
with credit spreads. Nodari (2014) provides empirical evidence of the direct effects of financial regulation policy 
uncertainty on credit spreads, and subsequently on the real economy. 
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Although independent of any single observable economic indicator or event, the (iii ) 

PREDICT1 proxy is a computationally intensive black box that is not directly linked to the 

uncertainty perceived by the general public. The main caveat associated with the (iv) FDISP proxy 

is whether or not the disagreement of manufacturing c-levels − i.e. high-ranking executive members 

of organizations (a clearly defined, albeit narrow, category of economic actors) − is somehow 

reflected in US macroeconomic uncertainty. Furthermore, it is worth remembering the results in 

Lahiri and Sheng (2010). By breaking down the individual forecast error into a component related 

to shocks common to all forecasters over the forecast period, and another component concerning 

forecaster-specific idiosyncratic errors, Lahiri and Sheng (2010) show that the ex ante forecast 

uncertainty can be expressed as the sum of the expected volatility of future (common) aggregate 

shocks over the forecast horizon, and the observed disagreement among forecasters. In this context, 

large common shocks occurring in periods of economic instability or long forecast horizons, 

increase the difference between disagreement and uncertainty. 

4.2 – Univariate analysis of the “fantastic five” and GT 

Figure 1 depicts the “fantastic five” and GT: the two plots in the first row show the finance-

based measures (VIX and SPREAD), those in the second row show the forecast-based measures 

(PREDICT1 and FDISP), and the news- and search-based measures (HNEWS and GT) are 

displayed in the third row. The first five alternative measures of uncertainty cover the common 

sample 1970m1-2014m12 (T = 540 months, of which 83 of NBER downturns shown by the shaded 

areas), while our Google Trends indicator is available since 2004m1.  

Figure 1 here 

Besides different scales (summary statistics are in Table 2 below), the eyeball comparison of 

the uncertainty measures highlights quite different patterns of variability that are not very closely 

related to the nature of the indicators. In fact, some series (SPREAD and PREDICT1) clearly spike 

in recession periods only, while others (FDISP and HNEWS) seem more affected by random 

fluctuations over time. The VIX series is affected by certain spikes even outside downturns, when 

financial crises occur (e.g. the Black Monday of October 19th 1987).  

The upper panel in Table 2 reports the unconditional statistics for the uncertainty measures, 

revealing the larger variability of VIX, SPREAD and HNEWS. Apart from FDISP and GT (which 

seem more Gaussian), all the other series show positive skewness and excess of kurtosis, indicating 

tails on the right side of the distribution that are longer than those on the left side (i.e. the bulk of 

the density and the medians lie to the left of the means). This is the effect of positive spikes during 

recession phases, which results in counter-cyclical uncertainty, also supported by means and 
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variances that are often higher during downturns. These shifts are less pronounced for forecats-

based and news/search-based indicators, while the opposite holds for financial and macroeconomic 

uncertainty measures. Individual answers, newspaper information and Internet search fluctuations 

are all more weakly associated with the macroeconomic cycle, and thus their shocks may 

disentangle negative social and political events (see Bloom, 2014) from the mix of other 

occurrences that could over-represent macroeconomic conditions. 

Table 2 here 

Given that persistence is a relevant feature of theories where uncertainty is a driving force of 

long-lasting economic downturns (Scaal, 2011), the lower panel of Table 2 provides more in-depth 

analysis of the persistency properties of the various series. The results of the unit root tests (p-

values) over the sample 1970m1-2014m12 suggest that the fantastic five are stationary, as the null 

hypothesis is always rejected at 5% (with the exception of HNEWS where it is only rejected at 

10%). However, their persistence is different: after the occurrence of an uncertainty shock, the 

period of time it takes to halve the gap between actual data and the steady state, ranges between 5-7 

months for VIX, FDISP and HNEWS, and stands at about one year for SPREAD, and more than 

three years for PREDICT1 (the slowest to adjust).23 The shorter time span available for GT explains 

the statistical non-rejection of the unit-root null hypothesis, while the point estimate of its 

persistence suggests the behaviour of a stationary series with short-lived shocks. 

These results are confirmed by estimating ARFIMA models for the uncertainty level y: 

tt
d LyLL εϑµρ )()()1)(( =−−        (3) 

Where d is the fractional-integration parameter, )(Lρ  is the AR polynomial in the lag 

operator L, )(Lϑ  is the MA polynomial, and ε is the iid innovation term.24 Since Granger and 

Joyeux (1980), it has been widely acknowledged that the ARFIMA model provides a parsimonious 

parameterization of long memory processes that nests the ARMA model and, by allowing for 

fractional degrees of integration through d parameter estimates, it also generalises the ARIMA 

model with integer degrees of integration. The ARFIMA model is covariance stationary for 

                                                           

23 Note that in Jurado et al. (2015), the point estimate of the half-life of PREDICT1 after an uncertainty shock is 53 
months, whilst the half-life for the VXO is 4 months. These estimates are only slightly different from ours because they 
are based on an AR(1) model and refer to the period 1960m7–2011m12.  
24 All the univariate models in this section account for potential seasonal effects using dummy variables rather than by 
imposing a filter on data, because seasonal filters (e.g. the Census X13) might change the pattern and timing of the 
original measures. A battery of tests for stable and moving seasonality (see section D8.A in the X-13-ARIMA-SEATS 
output, see Lothian and Morry, 1978) support our choice in this context. Significant seasonal effects always emerge, 
with the exception of the FDISP. Note that Bachmann et al. (2013) acknowledge that the FDISP is based on seasonally 
adjusted data, while in all the other cases the issue is at best only partially discussed. Overall, seasonal dummies’ 
significance suggests that in modeling uncertainty, the seasonality required to be handled carefully. 
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2/1<d . The ARFIMA outcomes in Table 2 support the unit-root tests' findings: all series behave 

in a stationary manner (i.e. varying towards a time-invariant steady state) at different speeds. 

The similar persistence estimated by the ARMA/unit-root and ARFIMA approaches is 

remarkable. However, the null hypothesis of identically distributed uncertainty shocks is always 

rejected regardless of the modelling context (ARMA or ARFIMA), due to the presence of residuals’ 

autoregressive conditional heteroskedasticity, mainly deriving from shocks increasing in size during 

downturns. Therefore, a data congruent representation of uncertainty measures needs to account for 

this feature.  

We now use the result shown in Tsay (1987), according to which the GARCH effects in the 

innovations can also be explained by uncertainty models where the parameters are allowed to 

change and by iid innovation shocks. Given the close similarity in the dynamics of the ARMA-

ARFIMA shown by the results in Table 3, the common starting point of the two approaches is that 

of representing the stationary process driving the linear dynamics of the conditional-mean of 

uncertainty in the context of the MA(∞) Wold's decomposition of the short-term ARMA 

fluctuations of the ARFIMA model (3), by assuming that d = 0. 

The first approach, exploits the class of ARMA models with GARCH innovations as a 

parsimonious and flexible way of representing the dynamics of conditional mean and variance (see 

Diebold and Lopez, 1995), and of preventing the insurgence of residuals' heteroscedasticity: 

tt LBy εµ )(+=          (4) 

where µ  is the unconditional mean ofty  and ∑
∞
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obtained from )()(1 LL ϑρ −
. The shocks tε  are serially uncorrelated uncertainty innovations with 

time-varying heteroskedasticity th  conditional to the information set in t-1, 1−Ωt :  

1−Ωttε ∼N(0, th )         (5) 
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i
i LcLC  is a lag polynomial. If the two infinite-ordered 

autoregressive lag operator polynomials B(L) and C(L) are approximated by ratios of low-ordered 

lag operator polynomials, we obtain the classical ARMA model with GARCH errors (see e.g. 

Bollerslev et al., 1994). 

The innovations tε of the ARMA/GARCH models (4)-(5) affect the dynamics of both the 

conditional mean and the variance of uncertainty, to represent the pattern of highly or slightly 
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uncertain periods, that is, when significant changes in uncertainty are likely to be followed by other 

large changes, and when small changes are likely to be followed by other small changes, 

respectively. We choose an ARMA(2, 3) model for the conditional mean and a GARCH(1, 2) 

model for the conditional variance; although simple, these models can detect, within a suitable non-

linear framework, clusters of time where the uncertainty shocks are particularly large, and they nest 

all the uncertainty measures: 

ttttttt yyy εεϑεϑεϑφφγ ++++++= −−−−− 33221122110     (6) 

11
2

22
2

11 −−− +++= tttt hh βεαεαω        (7) 

The second approach starts once again from the MA(∞) Wold's decomposition of the 

ARMA fluctuations of uncertainty in equation (4); however, here we now assume that the 

unconditional mean of uncertainty can vary across m+1 different regimes (denoted with r) of Tr 

observations: 

trt LBy εµ )(+=          (8) 

where rµ is the unconditional mean ofty  in the r th regime (with  r = 0, 1, 2, ..., m), )(LB  is 

a polynomial of infinite order as in equation (4), and tε  are zero-mean, serially uncorrelated and 

homoskedastic (iid) uncertainty innovations. In order to estimate the unknown number of break 

dates, we follow a procedure (see Bai and Perron, 1998) which starts from m breaks under the null 

(obtained by a global minimization of the sum of squared residuals) and tests it against the 

alternative of m+1 breaks, for m = 0, 1, 2, ..., maxm (here we set the maximum number of breaks over 

the 2004m1-2015m12 period at five).  

Table 3 reports the Maximum Likelihood estimates of the ARMA/GARCH representation 

(6)-(7) of the “fantastic five” and GT.  

Table 3 here 

As regards the persistence of the conditional mean of the uncertainty shocks, the OLS 

estimates of π  in Table 2 are confirmed by the estimates of 121 −+φφ of the ARMA/GARCH 

model in Table 3, where the conditional mean specification is always characterized by large 

autoregressive parameter estimates with cyclical effects that are particularly evident for PREDICT1 

and HNEWS, while only HNEWS clearly shows a first-order moving average estimate, mirrored by 

the extremely long lag order (k = 15) of the unit root test equation in Table 2.  

With regard to the conditional variance, GARCH components are always strongly 

significant, with the financial SPREAD revealing the highest persistence in volatility (thus the 
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Integrated GARCH is the best representation). At the other extreme, the lowest persistence of the 

volatility of the financial VIX and GT shocks is coupled with the low persistence of their first-

moments. 

The patterns of the estimated conditional variances th of the different ARMA-GARCH 

models are plotted in the upper graph of Figure 2, and suggest that the clusters of time-varying 

volatility (i.e. the periods in which uncertainty is prone to larger/smaller shocks) are not much 

different across indicators. The variability of uncertainty shocks is more pronounced at the 

beginning of the sample (i.e. from the 1970s to the first half of the 1980s), before weakening during 

the phase of great moderation (that began in around 1984), with the exception of the financial blip 

in 1987m11. At the time of the Great Recession of 2008, variability rose again and continued to 

maintain high levels until the end of the sample (most obviously in the case of the HNEWS and GT 

conditional variance estimates). 

Figure 2 here 

The clustering volatility of uncertainty is mirrored in the pattern of tε̂  (i.e. the ARMA-

GARCH models’ residuals) reported in the lower graph of Figure 2. These tε̂  can be seen as our 

best estimates of the unpredictable macroeconomic uncertainty innovations.25 Their dispersion 

broadly corresponds to the phases before/during/after the Great Moderation, thus lending support to 

the belief that the size of uncertainty innovations and the variability of the macroeconomic cycle are 

somehow related. The prevalence of positive shocks during recession phases confirms the counter-

cyclicality of uncertainty. 

Not all peaks of the different uncertainty shocks overlap, since some measures are affected 

by more shocks than others are; this feature is noted in Jurado et al. (2015) as well, who report 

fewer extreme values in PREDICT1 than in VIX. We further investigate the issue in the lower part 

of Table 3, by counting the number of unpredictable adverse innovations tε̂ above 3 alternative 

thresholds: one, one and a half, and three times their time-varying standard deviations th . Peaks 

in uncertainty are considerably fewer for forecast-based indicators (PREDICT1 and FDISP) than for 

finance-based indicators (VIX and SPREAD). HNEWS and GT peak quite frequently, and in this 

they are similar to the finance-based indicators because news and Internet searches are related to 

important financial shocks even when such occur outside of large macroeconomic downturns. Our 

                                                           

25The results presented in the following sections using 
tε̂  are qualitatively similar to those obtained using the 

standardized residuals, i.e. 
tε̂ scaled with their corresponding time-varying standard deviations.  



19 
 

results confirm the findings of Jurado et al. (2015), and suggest a possible dichotomy between 

finance-based and forecast-based indicators. 

Table 4 reports, for the six uncertainty measures listed down the columns, the F-statistics of 

the largest significant number of breaks (i.e. the number of breaks for which the null hypothesis of 

m-1 breaks is rejected against the alternative of m breaks), together with the corresponding 

estimates of m, and with Bai and Perron (2003)'s 5% critical values.  

Table 4 here 

The OLS estimates of model (8) conditional on its own break dates deliver residuals tε̂  that 

never reject the null hypotheses of not serially correlated and homoskedastic errors. The evidence of 

homoskedastic errors supports the ARMA-with-breaks model (8) as a viable alternative to the 

ARMA model (6) with GARCH errors (7) to prevent the insurgence of residuals' autoregressive 

conditional heteroscedasticity. In other words, we are able to identify the high/low uncertainty 

regimes by allowing for shifts in uncertainty states, rather than by assuming GARCH variability of 

the uncertainty shocks over time. 

4.3 – Multivariate results across the “fantastic five” and GT 

Previous outcomes can be investigated further by extending the analysis from the univariate 

to the multivariate VAR context. Below we exploit two different VAR models, depending on the 

use of ARMA/GARCH residuals or of the uncertainty measures in a context with multiple breaks. 

According to the first univariate approach, we assess the simultaneity and the dynamic 

causation across shocks tε̂ (i.e. the ARMA/GARCH residuals) of different uncertainty indicators. 

First, the time series of tε̂ are modelled in a VAR system of the second order.26 Secondly, the 

VAR(2) parameter estimates are tested for Granger causality. Results are reported in Table 5.  

Table 5 here 

Given that data availability changes if we include GT in the VAR or otherwise, Table 5 is 

divided into two parts: in panel A the results from the largest sample period (1970m3-2014m12) are 

reported for our "fantastic five" benchmark measures, while in panel B the results refer to an 

extended VAR where GT also is included, and thus the sample period is shorter (2004m4-

2014m12). The upper section of each of the two panels shows the p-values of the Granger causality 

                                                           

26 As suggested by both the AIC criterion and by the non-serially correlated VAR residuals. These unpredictable 
innovations 

tε̂  modelled by a VAR model, can be interpreted as uncertainty measures following pre-whitening to 

remove their predictable parts such as inertia. 



20 
 

test, where each column refers to a VAR equation, and each row refers to a block of explanatory 

lags. In the lower part of each panel, the sample correlation matrix of VAR residuals is reported in 

order to assess the degree of simultaneity between different indicator innovations. 

In panel A, one- and two-month VIX innovation lags drive the dynamics of SPREAD 

innovations, while past changes in SPREAD do not lead VIX uncertainty: financial returns 

variability reacts more quickly to spread fluctuations within the same month, as shown by the VAR 

residuals correlation matrix.27 The dynamic causation of VIX extends not only to the innovations in 

SPREAD, but also to those in FDISP and HNEWS: an uncertainty shock in the stock market, 

measured by VIX innovations, also leads forecasters’ disagreement and (to a lesser extent) 

HNEWS. SPREAD innovations, on the other hand, simply lead FDISP shocks and no other 

uncertainty innovations. 

Along the FDISP column, FDISP innovations are led by all the other shocks in the VAR. 

This striking causation could be accounted for by the low degree of information updating by survey 

respondents: despite being high level executives, they are not professional forecasters, and as such 

their disagreement shocks can be caused by past shocks to other uncertainty measures bearing more 

recent information about the state of the forecasting environment. This interpretation, in line with 

Lahiri and Sheng (2010), is supported by the limited evidence of Granger causality along the 

column of PREDICT1 obtained using a large, updated dataset of economic indicators, and which as 

such is more difficult to be led than FDISP, while it anticipates all other uncertainty shocks. The 

Granger causality from FDISP to PREDICT1 is by and large apparent: being both indicators based 

on forecasts, past FDISP data - computed using six-month forecasts - overlap (rather than genuinely 

driving) the one-month horizon of PREDICT1. Overall, FDISP shocks do not cause any other 

uncertainty shock because FDISP forecasters target a specific area of the US, the economic 

indicators of which may not be perfectly in line with US-wide financial and macroeconomic 

indicators in the long term. 

The HNEWS shocks significantly Granger cause PREDICT1 because, despite being based 

on a large dataset of predictors, PREDICT1 may be lacking in news-based information; moreover, 

HNEWS innovations fuel shocks to the variability of forecasts (FDISP) as well. On the other hand, 

innovations to HNEWS cannot lead financial uncertainty shocks since financial markets 

instantaneously react to policy news, as shown by the significant contemporaneous correlation 

                                                           

27 In particular, SPREAD shocks are simultaneously related to those in VIX by a significant correlation of about ¼: 
financial market returns variability is positively and immediately associated to the interest rates differential shocks. 
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between HNEWS and VIX(about 0.3).28 The HNEWS column reveals that it is almost impossible to 

lead HNEWS uncertainty shocks (apart from in the PREDICT1 case). This substantiates the idea 

that journalists are quite responsive to economic news: the joint Granger causality test p-value of 

HNEWS is slightly below 5%, while it is well above those of the other measures, which on the 

contrary are strongly Granger caused (1% significant). High news responsiveness is further 

corroborated by the significant contemporaneous correlation between HNEWS idiosyncratic 

uncertainty shocks and almost all other sources of shock arising within the same month, as reported 

by the residuals' correlation matrix. Idiosyncratic SPREAD innovations represent the only case 

where the media are not very good at detecting them within the current month, thus suggesting that 

newspapers are not very interested in reporting on interest rate differentials, and this fact recalls the 

issue of journalists’ "taste" when it comes to choosing what news to highlight or otherwise (see the 

discussion in Section 3). 

Overall, two main results emerge from the sample period 1970m1-2014m12. Firstly, 

PREDICT1 shocks anticipate almost all the other measures, and they are hardly ever Granger-

caused. The systematic utilization of large information sets increases PREDICT1 timeliness in 

detecting new shocks of different origin. Probably for this reason, and also because it is much 

smoother than other measures, PREDICT1 is not coincident with the other uncertainty measures 

(see also the next finding). Secondly, our results suggest that journalists are timely messengers, and 

consequently the news-based uncertainty measures bear a lot of coincident information coming 

from other sources of uncertainty. 

In panel B of Table 5 the reduction in the time span increases the sample dominance of the 

Great Recession (virtually the only large-scale event in this temporal window), and consequently 

weakens the evidence of Granger causality between uncertainty shocks, in favour of an increase in 

their degree of simultaneity. In fact, over the 2004m4-2014m12 sample the Granger causality is still 

significant only for finance-based indicators, while it vanishes for forecast- news- and search-based 

ones. At the same time, there is an increase in the simultaneous correlation between shocks, from 

the levels estimated with the longer sample; owing to the dominance of financial facts in this short 

sample, the correlation between VIX and SPREAD shocks rises from 0.25 in panel A to about 0.60 

in panel B.  

Overall, the results of the comparison of different sample periods in which the same facts 

have different weights, emphasise the importance of the time span, and consequently of the 

                                                           

28 This evidence of the ability of journalists to detect financial uncertainty contrasts with Bachmann et al.’s (2013, p. 
240) hypothesis that "asset market variables (stock volatility and the corporate bond spread) pick up a kind of 
uncertainty that is not captured by survey-based and news-based uncertainty indices and that triggers “wait and see” 
dynamics". 
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size/number/nature of the shocks during that time span, to the shaping of the dynamic relationship 

between uncertainty measures. However, the two main findings regarding the larger time span are 

strong enough to survive over the shorter period. 

Summing up, results are listed below. 

(1) PREDICT1 is again the indicator that most frequently leads several other uncertainty 

measures, and it remains simultaneously related to HNEWS. 

(2) Journalists continue to act as the messengers of many different uncertainty shocks, as 

HNEWS is still strongly simultaneously correlated with all other sources of uncertainty innovation 

(even though we must acknowledge that over the shorter span, a journalist’s job was “made easier” 

by the advent of the Great Recession). 

Even though the short time span calls for great care to be taken when interpreting results, the 

inclusion of GT in the VAR in panel B produces two additional findings of interest.  

(3) Shocks in Internet search activity may lead shocks to the finance-based VIX and 

SPREAD indexes, and such evidence of GT Granger causality complements (rather than 

substituting) the one of PREDICT1. This fact, together with the weekly frequency with which 

virtually unrevised Google Trends are released, may open the way to the latter’s use in tracking the 

volatility of stock returns in real time.  

(4) The simultaneous correlation between HNEWS and GT is one of the strongest in panel B 

(about 0.30). Besides the advent of the Great Recession, such a coincident effect is due to the 

aggregation of different policy categories in overall indexes that can sweep away much of the 

leading and lagging information which − shown by category in Table 1 of Section 3 − is 

nevertheless significant despite being estimated over the same (short) sample. 

Table 6 presents the results delivered by the second approach with parameters shifting over 

time. We follow a two-step procedure able to extend the analysis from the univariate ARMA-with-

breaks model (8) to the multivariate VAR. Firstly, we estimate a VAR(2) model for the vector of 

six uncertainty measures (VIX, SPREAD, PREDICT1, FDISP, HNEWS and GT) conditional on all 

the break dates detected at univariate level29, and test for the significance of the step-dummies’ 

parameters measuring the break dates; at the same time, non-significant dates are eliminated. 

Secondly, the restricted VAR(2) - which is only conditional on the jointly significant break dates - 

is estimated and examined for Granger causality and the simultaneity of residuals. 

Table 6 here 

                                                           

29 At the univariate stage, we found 20 break dates measured by 19 step-dummies, because one of the estimated dates 
was the same in both the PREDICT1 and the GT equations. 
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The 9 surviving break dates in the restricted VAR are listed in the top of the first column of 

Table 6, while the subsequent columns show parameter estimates of the corresponding step 

dummies as ratios over the average uncertainty measures, in order to better understand their 

economic relevance and size.  

Certain differences emerge compared with the univariate break outcomes. This is because 

within the multivariate context, some uncertainty measures can co-break (i.e. some breaks can be 

cleared across measures), while in other equations the breaks in significant explanatory variables’ 

can induce further shifts. For example the financial-based uncertainty measures show, within the 

multivariate context, a greater number of significant breaks than those detected at the univariate 

stage (shown in the first row of Table 4), because significant explanatory lags in PREDICT1 and 

GT can result in further breaks in their equations. On the other hand, the FDISP equation shows 

fewer multivariate breaks than univariate ones since it probably co-breaks with significant 

explanatory lags of HNEWS and GT. The equations for the news-based and search-based measures 

show barely the same number of breaks as those present in the univariate models. Finally, the case 

of the PREDICT1 equation remains puzzling, probably due to the excess smoothness of its series in 

the 2004m1-2014m12 period, which may make it difficult for the breaking model to detect clear 

shift-points.  

The bottom section of Table 6 reports both the p-values of the Granger causality test and the 

VAR's residual correlation matrix. These depict outcomes that are perfectly in line with those 

shown in Table 5, obtained from a VAR modelling the GARCH uncertainty innovations. The 

estimates of the simultaneous correlations in the breaking VAR shown in Table 6 are only slightly 

lower than those in Table 5, because part of the simultaneity between variables is captured by 

common breaking dates such as the general upward shift in 2008m9 that the restricted VAR 

identifies as the increase in uncertainty realized at the beginning of the Great Recession. 

5. Uncertainty measures and macroeconomic dynamics 

Findings in literature suggest that every time uncertainty is modelled within the macro-

economic VAR context, it always displays a significant negative relationship with economic 

activity, as uncertainty shocks are broadly found to exert a negative impact on output and 

employment. Similarly, albeit by means of a different approach, Stock and Watson (2012, p. 81) 

find that "the shocks that produced the 2007-2009 recession were primarily associated with 

financial disruptions and heightened uncertainty". 

However, this key finding is only robust in regard to the uncertainty impact in the short run, 

whereas in the long run different works have pointed to somewhat heterogeneous output responses. 
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For example, the results in Bloom (2009) sustain the over-shooting effect of a VIX uncertainty 

shock on real activity: following the shock, the economy suffers in the short term, but in the long 

run the initial level of output is surpassed. The evidence in Figure 6 of Bachmann et al. (2013) 

suggests that Bloom’s over-shooting is more due to his use of finance-based indexes rather than to 

any genuine uncertainty effect.30 The latter fact reinforces our caveats about the reliability of 

measures of macroeconomic uncertainty based solely on financial information, and suggests that 

researchers need to be careful when proxying uncertainty with these finance-based measures, as 

they may label certain transitory financial crises as uncertainty shocks.  

Jurado et al. (2015) and Bachmann et al. (2013) instead utilize forecast-based measures. 

Their VAR models reveal that the dynamic response of output to uncertainty shocks sharply reduces 

the level of production with effects that persist well beyond the horizons considered in their 

exercises (i.e. more than 4-5 years after the shock).  

Baker et al. (2015) model the economy by slightly reducing the number of variables in 

Bloom’s (2009) VAR (from 8 to 5 macroeconomic variables, uncertainty included), and use their 

news-based economic policy uncertainty index. They report a negative dynamic response of 

manufacturing production to a shock. However, unlike in Jurado et al. (2015) and Bachmann et al. 

(2013), these output responses are significantly negative for only the first 15-18 months after the 

shock, before gradually declining to zero, i.e. without overshooting. 

Overall, these results lead to three, strictly related questions: (1) are uncertainty shocks 

temporary or permanent? (2) Is the degree of persistence of these negative uncertainty effects on 

output related to the number of variables in the VAR and/or to the uncertainty measure adopted? (3) 

Is any role played by the time span over which the models were estimated? 

The answer to question (1) must take account of the fact that unrestricted VAR models can 

only represent reduced form shocks, and thus they provide little or no guidance in regard to 

structural causality. However, as Baker et al. (2015, p. 19) emphasise, "VAR estimations are helpful 

for getting a sense of the potential magnitudes of policy uncertainty effects, and what other factors 

are correlated with this". Therefore, in this section we use VAR models to analyse the comparison 

of the dynamic responses of output to shocks of alternative forecast-based and news-based 

uncertainty measures.  

Given that we will be utilizing data and sample periods similar to Jurado et al. (2015) and 

Bachmann et al. (2013), any difference between our results and theirs can be ascribed to the 

reference model, and this fact leads to question number (2) regarding the choice of VAR and 

                                                           

30Jurado et al. (2015) argue that Bloom’s over-shooting is a data figment mainly due to his HP filtering uncertainty, 
since with raw data the over-shooting dynamics vanish. 
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uncertainty proxies to be used. The literature has answered this question by offering a wide range of 

options: from the small bivariate VAR models (with alternative measures of uncertainty and output) 

of, for example, Bachmann et al. (2013), to the VAR with 11 variables of Jurado et al. (2015) which 

mimics the macroeconomic model of Christiano et al. (1995). Bivariate VARs have the advantage 

of parsimony, but at the cost of potential biases due to the omission of relevant macroeconomic 

channels; while large VARs have the advantage of a satisfactory theoretical basis, albeit at the cost 

of inefficient estimates due to the traditional curse of dimensionality, which is unavoidable with 

large monthly VAR models.31 Here, we choose the more parsimonious five-variable VAR of Baker 

et al. (2015). 

The translation of the Baker et al. (2015) VAR in our system (2) notation leads to a five-

variable VAR created as follows. Orthogonal shocks to identify the impulse-responses functions are 

recovered using the Cholesky decomposition, and therefore the order of the variables matters. As in 

Baker et al. (2015), our first variable, tz , measures the uncertainty which in three different VARs is 

proxied by PREDICT1 (i.e. the one-month predictability of Jurado et al., 2015), by the log-levels of 

EPU (i.e. the economic policy uncertainty index of Baker et al., 2015), and by the log-levels of 

GT.32 Our second VAR’s component is the vector =tx ),,,( ′tttt ipmanempffsp , where: sp is the 

log-levels of the S&P 500 index; ff is the logs of one plus the federal funds rate; emp represents the 

log-levels of employment; and ipman is the log-levels of the manufacturing production index.33 

With regard to the answer to question number (3), we have to consider that, a priori, the 

pattern of dynamic responses to uncertainty shocks could vary over time: breaking VAR parameters 

could embody different mixtures of heterogeneous periods. If this is true, the permanent effects in 

Jurado et al. (2015) and Bachmann et al. (2013) could differ from those in Baker et al. (2015) 

simply because in the first two cases the sample period is long (it begins in the 1960s), while in the 

third case it is considerably shorter (it begins in the mid-1980s), thus excluding all the noisy 

observations prior to the Great Moderation. Moreover, the sample period in Baker et al. (2015) is 

also permeated to a greater degree by Great Recession observations, when "large shocks were not 

                                                           

31 This problem is further exacerbated by short span, as we want to use our GT uncertainty measure. 
32 The decision to take logs-levels of EPU and GT was made in order to reduce the weight of outliers, which we showed 
are mainly present in the news-based and search-based measures. The main reason for reducing the extent of larger 
shocks is that when they are present, the linear approach could break because of nonlinearities. In fact, it is quite 
unlikely that doubling the size of a given uncertainty shock consequently doubles the size of the response, as is assumed 
by linear VAR models. In regard to this point see the appendix in Knotek and Khan (2011), for example. 
33 Given the evidence of seasonality discussed above, for each uncertainty measure we seasonally adjusted the data with 
the Census X13 filter, when needed. The decision whether to seasonally adjust uncertainty or not was based on a 
number of tests that are reported in Table A6.1 of Appendix A6; outcomes there suggested the adjustment of the 
PREDICT1 and GT series, while all the other VAR variables were seasonally adjusted by the source. 
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simply feeding through the usual dynamics. [...]. The usual dynamics did not explain what was 

going on for several months around the peak of the crisis." (Sims, 2012, p. 143).  

To assess the effect of the sample period, we estimate our 5-variable VARs over different 

time span: first, the whole time sample available for each indicator; next, the shorter common 

sample periods. With equal VAR settings, different results are due to the different time spans used 

to estimate the model, and to different uncertainty indicators.34 

Figure 3 shows the dynamic responses over 48 months of the manufacturing production 

index to one standard deviation of the uncertainty innovations. In particular, the upper section of 

Figure 3 shows the plots from the VAR model measuring uncertainty with the seasonally adjusted 

PREDICT135 and estimated over three different sample periods: (1) the largest available (starting 

from 1960m7, with responses shown in black together with the two dashed lines showing 90% 

standard errors bands); (2) the reduced sample period available with EPU data (starting from 

1985m1 with responses shown in blue); (3) the shortest sample period available with GT data 

(starting from 2004m1, with responses shown in red). In a similar way, the plots reported in the 

lower section of Figure 3 are obtained from the VAR where uncertainty is measured by log(EPU) 

and which is estimated over two sample periods: (1) the largest available with EPU data (starting 

from 1985m1, with responses shown in blue together with the two dashed lines showing 90% 

standard errors bands); (2) the shortest sample period available with GT data (starting from 

2004m1, with responses shown in red). No EPU data are available for the period prior to 1985. 

Figure 3 here 

Shocks to PREDICT1 progressively reduce the output log-levels, with effects persisting 

over the full 48-month horizon. In the long run, one standard deviation of PREDICT1 innovations 

(i.e. an uncertainty shock corresponding to about the 8th decile of the PREDICT1innovations’ 

distribution) entails a loss of about 1% in the manufacturing production level. This outcome is 

qualitatively the same as those reported in Figures 6 and 7 of Jurado et al. (2015), and in Figure 6 of 

Bachmann et al. (2013), despite the fact that we use a smaller VAR.36 Therefore, regardless of the 

VAR settings, the use of forecast-based indicators qualifies the uncertainty shocks as significant and 

persistent determinants of output fluctuations. In particular, the negative response of output first 

monotonically increases up to 24-25 months after the shock, and then stabilizes.  
                                                           

34 For each sub-sample, the VAR lag length p is first set using the AIC criterion, and the corresponding residuals are 
tested for white noise errors (otherwise p is slightly altered until the target of white noise residuals is met). As reported 
in Appendix A5 (Table A5.1), the optimal length slightly changes across samples. 
35 Results are substantially unchanged even when using the non seasonally adjusted Index. 
36 Although output response patterns are very similar, the standard error bands here are smaller because of the greater 
parsimony of our VAR. 
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Shocks to EPU (blue line in the lower plots of Figure 3) initially reduce output sharply 

during the first 12 months after the shock, then this is followed by a mild recovery towards zero. In 

the long run, one standard deviation of log(EPU) innovations (an uncertainty shock corresponding 

to about the 8th decile of its innovations’ distribution) entails a loss of about 0.1% in the 

manufacturing production level. This outcome is qualitatively the same as that reported in Figure 8 

of Baker et al. (2015), despite the fact that we use a measure of impulse based on the estimated 

innovations’ variance, unlike them who base their measure on the change in average uncertainty 

levels before/after the Great Recession. Very similar results are also obtained over the 1985m1-

2011m12 sample period by Bachmann et al. (2013, Figure 6), in a bivariate system with log 

manufacturing production and GOOGLE, a previous version of the economic policy uncertainty 

measure of Baker et al. (2015) based on Google News rather than on newspapers. Unlike in cases of 

forecast-based uncertainty, the key finding here seems another: the use of news-based indicators 

qualifies the uncertainty shocks as significant determinants of output fluctuations only in the short 

run. In particular, the dynamic response of output sharply decreases for a period of one year after 

the shock, followed by a tendency towards recovery.  

Both cases above reject the long-run overshoot effect in Bloom (2009), and lead to the 

following generalization: each uncertainty measure has its own dynamic effects on output, as 

finance-based uncertainty can induce overshooting effects, forecast-based uncertainty can induce 

very persistent effects, while news-based uncertainty can only induce temporary effects.  

However, this view is highly disputable if we tackle the issue regarding the stability of VAR 

estimates (and hence dynamic responses) over different sample periods. In fact, the upper plots of 

Figure 3 show that the dynamic response (in blue) of output to a PREDICT1 shock in the estimates 

over a sample starting in 1985 (the same sample as that for the VAR with EPU uncertainty), is very 

similar to that shown in blue in the lower plots in Figure 3: first a sharper decline than that with the 

longer sample (in black), followed by a recovery. This additional impulse response raises the 

question of whether the output dynamics is driven more by the sample period than by alternative 

uncertainty measures. The latter possibility is also supported by the findings of Nodari (2014), 

where impulses coming from only financial news-based uncertainty shocks induce an output 

response perfectly in line with the one we obtain by the use of EPU uncertainty.  

Furthermore, we estimated both our VAR (the upper part with PREDICT1 and the lower 

part with log(EPU)) over the shortest 2004-2014 sample corresponding to GT uncertainty data 

availability. Although data limitation requires great care to be taken when interpreting the results, 

we note that again the change in sample period affects the dynamics of output responses much more 

than the use of different uncertainty indicators does. In fact, both the output responses shown in red 
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further emphasise the sharpness of the short-run effects of uncertainty shocks (regardless of the 

uncertainty measure), while in the longer run the output always recovers. Although not significant, 

the dynamics of output responses in both VARs estimated over the shorter span (permeated by large 

financial shocks) are rather similar to the long-run overshoot found in Bloom (2009) deriving from 

estimates formulated over a longer sample period and using a finance-based measure of uncertainty. 

As a consequence of this additional evidence from the same VAR over alternative sample 

periods, the previous statement regarding the specificity of output responses in relation to different 

uncertainty measures is completely reversed. In fact, according to this new view, the historical 

events in the models' estimation sample, and the corresponding parameter shifts, largely account for 

the different output responses, more so than the use of alternative uncertainty measures (further 

evidence of parameter instability in a different context is reported in Rossi, 2006). 

On the one hand, longer spans (including the 1960-1970s period, i.e. the era of large, noisy 

real shocks) reveal sustained long-term effects of uncertainty (either forecast-based or news-based). 

On the other hand, shorter spans (almost entirely centred around the era of the large, noisy financial 

shocks that occurred during the Great Recession) tend to reveal stronger short-run effects followed 

by recovery. In general, the intensity of both the short-run output slowdown and its longer-run 

recovery, vanishes the more real shocks occur over the sample period, or alternatively the intensity 

increases the more the sample period is centred on the financial shocks of the Great Recession. 

Figure 4 further corroborates this new view: the same sample period (starting in 2004) is 

utilized by three VARs that only differ in terms of their respective measures of uncertainty 

(PREDICT1, EPU, GT). The results are broadly the same: uncertainty significantly curbs output in 

the short run, while in the longer run recovery prevails, although the overshooting effects are 

always clearly not significant. 

Importantly, when considering the dynamic relationship with economic activity, the Google 

Trends index and the Economic Policy Uncertainty index behave very similarly in spite of certain 

differences in their respective time series. 

Figure 4 here 

Overall, the evidence in this section supports the idea that the shocks that occurred over the 

sample period imply different output recovery paths simply because different periods of time 

embody shocks of different kinds.  
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6. Concluding remarks 

Macroeconomic uncertainty is made of many and unobservable components. As such, it 

might not be quantitatively assessed by any specific measure which qualitatively relies more on 

some of these components. The heterogeneous nature of uncertainty emerges from the literature 

where alternative indicators behave differently regarding time patterns, information contents and 

macroeconomic effects. We could conclude that measuring uncertainty is a very "uncertain" 

activity.  

Under this upshot, our paper has two main aims. The first one is to introduce Internet 

searches as a tool to make a new uncertainty indicator able to capture the general public's need to 

gather more information when they feel uncertain. To do so, we use Google Trends to measure the 

intensity of such searches and to obtain a new uncertainty index, GT. The second aim is to 

investigate the underlying reasons for the differing results obtained in the literature with regard to 

the interaction between uncertainty and economic activity, and to explore comparatively whether 

they can be ascribed to the specific series of uncertainty that are exploited. 

The information content of six uncertainty measures (including our own) is compared in 

order to assess whether some shocks related to some indicator come first than others or they simply 

move together. The joint analysis of news-based uncertainty measures and our brand new GT 

allows for understanding that journalists not only meet, and in a certain sense "drive", the general 

public’s interest (and uncertainty), but they also pay considerable attention to the interests of their 

readers. Indeed, different categories of economic policy uncertainty entail alternative dynamic 

relationships of the nexus between newspapers headlines and Internet activity. Hence, the different 

attention paid by general public to different categories of economic policy issues explains the 

tendency of GT to either lead or lag the newspapers' uncertainty. This finding, together with the 

evidence about the features of other indicators, suggests two additional and related points. First, 

although the process of data collection about the intensity of Internet searches is not subject to the 

same care and transparency as that usually devoted in the traditional sample surveys, Google Trends 

series deliver patterns and tell histories that, at least in the context of uncertainty measurement, are 

consistent with those of their counterpart indicators. Second, and in general, measures of intensity 

of Internet activity can represent a genuinely novel source of information, a sort of open-source 

survey which at any time can deliver useful information about general public moods, provided that 

the "appropriate" set of queries is posed.  

Therefore, Internet activity is definitely a useful complement to the other measures, which 

can provide original and early updated information about uncertainty. As such, many of its uses are 

still unexplored, and could support a number of future advances in the literature.  
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The comparative analysis suggests that the effect of uncertainty on the economic cycle is 

strongly related to the nature of the shocks embodied by the indicator used. For example, financial 

uncertainty (e.g. measured by the VIX) is prevalently driven by short-lived financial shocks which, 

in principle, should not entail very persistent responses. Forecast-based uncertainty measures reflect 

all those shocks that make the art of forecasting difficult; during the 1970s there were plenty of real 

shocks: these shocks were unpredictable, and at the same time had a long-lasting impact on output. 

News-based and search-based uncertainty measures are driven by all kinds of shock, provided that 

such shocks are deemed to be topical by journalists (news) and/or by newspaper readers (queries); 

as such, they record a wide range of historical events occurred over the sample period in a simple 

way. 

For the first time our comparative analysis points to evident instabilities in the relationship 

between uncertainty shocks and macroeconomic dynamics, although our VAR models are in line 

with those used by other papers. In our parameters' shift context, the shape of the output responses 

to an uncertainty shock can change (and actually does, as we showed), depending on the events 

occurred in the sample period. Therefore, a further step forward in this field would be to try and 

shed some light on the macroeconomic nature of these miscellanea of uncertainty shocks, even 

though finding exogenous variation in uncertainty in order to identify them is a real challenge, as 

Stock and Watson (2012) results, and the criticisms thereof, suggest.  
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Tables and Figures 

 

Tab. 1 - The dynamics of news-based (BBD) and Google Trends (GT) relationships (a) 

 Instantaneous correlation: 

Granger causality from/to: High (>0.25) Low (<0.25) 

Query-pushed, GT/BBD (b) Fiscal policy (FP), Sovereign 
debt and currency crisis (SDCC) 

Health care (HC) 

News-pooled, BBD/GT (c) Monetary policy (MP), 
Regulation (RE) 

Trade policy (TP) 

No Granger causality Entitlement programs (EP) 
National security and 

war (NS) 

(a) This table summarizes the VAR results detailed in Appendix A.3, where also disaggregate multivariate 
inspections are reported.  

(b) Query-pushed = Google Trends indicators Granger-cause news-based ones.  

(c) News-pooled = news-based indicators Granger-cause Google Trends ones. 
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Tab. 2 - Univariate analysis of uncertainty proxies (a) 

 VIX  SPREAD PREDICT1  FDISP HNEWS GT 

Summary statistics       
Mean, µ 20.0 1.890 0.685 0.670 138.0 112.0 
Median 18.4 1.760 0.656 0.691 133.8 111.9 
Maximum 62.6 5.560 1.129 0.880 309.5 150.8 
Minimum 10.8 0.860 0.553 0.350 54.9 88.0 

Std. Dev., σ 6.8 0.653 0.103 0.101 39.2 12.8 

Coeff. Variation, σ/µ 0.342 0.346 0.151 0.151 0.284 0.115 

Skewness 1.985 1.641 1.711 -0.839 1.078 0.543 
Kurtosis 9.785 8.034 6.034 3.382 5.276 2.764 

Ta 540 540 540 540 540 132 

Cyclicality       

Downturn/upturn µratios 1.406 1.458 1.262 1.068 1.003 1.058 
Downturn/upturn σratios 1.652 2.077 1.714 0.997 1.121 0.999 

Persistence testing and measures       

Through unit-root tests (b)       
- augmentation, k 8 2 2 6 15 11 
- tests' p-values 0.001 0.002 0.017 0.002 0.076 0.584 
- speed of adjustment, π -0.120 -0.047 -0.017 -0.108 -0.098 -0.190 
- half-life months, m(c) 5 14 41 6 7 3 
- ARCH(1) test, p-values (d) 0.001 0.022 0.000 0.000 0.032 0.091 
       
Through fractional integration (e)       
- d estimate  0.339 0.411 0.410 -0.293 0.427 0.463 
- highest AR root 0.55 0.87 0.90 0.95 0.12 - 
- highest MA root - 0.46 -0.35 - - 0.86 
- half-life impulse-response, m 5 28 86 4 3 2 
- ARCH(1) test (p-values) (d) 0.000 0.021 0.000 0.001 0.002 0.052 

(a) Sample period: 1970m1-2014m12 (2004m1-2014m12 for GT). T=540, of which 83 downturn periods and 457 
upturns (see NBER dating); only 18 downturn periods and 114 upturns for GT. 

(b) Dickey and Fuller (1979) test equation: tt

k

i
itt uyycy +++= −

=
− ∑ 1

1
1 ∆γπ∆ ; where k is selected by using the 

MAIC criterion of Ng and Perron (2001) starting from a given maximum number of lags (
MAXk ). 

(c) Months for closing 50% of the disequilibria. In general, 
)1ln(

)1ln(

π+
−= p

m , where p is the part of the initial gap to be 

closed between actual ty  and its long run forecast (if ty  is stationarity, it is its unconditional mean), and π is the speed 

of adjustment (see above). Here, p=0.50, i.e. 50%. 
 
(d) Significant ARCH tests highlight residuals’ conditional heteroskedasticity of the first order for the estimated 
ARMA/ARFIMA model. 
 
(e) In this block, the first row reports the ML estimate of the fractional integration parameter d in the ARFIMA (p, d, q) 
model: 

tt
d LyLL εϑµρ )()()1)(( =−−  which is covariance stationary for |d|<1/2; the second/third rows respectively 

report the highest roots of the )(Lρ  and )(Lϑ  polynomials (to check for stationary and invertible ARMA processes); 

the fourth row reports the number of months m required for 50% of the initial impulse to accumulate. 
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Tab. 3- ARMA/GARCH model estimates (a) 

 VIX  SPREAD PREDICT1  FDISP HNEWS GT 

Parameter estimates(b)             

1φ  0.836 ***  0.944 ***  1.571 ***  0.604 ***  1.378 ***  0.724 ***  

2φ      -0.599 ***  0.271 ***  -0.395 ***    

1ϑ    0.329 ***      -0.879 ***    

2ϑ      -0.135 **        

3ϑ    0.033 ***        
 

1α  0.285 *** 0.204 *** 0.498 *** 0.180 *** 0.054 *** 0.202 **  

2α        -0.150 **    -0.044 ***  

1β    0.796 ***  0.338 ***  0.965 ***  0.909 ***    

Persistence in              

conditional mean (c) -0.164  -0.056  -0.028  -0.125  -0.017  -0.276  

conditional variance  0.285  1.000  0.836  0.994  0.963  0.158  

             

No. of adverse shocks 
tε̂ above (d)             

tĥ  60  101  97  77  73  62  

1.5×
tĥ  36  50  47  29  38  33  

3×
tĥ  11  9  2  1  9  12  

(a) General ARMA(2,3)-GARC(1,2) equation: ttttttt yyy εεϑεϑεϑφφγ ++++++= −−−−− 33221122110 , and 

conditional variance: 11
2

22
2

11 −−− +++= tttt hh βεαεαω .  

(b) Unreported parameter estimates are restricted to zero. *** , ** , and * denote 1%, 5% and 10% significance. Sample 
period 1970m1-2014m12 (except for GT whose sample is 2004m1-2014m12). 

(c) This measure is the speed of adjustment (see π estimates in Table 2), and is obtained as: 1ˆˆ
21 −+ φφ . 

(d) The number of counts for GT is multiplied times 540/131 in order to account for the shorter GT sample (only 131 
observations against 540 for the other series). 
 
 

Tab. 4 – Modelling uncertainty shifts (a) 

Testing for the number of breaks 

Equation for VIX  SPREAD PREDICT1 FDISP HNEWS GT 

- number of breaks, m 3 4 4 3 3 3 

- F-statistic 21.97 26.79 36.31 16.13 12.64 22.01 
- Bai-Perron (2003) 5% cv. 11.14 11.83 11.83 11.14 11.14 11.14 

(a) Sample period: 2004m1-2014m12. 
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Tab. 5 - Dynamic relationships between uncertainty innovations over different periods (a) 

Panel A, sample period 1970m3 - 2014m12 

Block Granger causality tests (p-values) in a VAR(2) of uncertainty innovations 

Equation for the innovation to: 

Two lags of explanatory 
innovations to: df 

VIX  SPREAD PREDICT1 FDISP HNEWS 

VIX   0.0000 0.1394 0.0255 0.0753 
SPREAD 2 0.5860   0.6423 0.0126 0.6966 
PREDICT1 2 0.0000 0.0000   0.0090 0.0155 
FDISP 2 0.8076 0.1042 0.0137   0.5002 
HNEWS 2 0.4572 0.6211 0.0069 0.0583   

Joint 8 0.0000 0.0000 0.0084 0.0002 0.0401 

Correlation between unpredictable uncertainty innovations, i.e. between VAR(2) residuals 

SPREAD 0.2567 
PREDICT1 0.0978 0.0707 
FDISP 0.0523 -0.0039 0.0177 
HNEWS 0.2956 0.0386 0.1199 0.1313 

Panel B, sample period 2004m4 - 2014m12 

Block Granger causality tests (p-values) in a VAR(2) of uncertainty innovations  

Equation for the innovation to:  

Two lags of explanatory 
innovations to: 

df VIX  SPREAD PREDICT1 FDISP HNEWS GT 

VIX  0.0045 0.0650 0.4463 0.7382 0.7054 
SPREAD 2 0.5897  0.8009 0.9860 0.1646 0.2983 
PREDICT1 2 0.0000 0.0000  0.2964 0.2255 0.0312 
FDISP 2 0.8866 0.8796 0.9645  0.3716 0.6046 
HNEWS 2 0.8448 0.5947 0.6356 0.1261  0.3636 
GT 2 0.1044 0.0970 0.7566 0.3525 0.7633  

Joint 10 0.0000 0.0000 0.2140 0.2354 0.6429 0.3331 

Correlation between unpredictable uncertainty innovations, i.e. between VAR(2) residuals  

SPREAD  0.5945     
 

PREDICT1  
-0.0382 0.0810 

   
 

FDISP  0.1702 0.1203 0.0527 
  

 
HNEWS  0.3169 0.1963 0.1451 0.0208 

 
 

GT 
 

-0.0467 -0.1128 0.0640 -0.0178 0.2993  

(a) In bold, 10% significant estimates.  
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Tab. 6 - Dynamic relationships between uncertainty measures in the multiple-break contexta 

Estimates of the VAR(2) conditional on joint significant break dates,  
sample period 2004m1 - 2014m12 

       

VAR equation for: VIX  SPREAD PREDICT1 FDISP HNEWS GT 

Break dates and step-dummy estimates (reported as ratios over uncertainty sample averages) 

2006m3 
 

0.1160 0.0296 0.0039 0.0694 0.0072 -0.0886 
2008m9 

 
0.6206 0.2341 -0.0049 0.0121 0.4869 0.2566 

2009m4 
 

-0.1786 -0.1791 -0.0007 -0.1734 -0.1509 -0.0942 
2009m7 

 -0.4120 -0.1628 -0.0006 0.0836 -0.2065 -0.0496 
2010m3 

 
-0.3319 -0.0630 -0.0010 -0.0495 0.2234 0.1528 

2010m5 
 

0.4287 0.1497 0.0040 0.0608 -0.0493 -0.2438 
2011m11 

 
0.1172 0.1838 -0.0027 0.0030 0.0016 -0.0563 

2012m10 
 

-0.2230 -0.1206 0.0035 0.0028 0.1379 0.0350 
2013m4 

 
0.0695 0.0295 -0.0049 -0.0297 -0.3870 -0.0418 

Block Granger causality tests (p-values) 

VAR equation for: 

Two lags of explanatory 
innovations to: df VIX  SPREAD PREDICT1 FDISP HNEWS GT 

VIX  0.0004 0.1803 0.1334 0.1087 0.9419 
SPREAD 2 0.0041  0.9017 0.7415 0.1200 0.7514 
PREDICT1 2 0.0000 0.0000  0.9340 0.2771 0.5584 
FDISP 2 0.8994 0.9888 0.9326  0.4792 0.7222 
HNEWS 2 0.4633 0.1910 0.5978 0.0160  0.4730 
GT 2 0.0503 0.5095 0.1383 0.0167 0.1466  

Joint 10 0.0000 0.0000 0.1183 0.0365 0.1349 0.7317 

Correlation between residuals  

SPREAD  0.4904      
PREDICT1  

-0.0164 0.1303     
FDISP  

0.1217 0.0637 0.0684    
HNEWS  0.3075 0.1393 0.1673 0.0606   
GT 

 
-0.0988 -0.1192 0.0217 0.0119 0.1734  

(a) In bold, 10% significant estimates.  
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Fig. 1 – Alternative uncertainty measures over the common 1970m1-2014m12 period a 

 
(a) Shaded areas denote NBER downturn phases. Horizontal lines measure the sample averages. 
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Fig. 2 – GARCH conditional variance estimates (standardized, top), and residuals (down)  
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Fig. 3 – Impulse response of production (IPMAN) from the estimation of 5-variable VARs 
with alternative uncertainty measures (upper: PREDICT1, lower: EPU) and sample periods 
(black: starting from 1960; blue: from 1985: red: from 2004) 

 

 

Response of log manufacturing production to Cholesky One S.D. impulse in PREDICT1 (seasonally adjusted) and log(EPU) for 

different estimation sample periods: (1) 1960m7 - 2014m12, (2) 1985m1 - 2014m12, (3) 2004m1 - 2014m12. Identification is based 

on a 5-variables VAR(p), ordered as: uncertainty, log(SP500), log(1+Fed funds effective rate/100), log manufacturing employment, 

log manufacturing industrial production. According to AIC criteria, for each sample, p is set equal to the optimal value reported in 

Table A6.2. Estimations on the sample 2004-2014 are performed with a small-sample degrees-of-freedom adjustment. Short-dashed 

lines represent 90% standard error bands of the IRF for the VAR estimated on sample (1) for PREDICT1 and (2) for log(EPU). 
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Fig. 4 – Impulse response of production (IPMAN) from the estimation of 5-variableVARs 
with alternative uncertainty measures (PREDICT1, EPU and GT) over the 2004-2014 sample 
period 

 
Response of log manufacturing production to Cholesky One S.D. impulse in PREDICT1, 
log(EPU) and log(GT11). PREDICT1 and GT11 are seasonally adjusted. Estimation sample period 
is 2004m1 - 2014m12. Identification is based on a 5-variables VAR(p), ordered as: uncertainty, 
log(SP500), log(1+Fed funds effective rate/100), log manufacturing employment, log 
manufacturing industrial production. According to AIC criteria, for each sample, p is set equal to 
the optimal value reported in Table A6.2. Estimations are performed with a small-sample degrees-
of-freedom adjustment. Short-dashed lines represent 90% standard error bands for the IRF for an 
impulse in Google Trends. 
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Appendix A1 – The list of the 184 search terms by policy category 

 Taking the original list of 210 BBD search terms as our starting point, below we classify our 

selected 184 queries (Sj, j=1, .., 184)  in 8 policy areas (c = 1, …, 8). We used only 184 terms of the 

210 ones of BBD: of the 26 dropped terms, 8 of them were repeated several times in the list, while 

the other 18 never reached the minimum popularity threshold. 

 

184 included queries of BBD  

(1) Fiscal policy, FP (16 queries) 
1. "taxes rates" 
2. "tax rate"- "calculator" 
3. "taxation" 
4. "taxed" 
5. "government spending" 
6. "us federal budget" 
7. "budget battle" 
8. "balanced budget" 
9. "fiscal stimulus" 
10. "us budget deficit" 
11. "federal debt" 
12. "national debt" 
13. "Gramm Rudman" 
14. "debt ceiling" 
15. "government deficits" 
16. "balance the budget" 

(2) Monetary Policy, MP (25 queries) 
17. "the federal reserve" 
18. "the fed" 
19. "money supply" 
20. "open market operations" 
21. "quantitative easing" 
22. "monetary policy" 
23. "fed funds rate" 
24. "Bernanke" 
25. "Paul Volcker" 
26. "Alan Greenspan" - "Mitchell" -"wife" 
27. "the central bank" 
28. "interest rates" - "calculator" - "best" 
29. "fed chairman" 
30. "fed chair" 
31. "lender of last resort" 
32. "fed discount window" 
33. "European Central Bank" 
34. "ECB bank" 
35. "Bank of England" 
36. "Bank of Japan" 
37. "BOJ" - "xem" - "anglers" - "jamaica" 
38. "Bank of China" 
39. "Bundesbank" 
40. "Bank of France" 
41. "Bank of Italy" 

(3) Health care, HC (15 queries) 
42. "health care reform" 
43. "Medicaid program" 
44. "Medicare program" 
45. "health insurance reform" 
46. "malpractice tort reform" 
47. "malpractice reform" 
48. "prescription drug program" 
49. "drug policy" - "nfl" 
50. "food and drug administration" 
51. "FDA regulation" 
52. "medical malpractice law" 
53. "liability reform" 
54. "Medicare Part D" - "humana" - "aarp" 
55. "affordable care act" 
56. "Obamacare law" 

(4) National security and war, NS (15 queries) 
57. "national security strategy" 
58. "us war" 
59. "military conflict" 
60. "terrorism" 
61. "war on terror" 
62. "after 9/11" 
63. "defence spending" 
64. "military spending" 
65. "police action" 
66. "us armed forces" -"ranks" 
67. "military base closure" 
68. "saber rattling" 
69. "naval blockade" 
70. "no-fly zone" 
71. "military invasion" 

(5) Regulation, RE (65 queries) 
72. "federal regulation" 
73. "banking supervision" 
74. "Glass Steagall" 
75. "tarp program" 
76. "thrift supervision" 
77. "Dodd frank" - "form" - "certification" 
78. "financial reform" 
79. "commodity futures trading commission" 
80. "cftc" 
81. "house financial services committee" 
82. "Basel Accord" 
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83. "capital requirement" - "working capital" 
84. "Volcker rule" 
85. "bank stress test" 
86. "securities and exchange commission" 
87. "us sec" 
88. "deposit insurance" 
89. "fdic" - "jobs" 
90. "fslic" 
91. "office of thrift supervision" 
92. "Office of the Comptroller of the 

Currency" 
93. "firrea" 
94. "truth in lending" 
95. "union rights" 
96. "union card check" 
97. "collective bargaining law" 
98. "national labor relations board" 
99. "minimum wage" 
100. "living wage" - "calculator" 
101. "right to work" 
102. "closed shop" 
103. "wages and hours" 
104. "workers compensation law" 
105. "affirmative action" 
106. "at-will employment" 
107. "trade adjustment assistance" 
108. "davis bacon" 
109. "equal employment opportunity" 
110. "eeo laws" 
111. "osha safety" 
112. "antitrust" 
113. "competition policy" 
114. "monopoly power" 
115. "patent law" - "firm" - "firms" - "school" 

- "schools" - "lawyer" - "attorney" - 
"group" - "bar" -"jobs" 

116. "copyright law" 
117. "federal trade commission" 
118. "the ftc" - "complaint" 
119. "unfair business practice" 
120. "competition law" 
121. "price fixing" - "adm" - "apple" 
122. "class action law" 
123. "healthcare lawsuit" 
124. "tort reform" 
125. "punitive damages" - "punitive 

definition" - "definition of punitive" 
126. "energy policy" 
127. "energy tax" 
128. "carbon tax" 
129. "cap and trade" 
130. "cap and tax" 
131. "offshore oil drilling" 
132. "clean air act" 
133. "clean water act" 
134. "environmental protection agency" 

135. "the epa" - "jobs" 
136. "immigration policy" 

(6) Foreign sovereign debt and currency crisis, 
SDCC (14 queries) 

137. "sovereign debt" 
138. "currency crisis" 
139. "currency devaluation" 
140. "currency revaluation" 
141. "currency manipulation" 
142. "euro crisis" 
143. "Eurozone crisis" 
144. "European financial crisis" 
145. "European debt" 
146. "Asian financial crisis" 
147. "Asian crisis" 
148. "Russian financial crisis" 
149. "Russian crisis" 
150. "exchange rate policy" 

(7) Entitlement programs, EP (20 queries) 
151. "entitlement program" 
152. "entitlement spending" 
153. "government entitlements" 
154. "social security" - "office" - "number" - 

"my" - "calculator" - "online" - "jobs" 
155. "government welfare" 
156. "welfare reform" 
157. "unemployment insurance" 
158. "unemployment benefits" - "online" 
159. "food stamps" - "application" - "online" 
160. "afdc" 
161. "tanf program" 
162. "wic program" 
163. "state disability insurance" 
164. "oasdi" 
165. "Supplemental Nutrition Assistance 

Program" 
166. "Earned Income Tax Credit" 
167. "eitc tax" 
168. "head start program" - "jobs" 
169. "public assistance" - "application" - 

"apply" 
170. "government subsidized housing" 

(8) Trade policy, TP (14 queries) 
171. "import tariffs" 
172. "import duty" - "calculator" 
173 "government subsidies" 
174 "government subsidy" 
175 "wto" - "howto" 
176 "world trade organization" 
177 "trade treaty" 
178 "trade agreement" 
179 "trade policy" 
180 "trade act" 
181 "doha round" 
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182 "uruguay round" 
183 "gatt" -"joseph" - "josh" - "stefan" 
184 "anti dumping" 

26 excluded queries of BBD 

Fiscal policy: 
1. "defence spending" � Already included 

in "National Security and War" 
2. "military spending" � Already included 

in "National Security and War" 
3. "entitlement spending" � Already 

included in "Entitlement programs" 
4. "fiscal footing" � Not enough search 

volume to show graphs. 

Monetary Policy: 
5. "overnight lending rate" � Not enough 

search volume to show graphs. 
6. "the fed" � Already included in 

"Monetary Policy" 

Health care: 
7. "prescription drug act" � Not enough 

search volume to show graphs. 
8. "medical insurance reform" � Not 

enough search volume to show graphs. 

National security and war: 
9. "military procurement"  � Not enough 

search volume to show graphs. 
10. "military embargo" � Not enough search 

volume to show graphs. 

Regulation: 
11. "bank supervision" � Not enough search 

volume to show graphs. 
12. "nlrd" � Not enough search volume to 

show graphs. 
13. "advance notice requirement" � Not 

enough search volume to show graphs. 
14. "overtime requirements"� Not enough 

search volume to show graphs. 
15. "merger policy" � Not enough search 

volume to show graphs. 
16. "cartel" � Not possible to find an 

alternative query with enough search 
volume to show graphs. 

17. "tort policy" � Not enough search 
volume to show graphs. 

18. "medical malpractice" �  Already 
included in "Health Care". 

19. "drilling restrictions" � Not enough 
search volume to show graphs. 

20. "pollution controls" � Not enough search 
volume to show graphs. 

21. "environmental restrictions" � Not 
enough search volume to show graphs. 

Foreign sovereign debt and currency crisis 
22. "currency crash" � Not enough search 

volume to show graphs. 

Entitlement programs: 
23. "Medicaid" �  Already included in 

"Health Care". 
24. "medicare" �  Already included in 

"Health Care". 
25. "part d" �  Already included in "Health 

Care". 
Trade policy: 

26. "import barrier" � Not enough search 
volume to show graphs. 
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 How the single search terms are obtained and validated 

The SVIst can measure the volume of searches for a given term or phrase: 

• if more search terms are listed together (up to a maximum of 30 words), Google Trends 

counts all searches that contain those words in any order; 

• if the same list of search terms is placed between inverted commas, Google Trends counts 

all searches that include the words in the exact order they are entered (searches including 

other words before or after the term or phrase in inverted commas are also considered in the 

count); 

• the Boolean operators “+” and “−“ can combine search terms (by considering searches that 

contain any of several terms separated by the “+” sign), or exclude from the search volumes 

those queries that have nothing to do with the target in question (by listing them after “−“).  

Given that the main problem with obtaining reliable search terms is the potentially 

ambiguous identification of meanings that are close to the BBD search terms,37 each term reported 

in BBD needs to be validated before retrieving the corresponding search volume series. This 

validation procedure is made easier since for each query entered, Google Trends also reports the 

“top” and “rising” related queries. This further information can help us establish whether we are 

referring exclusively to the actual search in question, or also to extraneous topics. 

Our judgmental procedure is structured as follows. Each BBD search term (either single 

terms or specific phrases) is placed in inverted commas, and the corresponding list of “top” and 

“rising” queries is inspected. If nothing suspicious emerges, the search term is left unchanged (this 

happened in 64% of our cases). Otherwise, if any queries result as being suspicious, the solution to 

the problem depends on the number of such queries. When there are only a few of them, the 

Boolean “−“ is used to exclude them.38 However, if there are a great number of such suspicious 

queries, we add a number of words to the original BBD search terms in order to narrow results.39 

The list above of our 184 queries reveals no suspicious results among the corresponding 

“top” or “rising” queries. 

  

                                                           

37 Ambiguity problems can arise when there are terms with multiple meanings not all associated with the chosen topic 
(for example, some of the searches for "gatt", an acronym for General Agreement on Tariffs and Trade, relate to the 
soccer player Joshua Gatt, or to the actor Joseph Gatt); or when the search purpose is ambiguous (for example, some 
searches for "interest rates” relate to searches for an interest rate calculator). 
38 For example, if the search terms are “interest rates“−“calculator“−“best”, the results will include searches containing 
the words “interest rates” etc. in this precise order, but will exclude searches with the words “calculator” or “best” 
reflecting queries related to anything other than monetary policy issues. 
39 For example, we often added words like “act”, “law” or “program” to the original search terms. 
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Appendix A2 – The sum of the 184 series into sub-groups, policy categories and the aggregate 

Since the 184 single series are scaled by their maximum value, each series is scaled by a 

different value, and thus different series cannot be directly summed into policy categories.  

Ideally, we would simply merge the individual search terms listed in Appendix A1 into 

groups of queries so as to create 8 new search terms representing the combination of the individual 

ones, by using the Boolean "+". However, due to the Google Trends 30-word limit for each search 

term, the aim of replicating the 8 BBD policy categories using Google Trends cannot be 

accomplished in this way. The merging of single-series search terms is only viable if we split each 

of the 8 BBD categories into smaller sub-groups in order to keep the number of words in the 

resulting combined search terms below the upper limit of 30. Following this route we come to the 

24 sub-groups (Gi, i = 1,.., 24), homogeneous in terms of the number of series within each sub-

group, allocated to the 8 policy areas and listed below.  

(1) Fiscal policy, FP (2 sub-groups) 

1. query_1 – query_8 
2. query_9 – query_16 

(2)Monetary Policy, MP (3 sub-groups) 

3. query_17 – query_24 
4. query_25 – query_32 
5. query_33 – query_41 

(3) Health care, HC (2 sub-groups) 

6. query_42 – query_49 
7. query_50 – query_56 

(4)National security and war, NS (2 sub-groups) 

8. query_57 – query_64 
9. query_65 – query_71 

(5)Regulation, RE (8 sub-groups) 

10. query_72 – query_80 
11. query_81 – query_89 
12. query_90 – query_98 
13. query_99 – query_107 
14. query_108 – query_114 
15. query_115 – query_118 
16. query_119 – query_126 
17. query_127 – query_136 

(6)Foreign sovereign debt and currency crisis,  SDCC (2 sub-groups) 

18. query_137 – query_143 
19. query_144 – query_150 

(7)Entitlement programs, EP (3 sub-groups) 

20. query_151 – query_157 
21. query_158 – query_164 
22. query_165 – query_171 
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(8) Trade policy, TP (2 sub-groups) 

23. query_172 – query_178 
24. query_179 – query_184 

 

Obviously, the merging of individual search terms to form sub-groups prevents the insurgence 

of those missing data that, in specific single queries, would result from the paucity of search 

volumes in certain weeks/months. Furthermore, given that the peak-normalization of the search 

volumes' series is made at sub-group level, the relevance of each search term within its sub-group is 

accounted for when we extract the 24 aggregate series by sub-group. Of course, this (partial) 

outcome (i.e. 24 sub-groups series from 184 individual search terms) still does not meet our 

requirement of having 8 Google Trends aggregate search volumes accounting for the weight of each 

search term within the category. This result can be achieved in one of two ways: Bayesian and 

common-term aggregation. 

 Bayesian aggregation 

The first way (henceforth "Bayesian aggregation") is to shrink the number of individual 

search terms included in each sub-group by using the Bayesian model averaging (BMA) 

method.This gives us the list of the "most relevant" single search terms of those sub-groups 

belonging to the same category that can be successfully merged without exceeding the 30-word 

limit. The shrinking issue is tackled as a problem of the choice of the "best" of several explanatory 

variables (i.e. the single search volumes) in linear regressions where each sub-group is the 

dependent variable. In doing so, BMA provides a coherent method of inference of the model's 

parameters by taking explicit account of the uncertainty surrounding both the estimation and the 

steps of model selection: see, for example, Leamer (1978) and Magnus et al. (2010).40 

The outcomes of the Bayesian aggregation approach are reported in Table A2.1, where the 

first column shows the descriptions of the sub-groups (i.e. our target variables), the second column 

lists the individual search terms that are parsimoniously selected by BMA, the third column reports 

the statistical significance of the selected search terms, and the fourth column shows the posterior 

inclusion probability (which must be greater than 50%). 

  

                                                           

40To perform BMA analysis we used the bma Stata code of De Luca and Magnus (2011). We also tried alternative 
model selection algorithms, such as Lars, Lassoand Least Angle algorithms, by using the lars procedure of Adrian 
Mander (2006). These alternative regularization methods utilize additional information in order to prevent overfitting; 
this information usually involves the introduction of a penalty for complexity, with different penalties involved by 
different methods; see Efron et al. (2004).The selection results of Lars, Lasso and Least Angle are not reported because 
they deliver outcomes that are very similar to those of BMA, albeit less parsimonious.  
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Tab. A2.1 - List of single search terms selected by BMA     
SUB GROUP (Gi) SEARCH TERM (Sj) t PIP 

  (1)Fiscal policy, FP (16 queries)     

G1 

2. "tax rate"- "calculator" 26.88 1.00 
3. "taxation" 22.07 1.00 
5. "government spending" 4.70 1.00 
8. "balanced budget" 1.15 0.66 

G2 
11. "federal debt" 1.57 0.80 
12. "national debt" 12.46 1.00 
14. "debt ceiling" 40.41 1.00 

  (2)Monetary policy, MP  (25 queries)     

G3 

17. "the federal reserve" 4.69 1.00 
18. "the fed" 3.77 0.99 
21. "quantitative easing" 6.01 1.00 
22. "monetary policy" 4.03 1.00 
23. "fed funds rate" 6.26 1.00 
24. "Bernanke" 19.23 1.00 

G4 
25. "Paul Volcker" 4.19 1.00 
26. "Alan Greenspan" - "Mitchell" -"wife" 15.10 1.00 
28. "interest rates" - "calculator" - "best" 76.44 1.00 

G5 

33. "European Central Bank" 10.46 1.00 
35. "Bank of England" 1.84 0.86 
36. "Bank of Japan" 9.51 1.00 
38. "Bank of China" 8.40 1.00 

  (3)Health care, HC (15 queries)     

G6 
42. "health care reform" 76.15 1.00 
49. "drug policy" - "nfl" 3.43 0.99 

G7 
50. "food and drug administration" 8.52 1.00 
54. "Medicare Part D" - "humana" - "aarp" 18.22 1.00 
55. "affordable care act" 54.13 1.00 

  (4) National security and war, NS (15 queries)     

G8 
60. "terrorism" 42.30 1.00 
61. "war on terror" 4.77 1.00 
63. "defense spending" 3.49 0.99 

G9 
66. "us armed forces" -"ranks" 2.81 0.96 
67. "military base closure" 8.84 1.00 
70. "no-fly zone" 7.91 1.00 

  (5) Regulation, RE (65 queries)     

G10 

74. "Glass Steagall" 13.97 1.00 
76. "thrift supervision" 12.42 1.00 
77. "Dodd frank" - "form" - "certification" 25.12 1.00 
78. "financial reform" 29.26 1.00 
80. "cftc" 5.57 1.00 

G11 

84. "Volcker rule" 3.12 0.98 
85. "bank stress test" 3.15 0.98 
86. "securities and exchange commission" 7.65 1.00 
89. "fdic" - "jobs" 87.01 1.00 

G12 91. "office of thrift supervision" 18.55 1.00 

G13 

99. "minimum wage" 35.60 1.00 
100. "living wage" - "calculator" 4.89 1.00 
101. "right to work" 11.26 1.00 
105. "affirmative action" 10.02 1.00 
107. "trade adjustment assistance" 1.59 0.81 

G14 
108. "davis bacon" 9.85 1.00 
109. "equal employment opportunity" 6.62 1.00 
112. "antitrust" 18.46 1.00 
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G15 
116. "copyright law" 11.49 1.00 
117. "federal trade commission" 15.50 1.00 

G16 
122. "class action law" 6.05 1.00 
124. "tort reform" 28.89 1.00 
126. "energy policy" 20.72 1.00 

G17 

127. "energy tax" 16.23 1.00 
128. "carbon tax" 1.99 0.89 
129. "cap and trade" 25.80 1.00 
134. "environmental protection agency" 24.13 1.00 
135. "the epa" - "jobs" 5.91 1.00 
136. "immigration policy" 5.09 1.00 

  (6) Foreign sovereign debt and currency crisis, SDCC 
(14 queries) 

    

G18 

137. "sovereign debt" 11.04 1.00 
139. "currency devaluation" 6.64 1.00 
141. "currency manipulation" 5.66 1.00 
142. "euro crisis" 8.03 1.00 

G19 145. "European debt" 9.96 1.00 

  (7) Entitlement programs, EP (21 queries)     

G20 
154. "social security" - "office" - "number" - "my" - 
"calculator" - "online" - "jobs" 

91.23 1.00 

157. "unemployment insurance" 13.12 1.00 

G21 
158. "unemployment benefits" - "online" 36.49 1.00 
159. "food stamps" - "application" - "online" 64.23 1.00 
162. "wic program" 1.27 0.70 

G22 
165. "Supplemental Nutrition Assistance Program" 1.79 0.85 
166. "Earned Income Tax Credit" 14.33 1.00 
168. "head start program" - "jobs" 4.04 1.00 

  (8) Trade policy, TP (13 queries)     

G23 

173. "government subsidies" -3.96 1.00 
175.  "wto" - "howto" 9.40 1.00 
176. "world trade organization" 4.88 1.00 
177. "trade treaty" 2.42 0.94 
178. "trade agreement" 8.83 1.00 

G24 183. "gatt" -"joseph" - "josh" - "stefan" 12.18 1.00 

Reported search terms Sj are those whose t ratio is greater, in absolute value, than one and whose posterior inclusion 
probability (PIP) is greater than 0.5 

 

The outcome in Table A2.1 has the considerable advantage of delivering a limited list of the 

"most relevant" individual terms within each sub group: the larger the weight of a single search 

term within its sub-group, the greater the likelihood it will be picked.41 However, in the BBD 

categories (2) "monetary policy", (5) "regulation" and (7) "entitlement programs" the reduced set of 

individual search terms is still too large to merge the individual Bayesian-selected search terms into 

a compound search term category of less than 30-words. Therefore, in order to implement a 

Bayesian aggregation in the case of these three categories, we would need extra restrictions 

excluding further individual search terms. 

                                                           

41 This information is utilized in Section 3 when we compare certain Google Trends search volumes within a category 
with the Newsbank categories of BBD. 
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 Common-term aggregation 

The second approach helps us and utilizes a feature of Google Trends that enables up to five 

different terms or groups of terms (henceforth, "common-term aggregation") to be compared. 

Starting from equation (1), the use of the function “compare” on Google Trends ensures that for 

each search term (or group of search terms) included in the comparison, we have the same scaling 

value ,corresponding to the maximum value of over the period 0-T, among all the single series that 

we are comparing. Therefore, by scaling all the series for a common term, we can easily aggregate 

them by summing or averaging.42 

For example, considering two generic series {j,	 n}	 included for the purpose of comparison in 

Google Trends, and summing their SVIs, we obtain a series defined as follows: 

���(�� = ) � *�� !� ×+��[,,-] + � /�� !� ×+��[,,-]0 × 100 = 

(A2.1) = 100+��[,,-] × )� *� + � /�� !� 0 

The volumes by sub-group obtained using the common-term aggregation (A2.1) are equivalent to 

what we would obtain by merging the single terms j	 and n	 in Google Trends equation (1) of the 

main text using the Boolean operator "+", except for small differences due to rounding and the fixed 

difference in the constant scaling term. However, it is worth stressing that the outcome of common-

term aggregation has the advantage of bypassing the 30-word limit by merging search terms. 

The search volume series, obtained as a result of Bayesian aggregation, deliver outcomes 

that are very similar to those obtained by means of common-term aggregation, since the number of 

search terms selected using BMA accounts for a very large portion of the variability of the full set 

of search terms by category (i.e. their weights are significant within the category).43  

Therefore, hereinafter we shall only measure the Google Trends volumes by category as 

obtained using the common-term aggregation approach, and the same approach is followed to sum 

the 8 categories into the aggregate GT indicator of macroeconomic uncertainty. 

 

 

                                                           

42 As far as we know, this approach has been only used by Hacamo and Reyes (2012).  
43 Note that the correlation coefficients by category between Bayesian aggregation (when feasible) and common-term 
aggregation (always feasible) are greater than 0.96 in four cases out of five, and equal to 0.70 in the remaining cases. 
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Appendix A3 – BBD and GT comparisons: detailed VAR outcomes 

(a) Fiscal policy, FP Monetary policy, MP Health care, HC National security and war, 
NS 

 i j BBD Gi, Sj i j BBD Gi, Sj i j BBD Gi, Sj i j BBD Gi, Sj 
BBD    0.5719    0.0163    0.4714    0.9711 
GT   0.0245    0.1447    0.3422    0.7675  
corr shock(b)   0.4873    0.5321    0.1299    0.2013  

                 
Stationarity(c)   0.0162    0.0048    0.0075    0.0048  

                 
BBD    0.2455    0.0379    0.5628    0.9061 
Gi 1  0.5980  3  0.6626  6  0.3248  8  0.9518  
corr shocks   0.3260    0.4965    0.0183    0.2315  
Gi 2  0.0174  4  0.3270  7  0.0176  9  0.4658  
corr shocks   0.4892    0.4617    0.2136    0.0455  
Gi     5  0.7396          
corr shocks       0.2009          

                 
Stationarity   0.0218    0.0300    0.0122    0.0218  

                 
BBD    0.6784        0.8654    0.7414 
Gi 1  0.1513      6  0.4566  9  0.4936  
corr shocks   0.2808        0.0291    0.0517  
Sj  14 0.0035       50 0.1394   60 0.9663  
corr shocks   0.3879        0.0565    0.1432  
Sj  15 0.0165       54 0.9537   61 0.6608  
corr shocks   0.5062        -0.1048    0.1892  

          55 0.0089   63 0.0330  
           0.2400    0.1910  
                 

Stationarity   0.0274        0.0366    0.0057  
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 Regulation, RE Sovreign debt and crisis, SDCC Entitlement programs, EP Trade policy, TP 
 i j  BBD Gi, Sj i j BBD Gi, Sj i j  BBD Gi, Sj I J BBD Gi, Sj 

BBD    0.1204    0.0778    0.7728    0.0196 
GT   0.5375    0.0000    0.6957    0.9546  
corr shocks   0.3128    0.3775    0.4386    0.1149  

                 
Stationarity   0.0211    0.0180    0.0034    0.0098  

                 
BBD    0.0155    0.0633    0.6512    0.3342 
Gi 10  0.0001  18  0.0000  20  0.7332  23  0.7431  
corr shocks   0.1922    0.3116    0.2703    0.2265  
Gi 11  0.0004  19  0.2672  21  0.6438  24  0.0680  
corr shocks   0.3478    0.2803    0.4393    0.1299  
Gi 12  0.4497      22  0.8384      
corr shocks   0.1780        0.1930      
Gi 13  0.1379              
corr shocks   -0.0043              
Gi 14  0.4644              
corr shocks   0.0971              
Gi 15  0.6887              
corr shocks   0.0695              
Gi 16  0.2602              
corr shocks   -0.0666              
Gi 17  0.9977              
corr shocks   -0.0282              

                 
Stationarity   0.0466    0.0252    0.1332    0.1318  

                 
BBD        0.0030        0.0189 
Gi     19   0.3814      23  0.3321  
corr shocks       0.2472        0.1321  
Sj      137  0.0002       183 0.2868  
corr shocks       0.4034        0.0883  
Sj      139  0.0718          
corr shocks       0.0642          
Sj      141  0.3956          
corr shocks       -0.1101          
Sj      142 0.0639          
corr shocks       0.2094          
 
Stationarity 

       
0.0091 

        
0.0020 
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(a) In each block of columns (one for each of the 8 categories c), rows are grouped in 3 sets (delimited by grey shadows) corresponding to the 
results obtained from 3 different VAR specifications: the upper set reports the results of the bivariate VAR for aggregate-by-c BBD and GT 
indicators; the middle one is for the VAR with the aggregate-by-c BBD indicator and the GT index disaggregated by sub-groups (Gi) belonging to 
the considered category c; the lower set deepens middle results by substituting significant Gi indexes with the single GT search terms (Sj) which 
emerged as the most relevant in the Gi sub-group (according to the BMA analysis in Table A2.1). In each of the 3 sets, figures in bold report the 
p-values of the Granger causality tests. In particular, those in the central column of each block (labelled as "BBD") assess the causality from the 
single Google Trends series (either GT, or Gi, or Sj) to the news-based index (BBD); figures in the last column of each block (labelled as "Gi, Sj") 
assess the joint reverse causality from BBD to all the Google Trends series.  

(b) "corr shocks" = instantaneous correlations between the residuals of the BBD equation and each of the Google Trends indicator equations 
(either GT, or Gi, or Sj).  

(c) "Stationarity" = p-values of the Johansen (1995) trace test for assessing the full rank: if the null hypothesis is rejected, all the variables in VAR 
are jointly stationary. When such null is not rejected (i.e. in the middle VAR of EP and TP), the non-standard Granger causality is assessed as 
suggested in Toda and Yamamoto (1995). 
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Appendix A4 – A focus on "government shutdown" and "debt ceiling" 

The individual search terms “government shutdown” and “debt ceiling crises” can be 

interpreted as policy uncertainty shocks, since during the standoff people are concerned about, and 

discuss, "what economic policy actions will be undertaken and when, and the economic effects of 

past, present and future policy actions".44 For example, with reference to the Government shutdown 

on October 8 2013, a White House statements reports: "After a discussion about potential paths 

forward, no specific determination was made […] The President looks forward to making continued 

progress with members on both sides of the aisle" (source: Reuters). The thousands of comments on 

online newspapers articles reporting this news testify to the uncertainty surrounding this situation.45 

As far as the methodological approach is concerned, we will not rely on the time series 

properties with VAR models, but rather on their behaviour after the trigger event, because we are 

only faced with a debt-ceiling crisis or (even more so) a Government shutdown - i.e. two important 

but rare events - "once in a blue moon". In Figures A4.1 and A4.2, the relative frequency of 

newspaper mentions and the Google Trends series are in fact near to zero over a large portion of the 

sample, with the exception of a limited number of significant spikes.  

Figures A4.1 and A4.2 here 

As expected, BBD and GT indicators substantially overlap, as the same trigger events drive 

both of them. However, interestingly Google searches decline more rapidly after the peak, as if in 

the case of important events, most people seek information about what is going on when the 

standoff is at its peak; after this peak, many of them stop caring about the uncertainty question well 

before newspapers do. In particular, with regard to the “Government shutdown” series in Figure 

A4.1, the highest spike of Internet activity (with a value of 100, considering the weekly raw series 

downloaded from Google Trends) was during the week from 29/09/2013 to 05/10/2013, which was 

to be expected given that from October 1 to October 16 certain federal agencies were temporarily 

closed or worked part-time. Google figures for the following two weeks were 28 and 26 

respectively, and after these 3 weeks Internet searches declined rapidly to a mean value of 1.5 

between 20 October and 30 November 2013. Media coverage, on the other hand, remained high for 

a longer period, declining more gradually: considering the standardized time-series reported in 

Figure A4.1, after a peak of 10.45 in October (associated with a value of 5.76 for the Google Trends 

                                                           

44To quote BBD’s definition of what an article about policy uncertainty should be concerned with. 
45As an example, in response to this news we discovered: 12,265 comments on Yahoo News ( “They're talking? Really? 
Republicans, Obama have 'productive' meeting on debt, shutdown” by C. Moody), 5,697 in The Washington Post 
(“House, Senate Republicans offer competing plans on debt-limit, government shutdown”, P. Kane, Z. A. Goldfarb and 
L. Montgomery), and 1,716 in The Wall Street Journal (“Obama, GOP Open Talks Over Temporary Debt Fix”; J.Hook 
and P. O’Connor). 
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index in the same month), the following two months’ values were respectively 1.89 (0.23 the 

corresponding SVI) and 1.31 (0.15 the corresponding SVI), well above the one standard deviation 

threshold, unlike the Internet searches series, the observed values of which were close to the mean 

of zero. A similar trend, with Internet searches declining more rapidly than media coverage in the 

aftermath of a shock, was observed after interest peaked with regard to the debt ceiling debate of 

July 2011.  

Given these findings, if Internet activity is perceived as a proxy of the number of people 

influenced by a policy uncertainty shock, then we can tentatively conclude that many people just 

glance at media reports, while few of them give much attention to them for any length of time. 

Following less severe shocks, however, news reports and Internet searches spike together, and also 

decline together, since in the wake of a moderate shock even newspapers quickly stop concerning 

themselves with the issue in question.  
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Fig. A1 - News coverage and Internet searches for the term "Government Shutdown" 

 
 
Fig. A2 - News coverage and Internet searches for the term "Debt Ceiling" 

 
Monthly relative frequencies of mentions of "government shutdown" and "debt ceiling" in the US newspapers included 
in the Access World New's NewsBank service (data retrieved from www.policyuncertainty.com/categorical_epu.html) 
and Google Trends search volume indexes for the same search terms. The series are standardized to have a mean of 0 
and a standard deviation of 1. 
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Appendix A5 – The measurement of the “fantastic five” 

The (i) VIX proxy is obtained from the forecast 30-day volatility of the S&P 500 Index, and 

is computed by averaging the weighted prices of put and call options on the S&P 500 stock market 

index (for details, see the CBOE White Paper, 2009). Given that VIX monthly data have been 

available since January 1990, we used realized (rather than implied) stock market return volatility to 

proxy the pre-1990 missing VIX data going back to the beginning of the 1960s (see Bloom, 2009, 

and Bachmann et al, 2013). 

 The (ii ) SPREAD proxy is defined as the difference between Moody's BAA-rated corporate 

bond yield and the 30-year Treasury constant maturity rate (monthly). Following Bachmann et al 

(2013), we used the 20-yearTreasury bond data when the 30-year Treasury bond data were not 

available, as in the 2002-2005 period and from the 1950s to 1977. 

The (iii ) PREDICTh proxy is forecast-based: Jurado et al. (2015) estimate uncertainty by 

assuming that a more (or less) uncertain economy is less (or more) predictable, and thus uncertainty 

can be measured as a lack of predictability. The estimation of PREDICTh dates back to 1960m7, 

and is obtained by aggregating the individual uncertainties of 132 economic and financial time 

series over alternative forecast horizons h. Three macro-uncertainty indexes (with h = 1, 3 and 12) 

are obtained from the following steps: (1) h-months ahead forecasts are estimated using diffusion 

index models based on both lagged and contemporaneous common factors, autoregressive terms 

and other predictors such as simple non-linear transformations of factors;46 (2) the uncertainty 

regarding each single variable is defined as the volatility of the h-months ahead prediction error 

(conditional on the information set in period t), and is computed using stochastic volatility models; 

(3) all these uncertainties are combined into one single measure of overall macro uncertainty by 

means of simple averaging (alternative aggregation approaches deliver similar outcomes). We chose 

a priori to use the PREDICT1 (h = 1) in order to prevent the forecast horizon from overlapping the 

sample frequency of data. Results using the PREDICT1 are robust to the use of h = 3 and 12.  

The (iv) FDISP proxy of uncertainty is the standard deviation of forecasts from two or more 

analysts. Bachmann et al. (2013) have estimated FDISP since 1968m5 by using the cross-sectional 

disagreement between the forecasts of large firms’ management to be found in the Philadelphia 

Fed's Manufacturing Business Outlook Survey (BOS). The FDISP is based on the cross-section 

                                                           

46 Factors are estimated through the principal components analysis of a set of 279 indicators that includes the 132 series 
on which individuals uncertainties are computed, plus 147 additional financial time series. 
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forecast dispersion of the fraction of each category of response.47 The BOS sample composition 

reflects the industrial mix of the Third Federal Reserve district (i.e. eastern Pennsylvania, southern 

New Jersey, and Delaware), thus it might not perfectly reflect the general US outlook. Bachmann et 

al. (2013) acknowledge this caveat, by reporting similar results obtained using forecast data from 

surveys not restricted to any particular area or industrial sector. 

 The (v) proxy EPU is the news-based policy-related economic uncertainty index. Baker et al. 

(2015) obtain the EPU index by mixing three basic ingredients: (1) the newspaper coverage of 

policy-related economic issues (the news-based component NEWS); (2) the number of federal tax 

code provisions set to expire in future years; and (3) the disagreement among economic forecasters. 

Forecasters’ disagreement is measured by the interquartile range of individual one-year forecasts 

reported in the Federal Reserve Bank of Philadelphia's quarterly Survey of Professional Forecasters. 

Among the SPF’s wide range of predicted variables, BBD focus on the consumer price index, 

purchases of goods and services by state and local governments, and purchases of goods and 

services by the federal government. In order to obtain their global EPU index of policy-related 

economy uncertainty, BBD compute the average value of the three normalized components, using 

weights of 1/2 on the broad NEWS index (1), and 1/6 on each of the other three measures (the tax 

provision expiration index (2), and the disagreement of forecasters (3) about both the CPI and the 

federal/state/local purchases measures.  

Of the above three EPU components, the one with more weight and of main interest here is 

NEWS, which is a restricted version of the Newsbank index we used in previous Section 2: actually 

NEWS and Newsbank have a correlation of 0.85, as reported by BBD. But NEWS is based on the 

search results from only 10 large newspapers: BBD perform month-by-month searches in each 

paper for terms relating to economic and policy uncertainty48, and compute the ratio between the 

raw count of policy uncertainty articles and the total number of articles published in the same paper 

in the same month. They then normalize the resulting series, by newspaper, in order to obtain a unit 

standard deviation over the period from 1985m1 to 2010m12. Finally, they sum the values over 

papers, and re-normalize the multi-paper index to an average value of 100 from 1985m1 to 

2009m12.49 

                                                           

47 The responses to the BOS survey about the state of “general business conditions” over the following six months, are 
classified into three separate categories (up, no change, down). The three categories of interviewed forecasters are 
publicly available. In addition to Bachmann et al. (2013), see also http://www.phil.frb.org/research-and-data/regional-
economy/business-outlook-survey/index.cfm 
48 In order to be included in the count, the news articles must include the words “uncertain or uncertainty”, “economy or 
economics” and specific terms relating to economic and policy topics. 
49 Further details are available at: http://www.policyuncertainty.com/us_monthly.html 
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Since the sample period of EPU index is shorter than the periods covered by previous 

indexes (available well before the 1980s), our long-term comparison shall refer to a recent outcome 

(still in progress) of the BBD project: the Historical News-Based Policy Index (HNEWS), that 

extends NEWS back to 1900 by performing month-by-month searches for specific terms in 6 

newspapers.50 Since HNEWS is presently available up to 2014m2, we updated it to 2014m12 by 

using its "twin" NEWS index (over the overlapping period their correlation is about 0.9).  

 

 

                                                           

50 See details at: http://www.policyuncertainty.com/us_historical.html.  
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Appendix A6 – Tests of seasonal adjustment of uncertainty and VAR lag selection 

Tab. A6.1 -Seasonality tests (X13 filter context) 

 

 

 

 

 

 

 

 

 

(a) Seasonality present at the 0.1% level  
(b) Seasonality present at the one percent level 

(c) **  and * denote moving seasonality present at the one and five percent levels 

(d) ** and *denote Identifiable seasonality present and probably not present 

(e)  Accepted 

 

Tab. A6.2 -Test for the optimal lag length over each sample period a 

Sample Obs 

PREDICT1b log(EPU) log(GTb) 

FPE AIC SBIC FPE AIC SBIC FPE AIC SBIC 

1960m7 - 2014m12 648 6 6 2 
      

1985m1 - 2014m12 354 4 4 2 4 4 3 
   

2004m1 - 2014m12 126 5 5 2 3 4 2 3 3 2 

(a) Maximum lags allowed: 6. Test based on a 5-variables VAR with uncertainty, log(SP500), log(1+Fed funds effective 
rate/100), log manufacturing employment and log manufacturing industrial production. 

(b) Seasonally adjusted using the X13 procedure 
 

 Stable Seasonality 
Moving 

Seasonality 
Identifiable 
Seasonality 

Monitoring and Quality 
Assessment Statistics 

Variable F test K F testc M7 d Q (without M2) 

PREDICT1 28.553a 245.3526b 4.325**  0.591**  0.65 e 

GT 47.454a 108.5798b 2.171* 0.377**  0.53 e 

EPU 6.087a 61.5886b 1.301 0.946* 1.27 



 


