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Abstract
We investigate a dynamic duopoly game with horizontal product

di¤erentiation, to show that the standard approach to spatial com-
petition fails to produce a pure strategy equilibrium in prices when
treated in a di¤erential game framework. This holds independently of
the shape of the transportation cost function. Then, we introduce an
endogenous costs associated with the choice of location and charac-
terise the open-loop and closed-loop equilibria of the model, showing
that in the closed-loop case …rms invest more in product di¤erenti-
ation and less in advertising, than they do in the open-loop setting.
This happens because the gains from product di¤erentiation can be
more easily internalised than those associated with advertising.
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1 Introduction
We propose a dynamic approach to the strategic use of non-price tools in
a di¤erential game model of spatial competition. Non-price variables typi-
cally include product and/or process R&D, product di¤erentiation and ad-
vertising, that …rms may use in isolation or together, so as to increase the
pro…tability of their price or quantity strategies.1 Here, we build upon Piga
(1998), to focus on (i) horizontal di¤erentiation, and (ii) advertising invest-
ments aimed at increasing demand (or market size).

Ever since Hotelling’s (1929) seminal contribution, the role of product
di¤erentiation as a remedy to the fragility of market equilibrium under price
competition has represented a core issue in the …eld of industrial organization.

However, under horizontal product di¤erentiation, an established result
is that a pure-strategy equilibrium in prices may not always exist.2 More
precisely, a subgame perfect equilibrium with prices greater than marginal
cost may fail to exist, because …rms’ location choices drive prices to marginal
cost when transportation costs are linear (or not su¢ciently convex) in the
distance between the generic consumer and the …rm he decides to patronise.
This non-existence problem has generated a stream of literature proposing
several remedies, either by adopting non-linear transportation cost functions
(d’Aspremont et al., 1979; Stahl, 1982; Economides, 1986) or by adopting
the Stackelberg equilibrium as the solution concept (Anderson, 1987), or by
choosing appropriate distribution functions for the population of consumers
(de Palma et al., 1985; Neven, 1986), or a mix thereof (Tabuchi and Thisse,
1995; Lambertini, 1997a, 2000).

These remedies work in ‘location-then-price’ games, i.e., if the game is
solved by backward induction with di¤erent variables being set at di¤erent
stages. Novshek (1980) establishes that, if …rms choose prices and locations
simultaneously, then a pure strategy Nash equilibrium fails to exist due to an
undercutting argument. This holds independently of consumer distributions
and transportation cost functions, the only condition being that marginal
costs must not be too steep. However, the backward induction algorithm
widely used in static multistage games of product di¤erentiation cannot be
used to solve the continuous-time di¤erential game formulations of the same
problems.

1For a wide survey of these topics, see Tirole (1988) and Martin (1993).
2For exhaustive accounts of the debate, see Caplin and Nalebu¤ (1991); Anderson et

al. (1992); Anderson et al. (1997).
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We focus on this problem using as a benchmark a di¤erential game model
of advertising and horizontal product di¤erentiation that can be found in Piga
(1998). Transportation costs are linear as in Hotelling (1929), and …rms’ ad-
vertising investments increase the size of the market. That is, advertising is
modelled as a public good. First we characterise the non-existence problem,
and then we modify the setup to allow for a cost associated with the choice
of locations. We establish the necessary and su¢cient conditions ensuring
the existence of a price equilibrium in pure strategies and we fully charac-
terise the steady state equilibrium of the system. To this aim, we …rst adopt
the open-loop equilibrium as the solution concept, whose outcome is then
evaluated against the closed-loop equilibrium. In the latter case, which de-
scribes the strongly time consistent game, we establish that the only feedback
in operation works through the choice of locations so as to induce …rms to
invest more in product di¤erentiation and less in advertising, than they do
in the open-loop setting. This is due to the fact that the gains from prod-
uct di¤erentiation can be more easily internalised than those associated with
advertising.

The remainder of the paper is structured as follows. Section 2 illustrates
the basic setup. The non-existence issue is investigated in section 3. Sec-
tion 4 is devoted to the analysis of the model with costly location choice.
Concluding remarks are in section 5.

2 The setup
We consider a market for horizontally di¤erentiated products à la Hotelling
(1929). Let the market exist over t 2 [0;1): Two pro…t-maximising …rms,
labelled as 1 and 2, choose locations x1(t) and x2(t) 2 [0; 1] and compete in
prices simultaneously as soon as both are in the market. Unit production
cost is assumed to be constant and equal to ci; i = 1; 2. Throughout the time
horizon considered, both …rms have the same discount rate ½ 2 [0 ; 1] :

Consumers are uniformly distributed with density N (t) along the unit
interval [0; 1]: At any t; the total mass of consumers is therefore N(t): The
generic consumer located at m 2 [x1; x2] buys one unit of the good, enjoying
the following net surplus:

U = s¡ pi(t)¡ g (xi(t)¡m) ¸ 0; i = 1; 2; (1)

where xi and pi are …rm’s i location and mill price, respectively; g(xi¡m) is
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the transportation cost function. In the remainder of the paper, we suppose
that the reservation price s is never binding, so that full market coverage
always obtains. If

g(xi ¡m) ´ k jxi ¡mj ; (2)

the model keeps Hotelling’s original assumption of linear disutility of trans-
portation. Therefore, the consumer indi¤erent between products 1 and 2 is
located at:3

m(t) =
p2(t)¡ p1(t) + k (x1(t) + x2(t))

2k
; (3)

and the associated demands are:

y1(t) = N(t)m(t) =
N(t) [p2(t)¡ p1(t) + k (x1(t) + x2(t))]

2k
; y2(t) = N (t)¡y1(t) :

(4)
Otherwise, if

g(xi ¡m) ´ k(xi ¡m)2 ; (5)

the indi¤erent consumer locates at:

cm(t) =
[p2(t)¡ p1(t) + k (x22(t)¡ x21(t))]

2k (x2(t)¡ x1(t))
; (6)

and demand functions are de…ned as in d’Aspremont et al. (1979):

y1(t) = N(t)cm(t) =
N(t) [p2(t)¡ p1(t) + k (x22(t)¡ x21(t))]

2k (x2(t)¡ x1(t))
; y2(t) = N(t)¡y1(t) :

(7)
Firms can increase the level of demand over time through the following dy-
namic equation:

¢
N (t) ´ dN (t)

dt
= ® [A1(t) +A2(t)]¡ ±N(t) ; ® > 0 ; (8)

where Ai(t) is the advertising e¤ort carried out by …rm i at time t; and
± 2 [0 ; 1] is the constant decay rate of demand. This type of advertising is a
pure public good in the sense that the e¤ort carried out by any …rm bene…ts
all …rms alike (see Fershtman, 1984; Fershtman and Nitzan, 1991); accord-
ingly, it is sometimes referred to as cooperative, with the implicit caveat

3Here, as well as in the case of quadratic disutility of transportation, we omit the
indi¤erence condition as well as the derivation of the expression for m(t); as they are well
known from previous literature (see d’Aspremont et al., 1979, inter alia).
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that …rms do not cooperate in the sense of joint pro…t maximisation.4 The
instantaneous cost of advertising for …rm i is:5

Ci (Ai(t)) = b [Ai(t)]
2 ; b > 0 : (9)

Hence, …rm i’s instantaneous pro…ts are:

¼i(t) = [pi(t)¡ ci] yi(t)¡ b [Ai(t)]2 ; (10)

where yi(t) is given, alternatively, by (4) or (7). Firm i’s Hamiltonian is:

Hi(t) = e
¡½t¢

n
[pi(t)¡ ci] yi(t)¡ b [Ai(t)]2 + ¸i(t) [® (A1(t) +A2(t))¡ ±N(t)]

o
;

(11)
where the control variables are fpi(t); xi(t); Ai(t)g ; the state variable (com-
mon to both …rms) is N(t); and ¸i(t) = ¹i(t)e

½t; ¹i(t) being the co-state
variable associated to N(t):

Two equilibrium concepts can be considered: the open-loop equilibrium
and the closed-loop equilibrium. In general, these solutions do not coincide,
the closed-loop equilibrium being subgame perfect while the open-loop equi-
librium is not. However, there exist classes of di¤erential games where the
open-loop equilibrium is a degenerate closed-loop equilibrium, and therefore
the two solutions coincide. In such a case, the open-loop equilibrium, if it
exists, is also subgame perfect.6 This feature characterises the present model,
irrespective of whether the transportation cost function is linear or convex.
To see this, it su¢ces to examine the …rst order (necessary) condition for the
closed-loop equilibrium, associated to the co-state variable:7

¡@Hi(t)

@N(t)
¡ @Hi(t)

@pj(t)

@pbrj (t)

@N (t)
¡ @Hi(t)

@xj(t)

@xbrj (t)

@N(t)
=
@¹i(t)

@t
=
@¸i(t)

@t
¡½¸i(t) ; (12)

where superscript br stands for best reply, and the partial derivatives
@ubrj (t)

@N (t)
;

uj(t) = pj(t); xj(t); can be calculated on the basis of the best reply functions

4This labelling dates back to Friedman (1983). For a model where advertising is both
cooperative and predatory, see Piga (2000, pp. 517-21).

5According to the cost function in (9), the advertising activity exhibits decreasing
returns to scale. On the empirical evidence supporting this assumption, see Feichtinger et
al. (1994).

6See Reinganum (1982a); Mehlmann and Willing (1983); Fershtman (1987); Fershtman
et al. (1992).

7For an exhaustive exposition of the solution methods, see Başar and Olsder (1982,
19952), Mehlmann (1988), Kamien and Schwartz (1981, 19912).
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obtaining from …rst order conditions concerning …rm j’s controls:

@Hj(t)

@pj(t)
=
@¼j(t)

@pj(t)
= 0 ; (13)

@Hj(t)

@xj(t)
=
@¼j(t)

@xj(t)
= 0 : (14)

Now observe that both (13) and (14) contain the state variable N(t) only in
multiplicative form. Hence, best reply functions pbrj (t) = fj (pi (t) ; xi (t) ; xj (t))
and xbrj (t) = gj (pi (t) ; pj (t) ; xi (t)) are independent ofN(t): This entails that

@pbrj (t)

@N(t)
=
@xbrj (t)

@N(t)
= 0 ; (15)

and therefore, if a pure strategy equilibrium does exist, the open-loop equi-
librium is a degenerate closed-loop equilibrium. Piga (1998) shows the co-
incidence between the open-loop equilibrium and the feedback equilibrium
obtained through Bellman’s value function approach, with x1 = 0 and x2 = 1:
Therefore, at least for these locations, the feedback equilibrium also coincides
with the closed-loop one. To this regard, two remarks are in order. The …rst is
that, in general, the feedback equilibrium is a closed-loop equilibrium, while
the opposite is not true (see ch. 6 in Başar and Olsder, 1982, 19952, inter
alia). The second remark is that existence (and if so, the coincidence) of the
three equilibria de…ned according to di¤erent information structures obtains
for …xed locations. Hence, there arises a further issue, namely, whether this
property holds once we allow …rms to choose locations.

The issue of existence of equilibria is investigated in the next section.

3 The non-existence problem revisited

Consider the well known static approach to the linear transportation cost
version of the Hotelling model, where the system of demand functions is
(4). In d’Aspremont et al. (1979), it is proved that the undercutting incen-
tive destroys the price equilibrium in pure strategies for all locations within
the second and third quartiles of the linear city. In their contribution, this
non-existence problem is shown to exist under the assumption that marginal
production cost is the same for both …rms. In the present setting, marginal
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costs will, in general, di¤er across …rms. This introduces a further di¢-
culty with the existence of a duopoly equilibrium in locations and prices,
in that there may exist con…gurations of the vectors of control variables
fpi(t); pj(t); xi(t); xj(t)g and cost parameters fci; cjg where the market is a
monopoly at the candidate equilibrium prices, even without considering the
undercutting incentive. That is, the emergence of monopoly can be simply
due to the di¤erence in e¢ciency levels as measured by marginal production
costs, if such a di¤erence is su¢ciently large to drive the ine¢cient …rm out
of business.8

We are going to show that, within the di¤erential game approach, this
market cannot produce a pure-strategy equilibrium in prices, irrespective
of the shape of the transportation cost function. To see this, it su¢ces
to examine the following argument. As we know from Novshek (1980), if
…rms choose prices and locations simultaneously, then a pure strategy Nash
equilibrium fails to exist. In particular, (i) there can exist no equilibrium
with …rms located at di¤erent points, because then a …rm would pro…t by
choosing a location close to (or the same as) the rival’s and undercut her
price; and (ii) there is no equilibrium with homogeneous products, either
because of a standard Bertrand argument leading to marginal cost pricing
with each …rm being induced to relocate away, if marginal costs are the same
across …rms, or to monopolization if marginal costs are di¤erent. This holds
for all consumer distributions and transportation cost functions, provided
marginal costs are not sharply U-shaped.9

Now consider that the solution method for a di¤erential game consists in
taking the …rst order conditions w.r.t. all control variables simultaneously,
and observe that, on the basis of (13) and (14), the di¤erential game formu-
lated above reproduces the same …rst order conditions w.r.t. locations and
prices that characterise the static game analysed by Novshek (1980). This
establishes that the present game has no equilibrium in pure strategies, in
that its solution is quasi-static w.r.t. prices and locations.

The same argument applies to all other settings where the di¤erential

8Detailed calculations are omitted as they are straightforward. They are available from
the authors upon request.

9For an exhaustive discussion of the non-existence problem when prices and locations
are chosen simultaneously, see Beath and Katsoulacos (1991, ch. 2) and Anderson et al.
(1992, ch. 8). In speci…c settings, the equilibrium existence can be restored through the so
called ‘no mill price undercutting’ Nash equilibrium concept (see Kohlberg and Novshek,
1982), which, however, seems somewhat ad hoc.
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equation(s) describing the dynamics of the state variable(s) is (are) una¤ected
by prices and locations. This is the case, for example, if N(t) = N and …rms
invest so as to decrease transportation costs through a technology generically
de…ned as follows:

dk(t)

dt
= h (k(t);©i(t);©j(t)) ;

@h (¢)
@©i(t)

< 0 ; (16)

where ©i(t) is the instantaneous e¤ort produced by …rm i: Such an e¤ort can
be interpreted either as an investment in advertising, aimed at reducing the
‘perceived’ disutility of buying a product which is not the preferred one, or
as an investment in R&D to ameliorate the transportation technology.10 In
this setting, the Hamiltonian of …rm i would be, for example, the following:

Hi(t) = e
¡½t¢

n
[pi(t)¡ ci] yi(t)¡ b [©i(t)]2 ¡ ¸i(t) [® (©i(t) + ©j(t))¡ ±k(t)]

o
;

(17)
where

Ci (Ai(t)) = b [©i(t)]
2 (18)

is the instantaneous cost associated with investment ©i(t); and

dk(t)

dt
= h (k(t);©i(t);©j(t)) = ¡® (©i(t) + ©j(t)) + ±k(t) (19)

describes the kinematics of the transportation cost rate k(t):
Of course, the same holds if one considers the kinematic equations (8)

and (19) jointly.
The foregoing discussion can be summarised as follows:

Proposition 1 In any di¤erential game of spatial competition where (i) each
…rm’s price and location do not a¤ect the dynamics of the state variable(s),
and (ii) location is costless, there exists no duopoly equilibrium in pure strate-
gies independently of the shape of the transportation cost function.

4 A di¤erential game with costly locations
From Proposition 1, we know that a pure strategy equilibrium fails to exist
when (i) there is no cost associated with the choice of location, and (ii)

10Dos Santos Ferreira and Thisse (1996) illustrate a static model where …rms can
choose di¤erent transportation technologies in order to combine vertical and horizontal
di¤erentiation.
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locations don’t play any role in the kinematics of the state variable(s). In
order to reformulate the model in such a way that it produces a pure strategy
equilibrium, in this section we propose the following modi…cation to Piga’s
setup.

First, by the symmetry of the model, we assume that x1(t) · 1=2 and
x2(t) ¸ 1=2: That is, …rms can locate also outside the city boundaries (as
in Tabuchi and Thisse, 1995; Lambertini, 1997a). Then, we assume that
location is costly. In particular, …rms 1 and 2 bear, respectively, the following
location costs:

°1 [x1 (t)] = ¯ [´1 ¡ x1(t)]2 ; °2 [x2 (t)] = ¯ [´2 ¡ x2(t)]2 ¯ > 0 : (20)

Observe that both cost functions are convex in locations, with °1 [x1 (t)]
taking its minimum (equal to zero) at ´1 and °2 [x2 (t)] taking its minimum
at ´2. Note that the cost functions associated to the choice of locations need
not be convex in order to ensure the existence of equilibrium.11

Transportation costs are linear, so that demand functions are given by
(4). For the sake of simplicity, we assume that marginal cost is equal to c for
both …rms. The kinematic equation of N (t) is given by (8).Therefore, the
relevant Hamiltonians are:

H1(t) = e¡½t ¢
n
[p1(t)¡ c] y1(t)¡ ¯ [´1 ¡ x1(t)]2 ¡ b [A1(t)]2+ (21)

+¸1(t) [® (A1(t) +A2(t))¡ ±N (t)]g ;

H2(t) = e¡½t ¢
n
[p1(t)¡ c] y1(t)¡ ¯ [´2 ¡ x2(t)]2 ¡ b [A2(t)]2+ (22)

+¸2(t) [® (A1(t) +A2(t))¡ ±N (t)]g :

4.1 The open-loop equilibrium

The …rst order conditions for the open-loop solution are:12

@H1(t)

@p1(t)
=
N(t)

2k
[p2(t)¡ 2p1(t) + c+ k (x1(t) + x2(t))] = 0 ; (23)

11For a discussion, see Lambertini (1997b), where analogous cost functions are used
to model optimal taxation in the static version of the Hotelling model with quadratic
transportation costs.

12Second order conditions are satis…ed here as well as in the calculations performed in
the closed-loop case. They are omitted for the sake of brevity. Observe that, given the
changes we have introduced in the model, there is now no presumption that either the
feedback solution may coincide with either the open-loop or the closed-loop equilibria.
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@H2(t)

@p2(t)
=
N(t)

2k
[p1(t)¡ 2p2(t) + c+ k (2¡ x1(t)¡ x2(t))] = 0 ; (24)

@H1(t)

@x1(t)
=
4¯ [´1 ¡ x1(t)] +N (t) [p1(t)¡ c]

2
= 0 ; (25)

@H2(t)

@x2(t)
=
4¯ [´2 ¡ x2(t)]¡N(t) [p2(t)¡ c]

2
= 0 ; (26)

@Hi(t)

@Ai(t)
= ¡2bAi + ¸i® = 0 ; i = 1 ; 2 ; (27)

¡@H1(t)

@N(t)
=

@¸1(t)

@t
¡ ½¸1(t) ) (28)

@¸1(t)

@t
= (½ + ±)¸1(t)¡

[p1(t)¡ c] [p2(t)¡ p1(t) + k (x1(t) + x2(t))]
2k

;

¡@H2(t)

@N(t)
=

@¸2(t)

@t
¡ ½¸2(t) ) (29)

@¸2(t)

@t
= (½ + ±)¸2(t)¡

[p2(t)¡ c] [p2(t)¡ p1(t) + k (2¡ x1(t) ¡ x2(t))]
2k

:

Moreover, we have the initial condition N(0) = N0; and the transversality
conditions which are omitted for the sake of brevity.

Henceforth, we drop the indication of time for the ease of exposition. Now
we can solve the game, starting with the FOCs with respect to prices. From
(23-24), we obtain:

p¤1 =
3c+ k (2 + x1 + x2)

3
; p¤2 =

3c + k (4¡ x1 ¡ x2)
3

(30)

which can be plugged into the FOCs w.r.t. locations. Conditions (25-26)
yield:

x¤1 =
2¯kN (´1 ¡ ´2 ¡ 2)¡ 24¯2´1 + k2N2

4¯ (kN ¡ 6¯) ;

x¤2 = ¡2¯kN (´1 ¡ ´2 ¡ 4)¡ 24¯2´2 + k2N 2

4¯ (kN ¡ 6¯) :

(31)

Candidate equilibrium prices (30) rewrite as follows:

p¤1 =
2¯k (2 + ´1 + ´2)¡ kN (c+ k)¡ 6c¯

6¯ ¡ kN ;

p¤1 =
2¯k (4¡ ´1 ¡ ´2)¡ kN (c+ k)¡ 6c¯

6¯ ¡ kN :
(32)
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Necessary and su¢cient conditions for a pure strategy price equilibrium to
exist are:

´1 <
¯ ¡ kN
4¯

; ´2 >
3¯ + kN

4¯
(33)

which ensure that x¤1 < 1=4 and x¤2 > 3=4: Then, from (27) we have that

¸i =
2bAi
®

; (34)

and
@Ai
@t

=
®

2b
¢ @¸i
@t

: (35)

Using (28), (29), (31) and (35), we obtain the following expressions:

A¤1 =
®k [2¯ (2 + ´1 + ´2)¡ kN ]2

4b (kN ¡ 6¯)2 (½ + ±)
;

A¤1 =
®k [2¯ (4¡ ´1 ¡ ´2)¡ kN ]2

4b (kN ¡ 6¯)2 (½ + ±)
;

(36)

which can be further simpli…ed by invoking the symmetry condition ´2 =
1¡ ´1; yielding:

A¤1 = A
¤
2 = A

¤ =
®k

4b (½+ ±)
: (37)

This imposition can be justi…ed on the following grounds. Parameter ´i
represents the location at which …rm i’s relocation costs are zero. Given the
a priori symmetry of the model as to all other features, it appears reasonable
to assume also that cost-minimising locations are symmetric around 1/2.
Obviously, his also entails x¤2 = 1 ¡ x¤1: Steady state equilibrium prices are
p¤i = c+ k:

As a last step, from (8), we obtain the steady state value of N :

N¤ =
® (A¤1 +A

¤
2)

±
; under ´2 = 1¡ ´1; N¤ =

2®A¤

±
=

®2k

2b± (½+ ±)
: (38)

The discussion carried out so far can be summarised as follows:

Proposition 2 If the following conditions hold:

ci = c ; ´1 <
¯ ¡ kN
4¯

; ´2 = 1¡ ´1 >
3¯ + kN

4¯
;

¯ ¸ ®2k2

4b± (4½+ 3±)
;
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then, the open-loop di¤erential game of advertising with costly location choice
admits a unique steady state equilibrium where:

pOL1 = pOL2 = c+ k ;

xOL1 = ´1 +
kNOL

4¯
= ´1 +

®2k2

8b¯± (½ + ±)
;

xOL2 = 1¡ xOL1 = 1¡ ´1 ¡ kNOL

4¯
= 1¡ ´1 ¡ ®2k2

8b¯± (½+ ±)
;

AOLi =
®k

4b (½+ ±)
;

NOL =
®

³
AOLi +AOLj

´

±
=

®2k

2b± (½ + ±)
;

¼OLi =
®2k2 [4b¯± (4½+ 3±)¡ ®2k2]

64b2¯±2 (½ + ±)2
:

As to the stability of the dynamic system, the following holds:

Proposition 3 The steady state

AOLi =
®k

4b (½+ ±)
;

NOL =
®

³
AOLi +AOLj

´

±
=

®2k

2b± (½ + ±)
:

is a saddle point.

Proof. See the appendix.

It is worth noting that, irrespective of …rms’ locations, the symmetry
conditions (a) ´2 = 1¡ ´1 and (b) c1 = c2 = c su¢ce to yield pOLi = c + k;
which is the same price as in Piga (1998, Proposition 3.1, p. 513) under (b).

Now adopt condition (a), and examine:13

@
³
xOL2 ¡ xOL1

´

@±
=
®2k2 (½+ 2±)

4b¯±2 (½+ ±)2
> 0 ; (39)

13The properties (39) and (40) hold in general. They are derived under assumption (a)
for simplicity.
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and
@

³
xOL2 ¡ xOL1

´

@½
=

®2k2

4b¯± (½+ ±)2
> 0 : (40)

Moreover, from (36) or (37), it is immediately clear that @AOLi =@± and
@AOLi =@½ are both negative. Therefore, we can state:

Corollary 1 Under the open-loop solution, the steady state degree of dif-
ferentiation increases both in the discount rate and in the decay rate. The
opposite holds for the optimal investment in advertising.

The above results can be reformulated in the following terms. As the
decay rate and discounting increase, the incentive for …rms to advertise in
order to sustain demand becomes weaker, and they use a larger di¤erentiation
as an alternative instrument to increase their pro…tability. In a sense, larger
values of both ± and ½ tend to shorten the perceived duration of the game,
and therefore …rms …nd it convenient to exploit product di¤erentiation in a
quasi-static fashion, rather than focussing upon the intertemporal demand
increase through advertising.

4.2 The closed-loop equilibrium

On the basis of Hamiltonians (21) and (22), it can be immediately established
that the …rst order conditions on controls are as in (23-27). The relevant
di¤erences appear in the co-state equations, which are now de…ned as follows:

¡@Hi(t)

@N(t)
¡@Hi(t)

@pj(t)

@pbrj (t)

@N(t)
¡@Hi(t)

@xj(t)

@xbrj (t)

@N(t)
¡@Hi(t)

@Aj(t)

@Abrj (t)

@N (t)
=
@¸i(t)

@t
¡½¸i(t) :

(41)
Examine the game from …rm 1’s standpoint. From …rm 2’s …rst order condi-
tions on control variables, we have:

@pbr2 (t)

@N(t)
=
@Abr2 (t)

@N(t)
= 0 ; (42)

while
@xbr2 (t)

@N(t)
=
c¡ p2(t)
4¯

: (43)
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Using (43) and
@H1(t)

@x2(t)
=
N(t) [p1(t)¡ c]

2
; (44)

we obtain the co-state equation pertaining to …rm 1’s closed-loop problem:

@¸1(t)

@t
= (½+ ±)¸1(t)¡

[p1(t)¡ c] [p2(t)¡ p1(t) + k (x1(t) + x2(t))]
2k

+

+
N(t) [p1(t)¡ c] [p2(t)¡ c]

8¯
: (45)

Now, following the same procedure as in the open-loop case (in particular,
using (30-35) and ´2 = 1 ¡ ´1), we obtain the results summarised in the
following Proposition:

Proposition 4 Given ´2 = 1¡ ´1, then, the closed-loop di¤erential game of
advertising with costly location choice admits a unique steady state equilib-
rium where:

pCLi = c + k ;

xCL1 =
8b¯±´1 (½+ ±) + ®

2k2 (1 + ´1)

8b¯± (½+ ±) + ®2k2
; xCL2 = 1¡ xCL1 ;

ACLi =
2®¯±k

8b¯± (½+ ±) + ®2k2
; NCL =

2®ACLi
±

=
4®2¯k

8b¯± (½+ ±) + ®2k2
;

¼CLi =
®2k2

h
256b3¯3±3 (½+ ±)2 (4½+ 3±) + ®2k2­

i

64b2¯±2 (½+ ±)2 [®2k2 + 8b¯± (½+ ±)]2
;

where
­ = 64 [b¯± (½+ ±)]2 ¡ ®2k2

h
®2k2 + 16b¯± (½ + ±)

i
:

Appropriate conditions on parameters can be established to ensure the
non-negativity of the closed-loop equilibrium pro…ts ¼CLi . In particular, focus
on the (intertemporal) marginal productivity of advertising, ®, and de…ne
®2 ´ ³: The equation ¼CLi = 0 has four roots in ³; out of which two are not
real and the remaining two are ³1 = 0 and ³2 > 0: Then, ¼CLi > 0 for all
³ 2 (0 ; ³2) ; while ¼CLi < 0 for all ³ > ³2:

The stability analysis of
n
ACL ; NCL

o
produces the following:

Proposition 5 The pair
n
ACL ; NCL

o
is a saddle point.
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Proof. See the appendix.

Proposition 4 has the following Corollary:

Corollary 2 Under the closed-loop solution, the steady state degree of dif-
ferentiation increases both in the discount rate and in the decay rate. The
optimal investment in advertising is (i) always decreasing in the discount
rate, while (ii) it is increasing in the decay rate i¤

± 2
"
0 ; min

(
®k

p
2b¯

4b¯
; 1

)!

and conversely.

Proof. Proving the e¤ect of parameters ± and ½ on the steady state degree
of di¤erentiation is straightforward, by using xCLi : The same applies to the
e¤ect on ACLi of a change in ½: Point (ii) is proved by:

@ACLi
@±

/ ®2k2 ¡ 8b¯±2 : (46)

Again, we use ®2 ´ ³ to verify that the value of ³ at which @ACLi =@± = 0;
i.e., ³3 = 8b¯±

2=k2; belongs to the interval (0 ; ³2) : As an example, if we set
b = ¯ = 1=2; k = 1 and ± = ½ = 1=10; we obtain ³2 »= 0:0383 > ³3 = 1=50:

4.3 A comparison of open-loop and closed-loop equi-
libria

We are now in a position to carry out a comparative assessment of the closed-
loop equilibrium against the open-loop one. Under ´2 = 1¡´1; it is a matter
of straightforward calculations to establish that:

ACLi < AOLi ) NCL < NOL: (47)

Moreover, from (43) we know that the equilibrium value of x2 increases as
N decreases, and conversely. This also entails that the optimal value of x1
increases as N increases, since x2 = 1¡ x1: Hence,

xCL1 < xOL1 and xCL2 > xOL2 (48)

which entails that products are more di¤erentiated at the closed-loop equi-
librium than at the open-loop one. This discussion leads to our …nal result:
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Proposition 6 The comparison between the open-loop equilibrium and the
closed-loop equilibrium reveals that (i) the equilibrium price is the same under
both solution concepts; (ii) product di¤erentiation is larger under the closed-
loop equilibrium; (iii) adverting is more intense and the resulting demand
level is higher under the open-loop equilibrium.

The established wisdom concerning investment behaviour in dynamic
games maintains that …rms invest less (in R&D or capacity) in closed-loop
and feedback equilibria than in open-loop ones (see Reinganum, 1981; 1982b;
Reynolds, 1987, inter alia). This model provides a counterexample related to
investment in demand-increasing activities. This result can be interpreted on
the following grounds. Notice that points (ii) and (iii) in the above Proposi-
tion can be attributed to the presence in the co-state equations of the feed-
back of the state variable through the location choice only. This amounts
to saying that, in the subgame perfect equilibrium, …rms prefer to invest
more in product di¤erentiation than in demand-increasing advertising, as
compared to what they do in the open-loop equilibrium which is only weakly
time consistent and therefore requires …rms to commit themselves forever to
the plan designed at the initial date. In this game, an increase in demand is
a substitute for an increase in di¤erentiation (and conversely) as both con-
tribute to increase instantaneous revenues. Given the tradeo¤ highlighted by
the closed-loop decision rule in (43), which, by de…nition, does not appear
in the open-loop formulation, in a strongly time consistent equilibrium …rms
are lead to invest less in advertising and more in product di¤erentiation than
they would if they were to design their respective plans once and for all at
t = 0: The reason can be found in the cooperative nature of advertising, i.e.,
in its being a public good, while the bene…ts from product di¤erentiation can
be more easily internalised.

In the closed-loop game, the rate of depreciation of demand positively
a¤ects the optimal investment in advertising, as long as the decay rate itself
is below the critical threshold de…ned in Corollary 2. However, as we know
from Proposition 6, this may only partially counterbalance the substitution
operated in favour of product di¤erentiation.

The …nal step consists in evaluating steady state pro…ts in the two equi-
libria. To this purpose, we have the following:

¼OLi ¡ ¼CLi =
®4k4

h
16b¯±

³
±2 + 3±½+ 2½2

´
+ ®2k2 (4½+ 3±)

i

16b± (½+ ±)2 [®2k2 + 8b¯± (½+ ±)]2
> 0 : (49)
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Therefore, the following holds:

Proposition 7 In steady state, …rm’s pro…ts are higher in the open-loop
equilibrium than in the closed-loop equilibrium.

The above Proposition re‡ects a rather common result in di¤erential
games, namely, that committing to a production and/or investment plan
at the outset ensures higher pro…ts compared to the subgame perfect equi-
librium where each player is allowed to react optimally to rivals at any
time along the path to the steady state (see Fershtman and Kamien, 1987;
Reynolds, 1987; Mehlmann, 1988, ch. 5; Cellini and Lambertini, 2001). Al-
though regularly stressed in the existing literature on dynamic games, this
result has to be evaluated taking into account a caveat, namely, that …rms
may not be able to choose at all between the open-loop and the closed-
loop solution and therefore such inequality describes a comparative statics
property of the dynamic game but has no particular bearings as to …rms’
preferences on how to play it. In particular, if …rms are to play in a strongly
time consistent way, the open-loop is ruled out and any inequality on pro…ts
such as (49) is just irrelevant.

5 Concluding remarks

Taking the advertisement game illustrated in Piga (1998) as a starting point,
we have proved that the standard approach to horizontal di¤erentiation can-
not produce a pure strategy equilibrium in prices when treated in a di¤er-
ential game framework. This is due to the same undercutting mechanism
investigated by Novshek (1980). Moreover, this result holds true irrespective
of the shape of the transportation cost function.

Then, we have introduced an endogenous costs associated with the choice
of location. This has allowed us to characterise (i) the necessary and su¢cient
conditions for existence of a pure strategy equilibrium, and (ii) the steady
state of the model, adopting alternatively the open-loop and the closed-loop
solution concepts. We have shown that in the closed-loop case …rms invest
more in product di¤erentiation and less in advertising, than they do in the
open-loop setting. This happens because the gains from product di¤erentia-
tion can be more easily internalised than those associated with advertising.
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Appendix
Proof of Proposition 3. First, observe that steady state prices and locations
are quasi-static, in the sense that they can be calculated (in terms of N(t))
from …rst order conditions on Hamiltonians (21) and (22), without deriving
their kinematic equations. Therefore, the stability analysis can be con…ned
to the dynamics of Ai(t) and N (t); evaluated at

n
AOL ; NOL

o
: The joint

dynamics of A and N can be described by linearising (8) and (35) aroundn
AOL ; NOL

o
; to get what follows:

2
664

¢
N

¢
A

3
775 = ¥

2
64
(N ¡NOL)

(A¡ AOL)

3
75 (50)

where

¥ =

2
64

¡± ®

0 ½+ ±

3
75

The stability properties of the system in the neighbourhood of the steady
state depend upon the trace and determinant of the 2£2 Jacobian matrix ¥.
In studying the system, we con…ne to steady state points. The trace of ¥ is
tr(¥) = ½ > 0; whereas the determinant ¢(¥) = ¡± (½+ ±) < 0: Therefore,n
AOL ; NOL

o
is a saddle point.

Proof of Proposition 5. The procedure is the same as in the proof of Propo-
sition 3. The Jacobian matrix becomes:

¥ =

2
6664

¡± ®

® (p1 ¡ c) (p2 ¡ c)
16b¯

½+ ±

3
7775

with tr(¥) = ½ > 0 and

¢(¥) = ¡± (½ + ±)¡ ®2k2

16b¯
< 0 :

Therefore,
n
ACL ; NCL

o
is a saddle point.
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