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Abstract

We illustrate the foundations of the theory of differential games,
with particular regard to the definition of information sets and solution
concepts. Then, we provide a survey of several relevant applications
of the theory to modelling the behaviour of oligopolistic firms.



1 Introduction

This chapter aims at introducing the reader to the dynamic models of oligopolis-
tic competition. In particular, we want to outline the basics of the theory
of differential games and provide the reader with a brief survey of the liter-
ature concerning its applications to industrial organization. It is surprising
that the most part of standard microeconomic analysis - and specifically the
theory of industrial organization - has been developed in static contexts,
although this is clearly at odds with reality. Even the issue of strategic in-
teraction among firms over time has been modelled mostly through the tools
of repeated games, which are inherently static.

The theory of differential games originated from the work of Isaacs (1954),
in the form of unpublished reports of the RAND Corporation, accounting for
his research activity in the previous five years, at least. The reason why
differential game theory remained for a long time at the margin of research
in economics is certainly to be found in the fact that Isaacs, as well as many
of his colleagues working in the same field or in related fields, was in fact
appointed by the US Government to deal with military problems related to
the Cold War.? Much the same can be told about their Russian counterparts.
In both cases, the products of research started being published in the mid-
sixties (Isaacs, 1965; Pontryagin, 1966), and, as a result of this delay, their
applications to economics are extremely recent and relatively few.

Most of the applications of differential game theory are to be found in the
field of industrial organization,? and, more precisely, they can be partitioned
into four groups:

I. Oligopoly games with dynamic prices

II. Oligopoly games with capital accumulation for production

IThis is the case for Arrow, Bellman, Nash, von Neumann, Tucker and many others.
A very enjoyable account of the activity at RAND Corporation in the early fifties can be
found in Nasar (1998). Relevant applications of differential game theory to military issues
include Brito (1972), Taylor (1978), Intriligator and Brito (1984, 1989).

2Several applications can also be found in macroeconomics. See Pau (1975), Bagar,
Turnovsky and d’Orey (1986), Pohjola (1986), Basar and Salmon (1988), van der Ploeg
and de Zeeuw (1989), de Zeeuw and van der Ploeg (1991).



III. R&D games

IV. Advertising games

In this survey, we give an account of I-II1.*> The paper is organised as
follows. First, the foundations of differential games are laid out, together
with the Hamiltonian solution method (section 2). Then, we introduce the
simplest way to treat dynamics in a market game, reviewing games with dy-
namic prices where firms bear solely variable costs, i.e., there is no capital
accumulation of any kind (section 3). The following step consists in describ-
ing both Cournot and Bertrand competition with capital accumulation for
production (section 4). Finally, we survey games of innovation, where invest-
ment is aimed at achieving either process or product innovation (section 5).
Concluding comments are in Section 6.

2 Technical features

Here, we briefly illustrate the cornerstones of the theory of differential games,
namely, the notions of

e state variable and control variable
e objective functions of players

e information and related solution concepts

2.1 The state variable and the control variable

In any dynamic settings, at least one variable changes over time, depending
on its past values as well as the players’ choices. We define this variable as
the state variable. An example pertaining to industrial organization may be
a firm’s productive capacity or installed capital, which depend upon both
the capacity held by the firm in past periods and her current investment
decisions. Insofar as there exists strategic interdependence among firms, both
the optimal investment at any point in time, and the resulting evolution of
capacity over time, depend upon the investment undertaken by all other

3 Jgrgensen (1982) provides a survey of differential games with advertising. See also
Leitmann and Schmitendorf (1978); Feichtinger (1983); Dockner and Feichtinger (1986).



firms. The actions of players at any time ¢ consists in setting the so-called
control variables. In the jargon of the previous example, current investment
is the control variable of the generic firm 4, who must set it optimally over
time.

Let the game unravel over ¢ € [0,7].* Define the set of players as P =
{1,2,3,...N}. Moreover, let z;(t) define the state variable for player i.° For-
mally, its dynamics can be described by the following:

N A C ORI (1

where {u; (t)}iil is the vector of players’ actions at time ¢, i.e., it is the vector
of the values of control variables at time ?.

The value of the state variables at the beginning of time (¢ = 0) is as-
sumed to be known: {z;(0)}), = {37011'}?;1' The behaviour of the state
variable over time represents a dynamic constraint for each player. As long
as the state variable affects each player’s optimal decisions, and there ex-
ists a feedback from the players’ actions to the value of each state variable,
strategic interdependence among players emerges.

2.2 The objective function

Each player has an objective function, to be either maximised or minimised,
depending upon the way we define payoff functions (i.e., whether payoffs
denote gains or losses). The function is defined as the discounted value
of the flow of payoffs over time. Define the instantaneous payoff accru-
ing to player i at time t as m;(t), and, for the sake of simplicity, sup-
pose 7;(t) is a gain (or profit). Of course, the instantaneous payofl must
depend upon the choices made by player i as well as its rivals, that is,
mi(t) = 7 (xi(t), 24 (t), wi(t),u_;(t)) , where u_;(t) summarises the actions
of all other players at time t. Player i’s objective is then

T
max .J; E/ i (t)e Pdl (2)
0

s (t)

4The time horizon of the game may well be infinitely long. See sections 4 and 5 for
models where ¢ € [0,00).

°The state variable might be unique for all players, but it is not necessarily so. In
the above example, it is certainly not, because the accumulatrion of capacity or capital
characterise every individual firm in the market, possibly in different ways. See section 5
for cases where z(?) is indeed unique for all players.
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where the factor e ?* discounts future gains. Observe that the discount rate
p has no index, due to the simplifying assumption that all payers discount
future payoffs at the same constant rate. In order to solve his optimum
problem, each player sets the value of his control variable u;(t) in each period,
so that he actually chooses a time path for his control, under the dynamic
constraint represented by the behaviour of the state variable (1).

2.3 Information

What is the relevant information set available to each player at any date
t € [0,7]? Dynamic game theory distinguishes three cases:

Open-Loop Information (OLI) Common knowledge consists only in the
state of the world, i.e., the vector of values of the state variables, at
initial time ¢ = 0. At this date, each player sets the path of his con-
trol variable (taking into account the expected behaviour of all other
players). All decisions are taken at t = 0, and applied accordingly by
players during the whole relevant time span.

Feedback Information (FI) Players are assumed to know, at any ¢, the
state of the world at ¢ — 1, so that the information set at time ¢ can be
summarised by the vector of values of the state variables of all players
at t — 1, defined as X(t — 1) = {a1(t — 1), 29t — 1), ...zy(t — 1)} (or
X (t—¢), where ¢ is positive and arbitrarily small, if the game is specified
in continuous time).

Closed-Loop Information (CLI) Under closed-loop (or history-dependent)
information, players are assumed to know at date ¢ the whole previous
history of the game over [0, 7).

In the remainder, we will illustrate industrial organization models under
OLL This solution is weakly time consistent, in the sense that, if one consid-
ers the game over the truncated interval [0, T, where o € (0,7T), its solution
coincides with the solution to the original game over the same interval, pro-
vided that agents have played optimally over [0, 7).

5The limitations affecting open loop solutions are well known (Kydland, 1977; Spence,
1979; see also Fudenberg and Tirole, 1991, pp. 520-36). In line of principle, it would be
preferable to solve a differential game under either FI or, even better, CLI, rather than



2.4 Equilibrium concepts

Exactly like in static games, we may describe strategic interaction between
players in different ways. First of all, we may suppose that each player takes
all his opponents’ choices as give, in which case the relevant equilibrium con-
cept, i.e., the Nash equilibrium, can be defined as usual: a set of strategy
paths is a Nash equilibrium if each player consider his own action as opti-
mal given the other players’ behaviour, and even after having observed such
behaviour.

Second, we may consider the Stackelberg equilibrium, where the leader
takes into account the follower’s best reply, so that the reaction function
of the follower must be inserted into the leader’s problem as an additional
constraint.

Third, players can cooperate, i.e., they can adopt a common objective
function defined, for instance, by the sum of individual discounted flows of
payoffs. In the field of industrial organization, this is the case when, e.g., firms
build up a cartel in order to maximise joint profits w.r.t. their investment in
R&D to reduce marginal production costs or to introduce new products.

2.5 Optimization over time

Solving a differential game amounts to solving a problem of dynamic planning
with several agents interacting strategically with each other. We are not
going into the formal details of dynamic optimization;” rather, we confine
to reporting some operative rules to solve a differential game. Namely, we
present the Hamilton technique.

Consider the following problem for player i :*

max J; = /0 5 (i), x5 (1), us (1), u_ys(t)) e Ptdl (3)

g (t)

under OLI. It can be shown that there are classes of games for which the open-loop and
the closed-loop solutions coincide (see Reinganum, 1982b, Mehlmann and Willing ,1983,
and Fershtman, 1987). For an exhaustive discussion of time consistency and subgame
perfectness in differential game theory, see Mehlmann (1988, ch. 4) and Bagar and Olsder
(19952, chs. 5 and 6).

"We refer the reader interested in a thorough exposition of methods for dynamic op-
timization and differential games to Chiang (1992); and Mehlmann (1988) or Basar and
Olsder (1995%), respectively.

8Note that player ¢ may face either a maximization or a minimization problem. In the
remainder, we will focus on the former case.
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where z;(t) and u;(t) denote player i’s state variable and control variable,
respectively. We introduce now the Hamiltonian function, defined as follows:

H(n(0), us(t)) = [ (a(0), wal0),wo(0) + X0) - S (mal), {s )} ) | e,

(5)

where X\;(t) = p,(t)e?* is an auxiliary variable, called the co-state variable, its

interpretation being much the same as that attached to Lagrange multipliers

in static constrained optimization problems. That is, the co-state variable
can be seen as the shadow price of a variation of the state variable.

The first order conditions (FOCs) for the solution of the dynamic problem

are: M (:(t), ui(t))
8ui<t)

= 0; (6)

and

OH (ajZ(t)uuZ(t)) _ 8)‘Z<t) (7>
along with the initial condition z;(0) = x¢ and a transversality condition,

which sets the final value (at time T') of the state and/or co-state variables.
In problems defined over an infinite time horizon, it is very common to set

as the transversality condition. It amounts to saying that the “monetary”
value of the state variable at infinity is nil.

In analysing dynamic settings, we are also generally interested in evalu-
ating whether a steady state exists, i.e., a vector of variables which possesses
the desirable property that, whenever players reached the steady state, then
all the relevant variables would remain unchanged thereafter.

A steady state equilibrium may not exist, or, if it does, it may not be
unique.’ Last but not least, a steady state equilibrium may exhibit different
features as far as its stability is concerned. More precisely, the steady state
equilibrium can be:

®There exists also the possibility that a steady state be meaningless from an economic
standpoint. See below, sections 4 and 5.



A. a stable (unstable) node, when the system non-cyclically converges to
(diverges from) that steady state, regardless of where it starts from;

B. stable along a saddle path, when there exists one and only one time path
leading to the steady state;

C. a stable (unstable) focus, when the system cyclically converges to (di-
verges from) from the steady state;

D. a vortex, when the system orbits around the steady state in a perpetual
motion.

Define the steady state as the vector {x*, u*}. This vector is the outcome
of the dynamic system:

dfd—(tt)zj:(t):f(a:,u):0 9

P =u (1) = g(w,u) = )
The dynamic equations in (9) can be linearised around the steady state point
through a first order Taylor expansion, so that the system (9) can be written
in matrix notation as follows:

x (x — x*)
= + 0 (10)
w (u — u*)

where = is the matrix of partial derivatives evaluated at {z* u*}:

=[]
gﬂ? gu ‘SC*,U*

and U = {f(z*,u*),g(z*, u*)} is a column vector whose components are zero,
since f(+,-) and g(-, -) are nil when evaluated at {z*,u*}.'° The stability prop-
erties of the system in the neighbourhood of the steady state depend upon
the trace and determinant of matrix =. In particular, the system produces
a saddle when the determinant is negative. Of course, in looking for steady

10Notice that we have dropped index 4. This is admissible if players are symmetric, so
that the state and control variables are symmetric in equilibrium.



states, we have to ascertain whether optimality conditions (6-7) are indeed
compatible with dz(t)/dt = 0 and du(t)/dt = 0.

As a last remark on steady state Nash equilibria, observe that the analy-
sis of the properties of a dynamic system is conceptually distinct from and
independent of the issue of the equilibrium of a differential game. We have
a Nash equilibrium when each agent plays the best response the all his op-
ponents’ actions. From the standpoint of the analysis of a dynamic system,
“equilibrium” means that variables are stationary over time. Both issues are
relevant when we focus upon a steady state Nash equilibrium, i.e., a state
where the system (the market, if we refer to industrial organization examples)
stays, provided each agent plays his optimal strategy.

We are now in a position to proceed to a selected overview of the exist-
ing literature on dynamic oligopoly games. In the next section, we expose
a model where firms produce without capital, with variable costs only, and
dynamics enters the picture through the evolution of market price over time.
Then, in the following sections, we focus upon the dynamics of capital accu-
mulation over time, aimed either at producing final consumption goods, or
at achieving process or product innovations through R&D activities.

3 Dynamic prices

Probably, the simplest way to think about the dynamics of market interaction
consists in assuming that prices evolve over time according to some acceptable
rules. That is, it consists in taking price as the state variable. This is
the problem analysed in Simaan and Takayama (1978) and Fershtman and
Kamien (1987).!" In this section, we present a simplified version of the model.

Consider an oligopoly where, at any t € [0,00), N firms produce quan-
tities ¢;(t), i € {1,2,...N}, of the same homogeneous good at a total
cost Ci(t) = eq;(t) — %[qi(t)]Q. In each period, market demand is p(t) =
A-—B Zi\il ¢;(t). Hence, the problem of firm i is:

2:(t)

max J; = /0 T et gyt [p(t) . %qi(t)l dt ()

subject to:

W0 —p 1) = w 5(0) ~ (1) (12)

1See also Mehlmann (1988, ch. 5) for an exhaustive exposition of both contributions.
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p(0) =0; and p(t) >0 for all t € [0,7]. (13)

Notice that the dynamics described by (12) establishes that price adjusts
proportionately to the difference between the price level given by the inverse
demand function and the current price level, the speed of adjustment being
determined by the constant w. This amounts to saying that the price mech-
anism is sticky, that is, firms face menu costs in adjusting their price to the
demand conditions deriving from consumers’ preferences: they may not (and,
in general, the will not) choose outputs so that the price reaches immediately
the “correct” market clearing level, given by p(t). The Hamiltonian function
is:

A—BZqi(t) —p(t)] },

(14)
where \;(t) = p,(t)e?*, and p,(t) is the co-state variable associated to p(t).
The supplementary variable A;(t) is introduced to ease calculations as well

H(t) = . {qz-<t> [y = e~ Fa0| + xt00

as the remainder of the exposition. Consider the first order condition (FOC)
w.r.t. ¢;(t), calculated using (14):

OH (1)

=p(t) —c—qi(t) — N({E)Bw =0. 15

Tt = p(0) — e i) = (1) (1)
This yields the optimal open-loop output for firm 4, as follows:!?
n_ J p(t)—c—N(t)Bw if p(t) > ¢+ A\i(t)Bw

ai(t) = { 0 otherwise. (16)

The remaining conditions for optimum are:

e = )+ aty = 25 - B )+ ) - a0 1)
Him - pu,(t) - p(t) = 0. (18)

Differentiating (16) and using (17), we obtain:
WO 9 g+ wpre(t) - 00 (19)

12Tn the remainder, we consider the positive solution. Obviously, the derivation of the
steady state entails non-negativity constraints on price and quantity, that we assume to
be satisfied.

10



Now, substitute into (19) (i) dp/dt = w{p(t) —p(t)}, with p(t) = A —
NBq(t), where a symmetry assumption is introduced for individual firm’s

output; and (i) wA;(t) = [p(t) — ¢ — q(t)] /B from (16). This yields:

dq(t

% =wA+ (w+p)c— 2w+ p)p(t) + [wB(1 — N)+w +plq(t) (20)
Note that dg(t)/dt = 0 is a linear relationship between p(t) and ¢(t). This, to-
gether with dp(t)/dt = 0, also a linear function, fully characterise the steady
state of the system. The dynamic system can be immediately rewritten in
matrix form as follows:

P B —w —wBN p n wA

; —(2w+p) wH+p—wB(N —-1) . WA+ (w+ p)e

(21)

As the determinant of the above 2 x 2 matrix is negative, the equilibrium
point is a saddle, with

) (A—c)(w+p)

_ . p*=A— BNg". 2
" T wrpa+BN)+wB’ ¥ 1 (22)

4 Capital accumulation for production

Here, we present a model encompassing several contributions concerning the
need for firms to invest in capital over time in order to produce the final
goods to be supplied to consumers (Kamien and Schwartz, 1979; Fershtman
and Muller, 1984; Cellini and Lambertini, 1998; sec also Spence, 1979). The
following exposition follows Cellini and Lambertini (1998).

Consider a market where N single-product firms offer differentiated prod-
ucts over ¢t € [0,00). At any time ¢, the inverse demand function for variety
i is (see Spence, 1976):

pit) = A= Bg(t) = DY _q;(1) (23)
it

where D € [0, B] is the symmetric degree of substitutability between any
pair of varieties. If D = B, products are completely homogeneous; if D = 0,

11



strategic interaction disappears and firms are independent monopolists. The
direct demand function obtains by inverting (23):

I B+ DN =) D
qi(t):B—l—D(N—l).{A_ 5-D —I—B_DZPj(t)}.

J#i
(24)
Producing any variety 4 requires physical capital k, accumulating over time
to create capacity. At any ¢, the output level is y;(t) = f(k;(t)), with f' =
Of (k;(t))/Oki(t) > 0 and f7 = 82 f(ki(t))/Ok:(t)* < 0.
A reasonable assumption is that ¢;(t) < 7;(t), that is, the level of sales is
at most equal to the quantity produced. Excess output is reintroduced into

the production process yielding accumulation of capacity according to the
following process:

k(1)
ot

= [(ki(t)) — @:(t) — 6ki(L), (25)

where 6 denotes the rate of depreciation of capital. In order to simplify fur-
ther the analysis, suppose that unit variable cost is constant and equal to
zero. The cost of capital is represented by the opportunity cost of intertem-
poral relocation of unsold output. Firm #’s instantaneous profits i are

() = pi() g (t). (26)

Firm 7 maximizes the discounted flow of its profits:

Ji = / e rm(t) dt (27)

under the constraint (25) imposed by the dynamics of the state variable k;(t).
Notice that the state variable does not enter directly the objective function.
It can be assumed, alternatively, that all firms behave as either quantity-
setters or price setters. Hence, the control variable is either ¢;(t) when all
firms are Cournot agents, or p;(t) in the case where firms adopt a Bertrand
behaviour.

12



4.1 Cournot competition

When firms compete in quantities, substitute (23) in (27) to get the relevant
objective function of firm i:

Jz‘Z/OOO@th()

which must be maximised w.r.t. ¢;(t), under (25). The corresponding Hamil-

A= Bg(t)— D) gt ] dt (28)
J#E

tonian function is:

A—Bg(t)—D Z q;(t
J#e

H(t) = 6’”-{ ()

O [ (k1)) = qs(t) = 51%@)]} ,

(29)
where \;(t) = p,(t)e””, and p,(t) is the co-state variable associated to k;(t).
The solution of firm i’s problem follows from the above conditions (6),
(7) and (R), appropriately written for the present model. Specifically, the
necessary and sufficient conditions for a path to be optimal are:

OH(t)

o) AT HE0 =D 60— MH =0, (30)
‘gm Ol MO s pr@ e (8D
lim - p2,(2) - ki(1) = 0. (32)

From (30) we obtaln

A-D Ej;éi g;(t) — A(t)

¢:(t) 55 (33)
which can be differentiated w.r.t. time to get
da(t) _ =Dy lday(0)/a) — (o)t »
. 2B ‘
Thanks to (31), the expression in (34) simplifies as follows:
dgi(t) 1 , dqj

J#e

13



In order to simplify calculations and to obtain an analytical solution, we
adopt the following assumption, based on firms’ ex ante symmetry:

> ai(t) = (N = Da(t) (36)
it

so that

dt dt

3 dg;(t) _ (N —1)dg(t)
J#i

Thanks to symmetry, in the remainder we drop the indication the identity

of the firm. As a further simplification, we also drop the indication of time.

Using (36) and (31), we rewrite (35) as follows:

A—(2B+ D(N —1))q

RORTEDE 9B + D(N — 1)

i (37)

We are now able to draw a phase diagram in the space {k, ¢} , in order to

characterise the steady state equilibrium. The locus 4= dg/dt = 0 is given
by ¢ = A/(2B + D(N — 1)) and f'(k) = p + 6 in figure 1. Notice that
the horizontal locus ¢ = A/(2B + D(N — 1)) denotes the usual equilibrium
solution we are well accustomed with from the existing literature dealing
with static market games (see, e.g., Singh and Vives, 1984; Majerus, 1988).
The two loci partition the space {k,q} into four regions, where the dynamics
of ¢ is determined by (37), as summmarised by the vertical arrows. The locus

k= dk/dt = 0 as well as the dynamics of k, depicted by horizontal arrows,
derive from (25). Steady states, denoted by M, L along the horizontal arm,
and P along the vertical one, are identified by intersections between loci.

14



Figure 1: Cournot competition

q
N
N
st [ ' ¢
V't \7
' k

kp=f"(p+9)
JH(6)

It is worth noting that the situation illustrated in figure 1 is only one out
of five possible configurations, due to the fact that the position of the vertical
line f'(k) = p+6 is independent of demand parameters, while the horizontal
locus ¢ = A/(2B 4+ D(N — 1)) shifts upwards (downwards) as A (B, D and

N) increases. Therefore, we obtain one out of five possible regimes:

[1]. There exist three steady state points, with ky; < kp < kg (this is the
situation depicted in figure 1).

[2]. There exist two steady state points, with ky = kp < kr.
[3]. There exist three steady state points, with kp < ky < ky.
[4]. There exist two steady state points, with kp < ky = ky.

[5]. There exists a unique steady state point, corresponding to P.

An intuitive explanation for the above taxonomy can be provided, in the
following terms. The vertical locus f'(k) = p + ¢ identifies a constraint
on optimal capital embodying firms’ intertemporal preferences, i.e., their
common discount rate. Accordingly, maximum output level in steady state

15



would be that corresponding to (i) p = 0, and (ii) a capacity such that
f'(k) = 6. Yet, a positive discounting (that is, impatience) induces producers
to install a smaller steady state capacity, much the same as it happens in
the well known Ramsey model (Ramsey, 1928)." On these grounds, define
this level of k as the optimal capital constraint, and label it as k. When the
reservation price A is very large (or B, D, N, are low), points M and L
either do not exist (regime [5]) or fall to the right of P (regimes [2], [3], and
[4]). Under these circumstances, the capital constraint is operative and firms
choose the capital accumulation corresponding to P. As we will see below,
this is fully consistent with the dynamic properties of the steady state points.

Notice that, since both steady state points located along the horizontal
locus entail the same levels of sales. As a consequence, point L is surely
inefficient in that it requires a higher amount of capital. Point M, as already
mentioned above, corresponds to the optimal quantity emerging from the sta-
tic version of the game. It is hardly the case of emphasising that this solution
encompasses both monopoly (either when N = 1 or when D = 0) and perfect
competition (as, in the limit, N — o0)."* In point M, dm;(t)/dg;(t) = 0, that
is, marginal instantaneous profit is nil.

Now we come to the stability analysis of the above system. The joint
dynamics of ¢ and k, can be described by linearising (37) and (25) around
(k*,q*), to get what follows:

_= (38)

where

fk)—6 ~1

(1]

A7(23+D(n71))qf77<k:) —(f’(k‘) —p— 6)

2B+D(n—1)

BFor a detailed exposition of the Ramsey model, we refer the reader to Blanchard and
Fischer (1989, ch. 2).

14 The analysis of dynamic monopoly with capital accumulation dates back to Evans
(1924). See Chiang (1992) for a recent exposition of the original model by Evans, as well
as later developments.
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The stability properties of the system in the neighbourhood of the steady
state depend upon the trace and determinant of the 2 X 2 matrix =. In
studying the system, we confine to steady state points. The trace of = is
tr(Z) = p > 0, whereas the determinant A(Z) varies according to the point
where it is evaluated. Consider the above taxonomy.

Regime [1]. In M, A(Q) < 0, hence this is a saddle point. In P, A(Q) > 0,
so that P is an unstable focus. In L, A(Q) < 0, and this is again a
saddle point, with the horizontal line as the stable arm.

Regime [2]. In this regime, M Coincides with P, so that we have only two
steady states which are both are saddle points. In M = P, the saddle
path approaches the saddle point from the left only, while in L the
stable arm is again the horizontal line.

Regime [3]. Here, P is a saddle; M is an unstable focus; L is a saddle point,
as in regimes [1] and [2].

Regime [4]. Here, points M and L coincide. P remains a saddle, while
M = L is a saddle whose converging arm proceeds from the right along
the horizontal line.

Regime [5]. Here, there exists a unique steady state point, P, which is also
a saddle point.

We can sum up the above discussion as follows. The unique efficient and
non-unstable steady state point is P if kp < ks, while it is M if the opposite
inequality holds. Such a point is always a saddle. Individual equilibrium out-
put is ¢§; = A/(2B+ D(N —1)) if the equilibrium is identified by point M, or
the level corresponding to the optimal capital constraint k if the equilibrium
is identified by point P. The reason is that, if the capacity at which marginal
instantaneous profit is nil is larger than the optimal capital constraint, the
latter becomes binding. Otherwise, the capital constraint is irrelevant, and
firms’ decisions in each period are solely driven by the unconstrained max-
imisation of single-period profits. It is apparent that, in the present setting,
firms always operate at full capacity.’” When optimal output is q{;, per-firm

15 The possibility for firms to choose capacity strategically has been extensively debated
in static models (Levitan and Shubik, 1972; Kreps and Scheinkman, 1983; Davidson and
Deneckere, 1986; Osborne and Pitchick, 1986).
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instantaneous profits in steady state are

A’B
2B + D(N —1)]?

c
ﬂ_M_

(39)
while they are 7% = k {A — [B+ D(N —1)] g} if optimal output is k.1e
4.2 Bertrand competition

Consider now the alternative setting where firms compete in prices. In this
case, the demand function is (24), and firm 7’s dynamic problem is:

pi(t) B+ D<N - 1) B-D Gi

(40)
st ki (t) = f(ki(t)) = 8ki(t)+

— +
B+DN-1) [B+DIN-1)}(B-D) [B+DIN-1|(B-D) P
(41)
The corresponding Hamiltonian function is now relatively straightforward.
On the basis of FOCs, and using the symmetry assumption Zj 4P = (N —

_{ A B + DN = 2)|pi(1) D S

1)p;, the necessary and sufficient conditions for the optimal path obtain:

dp - dk
=—=0k=—=0 42
TP TR (42)
along with the standard transversality condition

lim 9(t) - k(t) =0, (43)

t—o00

where 9(t) is the co-state variable associated with k(t). The explicit deriva-
tion of expressions (42) is left to the reader, as well as the pertaining phase

Y Our approach generalises the analysis in Fershtman and Muller (1984). They do
not consider demand conditions, and suppose that instantaneous individual profits are
everywhere increasing in each firm’s own capital (see their assumption 2, p. 325). In our
terminology, they only identify the equilibrium in P along the vertical locus f'(k) = p+36.
They are prevented from reaching an equilibrium like point M, in that the horizontal locus
qg=A/(2B + D(N — 1)) does not appear in their model.
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diagram in the space {k,p}. The locus k= 0 is a convex curve, while the

locus P= 0 consists of the two orthogonal lines along which f'(k) = p+ 6 (as
in the Cournot case) and
. A(B - D)

P =oB-DyrDN 1)’ (44)

respectively. The analysis of the price-setting case is qualitatively analogous
to the case of quantity-setting behaviour. There exist one, two or three
steady state points, according to the relative position of the two loci. From
the analysis of the dynamic properties of the system, we draw the following
conclusions. The unique efficient and non-unstable steady state point is P if
kp < kpr, while it is M if the opposite holds. This is always a saddle point.
Individual equilibrium output is

- A[B+ D(N — 2)]
dy = (2(B—D)+ D(N—-1))(B+ D(N —1))

(45)

in M, or the level corresponding to the optimal capacity constraint kin P.
In the former case, instantanecous steady state profits per firm are
A*(B—D)[B+ D(N —2)]

= 2 (46>
[2(B—D)+ D(N—1)]"[B+ D(N —1)]

=W

7T
while 78 = 74 = k {A — [B+ D(N —1)] %} if optimal output is k.

4.3 The social optimum

From a social planner’s viewpoint, the choice between prices and quantities
is completely immaterial. Moreover, in this case the symmetry assumption
can be adopted from the outset, so that market demand for each product
writes as p = A — (B + D(N — 1))q, where ¢ is the individual firm’s level of
sales. Instantaneous social welfare, defined as the sum of consumer surplus
and firms’ profits, is

_ Na(t)
7

The resulting optimum problem for the social planner can be written as

sw(t) [2A— (B + D(N —1))q(t)]. (47)

follows:

max SW :/ e Psw(t) di (48)
q 0
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s.t. a’g—it) = [(k(1)) — q(t) — 8K(1). (49)

The solution of the social optimum problem is formally equivalent to what we
carried out in the section dealing with Cournot behaviour under all respects,
with the exception of the unconstrained optimal sales level, which here is

A
B+ D(N —1)

Qo = (50)
This output level is obviously larger than both the Cournot and the Bertrand
levels, if the capital constraint is not binding, while the three regimes are
indistinguishable from one another when the capital constraint becomes op-
erative in the Cournot setting. Intuitively, there can be cases where the con-
straint binds under social planning and or Bertrand behaviour but not under
Cournot competition. Hence, if kp > kj; in all regimes, then ¢35, > q¥ > .
Iff kp < kpr in the Cournot setting, then the optimal efficient point corre-
sponds to kp = f'"1(p + §) in all regimes, with ¢5 = ¢& = ¢%.

A straightforward implication of the above proposition is that, when the
capital accumulation constraint comes into operation in all settings, the three
regimes are observationally equivalent. In particular, the following relevant
conclusion can be drawn. If kp > kj; in all regimes, then SW* > SW? >
SW¢; otherwise, SW*S = SWP = SWC .17 The first chain of inequalities on
the ranking of social welfare levels across regimes replicates the established
wisdom according to which social planning is more efficient than Bertrand
competition, and both are more efficient than Cournot competition, as long
as products are differentiated and the number of firms is finite. In this case,
social welfare is the same irrespectively of the market regime, only when
the number of firms becomes infinitely large. Social planning and Bertrand
competition coincide also when products are perfect substitutes. The second
result in the above corollary indicates that market conditions are irrelevant
if the allocation of resources is driven only by the dynamic accumulation
constraint.

I7As it is usually done in the existing literature on static oligopoly competition, these
inequalities are calculated for a given number of firms (see Vives, 1985; Okuguchi, 1987). It
can be shown that the incentive to enter vanishes faster under price than under quantity
competition, so that we might expect the number of firms to be larger in the Cournot
steady state. This may reverse the above inequalities on output and social welfare levels,
and make Cournot socially more desirable than Bertrand (see Cellini, Lambertini and
Ottaviano, 1999).
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5 Product and process innovation

Research in the economics of innovation has focused upon two different issues,
process and product innovation, the first having received more attention than
the second. However, the differential game approach to both problems has
produced relatively few contributions. In this section, we present two models,
dealing, respectively, with (1) product innovation in a framework of perfect
certainty and (ii) a stochastic race for a generic technological breakthrough,
that might turn into either a new product or a new (and cheaper) production
process for existing products.

5.1 R&D activity for product innovation

Here, we use the same demand structure as in section 4, except that we as-
sume that the degree of substitutability, D, is the result of R&D activity.
Thus, D is the steady state variable common to all firms, and we suppose
that there is no capacity constraint on firms’ output. Notice that investing
to reduce D amounts to investing in product differentiation. We investigate
two alternative situations. In the first, firms take their decisions noncooper-
atively, with respect to both the R&D investment and the market behaviour.
Here, we reach an Arrowian conclusion according to which the amount of
resources invested by the industry in product differentiation is increasing in
the number of firms, i.e., in the intensity of market competition. In the sec-
ond setting, we model the behaviour of an R&D cartel made up by all firms,
which continue to behave noncooperatively in setting their respective output
levels. In this case, the main result is that the R&D cartel invests more than
the sum of independent ventures, and therefore obtains a higher degree of
product differentiation.

5.1.1 The setup

We use the same setup as in the previous section. Consider a market where
N single-product firms sell differentiated products over ¢ € [0, 00). Market
competition takes place a Ia Cournot. The demand structure is (23). At any
time ¢, the output level ¢;(¢) is produced at constant returns to scale, for a
given D, and we normalise marginal (and average) cost to zero.

We assume that, at the initial instant ¢ = 0, D = B, so that firms may
produce the same homogeneous good through a technology which is public

21



domain.'® Product differentiation may increase (that is, D may decrease)

through firms” R&D investment according to:

o = TP = - B0+ 200y g >0
) Lo [kal) 4 3005 (0)

(51)
The above dynamics of product differentiation can be interpreted as follows.
The industry overall R&D expenditure is K(t), while k;(t) is individual in-
vestment. Given the symmetric nature of product differentiation in this
model, there exists a complete spillover effect in the R&D process. Notice
that the externality effect we consider here entails that the outcome of R&D
activity is public domain via the demand function. On the contrary, the ex-
ternality effects usually considered in the literature are associated with infor-
mation leakage or transmission (see, inter alia, d’ Aspremont and Jacquemin,
1988). The R&D technology defined by (51) exhibits decreasing returns to
scale. As a result, D(t) is non-increasing over time, and would approach zero
if K(t) tended to infinity.

The instantaneous profit is 7;(t) = p;(t)q;(t) — k;(t). Fach firm aims at
maximizing the discounted value of its flow of profits J; = fooo e Ptmy(t) di
under the dynamic constraint (51) concerning the state variable D(t). The
control variables are ¢;(t) and k;(%).

5.1.2 Non-cooperative R&D

Suppose firms choose non-cooperatively both R&D efforts and output lev-
els. The solution concept we adopt is the open-loop Nash equilibrium. The
objective function of firm 7 is:

Ji:/OOOe”t {qi() A= Bag(t) = D) g(t) }dt (52)

J#E
to be maximised w.r.t. ¢;(t) and k;(¢), under (51). The corresponding Hamil-
tonian function is:

H(t) = e {Agi(t) = B(@(t)’ = DO)a:(t) Y ¢;() —k:()+  (33)
i

18 The idea that D depends upon the behaviour of firms has been investigated in static
models by Harrington (1995); Lambertini and Rossini (1998); Lambertini, Poddar and
Sasaki (1998).
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( ) + Ej;éi k‘j<t)
L [Rlt) + 55k 0)|

where X\;(t) = p,(t)e’t, p,;(t) being the co-state variable associated to D(t).

+i ()=

D)},

Necessary and sufficient conditions for a path to be optimal are:

M)
Pall) A — 2Bgi(t) ; q;(t) = 0; (54)
T _ 1~ Dieyn) 1 =0 ()

(1+k:( + Y00k

ki(t) + 35 k5()

L) _ o) 8>\ _ i
aD(t) ot = all ;q” Sl 1+[/<;Z )+ 30 k(L)
(56)

Him g, (t) - D(t) = 0 (57)

We introduce the usual symmetry assumption involving no loss of generality:
¢:i(t) = ¢;(t) = q(1), and k;(t) = k;(t) = k(t). This implies Zj;«éiqj<t) =
(N —1)q(t) and > k;(t) = (N — 1)k(t).

From (54) we get the individual equilibrium output:19

A

i) =557 (N = 1)D() (58)
Hence, (55) rewrites as
VRS )
Likewise, (56) simplifies as follows:
P = (- Dl + TR A (60)

19Which, again, coincides with the standard outcome of Cournot models with product
differentiation (Singh and Vives, 1984; Majerus, 1988).
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From (59) we obtain k(t), which can be differentiated w.r.t. ¢. Then, plugging
(60) into Ok(t)/Ot, one obtains:

83) o Dfﬁ {=A()p— (N = D)]g()]"} . (61)

This can be further simplified by substituting the co-state variable with (59),
to get:

mgit) ~ 2n(1 +1Nk:(t)) ' {D/()t) [1+ NE@)]* = (N = 1>[q<t>]2}' o)

which obviously holds for all D(t) € (0, B]. If D(t) = 0, optimal per-period
investment is k(t) = 0.

We are now in a position to assess the overall dynamic properties of the
model, fully characterised by (62) and D(t)/0t = —Nk(t)D(t)/(1+ Nk(t)).
The latter equation establishes that dD(t)/0t < 0 for all k(t) € (0,00) and
for all D(t) € (0, B]; while dD(t) /0t = 0 1L k(t) = 0 or D(t) = 0. In the latter

case, it is immediate to verify that dq(t)/dt is also nil. Moreover,

sign {82—?)} = sign {% [1+ NE®)]? — (N — 1)[q(t)]2}. (63)
Thus, using equilibrium output (58), we have:

k(1)
ot

AN =1)D(t

>0 RO > 5 155 (v 1)D()\/ﬁ_1]'

1
x (64

We are interested in investigating the dynamics of the system in the positive
quadrant of the space {D,k}, which is described in figure 2. The locus
dD(t)/0t = 0 corresponds to the axes. The locus 9k(t)/0t = 0 draws a
curve over the admissible range of parameter D, which may or may not cross
the horizontal axis within the same range, i.e., D € (0,B]. If it does, the
resulting degree of substitutability in steady state is

A% —4Bp— (A—c)\/(A— )2 —8Bp

D* =
2(N —1)p

(65)
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Figure 2 : Dynamics in the space (D, k)

See Cellini and Lambertini (1999) for details concerning the conditions
ensuring that D* € (0, B]. When no steady state exists, the model becomes
trivial, in that the only admissible strategy is k() = 0 at every ¢, implying
that firms are stuck with homogeneous products forever.

As to the stability of the system, it remains to be stressed that, whenever
D* € (0, B], it is a saddle, and it can obviously be approached only along
the north-east arm of the saddle path.

We now proceed to the comparative statics on D* w.r.t. all parameters.

From (65), it is immediately verified that, ceteris paribus, D* is decreas-
ing, i.e., steady state product differentiation is increasing, in the number of
firms. This result can be interpreted in the light of the debate between the
polar positions of Schumpeter (1942) and Arrow (1962), concerning the re-
lationship between the intensity of market competition and the incentives to
invest in R&D (for a survey, see Reinganum, 1989). Here, R&D eflorts are
almed at increasing product differentiation. In general, any increase in the
number of firms lowers profits, and this tendency can be counterbalanced by
investing a larger amount of resources in order to decrease the degree of sub-
stitutability among products. Notice that the anti-Schumpeterian flavour of
these considerations is evident, in the limit case N = 1, when the monopolist

25



has no incentive at all to invest.

Not surprisingly, dD*/9A > 0 and 9D* /0B < 0. Given that A/B yields
a measure of market size and profitability, any increase in this ratio induces
firms to reduce their expenditure in product differentiation.

Finally, dD*/0p < 0 can be interpreted in the following terms. As p
becomes higher, the present value of future profits shrinks. This can be
balanced by a higher investment in product differentiation. More explic-
itly, an increase in p seemingly reduces, ceteris paribus, firms capability to
spend as measured by the incoming profit flows. However, a reduction in D*
does indeed restore endogenously firms’ profitability and, consequently, their
incentive to invest so as to offset the negative effects produced by higher
discounting.

5.1.3 Cooperative R&D

Here, we assume that firms behave noncooperatively in the marketing phase,
while they activate a cartel in the R&D investment phase. As in previous
literature (d’Aspremont and Jacquemin, 1988; Kamien, Muller and Zang,
1992), we assume the cartel to coordinate the R&D expenditure of all firms
so as to maximise industry profits in the R&D phase.

This entails maximising

J; = /OOO e Pt {qi(t) :

subject to the constraint:

A- Ba(t) - D) Y g5 <t>] - k(t)} dt (66)

I

aD(t) K(t)

_ Nk(t)
ot 1+ K(t) (1)

1+ NE@)

D(t); k(t)>0. (67)

Notice that k(t) has no subscript in that we impose symmetry across firms in
the R&D phase from the outset, in order to capture the idea that the R&D
cartel optimises w.r.t. K(t) and then symmetrically charges each firm of her
share k(t) = K(t)/n of the overall expenditure. It is also worth stressing
that this procedure is equivalent to what we usually observe in static R&D
models (Katz, 1986; d’ Aspremont and Jacquemin, 1988; Kamien, Muller and
Zang, 1992; Suzumura, 1992, inter alia), where firms’ behaviour is described
by a two-stage game. In the first, a single agent (the cartel) chooses the
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symmetric investment level maximising cartel profits; in the second, firms
compete in the relevant market variable.

Adopting the usual procedure, we find that the candidate steady state
level of D is

N(A—¢)? —4Bp — A\/N2(A — )2 — 8BpN

D=
2(N —1)p

(68)

Then, D € [0, B] iff A2 > (N + 1)2Bp/[N(N — 1)]. Again, see Cellini and
Lambertini (1999) for further details.

We are now able to characterise the main result, namely, that D < D
when both exist. This amounts to saying that product substitutability in
steady state is lower under R&D cooperation than under noncooperative
behaviour. Accordingly, both the per-firm and the aggregate steady state
output level is larger when an R&D cartel operates.

This has some relevant implications as to the established wisdom on the
investment behaviour of R&D cartels, according to which an R&D cartel
invests less than a decentralised industry, if technological spillovers are low
enough, and conversely.? Hence, with low spillovers, an R&D cartel can be
successful in mitigating the well known wasteful duplication of efforts affect-
ing competitive industries. However, this literature deals with process rather
than product innovations. Consequently, spillover effects operate within the
R&D technology. In our setting, there exists a full spillover effect from each
firm’s investment to her market mates through consumer preferences, i.e.,
there is no wasteful duplication of efforts.?! Therefore, the ultimate implica-
tion of the externality is to drive the R&D cartel’s investment well beyond
that resulting from independent ventures. An alternative viewpoint to inter-
pret the above results is that, given the noncooperative behaviour of firms in
setting the output levels, cartelisation in the development phase can produce
higher profits for its members only by increasing differentiation.

20Cf. d’Aspremont and Jacquemin (1988, p. 1135); Kamien, Muller and Zang (1992,
proposition 1, p. 1301). See also Katz and Ordover (1990), for an exhaustive survey.

2L Setting up a research joint venture would indeed eliminate duplication completely, in
that firms would jointly proceed to the development of a single good. In the present model
this would trivially imply that they should not invest at all and market the undifferentiated
good available at ¢ = 0.
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5.2 R&D races under uncertainty

So far, we have treated innovation as an enterprise whose outcome is per-
fectly known from the outset. However, one could stress that innovation is
an uncertain adventure. Firms are subject to technological uncertainty, in
that they are unable to foresee with certainty the R&D investment globally
required for any of them to achieve an innovation. In addition to this, each
firm is subject to the uncertainty associated with the possibility of a rival’s
pre-emptive breakthrough. Accordingly, R&D activity has been modelled
in stochastic environments in the differential game approach. Kamien and
Schwartz (1972; 1976) and Reinganum (1981; 1982a) are the most relevant
contributions in the field of stochastic differential games of innovation. Here,
we broadly follow Reinganum (1981, 1982a). Suppose N firms compete over
t € [0,T] for a technological innovation, that might lead either to a new and
cheaper production process for an existing commodity, or to a new good.
Suppose the innovation date for firm i is a random variable 7; distributed
according to Fi(t) = Pr{r; < t}, with dates 7; being i.i.d.. The model is
worked out under the assumption that the innovator gets a patent of infinite
duration over the innovation, but there exists the possibility of imitation due
to imperfect patent protection, so that all other firms may continue to op-
erate with the technology already available before the innovation, or imitate
the innovator.?? If the innovation occurs at 7 = min; 75, the innovator is firm
j with 7; = 7. Independency implies:

Ft)=Pr{r <t} =1-TY, [1 - F(t)] (69)

We define as k;(t) the intensity of the research effort of firm  at time ¢, with
the R&D cost being C;(t) = [/{:Z(t)]2 /2, and introduce the assumption that
firm 7’s conditional probability of innovation at date ¢ (the hazard rate) is
dF;(t :
% —p () = B[ - F(0]: >0 F©0)=0.  (70)
In contrast with the models reviewed so far, here the market interaction
and the resulting per-period profits are blackboxed. Define the present value

22This amounts to saying that the profits from the innovation accrues solely to the
winner, but the innovation is non-drastic, i.e., it does not create a monopoly for the
innovator. In this respect, we follow Reinganum (1982a). For the consequences of the
alternative assumption that the winner takes all, see Reinganum (1981). For further
discussion on these issues, see Tirole (1988, ch. 10) and Reinganum (1989), inter alia.
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of the innovation to the winner as Vi, and the present value to the loser(s) of
an alternative technology as V;.?* The expected profit flow of firm 7 is then:

T .
Fo= [V B () I - ROV F5 0 T - B+ (7D
0 J#e o m#ﬂ
[k ()"
e O
In order to simplify the GXpOSItIOIl define In[1 — Fj(t)] = —Bz;(t), so that it

is possible to write firm i’s problem as:**

Jf:/ exp{ ﬂZx] }

W) _ ity o) =0 (73)

The game characterised as in (72-73) has a unique open loop Nash equilib-
rium. Using the following transformation:

1= s »

and provided « # 0, we may write the Hamiltonian function:

|BViki () + BV k(1) — 5 p)t] ] iy — Z ki

J#e

Fiki(t) + 0V 3 k() — W] dt
J#e

s.t. r=

Hi(t) =

from which we obtain:

kit a,n) = [VW — oz)\i(t)n(o‘fl)/o‘} Beft (76)

23The payoff V, could be the profit resulting from the use of an inferior technology
available after the innovator’s breakthrough. Obviously, V7, < Viy.

24Reinganum (1981, 1982a) assumes that, for any firm 4, the probability of being the
innovator at any date ¢ is positively related to the amount of knowledge x;(t) accumulated

by the same date:
@i [ki(£)] = 1 — exp {-Fri (1)}

with k= dk;(t)/dt = v;(t) being the rate at which kwoledge accumulates over time.
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where \;(t) must satisfy:

C A1) O, OH; Ok
A= = — — — .= (T =
’ dt 87] o 8I€Z 87] 7 Z< ) 0 (77>

Irom (76) it can be ascertained that increasing the prize (Vi) for the in-
novation induces firm i to increase the (optimal) R&D effort. The opposite
obviously holds for an increase in « and/or 7.

A cooperative solution can also be adopted (see Reinganum, 1981, pp.
31-33). In such a case, firms would maximise joint profits w.r.t. the col-
lective R&D effort. Reinganum (1981, pp. 34-36) shows that R&D coop-
eration allows firms to reduce wasteful effort duplication. Put it the other
way around, rivalry induces player to invest in R&D at a uniformly higher
rate than cooperation does. The other side of the hill is that noncooperative
behaviour allows firms to innovate earlier than they would under coopera-
% THence, the question whether cooperation is better than
rivalry is elusive, and so are the implications for antitrust policy and R&D
subsidisation as well.

tive behaviour.

6 Concluding remarks

In this chapter, we have provided the reader with a summary of the toolbox of
differential game theory, with a brief collection of examples of its applications
to oligopoly settings. Although exhaustiveness is far beyond the scope of
our exposition, we believe that the foregoing overview suffices to grasp the
investigative power of differential game theory with respect to the research
currently undertaken in the field of industrial organization. In particular,
differential games properly highlight the role of time in strategic interactions
where some form of capital accumulates over time. This feature remains
often out of reach in static multi-stage models, where, by definition, no costly
dynamic accumulation exists.

25This holds when the outcomes of innovative activity can be privately retained. The
conclusion is completely reversed if the results obtained by R&D activity are public do-
main, i.e., if they fully leak out to rivals.
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