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Abstract

The paper proposes a formalization of rational agents as first-order consis-
tent formal systems. On this basis we build a notion of cornmon knowledge
and common rationality, among agents who are globally inconsistent with
each other. An existence theorem for a formal system of common rationality
is provided.



1 Introduction

In this paper we propose a logical formalization of the notions of knowl-
edge, epistenic interaction and common knowledge among rational agents,
the latter being formalized as first-order consistent formal systems. These
notions allow us to introduce the idea of a system of common rationality for
a society where agents have different and contrasting opinions (are globally
inconsistent with each other in a formal sense), and are endowed with com-
plex rationality (essentially, a proof-theoretic strength higher than that of
recursive arithmetic PRA). By introducing some constraints on the agents’
capability of proving the others’ rationality (consistency), we are able to
prove the existence of at least one formal system of common rationality
(Theorem 1). We also show that some agents knowing that other agents are
inconsistent, leads the former to negate the existence of a system of common
rationality (Theorem2).

A crucial point of our approach is the idea of formalizing knowledge
starting not from the modal system S5 (Geanakoplos, 1994), but from the
modal systemn (7, which is canonically isomorphic to the standard Provability
Logic of Arithmetic. This enables us to use the provability predicate Pry, (0)
of each system (agent) T} as an epistemic operator, within the full setting of
the proof-theory of the extensions of Arithmetics. There results a substantial
refinement: since the provability of Pry, (A) in general does not imply the Tj-
provability of A, we can distinguish between a statement being in principle
knowable, and its being actually known in a precise and detailed manner.
In this sense, we believe that our framework might be a possible answer to
the observation made by Parikh and Krasucki (1990), that one should look
for formalizations of common knowledge which leave aside the knowledge of
details (since such is life in “the real world” ).

The main tools we use are those of Proof Theory and Provability The-
ory; the upper bound to the rationality of agents is given in terms of proof-
theoretic ordinals; however, many of the characterizations of knowledge we
present are also based on Recursion Theory and Model Theory. Indeed, one
of the main methodological arguments underlying our research programme
is that theories of common knowledge and common rationality should take
advantage of the resources provided by today’s formal logic in a wide sense.
Modal logic is of course among these resources (and we do work with the
modal system G, canonically linked with Provability Logic), but we believe
that the resources of proof theory - thus far essentially employed in the
meta-analysis of mathematical systems - are much more powerful. In par-



ticular, proof theory provides us with infinite different provability predicates
(which may represent different 'types’ of individual rationality), and allows
us to introduce a measure of rationality, in the form of measures of the
logical complexity of formal systems. The latter we see as a crucial point,
as different degrees of rational complexity allows to distinguish, on precise
formal grounds, different epistemic processes.

We devote the rest of this introduction to introducing technical premises,
notation and references. Section 2 concentrates on formalizing common
knowledge through provability theory, Section 3 on developing a formal sys-
tem of common rationality. Concluding remarks are gathered in Section
4.

1.1 Sequent formulation of the Predicate Calculus LK

We assume the reader to know the classical formulations and the basic tau-
tologies of the First Order Predicate Calculus (Shoenfield, 1967; Mendelson,
1964). Since in our framework we identify the knowledge of a statement
with its proof, and we want to express formally the knowledge-generating
process, we shall use the Predicate Calculus in its Gentzen formulation as
sequent calculus (Takeuti, 1987; Girard, 1987). Thus the proofs will be
trees, whose leaves are axioms and whose branches are sequent rules.

We recall that a sequent is an expression of the form X = Y, where
X and Y are set of formulas. If X = {4;,..,A,}, Y = {B),..., Bn}, then
X =Y has the same meaning of the formula A;A...AA, — B;V...VB,,.
The writing = A means that A is a theorem or an axiom; A ==means
that notA is a theorem or an axiom. Given a rule %, the sequent S is
the premise of the rule, the sequent Sy is the conclusion of the rule. In a
sequent we use Greek capitals as meta-expressions for sets of formulas, Latin
for formulas.The writing Q, A stands for Q U A. The sequent formulation
LK of the First Order Predicate Calculus is the following:

LK Axioms:

1. Logical Axioms: A=A

2. Equality Axioms:

2.1 S1=1%1,...,8, = tn,A (81, ceny Sn) = A (tl, ...,tn)

2.2 81 =11,y 8n =ty = [ (81,0, 8n) = f(t1, ..., tn)

2.3 = S5=3

2.4 S1 =11,80 =12,851 = S9p = ] = 19

with s;, t; arbitrary terms, f function letter, A predicate letter.

3.Logical Rules:



3.1.Propositional logical rules:

ATl=A I'—A A
Fe=a~A~ R A=A ™ —L
A=A BI'—A F=AA 0—0Q.8
— T — Rkl SN A J— 2 L —
ABr—nr N L ABT—=a N L ro=aaig N R
'=—=AA I'=A,B A=A B, =0
r==aAivp VR  t=iipVR WEreo—=an VL
Al'=AB '=AA B, 6=0 o
—=AJ,A—B -R A—SBT6—=A0 =L

3.2. Quantifier logical rules

A T==4 P—A,4(b)
VmA(:c),f:Av L I":>A,Vz/ﬂw)v R

Ab).P—= T—=B Al
JzA{z) T—=A 3-L I'=A,JzA(z) -R

where in V — £, 3 — R, t is an arbitrary term, and in the corresponding
VaA(x), IrA (), t may occur, i.e. t may be not fully quantified. Conversely,
inV—"R, 3 - L, the free variable b occurring in A is uniformly replaced in
VxA(x), 3zA (x) by the bound variable z, and b does not occur in T', A; b
is the proper variable of the rule.

4. Structural rules

4.1. Weakening rules

I'—A =4 ,
r=aaW— R Ar=aw — L
4.2. Cut rule;

r=AA A ©=—=0
T 0—=A0 Cut

In general we write T' = LK+ A (T)+ R (T) to indicate a system T obtained
by adding to LK a proper axiom set A (T) and a proper sequent rule set
R (T). The axioms B of A (T) occur in the T-proofs as sequents of the form
= B.

It should be noticed that the form of the proof-trees in 7" describes the
form and efficiency of agent T’s reasoning.



1.2 Primitive Recursive Arithmetic PRA(Z), Peano Arith-
metic A and Induction Rules

We suppose the reader is familiar with the notions of recursive function, re-
cursive predicates, Turing machine and with basic Recursion Theory (Shoen-
field, 1967; Odifreddi, 1989; Van Dalen, 1983).

Primitive Recursive Arithmetic PRA is the following first order formal sys-
tem:

PRA language: the constant 0; a denumerable set of variables x1, ..., zy, ...;
a denumerable set of function letters fi, ..., fn, ..., representing all recursive
functions; a denumerable set of predicate letters Ry, ..., Rp, ..., representing
all recursive relations.

PRA deduction apparatus:

LK

plus the following axioms (where t,¢; are arbitrary terms):

(a) Z(t) = 0 (Z zero function); (b) ~ (S(t)=0) (S successor
function);

(¢) PP (t1,.-.,tn) = t; (P! projection function);

plus the following axiom schemata:

(d) composition axiom schema: given the functions g1, ..., g,, h the axiom
defines the function f (z1,...,2m) = h (g1 (T1, 0, Trm) 5 ons G (1, ey Tm) )

(e) Primitive Recursion axiom schema: given the functions ¢ and A the
axiom defines the function f as follows: f(z1,...,2,,0) = g (x1, ey Tp) and
F @@, S W) = (@, oy n,y, f (T, oo 20, ));

plus the induction axiom schema or rule with no quantifier in the induc-
tion formula A. The induction axiom is [4 (0) A Vz (A (z) — A(S (2)))] —
Vz A (x). The sequent rule for induction we choose is

P==A F(0) Fla), ©==0.F(S(@)
F0=2 Q0 F(t)

where, a is a free variable, called proper variable of the rule, not occurring
in T, A, ©, Q, F(t); F is an atomic formula; ¢ is an arbitrary term which
we say introduced by Z; F(t) is the principal formula of Z; F (0), F (a),
F (S (a)) are the auziliary formulas of T.

The system PRA(Z) is a version of Recursive Arithmetic describing
also the recursive operations and relations involving negative integers; we
introduce a unary function letter p(-), the predecessor function (with the



intended meaning p (m) = m — 1), and axiomatize both successor and pre-
decessor functions by the following axioms, where tjand t; are arbitrary
terms: (i) S(p(t) = ¢; (i) p(S(t)) = ¢; (iii) S(t) = 0 — t = p(0);
(iv) p(t) = 0 — t = S(0); (v) S(h) = Sta) — t1 = to; (vi) p(ty) =
p(tz) — t1 = to. The functions zero Z (), projection Pf, an extended
recursion schema and the composition schema can all be added straightfor-
wardly. When we work in PRA (Z), we refer to the following three-premise
sequent version of the induction rule:

P==A,F(0) F(a), ©==Q,F(p(a)) Fla), 0=2QF(S@)
T B==A0,F (1)

where the constraints established for the PRA Induction Rule extend to the
PRA(Z) Induction Rule straightforwardly.

The system of Peano Arithmetic PA is here defined as the system PRA (Z)
extended by induction axioms or induction rules, where in the induction
formula an arbitrary number of quantifiers may occur. A central remark is
the following: formal induction yields a substantial qualitative increase in
the proof-theoretic strength of a formal system. In particular, assigning an
induction rule to a theory implies endowing it with a sort of meta-inference
capability, which allows it to prove the consistency of some of its subsys-
tems. PRA can prove the consistency of Arithmetic without induction, and
PA can prove the consistency of PRA, induction being essential in these
proofs. Moreover: the proof-theoretic strength of a PA-subsystem 7 can
be graded by the highest number of quantifier occurrences allowed in the
induction formulas in the T-proofs (see Takeuti, 1987, p.116). We indicate
as PRA(Z), the system obtained by extending PRA (Z) with induction
rules or axioms where & quantifiers at most occur in the induction formula.

The problem of the consistency of PA is not simple; as we shall see in 1.3
below, the proof of the consistency of PA and its subsystem PRA (Z)y, k>
0, can be syntactically proved by transfinite induction on ordinals greater
than w (and anyway wvia procedures not strictly finitistic, but much more
constructive than semantic methods).

Also, we introduce in PA the following technical extension of the first
order language: following Troelstra and Schwichtenberg (1996, p.263), we
add a denumerable set C1, ..., Cp, ... of second-order unary formula variables
which act as free set variables. We assume that these are never quantified
in any proof of our systems. Through these second order variables the rule
schemata and the axiom schemata can be considered as included in the



P A language. Hence, since we work with systems 7}, = 1, ...,m which are
recursively axiomatized, the notions “rule schema in the system T;”, “axiom
schema in the system 7" can be expressed by recursive predicates. We shall
for short speak of “Tj-rule” or “Tj-axiom”, whenever the context makes it
clear whether we mean a schema (where formula variables occur), or the
instance of a schema (where only first-order terms and predicate constants
occur). As to model theory, since this language extension yields no relevant
extension with respect to the first-order theorems of PA, we consider only
the models of the first-order theorems of the PA-oversystems we work with.

1.3  Transfinite Induction up to ordinals below ¢, and the
proof-theoretic strength of a system

Consider a set A endowed with a binary relation < which is irreflexive,
transitive and linear (i.e., for any x,y € A either one of the following must
hold: = <y, y < z, ¥y = z). This is a well ordering if each non-empty
subset X of A has a <-minimum. Ordinals are sets well ordered by the
set-theoretic binary relation €, and each ordinal represents an equivalence
class, by isomorphism, of well orderings. Natural numbers represent all
the finite ordinals. The first infinite ordinal is N, also indicated by w;
beyond w we have the class of infinite ordinals, usually denoted with Greek
letters like , £, ... The schema of transfinite induction on ordinals up to
a fixed 3 corresponds to the following inference: let F (y) be a statement
depending on ordinals; if for each a < 3, F(£) — F (a) for each £ < a,
then F (a) holds for each oo < 3 (see, also for the definitions of ordinal sum
and ordinal exponentiation: Takeuti, 1987; Girard, 1987; Pohlers, 1989;
Troelstra-Schwichtenberg, 1996).

The consistency of PA is provable by transfinite induction up to the
countable ordinal g9, which is so defined: if w(0) = 1 and w(n+1) =
w?(™) then eg = sup, {w(n)}. It is possible to formalize ordinals below €0
inside the PA language, by means of a canonical bijection ® between the set
{a:a < g} and the non-negative integer set V (Troelstra-Schwichtenberg,
1996, p.262); © allows to define in N a well ordering of order type eo, which
reproduces in N the well ordering of 5. We denote by £ such eo-well
ordering in N, and we introduce £ in the PA language. Moreover, following
Troelstra and Schwichtenberg (1996, p.264) we add to PA a set of axioms we
denote Ord describing the properties of £, and hence of the P A-translation
of ordinals below eg. For simplicity, we use the Greek letters 7, &, ...to
indicate also the elements of N representing infinite ordinals according to



the bijection @, but we should recall that they are in fact the numerals
®(n), ®(&),...of the PA language. Given all this, the axioms of transfinite
induction up to gy in the PA language is

Vo (VylzF (y) — F(z)) — Vo F (x)
the axiom of transfinite induction up to «, wZaZeg, in the PA language is
Vo (VylzF (y) — F(z)) — ValaF (z)

The corresponding sequent rules are the following

alb, F (a),I' = A,F (b) ' = AA
I'= A, F(t) tZa,I' = A F (t)

where a and b are free variables which do not occur in ', A, F (¢), and ¢t is
an arbitrary term. We indicate with I (3) the transfinite induction axiom
up to the ordinal 3, wZf3, and with IR (j3) the corresponding sequent rule.
We have that PRA (Z) + Ord + I (s4) proves the consistency of PA, and
that PRA(Z) + Ord + I (w (k + 1)) is sufficient to prove the consistency of
PRA(Z), (Takeuti, 1987, p.116).

A theory T' which is a PRA (Z)-extension can be characterized by the
least ordinal which is necessary to prove its consistency by transfinite in-
duction. We call such ordinal the measure of the complezity of theory T.
The complexity of PRA (Z) is w, the complexity of PA is 5. We call or-
dinal measure of the proof-theoretic strength of a consistent P A-extension
V, the maximum ordinal of a transfinite induction rule which V can derive.
E.g., PRA(Z)+Ord+1I (w (k + 1)) has proof-theoretic strength of measure
w(k+1).

Let P, ..., Py, be formal proofs in the P A-extensions T3, ..., T}, where the
sets of induction rules (both standard and transfinite) 7, ..., 7, occur; we
say that the sets 71, ..., J;n have the same strength if the system PRA (Z) +
Ord + J, has the same theorems for each r = 1,...,m.

We conclude this section by noting that, if we think of a system V as an
epistemic agent: (a) its ordinal and the ordinal measure of its proof-theoretic
strength may be read as a measure of the complexity of V’s knowledge and
his reasoning powers; (b) we consider transfinite induction up to g as the
formal expression of the limit of the knowledge V can effectively reach.



1.4 Godel’s theorems, basic Provability Logic, and the modal
system G

We recall that by Godel numbering we can injectively assign a natural num-
ber "E " to each expression E of the language of a formal system. The
provabulity predicate for a fixed recursively axiomatized first-order theory T
is the PRA formula 3zProvp (x,” E'), meaning “there exist in T a proof
of the formula coded by the number "E ™, for which we introduce a new
predicate letter Prp (-): we write for short Pry (E), omitting . Note that
Pry (+) is in general recursively enumerable, but not recursive. Moreover, it
is indexed by the theory T": changing T, its properties change as well. Nev-
ertheless, for the class of systems T" which are PRA-extensions, Pry (1) has
important standard properties indipendent of 7. Hence, PRA can describe
(though not necessarily prove) consistency of all recursively axiomatizable
theories 7T". Indeed, if the symbol L, ‘falsum’, is included in the T-language
(by defining L «— AA ~ A), we have that ~ Prp (L) expresses in PRA
the consistency of T', while Pry (L) expresses in PRA the inconsistency of
T'. We shorten as Coer (T') the formula ~ Pry (L).

The well known Gédel’s incompleteness theorems are the following:

I. Assuming P A-consistency, there is a PA-sentence A such that neither
t_PA A, nor l—pAN A.

II. For each consistent recursively axiomatized extension T' of PRA, ¥p
Coer (T), i.e. T cannot prove its own consistency.

Provability Logic (Solovay, 1976; Smorynski, 1977 and 1985; Boolos, 1979;
Gentilini, 1992, 1998) is the logic expressing the properties of the provability
predicate Prr (-), when T is a recursively axiomatized extension of PRA. A
key fact is that such properties are T-provable: as a consequence, though
T cannot prove its own consistency, it can prove a wide set of significant
statements involving its consistency and the notion of T-provability. The
following are standard provability logic statements:

1. Fr A implies Fp Pry (A);
2. }_T PrT (A — B) — (PFT (A) — PrT (B)),
3. Fr Prp(A) — Pryp (Prp (A));
4. FrPrp(A) — A iff g A,
formalized as Fr Prr (Prp (A) — A) — Pry (A);
5. Fr Prp (~ Prp (A)) «— Pry (1).



Note that a weaker theory can prove provability logic statements con-
cerning a stronger theory: e.g., Fpra Prpa (B), for each PA-theorem B.
Note also that the provability predicate can be seen as an epistemic opera-
tor: Prr (A) can be read as “agent T thinks that A”; in this vein, Coer (T)
expresses in 1" what is unknowable by 7.

The system of propositional modal logic G (Boolos, 1979; Smorynski, 1985;
Gentilini, 1992, 1998) is based on the following axioms and rules: (GA.1) all
propositional tautologies; (GA.2) O(A — B) — (OA — OB); (GA.3)
004 — A4) — 0A4; (GR.1) from A, A — B infer B (modus ponens);
(GR.2) from A infer A (necessitation).

We know that (7 can be formulated in a sequent formalism, such as
Propositional Calculus plus the rule

I,00,04 — A
Or — 04

The system G is the Provability Logic modal system, since if we define
the interpretation of a modal language £ as an application ¢ : {£-formulas}
+— {PA-formulas} which preserves propositional connectives and such
that ¢ (JA) = Prpa(¢(A)), we have the following completeness theorem
(Solovay, 1996; Gentilini, 1998):

Fpa ¢ (A) for each ¢ implies ¢ A

The provablity interpretation of the G-theorem (O (CJA — A) — 0OA
means that the provability of A (A arbitrary) is equivalent to the provability
of JA — A. This implies that JA — A cannot be a G-theorem. For this
reason, if [J is seen as an epistemic operator, A being knowable does not
imply A.

1.5 The standard model Z and the non-denumerable infinity
of non standard models of Arithmetic

We assume the reader is familiar with the basic Tarskian semantic for first
order logic (Shoenfield, 1967; Chang-Kiesler, 1973; Barwise, 1977). Re-
call that PRA(Z) e PA admit a non-countable infinity of non isomorphic
models, among which lies the standard model Z, made of by the set Z
of integers with the usual arithmetic operations and relations. From our
standpoint, it is important to stress that there are nonstandard models ex-
pressing truth notions very different from the usual one: e.g., there are
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models where Prpa (L) is true, and Coer (PA) is false. Thus, the system
PRA(Z)+Coer (PRA(Z),,)+Prpa (L) is consistent, has an infinity of non
isomorphic models, and does not preserve the standard model, in the sense
that there is no expansion of Z among its models (an expansion 4’ of the
structure A for a language L is a structure for an over-language L' O L,
which preserves the interpretation of the symbols of L).

2 Expressing knowledge through first order sys-
tems

We assume that the knowledge of a rational agent can exist only as a set of
expressions in a developed natural language. The latter is formalized as the
formal language of first-order logical systems, which is assumed to include
the language of PRA (Z): we think of the possibility of numbering, perform-
ing numerical exercises, recognizing recursive relations among objects and
quantities, as necessary components of rationality. Hence, we see a state of
the world o as a set of first-order sentences, which are knowledge only iff
they are part of a rational agent as axioms or theorems of his.

The environment within which knowledge takes place (both at the indi-
vidual level, and as common knowledge when epistemic interaction is allowed
for), is a finite society of rational agents T;, each of which is a first-order
logical system. Differences in the logical complexities and proof-theoretic
strengths of the different 7}’s will define (possibly very largely) different
states of knowledge and rationality of society.

For now, we limit ourselves to defining the minimal properties with which
each T} is endowed, such that individual knowledge within society can be
represented:

Definition 1 Each agent T} of society S = {11, ..., T, }is a first-order logi-
cal system such that:

(a) the language L of T; is common to all j’s and includes the language of
PRA(Z);

(b) for all T; € S, both the set A(T;) of the T;-axioms, and the set R(T;) of
Tj-inference rules are non empty, and such that T} is consistent and proves
at least all the theorems of the first order predicate calculus LK, which can
be exressed in the language L;

(c) there ezists in S no pair of agents who are equal: the proper aziom
set A(T}) and the proper inference-rule set R(T;) are different for any pair
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(T3, Tk), j # k: this umplies that for any T; there exists an infinite denu-
merable set of Tj-theorems which are not Ty -theorems for any k # j.

This definition imposes that each Tj be endowed with a specific ratio-
nality, and hence a set of specific knowledge, different from those of other
agents. However, the constraint of the common language L and on the
common part of the deductive apparatus represented by LK, allows that
different items of knowledge can be communicated and compared. This is
not really common knowledge as will be defined later, but it is a pre-requisite
of it. Our notion of individual knowledge can be formalized as follows.

Definition 2 Given society S = {Ty,...,Tn}, we say that T; € S knows
the part of the universe ) represented by sentence A, iff bry A de iff T
proves A using his deductive apparatus A(Tj) + R(T}).

Notice that the common basis on the states of the world which can be
considered as given or starting points by T}, can be assumed to be included in
the set of his proper axioms A(Tj); on the other hand, axioms are themselves
theorems, and our definition of knowledge is inferential and theoretical in
character: even the sheer observation of a given state of the world amounts
to subsuming that observations as an axiom.

This definition of knowledge allows us to distinguish formally among
states of individual knowledge which are very different. A key role in such a
distinction is played by the provability predicate Pry, (-), which (as we have
seen) is canonically linked to the modal system G. The Provability Logic of
the predicate Prr, (-) includes the peculiarities of T}’s deductive (and cogni-
tive) apparatus, and can express self-reference of knowledge, i.e. knowledge
of one’s (and the others’) knowledge. This is so, because its properties are
finer than those of the kripkian epistemic operator K, linked to the modal
system S5 (Geanakoplos, 1994). Indeed, the system G can formalize the
difference between T; knowing A (i.e., b7, A), and T;’s knowledge that A
can be known by Ty, k # j (i.e., br; Pry, (4)).

If one were to define a universe Q of all that can be known, this would
certainly include (like in the standard approach of the common knowledge
literature) physical objects and their properties, the very knowledge of ra-
tional agents, the agents’ reasoning about their own and the others’ knowl-
edge, actions by agents, knowledge of one’s and the others’actions, and so
on. However, we surmise that these are in principle different levels of knowl-
edge, which are characterized by the formal structure of the sentence A in

11



the “act of knowing” we formalized as Fr, A, as well as by the proof-strength
which is necessary in 7 to prove A. We can at this point summarize the
different meta-levels of individual knowledge which can be formalized in our
framework:

1. Self-evident knowledge can be identified when A is a recursive relation
(Van Dalen, 1983; Odifreddi, 1989), expressing effective relations between
objects which can be codified by numbers. If all T € Sinclude the PRA (Z),
we have Fr, A, implies 7, A for alli =1, ... ,m: hence, all agents have the
same knowledge about computable relations between objects.

2. Suppose we codify a state of the world & (a set of first order sentences)
by a vector s € Z", with finite r. An action of agent 7j is represented by
a function f; : Z7 Z" expressing the change in the world induced by
the action. T}’s knowledge of an action by T will be given by 7, A, with
A = (fj(s) = &'), that is the value of the nonrecursive action function fi
axiomatized by Tj. k

The function f; being non recursive establishes that it is individual
knowledge and behaviour, in that there is no effective way a recursive ap-
paratus external to 7} can compute it. This requires that T; be more com-
plex than a Turing machine, and that it be an undecidable logical system
(Odifreddi, 1989; Shoenfield, 1967). Both these features are implied by Def-
inition 1. Undecidibility has an important epistemic meaning: it says that
there are no effective procedure (external to the agent) which can establish
whether a sentence is or is not within his individual knowledge. Moreover,
the action function f; will be axiomatized by the most developed part of
the set of proper axioms A(T}): hence, for k # J, Tr will not generally be
able to prove T}’s actions: he cannot know them explicitly, although (given
the common language) T} will be able to prove theorems which include the
functional letter f; as an object (i.e., to speculate about T; ’s actions and
have a subjective knowledge of them).

3. T;’s awareness that T} knows something expressed by B is represented
by
}_Ti Pr Ty (B )

that is, T; proves that T}, proves B: the former proves (knows) that B can
be proved (known) by the latter. Notice however that this does not imply at
all that T} actually knows B, since for any A, Prp(A) — A is a provability
logic theorem of no system T. Indeed, in general it will not be the case either,

12



that (Fr, Prgy, (4)) — A for j # k, because whenever A4 is inconsistent
with T; and is a theorem of T}, this would deliver inconsistency of T;.
Accordingly, the two following formulas may in general hold simoultaneously

Fr, Pro (B)and¥Fr, B, j#k

Thus the provability predicate allows us to distinguish between a state-
ment of T; concerning whether B can be known by T}, and T;’s direct
knowledge of B. On this point we make two observations:

(a) This distinction lies at the heart of our definitons of common knowl-
edge and common rationality. Thus, if fi, : Z" —— Z" is T}’s action function,
T;’s awareness of T’s action will be given by

I_T]' Per (fk (S) = s/) , JFEk

where T} is not required to know f; precisely or explicitly. The latter we
see as a crucial point: in social intercourse, the more developed is individual
knowledge (to the point of having the others’ knwoledge and actions as its
objects, as is the case with economic or political choices), the more common
knowledge is characterized by a drastic reduction of data and details, and
the less is characterized by actual sharing of knowledge (which is arguably
not the case with animal cognitive processes). A case can be made, that in
human society the building of a common rationality is based on individual
rationality being able to leave aside the details of one’s individual knowledge,
and speculate whether something can be known without actually knowing
it. Suppose for example that T}, is a candidate to the US presidency, and 7T}
someone who could vote for him; and suppose that B is a detailed description
of the foreign policy position T; would advocate, once elected, on some
particular issue. Clearly, T} is neither interested in, nor able to acquire, a
precise and detailed knowledge of B; however, he would require knowledge
of Prr, (B) — a US president should be prepared on a foreign policy issue.
Indeed, this will hold for almost all points of T}’s platform: in practice iy
will support that platform only if he gives up knowing all the details thereof.
On the other hand, it seems legitimate to claim that T}, ’s electoral platform is
commonly rational, which implies some form of common knowledge among
all electors (at least those who vote for him) in society S. This will be
formalized in section 3, but in this section we wanted to outline the crucial
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role of the provability predicate Pr as an epistemic operator different from K
of §5, which may allow to define interesting notions of common rationality.

(b) Metalevels of knowledge about the others’ knowledge amount to con-
jectures. Indeed, the two propositions Fo, Prp(B) and ¥, B (j # k)
can co-exist without Tj’s consistency being jeopardized (to be sure, one
can also have by on Prr, (B) and }—y-j B ). In this case Pr is used as
a credence operator. E.g., let B be Goldbach’s conjecture: the sentence
b1, Prry (Prry, (Prpy, (B))) can be read as T; stating that Tjthinks that T,
thinks that T3 has proved Goldbach’s conjecture. Obviously, this can be
subjectively ‘known’ by Tj, even though 77 and Ty do not actually think
what is being said they think.

4. Agent T} ’s reasoning about knowledge and actions (his own and the
others’) is represented by complex sentences, where predicates like Prp, and
Prp, will occur ( j, & =1,...,m), and by the sequence of theorems by which
such sentences are proved within 7.

3 Common Knowledge as Epistemic Interaction

Within a society of complex rational agents, the notion of common knowl-
edge will require the existence of individual ‘knowledges’ which are not only
different, but also logically incompatible with each other: we should allow
for different opinion about the world to exist. We shall accordingly concen-
trate on a definition of common knowledge and common rationality within
a democratic society:

Definition 3 The society S = {T1,..., Ty, }is democratic iff for any pair
of agents (T;,Ty), j # k, there exists a sentence A such that br, A and
Fr,~ A or, equivalently by the Craig-Robinson theorem (Shoenfield, 1967),
iff the system T; U T}, is inconsistent

This amounts to any individual’s knowledge being globally incompatible
with any other’s - which indeed is what makes it interesting to define com-
mon knowledge. However, if we want the logical systems T} to represent
complex agents in such a society, we shall have to be precise about the
upper and lower bounds for their proof-theoretic strengths and expressive
capabilities. Accordingly, we define the following level of inductive rational-
ity for an agent:
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Definition 4 We say that the logical complezity of agent T; € S is at the
level of inductive rationality iff the following conditions are satisified:
(a) The language L(T}) is a proper extension of the language of PRA(Z),
with non recursive function letters fi,..., fy, expressing an agent’s action
function.
(b) Forall j = 1,...,m, A(T;) and R(T}) ensure that T} be consistent and
recursively aziomatizable (Shoenfield, 1967; Smorynski, 1977); moreover, T;
includes the sequent version of PRA(Z) and the azioms Ord for the basic
properties of ordinals less than €.
(¢) Bach T} is endowed with either an aziom schema of classical induction
over N, or a sequent-formulated classical induction rule over N, possibly
with a bound v on the number of quantifiers occurring in the induction for-
mula. This implies T; proves all theories of standard provability logic of each
recursively aziomatized system.
(d) Each Tj has either an aziom schema I (3), or a sequent-formulated rule
IR (), of transfinite induction up to a denumerable ordinal § different from
w, wZp, possibly with a bound r on the number of quantifiers occurring in
the induction formula; § is characterized by the following proof-capabilities
of the resulting system T;:

(i) T; proves the consistency of at least a system PRA(Z)g, strictly
included between PRA(Z) and PA;

(ii) T; does not prove the consistency of PA, which implies 3Ze.
(€) The rules R(T};) are sound in the following sense: if M is any model of
the azioms A(T}), and any rule premise is M -true, then the rule conclusion
is also M -true.

Some comments about this definition are as follows:

1. Reasoning is formalized as a proof-tree, whose leaves are axioms and
whose root is the proven theorem. Within T}’s inference, the distribution
between axioms and rules expresses the form of T}’s reasoning, and bears
obviously on the length of knowledge-processing; we assume that the basic
(LK-predicate) inferences are anyway carried out via the rule of sequent
calculus. A preference for induction axioms over induction rules requires
a heavier use of the cut rule, and hence introducing in the proof complex
formulas which have to be cut over the root - apparently, a less efficient
approach.

2. The system T} is not required to preserve an expansion of the standard
model Z of PRA(Z) among its models. In general, we allow non standard



“rationality”, provided consistency is assured: e.g., an agent can prove for
some k a result like Pry, (L), stating T;’s inconsistency, even though this
is false in Z. In this sense, an agent’s subjective knowledge (or awareness)
may differ from the possible notion of objective “truth” formalized by the
standard model Z.

3. As a straightforward corollary of our definition is that, if T j is at the
level of inductive rationality, then it is necessarily undecidable and syntac-
tically incomplete: a fortiori, Godel’s theorems on the non provability or
refutability of its own consistency hold for 7.

4. Finally, there exists a basic infinite set of theorems all agents prove
(things they know), since each T} includes PRA(Z). However, S being
democratic (Def. 3), T; cannot know the whole of Ty ’s individual knowledge
(Def.2), k # j. Indeed, T; is in general inconsistent with it: there is a
denumerable infinity of statements A such that if Fr, A, ¥r, A holds -
things known by 7} but unkowable by T, as is the case when A is an action
by T}. However, the following is an essential, if straighforward, consequence
of the provability logic included in all agents: if Ty knows B, then any
other agent T; knows that B is Ty-knowable, even if T; does not know B
- L.e, Fr; Pry, (B) holds, even if in general ¥r, B. As a result, there are
events that every agent is aware can be known by society S, even though
he knows directly only a small part of them. Though arguably paradoxical,
this is a clear upshot of the mathematical formalism. Notice however that
knowing that other know is not enough to characterize common knowledge:
as we shall see, the set {Pry, (B) : Fq, B, k=1,...,m} is not equivalent to
the common knowledge of society {11,...,7,,,}, which we interpret as arising
from epistemic interaction.

We shall confine our treatment of common knowledge to democratic so-
cieties whose members are inductively rational. The common knowledge
relevant in this setting is borne out by interaction among agents: accord-
ingly, we do not give much weight to the set of common theorems:

Definition 5 Given a democratic society S whose agents are at the level
of inductive rationality, trivial common knowledge is the set of sentences
N7Ly {Tj-theorems}

Lacking explicit mention to the contrary, in the sequel we shall mean by
“common knowledge” non-trivial common knowledge. In our framework, the

16



latter is the acquisition of others’ opinions (different from one’s opinions},
without losing one’s consistency. Thus:

Definition 6 Let S be a democratic society with agents at the level of in-
ductive rationality. Then a sentence A is potential common knowledge if
the following conditions hold:

(a) A is a theorem of at least one Ty, , but A ¢ MLy {Tj-theorems}, so that
Fr, A, for some j # k. Hence, Fr, Pryy, (A) for each j = 1,...,m and each
k such that Fp, A;

(b) A preserves the standard model Z of the basic system PRA(Z) included
in all T; s, in the following sense: PRA(Z) + A is consistent and has an
expansion of Z among its models.

As one can see, point (b) of Definition 6 introduces a condition which is
semantic, based on the formal models of T;. So we notice that in a demo-
cratic society there is no model which is common to all agents — indeed,
no pair (7;,7;) admits of a common model, otherwise T, U T; would be
inconsistent. Moreover, we already observed that every T; (as an exten-
sion of PRA(Z)) admits of an infinity of non-isomorphic models, among
which the standard model Z is not necessarily preserved. E.g., the system
PRA(Z) 4+ Prpra (L) is consistent and admits of infinite nonisomorphic
models, but among the latter the standard model given by the set Z of inte-
gers and their ususal operations is not to be found — indeed, in this model the
formula Prpg4(L) cannot be true, since it states the inconsistency of PRA,
a system for which we do have a constructive proof of consistency. Thus,
point (b) is a naturality requirement for a sentence which is a candidate for
common knowledge ~ that is, a requirement of truth in the natural model of
the basic deductive system. As is well know, PRA(Z) + A being consistent
does not imply that Tj + A be consistent (in the case where Fr, A); neither
does PRA(Z)+ A preserving the standard model of PRA(Z) imply that the
same is preserved by the PRA(Z)-extension T}, even if A is a Tj-theorem.
At the same time, recall that we do not constrain our agents to preserve the
standard model Z (i.e., we do not limit individual rationality in this sense),
but we ask that for common knowledge the truth be holding with respect to
the standard model. Hence, Ty can prove theorems like Pry, (L), j # k, but
these do not enter common knowledge, even if they are true in the infinte
models of T.

The following definition provides a useful technical benchmark:
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Definition 7 The sentence B of the language of S = {Ty,...,T;n} is com-
plex, iff it is neither a PRA(Z)-theorem, nor a negation of a PRA(Z)-
theorem, and moreover a finite k > 1 exists, such that FprA(Z)+0Ora B —
Coer (PRA(Z),.)

The complexity lies in that, if Fr1, B, then T proves Coer(PRA(Z), ), since
PRA(Z) + Ord is included in every T;.

We are now in the position to define epistemic interaction and actual
common knowledge as follows:

Definition 8 Let S = {Ty,...,T,,} be a democratic society with agents at the
level of inductive rationality. Let B = {B,..., By} be a m-ple of sentences
such that: (a) each Bj is potential common knowledge for S; (b) tr, Bj and
¥r, By, for each j k = 1,...,m, k # j; (¢c) B admits a common model M
which is an expansion of the standard model Z of PRA(Z), which implies
the consistency of the systemPRA(Z) + Ape=1,... mBr.

An epistemic interaction in S is a m-ple (T + {Br},t1 o0 T + {Br}, )
such that the following homogeneity condition is satisfied:

either no complex sentence is in B;

or B includes only complex sentences: then a mazimum k exists such that
FprA(z)+0ra Br — Coer (PRA(Z),,) for each r, and the set 7, of induc-
tion rules used by T, to prove By has the same strength for every r(seel.3),
i.e. PRA(Z) 4+ Ord + J, has the same theorems for all r; in this latter case
epistemic interaction is said to be complex.

An epistemic interaction is an agreement, if all Ty + {BT}T#] I
{BT}T?ém are consistent; a disagreement otherwise.

If the epistemic interaction is an agreement, then every set {BT}T;HC 15 actual
common knowledge in S in the perspective of Tj,.

Remark 1 Property (c) above does not in itself imply that the set B be
consistent with some T);.

According to our definition, then, in this framework actual common
knowledge is defined in the perspective of Tx. On the one hand, T} is
aware that the commonly known statements can be known by others agent;
on the other hand, the homogeneous epistemic interaction is such that all
commonly known statements are simultaneously true in the same expansion
of the standard model, and at the same time consistent with each agent.
This (perhaps) restrictive definition delivers a notion of common knowledge,
according to which each Ty knows that others know, without the constraint
of knowing precisely what they know.
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4 Common rationality and its existence

We now want to take up formally the intuitive notion of “common way of
thinking”™ in a group of rational agents within a democratic society. Actual
common knowledge as defined in the former section is a set of sentences,
and not a deductive apparatus. Let us go back to the example of the voters
{T1,...,T} and the candidate for the US presidency in Section 2. We can
certainly say that the set of sentences B describing the candidate’s electoral
platform is potential common knowledge as defined in Definition 6; more-
over, it generates epistemic interaction and agreement according to Defini-
tion 8. Thus we can say that some relevant common knowledge is produced
by the platform, even though each voter has a detailed knowledge only of
a small part of it. We have not, as yet, formalized the idea that such a
platform may represent a common way of reasoning on some part of the
(social) universe, but not on the whole of it.
Our definition is as follows:

Definition 9 Let S = {T',...,T,,} be a democratic society with agents at
the level of inductive rationality; a sistem U of common rationality for S is
a first-order logical system with the following properties:

(a) U is consistent, and each system T; + U 1is consistent;

(b) For each T}, at least one proper aziom in A(Ty) which is not a theorem
of Ty, k # j, and at least one inference rule in R(T};) or T;-derivable which
is not in the basic system PRA(Z) + Ord, are respectively in the proper
aziom set A(U) and in the rule set R(U). Nothing else is part of A(U) and
R(U); U includes strictly PRA(Z) + Ord and is recursively aziomatizable;
(¢) Each T; knows that the simultaneous consistency of every agent tmplies
the consistency of U, that is: b1y Ak=1,...mCoer(Ty) — Coer(U), but not
necessarily T; can prove Coer(U);

(d) U has among its models the standard model Z of PRA(Z) (naturality
condition);

(e) U includes transfinite induction only up to the ordinal B* = Nj=1,...mBj,
where (3; is the ordinal of transfinite induction possessed by the single Tj.
Hence, U’s proof-theoretic strength cannot be higher than that of any T;.

Given our definition, we now take up the problem of existence of at least
a system U of common rationality for S. The following theorem shows that,
if in S there is a complex epistemic interaction of agreement, then (under
rather mild conditions on the single T}’s - there is at least one system U of
common rationality.
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Theorem 1 Let S = {T\,...,T,,} be a democratic society with agents at
the level of inductive rationality. Assume that for all T; in S the following
holds:

(i) T}’s inductive inference is given by sequent rules, and for all T} ’s the
rule in R(T}) are only those of PRA(Z) and induction rules;
(it) For every Tj, the proof-trees admit a normal form such that, given

a model M of the axioms of T'j, in the conclusion of a rule instance in a
proof P in Tj is M-true, then the premises are M-true;

(1i1) T;’s azioms are such that in T; there exist no proof of the consis-
tency of systems, V' say, which are extensions of PRA(Z) not containing
transfinite inductions up to V'’s ordinals.

If B={B,...,Bn} is anm-ple of sentences such that (T1+{BT}T#1 yeery I+
{Br}#m) is a complex epistemic interaction of agreement, then there exists
a system of common rationality U, which can be constructed starting from
the proofs of the statements generating the interaction.

Proof. Let Py,..., P, be respectively the proof-trees of theorems By, ..., B,,
in systems T3, ..., T;,,. By definition of complex epistemic interaction, every
Py, k=1,...,m, contains at least one axiom A, of T\, which is not a theorem
of any other T}, j # k: indeed, if the root By of the proof Py is complex,
by definition the set 7. of induction rules in Py has equal strength for all
k =1,...,m. Hence, if T}, had as own theorems all the proper axioms required
in the proof P;, j # k, we would have F7. B;, contrary to the definition of
epistemic interaction. Morevore, by the definition of epistemic interaction,
there exists a common model M of the sentences By, ..., B,,, which is also
an expansion of the standard model Z of PRA(Z). By point (ii) above,
there follows that all the axioms of all the trees P, eory Py are true in M,
and in particular so are all axioms Ay, k = 1,...,m, selected by each P.
Hence, all Ay are consistent with each other, and tre in the standard model
Z. Now define A(U) = {Ay,...,An}. Given homogeneity of a complex
epistemic interaction, from every P; one can obtain - within T} - a proof of
Coer (PRA(Z),,), for a common maximum finite . Given our hypotheses,
such a proof (and hence P;) must contain a transfinite induction rule up to
the ordinal of PRA (Z),, v say. We accordingly define as the set of rules
R(U) of U, the set of induction rules {I1,..., I,,} in which instances occur
in each Pj, and which includes a transfinite induction up to . The system
PRA(Z) + Ord 4+ A(U) + R(U) is consistent and preserves the standard
model Z, since the induction rules generate Z-true conclusions from Z-true
premises. W
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We now want to discuss the relationship between the existence of a Sys-
tem of common rationality U for S, and the fact that some T;’s ‘know’ the
rationality (consistency) or irrationality of other agents - technically, they
can prove theorems like Coer (T}.) or ~ Coer (Ty) for some k # j

On the one hand, U is clearly incompatible with by Coer (Ty,) for any
J # k: U has been defined only for agents at the level of inductive rationality,
the complexity (upper and lower) bounds of which prevent an agent from
proving another’s consistency. This is a substantial modeling choice, not a
merely technical device. Indeed, a non trivial notion of common rationality
requires that agents be all endowed with transfinite induction beyond w;
however, allowing for an agent being able to prove another’s consistency
would break the limit we have a priori established on the agents’ cognitive
power - e.g., by introducing induction beyond eg, or anyway by having, in
the axiom sets, formulas which are true in the standard model and imply
the consistency of PA.

On the other hand, admitting tr,~ Coer (T}) for some j # k has no
strong implications on the proof-theoretic strength of T;. Rather, it would
describe a non-standard relationship between T; and ‘truth’ - i.e., a consis-
tent, but highly subjective knowledge on T;’s part. The conflict between
a commonly rational system U, and k1~ Coer (Ty) holding for some 13,
may be formally put in the following way: it can be shown that if indeed
Fr,~ Coer (Ty), then T; negates the existence of a system of common ra-
tionality, even though the latter exists. This will be shown Theorem 2, to
introduce which, however, some preliminary work is necessary.

We can formalize in the common language of society S a statement of
existence of a system of common rationality, as follows. Recall that, the
language of PA + Ord being suitable endowed with variables of second-
order formulas, we are able to express the axiom and rule schemata of T}
in the formal language of Tj. Since Tj is recursively axiomatized, we can
define the following recursive predicates

Ay (z) < “z is the Godel number of either an axiom of T}, or an axiom
schema of T},”

R () < “z is the Gédel number of either a rule instance of T}, or rule
schema of T}.”

The classical recursive predicate Provr, (m,n) < “m is the Gédel num-
ber of a proof in T} of the formula B, whose Gédel number is n” can then
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be defined taking into account these extended notions of 7T, k-axioms and T-
rules: the meaning of the standard provability sentence Pry, (B) will be ac-
cordingly extended. We can also extend it to the case where the second argu-
ment is the Godel number of a rule in the following way: Provyp, (m,n) <“m
is the Godel number of a Ty-proof Q, where (i) the premises of the rule R |
whose Godel number is 7, occur as roots of Q-sub-proofs, (ii) the conclusion
of ! occurs as a Q-root, and (iii) every branch of Q contains a premise of R”:
this makes it meaningful the sentence Pry, () < “the rule R is derivable in
1.

We can now define the recursive function Sist: Sist(zy, ..., z,; Yy ooy Ys) =
“Godel number of the deductive apparatus given by the axioms whose Godel
numbers are x;, 7 = 1,...,7, and the inference rules whose Gédel num-
bers are y;, j = 1,..,8”. Also, one can define the recursive predicate
Prov* (z,y,z) «<“x is the Godel number of a proof of the sentence whose
Godel number is z through the deductive apparatus whose Gédel number is
y”. Accordingly, the formula 3uProv*(u,” L” Sist(x, ey Try Y1, -, Ys)) has
the meaning “The deductive apparatus whose Godel number is Sist(zy, ..., xp;
Y1, ---,Ys) is consistent” | which we shorten as Coer(Sist(xy, ..., r;y1, -, Ys)).
Moreover, the consistency between any recursively axiomatized system V'
and a deductive apparatus whose code is Sist(z, ey Tr3 Y1, ooy Ys ), Can be so
expressed: Vz[Pry (2) — Coer(Sist(z1, ..., 2r;y1, .., Ys)].

Given these premises, we can now define an ezistence statement for com-
mon rationality, as follows:

Definition 10 A statement of existence of a system of common rationality
for society S is the following sentence Com (S):

Com (S) = 3xy, ..., 3z Iy1, ..., ym

[Al (CE]) AN..NA,, (:vm) ARy (yl) AN ARy, (ym) ANi=1,...m ~ PrPRA(Z) (sz) A
Ni=1,..m ~ PrpRA(Z) (yz) A /\i741 ~ PrTi (271) A LA /\i?gm ~ PrTi (:Em) A
Ni=1,..,mYz [Pr1; (2) — Coer (Sist (z1, ..., Zm; y1, o ym))]]

The following is noteworthy:

Remark 2 if a system of common rationality U(S) exists, then Com(S)
must be true in an expansion of the standard model.

We can now prove the following:
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Theorem 2 (A) If, for any arbitrary j € {1, wom}, b~ Coer (Ty,)  k # 5,
then t=r,~ Com(S). i.e. T, negates the existence of a system of common
rationality.

(B) The fact that =¢,~ Com(S), is not sufficient to rule out that a system of
common rationality U exist for S and that Com(S) be true in an expansion
of the standard model Z of PA.

Proof. (A) From the basic properties of Predicate Calculus LK, we have
that

Frr~ Com(S) « Y1, ., VTV, ..., Vym|~ A (1) V..V~ Ay (T) V ~
By (y1)V o Vo~ B (Ym) V Vi1, m Prpgacz) (%) V Viet,...m Prpgracz) (vi) V
Vig1 Prr, (1) V ..V, Prr, (Tm)VViz1,. m3z[Prr. (2) A Coer (Sist(zy, ...,
Tm; Y1, -5 Ym))]], shortened as vy, ..., Vo, Yy, ..., VYmD(X1, ooy Tos Y1,y oey Y )-
Note Prov*(t,” 1", Sist(zy,...,xr, Ly, -y Ys)) is by definition PRA(Z)-
equivalent to the true 1, whatever x,,y,. and t. Since by assumption
Prp, (rJ_j) is a Tj-theorem, and surely JuProv*(u,” 1, Sist(zy,...,z,,” L ;
Y1, - Ys)) =~ Coer (Sist (z1,.. ..,zr,” L7591, .., ys)), we get Fr; Pry, (rJ_j>
A ~ Coer (Sist (x1,...,xz,, L7; Y1,---,Ys)), whence, by the 3 — R rule,
we get: br, 3z[Prp (2) A ~ Coer(Sist(z1,.. ,xr, L5 y1, 0y Ys))], with
Zr, Yyr arbitrary terms which may be considered free variables. By the
LK-rule V — R, we have Fry Viel,..m3z[Prr, (2) A ~ Coer(Sist(zy, ...z,
S L Y1, ys))], and, similarly,-7, D(z1, ..., Zm; Y1, ..., Ym), With z;, y; free
variables. Hence, with a V — R rule we have Fry Yoy, o, Vom, Yy, ., Y,
D(z1,...,%m; Y1, ..., Ym), and hence Fr,~ Com (S).

(B) Since all T;’s are consistent, T; lacks the standard model for his theo-
rem Prp, (r_J_j>: hence it is endowed with non-standard models only, and
~ Com (S) is true in all these models.However, Com(S) being complex, it
is simultaneously possible that it be true in an expansion of t he standard
model Z, and that a system of common rationality exist.Consider the fol-
lowing example:

S = {Tl,TQ}

Ty = PRA(Z) 4+ Ord + I(a) + Coer (PRA(Z),5) + RI(7)

Ty = PRA(Z)+ Ord + I(B) + Coer (PRA (Z)15) + RI(\) + Prp, (L),

with I(a), I(3) axioms of transfinite induction up to «, 8; RI(7) and RI()\)
rules of transfinite induction up toy,\; a, 3, 4, A are ordinals below €o and
greater than w, and such that none of the corresponding inductions is suffi-
cient to prove Coer (PRA(Z) 5) and Coer (PRA(Z),5). Let a be the mini-
mum of a, 5,5, A. Ty is consistent, since PRA(Z)+I(3)+Coer (PRA (Z2)15)
does not prove the consistency of T3; hence a system U of common rational-
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ity for 5 has proper axioms A(U) = {I(a), Coer (PRA(Z),)}, and rules
R(U)={RI(a)}. M

5 Concluding remarks

In this paper we have proposed a formalization of knowledge, common
knowledge and common rationality based on treating agents as consistent
first-order formal systems. A crucial point of our approach has been the
formalization of knowledge, starting from the modal system G, which is
canonically isomorphic to the standard Provability Logic of Arithmetic. A
methodological contribution of the paper is the introduction of proof theory
as a basis for studying epistemic interaction.

The next point on our resarech agenda is exploring the relationship be-
tween a system of common rationality lke U, and that part of individual
rationality which does not contribute to common rationality. These should
deliver a notion of equilibrium between individual and common rationality,
which we see as preliminary to many equilibrium notions currently in use.
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