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Abstract- In this paper a new bifurcation synthesis procedure is described. Its foundations 
are built on an extension of the Conversion Matrix concept, applied to the nonlinear sub network 
of the circuit simulated through Harmonic Balance. The Cross-frequency Stability Curves (CSC) are 
defined, which are the nonlinear equivalent of the Stability Circles valid for linear networks. 
The CSC gives us regions of reflection coefficient values for the loads that yield potential 
period doubling in the circuit. The proposed synthesis method can be used within any simulation 
program based on the Harmonic Balance algorithm, allowing the designer the possibility to check 
the nonlinear stability of any simulated circuit, or to design intentionally unstable circuits. 
Results of the CSC method are given for a GaAs FET circuit synthesized to operate as a divider-by-
two.  
 
 

I. INTRODUCTION 
 

The most general and rigorous method to 
analyze nonlinear circuits is, of course, the 
mathematical approach. The circuit is transformed in 
a System of Nonlinear Ordinary Differential 
Equations, whose solutions are then investigated. 
From a CAD point of view, the fastest and cost-
effective approach is the Harmonic Balance (HB) 
solving technique. Unfortunately, HB CAD programs do 
not actually allow the direct synthesis of nonlinear 
circuits, and the study of this possibility is still 
an open issue. 

Generally speaking, it is known that non-
linear circuits can exhibit solutions that are not 
periodic, and/or present period doubling for some 
circuit values. The period doubling is graphically 
represented by a bifurcation of the graph of the 
measured electrical quantity, usually a current or 
voltage, vs. a parameter which is responsible for 
the bifurcation. When a division-by-2 of the period 
occurs, it is common practice to refer to it as a 
bifurcation. In the following, we will indicate with 
N the division factor: so, N=2 means a division-by-
2, and so on. Famous circuit examples are Chua’s 
circuit [1] and Van der Pol's oscillator [2], 
extensively analyzed for the complexity of their 
solutions, that include period doubling and chaotic 
behavior. 

With our method, 
an even higher order 
circuit is synthesized as 
a division-by-two 
network; it is the 
feedback GaAs FET 
amplifier reported in 
figure 1.1. The 
equivalent FET circuit 

has three nonlinear current generators, two 
nonlinear capacitors and one nonlinear resistor [3].  

This paper is organized as follows. In 
Section II the Conversion Matrix (CM) concept will 
be modified to handle bifurcations. In Section III 
we will expose how the theory of Section II can be 
used within a Harmonic Balance algorithm, and the 
concept of Cross-frequency Stability Curves will be 
discussed. Finally, in Section IV the results of our 
synthesis method will be analyzed by means of a 
Time-Domain (TD) simulation.  

 
 
 
 

II. THE NEW CONVERSION MATRIX 
 
The CM is a useful tool for analyzing non-

linear circuits with HB-based simulators, in the 
case that a small signal at frequency frf is applied 
to a nonlinear circuit under large-signal drive 
(usually named pump-signal) at frequency fp, as for 
instance in the case of mixers [4]. This matrix 
represents the nonlinear sub network as a linear 
time-variant multiport component. The liberalization 
is evaluated at the AC operating point relative to 
the high-amplitude signal with frequency fp, and the 
behavior of the entire network at the small-signal 
frequency frf, and related converted frequencies, is 
simply evaluated by application of linear concepts. 

However, the classical expression of this 
matrix needs to be modified when frf=fp/2, when upper 
and lower sidebands occupy the same frequencies. 
This new expression will be obtained in this 
section. 

In the classical CM theory applied to the 
circuit in figure 1.1, current phasors are related 
to voltage phasors by  

 
(2.1)                   I=DtV 

 
where Dt is the total CM given by 
 

(2.2)                Dt = D + jDpΩ 
 
Matrices D and Dp can be written in the form 

[5]: 
 
 
 
 

(2.3) 
 
 
         
 
 
where T(t)=δi/δv, when (2.3) represents “D”, 

or T(t)=δi/δ(dv/dt) when (2.3) represents “Dp”; 
i=i(v(t)) is the nonlinear current, and H is the 
number of harmonics used in HB. Tx are the phasors 
of the harmonics “x” of T(t), computed by means of 

an FFT. Matrix Ω is: 
 

(2.4)          Ω=2πdiag(mfp+frf), m=-H,…,H;  
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It is possible to show that for N=2 the 
equation (2.1) becomes [6]: 

 
 

 
 
 
(2.5) 

 
 
 
 
 
 
 
where the complex-valued matrices Ga, Gb, Ca, 

Cb and M have dimension P(H+1)xP(H+1); “P” is the 
number of the ports connecting the linear and 
nonlinear sub networks of the circuit. The matrices 
in (2.5) are: 

 
 
 
 
 

(2.6) 
 
 
 
 
As pointed out above, the use of (2.1)…(2.3) 

for frf=fp/2 gives wrong results for sidebands 
levels, and our expression (2.5) should be used. 
This is because the USB at frequencies nfp+frf 
coincide with LSB at frequencies (n+1)fp-frf; 
consequently, also the corresponding ports of the CM 
coincide. Results are therefore not meaningful when 
using (2.1)…(2.3) to analyze dividers by two. 

In the next sections we will describe how 
the new CM equation (2.5) allows the synthesis of a 
bifurcation for the circuit in figure 1.1. 

 
 
 

III. REDUCTION OF THE MODIFIED CM 
 
The CM can be easily implemented within any 

HB program, since its elements are simply obtained 
by derivation with respect to voltage from the 
current functional expressions of the nonlinear 
elements as functions of the voltage. This last 
operation is always performed within an HB analysis 
code, and therefore CM evaluation is only a matter 
of suitable programming. 

We note explicitly that the CM represents a 
linear multiport network, relating signals at 
frequencies nfp±frf; the signals are frequency-
converted between the different ports (frequencies) 
by the time-variant linear network that is the 
linearized nonlinear device driven by a large 
signal.  

The use of CM as an analysis method to 
investigate nonlinear stability is well established 
[4], although not many applications are reported. 
The authors have already used the classical CM to 
synthesize the frequency division of a microwave FET 
circuit with N=3 [7], while the synthesis for N=2 
requires the use of (2.5). 

Our synthesis procedure requires the 
calculation at a meaningful port (i.e. frequency) of 
the CM of a quantity equivalent to the reflection 
coefficient of a classical time-invariant linear 
network. This implies the reduction of the CM to a 
one-port expression, by means of reduction formulae. 
We will evaluate the wave “b” reflected at this port 
that, due to (2.5), is a function of both amplitude 
and phase of the incoming wave “a” at the same port. 

The CM reduction procedure applied to (2.5) 
cannot be executed with the usual technique with 

complex numbers, since in (2.5) there is an operation 
of complex conjugation. So, the form of (2.5) mandates 
the transformation of this expression into an 
equivalent one, in terms of real numbers, i.e. real 
and imaginary parts of voltages and currents. To this 
purpose, let us indicate with “a” and “b” the generic 
element of Ya and Yb, and with subscript “r” and “j” 
its real and imaginary part; it is possible to show 
that (2.5) rewrites as 

 
(3.1)                IR=(α+β)VR=J2HVR   

 
where            
 
 
 
 
 

(3.2) 
 
 
 
 
 

 
(3.3) 

 
 
 
 
 
 
 
 

(3.4) 
 
 
 
 
 
Now we have to reduce matrix J2L to a 2x2 

real-valued matrix, which will represent the 
original multiport circuit reduced to a single port 
by loading the other (H-1) ports. The reduction 
procedure is an iterative process, which we will 
describe for a 4x4 matrix J2H, corresponding to a 2-
port network. Then, (3.1) becomes 

 
 
 
 

(3.5) 
 
 
 
 

Now, terminating port 1 
with the load admittance YL1, i.e. 
the load admittance at the 
frequency of port 1 (fig. 3.1), 
real and imaginary parts of the 
current phasor at port 0 are  

 
 

(3.6) 
 
 
 
where 
 
 

(3.7) 
 
 
  
Equation (3.6) is the reduced expression of 

(3.5). It can be iterated for a J2H matrix of any 
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dimension, port after port, allowing the reduction 
to one port of the real-valued matrix.  

 
 
 
 

IV. BIFURCATION SYNTHESIS  
 
First of all the circuit in fig.1.1 is 

analyzed by means of a HB analysis; at this stage, 
the values of the load networks must be specified at 
the HB frequencies nfp only. Then, the CM is 
computed with expression of this matrix needs to be 
modified when frf=fp/2. Expression (3.6) is obtained 
from the CM by specifying the loads at all 
frequencies except that used for the synthesis of 
the bifurcation, and the 2x2 Yt matrix is 
transformed into a scattering 2x2 matrix, using 
well-known transformations formulae [8]. So, let us 
rewrite equation (3.6) into a reflection 
coefficient-like expression as 

 
 

(4.1) 
 
 
 
where br, bj, ar and aj are the real and 

imaginary parts of the reflected wave “b” and 
incident wave “a”. We have one of the following 
possibilities: 

 
1) |b|<|a|: the circuit is stable, 

and a bifurcation will not occur 
 
2) |b|=|a|: the circuit is in a 

critic operation point; small 
variations of the elements 
values can generate or suppress 
the bifurcation 

 
3) |b|>|a|: the circuit can give 

raise to a bifurcation 
 

Note that the four elements inside the 2x2 
matrix in (4.1) are in general all different from to 
one another. Therefore, the reflected wave will draw 
an ellipse in the complex plane, when the incident 
wave is unitary with arbitrary phase. Then, in case 
3) the ellipse intersects the unit circle, and there 
will be some values of the phase of the incident 
wave “a” for which |b|>|a|, while it may happen that 
for other values |b|<|a|. Since the incident wave is 
a noise or perturbation, it can have any phase 
value; therefore, in case 3) an instability can 
arise. 

We now synthesize the load that will 
generate the instability. We compute the phase 
difference ∆ϕ=arg(b)-arg(a) between the reflected 
and the incident waves, for the phase of the 
incident wave “a”  corresponding to the maximum 
value of |b| along the ellipse. The Barkhausen 
criterion is fulfilled if: 

 

(4.2)     γL=|b|-1exp(j∆ϕ)  with  ∆ϕ=arg(b)-arg(a)  
 
corresponding to a load impedance ZL:  
                         

(4.3)             ZL=-Z0 (γL*+1)/(γL*-1) 
                     
This value of ZL must be assumed by the load 

network at the frequency of the port considered for 
the synthesis, while the network shall keep the same 
values at the HB frequencies it assumes in the HB 
analysis. However, we have verified that this 
requirement can be partially relaxed, and in 
practice it is sufficient that it be verified for 
the first two or three harmonics of fp.  

As an example, in figure 4.1 the ellipses 
are drawn for the circuit in figure 1.1, with a 
stimulus at fp=2GHz and amplitude of 2.5V. Then the 
load is synthesized as reported in (4.2) and (4.3), 
and a TD simulation is performed for verification of 

the onset of the instability.  
The resulting spectrum of the drain voltage 

is indicated in figure 4.2 where the bifurcation at 
frf=1GHz is evident. 

 Great help for bifurcation synthesis can 
also be obtained from graphs like that in figure 
4.3. This graph has been obtained using the proposed 

method, reducing the nonlinear network to a 2 port 
and sweeping on the Smith Chart the loads at output 
port; the pump signal for this figure is a voltage 
source of Vu=2.4V and frequency fp=2GHz. In 
particular, we have reported in green and red the 
load values at output port, at frf/2, which give at 
input port, at frf/2, respectively stability (green) 
and instability (red). These curves represent the 
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nonlinear counterparts of the stability circles for 
linear networks.  

The exact positioning of the loads in the 
Smith Chart, to create instability, should be 
performed using the Barkhausen criterion. 

Instabilities are, of course, functions of 
any network parameter, like bias and elements 

values; they are particular sensitive to the pump 
signal amplitude.  

In figures 4.4)÷4.6) we have computed the 
CSC for Vu=2.1V, Vu=2.2V and Vu=2.3V, using the same 
ports of figure 4.3); we can see how the instability 
regions increase in size with the increasing 
amplitude of the pump signal. 

 
 
 

V. CONCLUSIONS  
 

In this work we have presented a procedure 
for bifurcation synthesis. To the author’s best 
knowledge, this is the first method to allow 
synthesis of instabilities. This has required the 
modification of the classical CM formalism. 

The proposed method can be implemented 
within any Harmonic Balance simulator, resulting in 
a very cost effective algorithm, for the synthesis 
of stable or intentionally unstable nonlinear 
circuits. 
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