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ABSTRACT

This paper examines the equilibrium adoption path for two innovations when there are
"network externalities’. We show that the existence of significant increasing returns in
system-scale can give the result that one variant will drive out the other one and so
emerges as the unique standard for the industry. Moreover, if "network externalities" are

sufficiently strong, then the equilibrium adoption path is discontinuous, that 18, it includes

a catastrophe point.



1. INTRODUCTION

The possibility that agents may react discontinuously to continuous changes in their
environments does not seem to have been sufficiently investigated in the literature.
Intuition suggests that continuously changing causes should produce continuous effects.

The occurrence of discontinuities in smoothly evolving systems has come to be
recognized as a not unlikely event with catastrophe theory. One of the purposes of this
paper 18 to show that Ycatastrophes" can arise in a simple model of the adoption of
innovations with increasing returns to adoption.

The focus of the paper is on the equilibrium adoption path for two innovations. In
the presence of more than one innovation the decision of adopters 8 not only when to adopt
but also which innovation to adopt. We consider this problem when there are "‘network
externalities", that is, when one agent's benefit from adoption increases with the number of
other adopters. Typical examples of "network externalities” include communication
networks (e.¢. fax machines) and technology standards.

These examples describe the two forms of externalities which arise typically. The
first form of externality impacts immediately upon the technical performance of a
particular system, and feeds back to affect the cost and profits of other component
suppliers through the influence of the system's performance characteristics upon users'
demand for it in comparison with alrtemative technologies. The second form operates
directly upon the demand side of the market, where the benefits derived by users increase
with the number of others whose decision to use compatible products enlarges the coverage
of the network. For both sets of circumstances, there have been several models 1n recent
years (Dybvig and Spatt,1983; Farrell and Saloner,1985; Katz and Shapiro, 1986a,1986b).
However, these are static models, in which the core problem is seen to be the fact that
markets are likely to work poorly as mechamisms for quickly achieving the degree of
compatibility or standardigation required to maximize the benefits obtainable with an



already existing network technology. A common theme of these approaches is that
"network externalities" likely lead to multiple equilibria, some of which Pareto dominate
others.

In this paper we put forward a dynamic formuiation: things take on a very different
appearance when one turns to consider the dynamics of market rivalries among alternative
variants of a network technology. We assume that there is a continuum of heterogeneous
potential adopters and that benefits from adoption depend positively on the measure of
adoption. Firat, we show that the existence of significant increasing returns in system-scale
can give the result that one variant will drive out the other one and so emerge as the de
facto standard for the industry, a result which is in keeping with Arthur (1989). Second,
but as the main innovation of this paper, we provide a qualitative characterization of the
equilibrium adoption path. We show that if increasing returns to adoption, in the form of
network externalities, are sufficiently strong, then the equilibrium adoption path 1s
discontinuous (i.e., it includes a catastrophe point). This is in sharp contrast with the case
of diffusion without increasing returns to adoption. In the latter, indeed, if the basic
functions of the model are smooth, also the equilibrium adoption path is smooth and
therefore continuous.

This paper is organized as follows. Section 2 presents the model and proves the
existence of an equilibrium adoption path for two innovations. Section 3 discusses the
dynamics of the sequential process of innovation choice and Section 4 shows under which

circumstances the equilibrium adoption path is discontinuous. Section 5 contains some

final remarks.



2. THE MODEL

We consider two innovations, a and g, which have to be adopted by a continuum of
potential adopters. At a particular point 1n time t, each agent has to decide whether to
adopt or not, and which innovation to adopt. The choice between a and f is irreversible.
We assume that such decision 1s influenced by consideration of the magnitude of the net
externalities, which are positively correlated with the proportion of adoptions: there are
benefits from compatibility. This can occur either in the case of direct physical or
communications "network externalities", that is, the case where one consumer's value for a
good increases when another consumer has a compatible good (as in the case of telephones
or personal computer softwarej; or in the case of market-mediated externalities, that 1s, a
complementary good (servicing, software, spare parts, etc.) becomes cheaper and more
readily available the greater the extent of the compatible market.

Firms are heterogeneous with respect to the effectiveness of the innovation on their
profits. Let Va be a parameter measuring the inherent net benefit that a firm would derive
from selecting o rather than f§, and v 8 be the analogous parameter for §. Define
VEVLT Vg The higher and positive is v, the more preferred « is; the lower and negative
is v, the more preferred (3 is. We assume that each agent 1s characterized by a parameter
v, and that v 1s distributed according to the function F(v), which is smooth, has a finite
and convex support (vl, vh), where F(vl) = (, F(vh) = |, and is 1ncreasing in v.

Let Ha(va, xa,t) and Hﬁ(vg, xﬁ,t) be the net profit flow obtained upon adoption at
time t of innovation « and f, where X, and x 3 denote the measure of adoptions of a and f,

0< X, + X3 < 1. Let us make the following assumption:



Assumption.
(1) Ha(va,xa,t) =v, + f(xa,t)
(2) Hﬂ(vﬂ,xﬂ,t) =g + g(xﬂ,t)
£(.) and g(.) are smooth and 8Il;/dv; > 0, i/ dx; > 0, OI;/Bt > 0,1 = a6

Expressions (1) and (2) capture the fact that the net benefits from adopting an
innovation are both "inherent! benefits and "system-use" benefits. That is, the
effectiveness of an innovation 18 measured by the parameter v; and by the benefits deriving
from the network externalities. The additive formulation in expressions (1) and (2) 1s a
simplifying one , although not crucial, and is in keeping with David (1987). The sign of the
derivatives have a straightforward interpretation: the net profit obtained upon adoption
increases the larger the inherent net benefit, and the larger the measure of adoptions of
that innovation. The assumption 9II;/8 > 0 implies that there exists learning: over time,
knowledge about innovation i increases and the benefits upon adoption increase as well.
This is a crucial assumption in this model. It is a reasonable assumption if we consider the
case of "unsponsored” innovations, like in Arthur (1989), that is, innovations which do not
compete strategically, so that they cannot be priced and manipulated.

Let P = Ha -1 @ which under our specification of Ha and II g becomes:
(3) P(vvxa;xﬂvt) =v+ f(xavt) - g(xﬂ!t)
If P> 0 at t, then innovation a will be chosen, while if P < (0 then innovation § will be

chosen. P = 0 is the case of indifference between a and 3. Since by assumption benefits at

time t depend only on the measure of adoption at time t, we can begin by looking at the



static problem of finding the equlibrium values of Xa X8 for each value of t.
For a given time t, let v*= v"‘(xa,x ﬁ,t) be a threshold value such that
P(v“‘,xa,xﬂ,t) =v* 4 f(xa,t) —g(xﬂ,t) = (. In equilibrium, all types v for whom P >0

will adopt innovation a. We have the following:

Definstion 1

For a given time t an equilibrium 18 defined by the pair (x o X ﬂ) such that:
(4) x,=1- F(v*(xa,xﬁ,t))

(5) xg= F(v(xgxgt)

Indeed, for those types with v > v* we have P >0 and therefore adoption of o 13

preferred. The measure of firms whose best response i3 to adopt innovation o at or before

h
time t is [ x dF(v) = (1 —F(v*(xa,xﬂ,t)), which in equilibrium must be equal to the

measure of firms who actually adopted at or before time t, as in (4). Analogously, for those

types with v < v*, adoption of § is preferred. The measure of these adopters 1s

-
[y dF(v) = F(v*(x x ﬂ't))’ which in equilibrium must be equal to the measure of agents

who actually adopted at or before t, as in (5). We denote by X(t) the set of equilibrium
measures of adoption for a and @ for each time t. An equilibrium adoption path for the
two innovations is & vector x(t) = (xa(t‘.), x ﬁ(t)) € X(t) for all t. The following Proposition

holds:



PROPOSITION 1. There exists an equilibrium adoption path for the two innovations.

Proof Define Y(xa,xﬂ,t) =[- F(v*(xa,xﬂ,t)). For each t and for each X Y(xa,xﬂ,t) 18
continuous on X . (Apply the implicit function theorem to P(v*, X oo X ﬂ,t) = 0). Moreover,
Y(xa,x ﬂ,t) is defined for all x € [0,1], for any t and x I Therefore, there exists at least
one fixed point, for any t and x . such that x = Y(x x ﬂ,t). Since F(v*(x x ﬂ't)) 18
continuous on X ] for each t and for each x , and is defined for all x 3 € [0,1], there exists at

least one fixed point, for any t and x , such that x 8= F(v*(xa,x ﬂ,t)).

Remark 1. Consider the following system:
(6) (Ipl(xapxﬁlt) = xa"‘ 1+ F(V*(xa,x&t)) =0
(7) (pQ(xalxﬁ!t) = xﬁ_ F(v*(xalxﬂlt)) = 0

Assume that the Jacobian matrix J 1s not singular, that 1s:

F W (x % pt)

W*(x _, xpt)
oF
1+37—£j‘?— & Ox,

I T N S
g » T



AF aV*(Xa,XB,t) AF aV*(Xa,XB,t)

det3=1—'a‘7———a)—{b—‘— +‘a‘; Xa

By the implicit function theorem we get:

N (x_ % ot) . )
oF OF v* | OF Ov
ox o/ = =Ly —¢ }/[1‘377};5‘*373;—01

aV*(x X t) / * >
_ _(fF %), OF vt OF v
g/t = =~y —g—Wgw 7, 1 v %]

which implies that 3xa(t)/3t 20 3xﬂ(t)/3t 50

Remark 2. Y(xa,x ﬂ,t) 18 1ncreasing in X o t , and decreasing in xﬁ Indeed,

(X, Xat) oP [ 0x
3Y/3x '—-—““5"7 >O,because5v*/3xa=—ap73;£<0

Analogously, F(xa,xﬂ,t) is non-decreasing 1n x 3 and non-increasing in Xt Indeed,

N (x % ob)
6F/6xa=g§ 4 <0,
o



W*¥(x _xt)
oF o = Jo ——2F— <0,

RW*(x X at)
_ OF a'”g
6F/<?>~:ﬁ.-37V ., . >0

3. DYNAMICS OF THE SEQUENTIAL PROCESS OF INNOVATION CHOICE

In this Section we discuss the dynamics of the sequential process of innovation
choice. From the viewpoint of the formal theory of stochastic processes the model 13
equivalent to a generalized "Polya urn" scheme. Indeed, the density function associated
with the distribution F(v) measures the "frequency of arrival" of firm types with parameter
v. Given that Y(xa,x ﬁ,t) is increasing in X , for given x 3 t, it implies that the "frequency
of arrival" of firm types with v > v* increases with the measure of adoptions of . Asa
consequence, the probability that one particular innovation 1s chosen 18 an increasing
function of the measure of adoptions of that innovation.

A basic tool for investigating limit properties in path-dependent dynamic processes
of this sort is in Arthur, Ermoliev and Kaniovski (1985). Their theorem says, in
essence,that if kthe process is extended indefinitely, the respective shares of the adopters

population x and x g must converge with probability one to a fixed point. In particular, it

can converge only to points of stable equlibrium and not to unstable fixed points.

Actually, we can show the following result:

PROPOSITION 2. Both innovations cannot coexist indefinitely in the market, and one of

the two will take all but a finite set of firms with probability one.
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Proof. Let the vector x{n) = (xa(n),x 5(n)) denote the measure of adoptions of innovations
o and f. Denote by  {p(x(n},n) = (pa(x(n),n),p ﬂ(x(n),n)} ,  where
pa(x(n),n) =(1- F(xa(n),xﬁ(n),n)), pﬂ(x(n),n) = F(xa(n),xﬂ(n),n), a sequence of
continuous functions mappiﬁg the measures of adoptions into the probabilities at time n.
Thus, starting at time 0 with an 1mtial vector of number of firms (which for convenience
we set at zero), the industry forms by the addition of one firm at a time, choosing one and

only one of the two innovations; and at time n, a firm chooses innovation 1 with probability

pi(x(n),n), i = a,0. The vector of measures of adoptions evolves as:

(8) x(n + 1) = x(n) + — (b(x(n)n) = x(n)),  x(0) =0

where b(x(n),n) 1s a unit vector with 1 in the 1~th place with probability pi(x(n),n) and

zero elsewhere. We can write (8) in the form:

(9) x(n + 1) = x(n) + = (p(x(n);n) = x(n) + 5 M(x(n).m)

where 4 18 defined as the random vector:

(10) p(x(n),n) = b(x(n),n) — p(x(n),n)

Equation (9) is the basic description of the dynamics of the measures of adoptions. It
consists of a determinate "driving" part (the first two terms on the right of (9) ) and a

perturbational part (the y—term). Notice in (10) that the conditional expectation of u(n)

with respect to x(n) is zero, so that we can show that the expected motion of x(n + 1) is

given by the "driving" part of (9) as :

(1) B(x(n + 1) [x(n) = x(n) = 7 (P(x(n),n) - x(n))
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If the probability pi(x(n),n) is larger than the current measure of adoption of 1, then this
measure of adoption increases, at least on an expected basis. Conversely, if it 13 less, then
the measure of adoption decreases. Equation (9) 18 analogous to the basic dynamic
equation in Arthur, Ermoliev and Kaniovski (1985). The proof of Proposition 2 is now an
application of Theorems 4.1, 5.1 and 5.2 1n Arthur, Ermoliev and Kaniovski (1985). Here
we merely sketch the argument.

Consider the set B = {x € X: two elements of x are maximal {, and BE its €-
neighborhood. Partition X/B into two separate sets Ci designated by the nearest
extreme 1, 1 = a,f. Now consider a given point z 1n C There exists a finite time t(z) such
that P(v, z, % ,t(z)) > 0. Further, it is easy to show that t(z) has an upper bound t in C1
Therefore, if the process x(t) 1s in C at a time t > t then innovation 1 will have maximal
return for all firm types. It will then be chosen with probability 1; the process will never
exit Ci and it will converge to 100% share for 1. Alternatively, the process might not enter
Ci; it could stay within B forever. By Lemma 4 of Ljung (1978) which shows that for
points lying in an unstable region ( the neighborhood of a separatrix) the process must exit

the region in a finite time, we get that the process cannot stay in B c forever and therefore

x(t) converges to an extreme, which 1s an attracting fixed point. n|
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4 THE CHARACTERISTICS OF THE EQUILIBRIUM ADOPTION PATH

In this Section we give a characterization of the equilibrium adoption path. In
particular, we want to examine whether the presence of "network externalities”, and
therefore of benefits from compatibility, yields an equilibrium adoption path whose
characteristics markedly differ from the case of diffusion with no "network externalities".

In view of the fact that the market ends up monopolized by a single innovation
(Proposition 2), let us concentrate on the equlibrium adoption path for one innovation, say

a. An analogous argument can be made for innovation f. The following Proposition holds:

PROPOSITION 3. (1) If dY/ é‘xa < | for all t, Xg at all equilibria, then there 18 a unique
equilibrium adoption path, which is continuous;
(i) If 9Y/0x > 1 at some fixed point, for all t, xﬁ,then there i3 a

continuum of discontinuous equilibrium adoption paths.

PROOF. Part (1). If dY/ 6xa 18 of one sign at all equilibria, then there can be only one
equilibrium, for each t, x s By varying t, we get a continuous equilibrium adoption path,
which 18 umque.

Part (n). If 9Y/ Oxa > 1 at some fixed point, for all t, then we have multiple static
equilibria. It implies that xa(t) is a correspondence, not a function, and therefore there is
a continuum of discontinuous equilibrium adoption paths.

Figure | illustrates three typical cases. In particular, from the implicit function theorem
applied to cpl(xa,xﬂ,t) =x, -1+ F(v*(xa,xﬁt)) = () we obtain that axa(t)/at 20
according to 1 + BF/é‘xa Z 0, that 1s, 0Y/6xa s L which 13 in keeping with Figure 1.



13

FIGURE ;

(e)

(x)



13
-t

FIGURE 1

FE R

- - -

by Ta

s ..v iR §

4t

il - - - - -t O

L]

1t

(c)

)



14

Remark 3. The equilibrium adoption path 1s discontinuous in situations of strong network
externalities, or relative homogeneity among adopters.

Indeed, if we compute

, | . \ 1
g Wxgxgt)  gp P0G Xgh) X X gt) GPTTR R )X R g
R S

we get that JY/ Bxa > 1 implies, other things equal, high density of agents of a given type

(OF /Bv) or strong network externalities (9P / 3xa).

Remark 4. We can characterize the equilibrium adoption path with the tools of
catastrophe theory. To formulate the equilibrium analysis above into the standard
framework of catastrophe theory! we need to show that the equilibrium defined by (4)

and (5) minimizes a potential function. That 1s, the dynamical system:

dx Jdt = ¢y (x X pt) = %, = 1+ F((x X pt))

'Let us give here the definition of a catastrophe point:
Definition.

Consider a phenomenon occurring in the state space S and governed by parameters
belonging to the control space {). Assume that there exists a potential function V defined
on SxQ such that the phenomenon under study minimiges V restricted to Sx{w}, for a
given control w € Q. Let E be the subset of Sx{l consisting of pairs (s,w) such that s 13 a

minimum of V restricted to Sx{w}. Let II denote the restriction of the natural projection

1I: SxQ-Q. The singularities of II are called catastrophes and Thom's theorem asserts that,
if the control space §i is a Euclidean space of dimension less than or equal to five, then

there is a finite number of elementary catastrophes, i.e. of generic singularities of ﬁ, up to
a diffeornorphism of the state space S.
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dxﬁ/dt = <p2(xa,x6,t) =x5= F(v*(xa,xﬁ,t))

must be a gradient system. That 13, there must be some functions KI' K2, guch that
gol(xa,xﬂ,t) = - 5K1(xa,xﬁ,t)/ﬁxa, and <p2(xa,xﬂ,t) = - 5K2(xa,xﬁ,t)/0xﬂ. Then the

equilibria of the system:
(13) dx /dt = gpl(xa,xﬂ,t) =- 6K1(xa,xﬂ,t)/0xa
(14) dxﬁ/dt = goQ(Xa,xﬁ,t) = - 6K2(xa,xﬁ,t)/6x6

are precisely the singularities of K1 and KQ; that 1s, X Xﬂ are equihibria iff
0K1(xa,xﬂ,t)/8xa =0, (’)KQ(xa,xﬁ,t.)/axﬂ = (. Thus, the study of how the nature of the
system (13) (and also (14)) changes as t changes can be reduced to the study of the
singuiarities of Kl(xa,xﬁ,t) (and of Ko(x X 5t)).

Since cpl(xa,xﬁ,t) and cp2(xa,x5,t) are continuous in X and Xg respectively, it
follows that dxa/dt = <p1(xa,x5,t), dxﬂjdt = (pg(xa,xﬁ,t) 18 a gradient system.

Points in the graph of the equlibriumn correspondence where the tangent is vertical
are called singular points, or catastrophe points. A necessary condition for the equlibrium

adoption path to be discontinuous is that there exists a singular point. This occurs when

the following condition is satisfied:
Definttion 2.

A singular point is characterized by the condition:

BP(V*(xa,xﬁ,t),xa,t)/axa ~ 1
8P(v*(xa,xﬁ,t),xa,t)/6v

{18 IF(v¥(x %t
15) 9B (X gt)
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Condition (15) easily follows from the fact that Y(xa,x &t) must be tangent to x_ 1n order
to have a singular point (see Figure 1). Condition (15) certanly occurs if we have
dY/ (9xa > 1 at some fixed pont , as required in Proposition 3. It follows that the
condition dY/ Oxa > 1, that 1s, strong network externalities or relative homogeneity among

potential adopters, is a sufficient condition for the existence of a singular (or catastrophe)

point.

Remark 5. From part (i) in Proposition 3 we have that xa(t) can be a correspondence,
and hence the possibility of having a continuum of equilibrium adoption paths. The
question arises: i3 there a natural way of selecting among these equilibrium adoption paths?
That is, what is the economic meaning of possible jumps from one branch to the other of
the graphs of the equilibrium correspondence?

If one supposes that agents make their own decision at time t, based on the extent of
adoption at time t — £, € small, that is, each agent assumes that the extent of adoption at
time t is close to what it was at time t — £, then there exists a unique equilibrium adoption
path, given by the lower envelope of the increasing branches of the graph of the equilibrium
correspondence. Notice from Figure 1 that only in case (c) the equilibrium adoption path

is discontinuous. Under the circumstances of case (c) we have a fold catastrophe.

Remark 6. One may wonder how realistic the 1dea of a discontinuous equilibrium adoption
path is. There is a vast body of empirical research giving evidence of an S-shaped pattern
in the diffusion of innovations. One could argue that a discontinuous equilibrium adoption

path can be approximated with a steep S-shaped path (see Figure 1(c)).
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5. FINAL REMARKS

The adoption of innovations is a far more complex issue than has been modelled in
this paper. For example, our assumption of a continuum of potential adopters abstracts
from the possibility of considering the case where agents behave strategically: this would
produce a stochastic dynamic oligopoly game. Moreover, we assume adopters have
complete information with regard to the benefit of adoption, that 1s to say, there 1s no
uncertainty. Especially, we assume myopic decisions so that new firms decide to choose
the innovation of present maximum return. However, in the presence of '"network
externalities”, since benefits are conferred if future adopters go along with one's choice,
expectations about the future states of the adoption process become a very important
element, which should instead be taken into account.

Katz and Shapiro (1986a) consider a static version of the problem of competing
Ynetworks" of different standards in which "network externalities" accrue to increased
network size. It pays firms to provide large networks if potential adopters expect these
networks to be large and thereby commut their choice to them. If, prior to adoption,
sufficient numbers of agents believe that network a will have a large share of adopters, 1t
will; but if sufficient believe § will have a large share, it will. Katz and Shapiro show that
there could be multiple "fulfilled-expectation equilibria", that 13, multiple sets of eventual
network adoption shares that fulfill prior expectations. In their model, however,
expectations are given and fixed before the adoption process takes place.

More realistically, if firms are affected by future innovation choice decisions, one
should assume they would form beliefs about these decisions. Firms might then have
conditional probabilities of future states and they might base their choices on these belefs.
In choosing they would create an actual stochastic process which would be 1in fulfilled
expectations equilibrium 1if it were 1dentical to the believed stochastic process. In this

model, if one standard gets ahead by "chance" adoptions, its increased probability of doing
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well in the adoption market will further enhance the expectations of its success, which

implies that our result of Proposition 2 now would occur more easily.
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