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Abstract  —  Coupled mode theory (CM) is widely applied 

in integrated optics, while the rigorous Local  Mode theory 
(LM) is less known, being somewhat harder to implement. 
We compare the two theories in determining polarization 
coupling inside a laminated rib waveguide made of a-Si:H 
and SiO2.For moderate optical axis slant (low hybridization) 
and for fixed layer thickness the two theories show similar 
results but LM becomes mandatory when hybridization is 
important. 

I. INTRODUCTION 

In the realization of integrated optical circuits, single 
mode, polarization maintaining three-dimensional 
dielectric waveguides have great importance. The 
property of maintaining the polarization can be ensured 
by using of thin multilayer films which induce artificial 
birefringence [8]. The structure analysed consist of a very 
thin film  lamination (a-Si:H, SiO2) of layers of different 
refractive indeces alternating periodically high (n2) and 
low  (n1) values, exhibiting birefringence, as shown in 
figure 1. The optical axis of the artificial anisotropic 
dielectric is perpendicular to the lamination and slanted an 
angle ϑ  from the z direction. Infact we will analyze a 
waveguide that supports  a single LSE mode and  a single 
LSM mode, these will couple owing to the presence of the 
grating along the longitudinal axis created by the slant. 
We will consider in particular the negative uniaxial optical 
behaviour of laminated polarization beam-splitters (LPS) 
[1]-[8]. By means of the Effective Dielectric Constant 
(EDC) method we will determine the geometrical 
parameters  of  the rib waveguide in order to get a single 
LSE and a single LSM mode in propagation at the  
wavelength of 1.55µm, and we will represent the 
dielectric constant ε(x,z) inside the laminated guiding core 
as a square wave along the direction normal to the layers. 

II. METHOD OF ANALYSIS 

 
The five-component solution for an LSE (or LSM) mode 
can be expressed in terms of an Hertz vector, πh (or πe), 
directed along the y –axis .πh(x,y) is infact, proportionals 

to Hy whilst πe(x,y) is proportional to Ey. The scalar 
potential πh,e satisfy the wave equation: 
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The five-component solution for both LSE and LSM can 
be found according to: 
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The local modes are defined as the eigenfunctions of a 
locally uniform waveguide along the longitudinal axis 
having the same cross-section as the actual guide at the 
plane considered. Therefore, local modes are solutions of 
the transverse  wave equation: 
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We use the local mode theory starting from Maxwell 
equation in the rectangular coordinate system of figure 1,  
[9],[10]. 
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The LSE/LSM fields, of the rib waveguide in question, 
are reported in table I. By neglecting the radiation modes 
of the rib waveguide, the global transverse field of  the 
laminated rib at any point z=z0  can be expressed as a 
superposition of the discrete components in the two 
polarizations 
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The local eigenmodes y)(x,nE  and y)(x,nH  in eqn.5  are 

orthonormalised as follow : 
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 where the integration is carried out over the entire cross-
section S of the guide. Starting from (4) and utilizing (6) 
we obtain the following coupled transmission line 
equation: 
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The reactance (X) and the susceptance (B) matrices per 
unit length are defined as  
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For LSE modes we used the ordinary refractive index no , 
whereas for LSM modes we used ne(ϑ )[1]-[8].  
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We observe that the subscript 1 is referred to SIO2 and the 
subscript 2 is referred to a-SI:H. With respect to the ‘1Ω’ 
normalised mode impedance for both modes under the 
present normalization scheme, the modal amplitudes can 
be expressed  in terms of forward travelling waves with  
with amplitudes an  and backward travelling waves with 
amplitudes bn : 
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The subscript 1 below will designate the LSE mode while 
the subscript 2 will be associated to the LSM mode. 
Under the above hypotheses ,substituting (9) in (7) yields 
: 
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where : 
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c is the coupling coefficient between modes of different 
polarizations. In order to evaluate the coupling coefficient 
we represent  ε(x,z) as a square wave along the direction 
normal to the layers : 
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where: 
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Λ= 21 dd +  and ϑ  is the optical axis, as shown in figure 

1.b. The Fourier coefficients can be found as: 
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where f(x) represents the index distribution along the 
direction normal to the layers: 
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III. RESULTS 

For the rib waveguide the dimensions, as in figure 1.a and 
1.b, are : w =1.2 µm , t =0.4 µm , D =1 µm , d =0.6 µm , 
θ=20°, d1=100nm, d2=8nm, n1(SiO2)=1.465, n2(a-
Si:H)=3.24, ns(substrate)=3. These values guarantee the 
presence of just one LSE and one LSM mode propagating 
in the dielectric waveguide.  
 

Fig.1a: Cross-section of the laminated rib. 

Fig. 1b: Optical axis perpendicular to the laminated layers and 
slanted at an angle ϑ  from the z direction 

It is evident in figure 4b that, varying z from 0 to 90 nm, 
the values of curves become more similar. Figure 2 shows 
the coupling coefficient C(z) between the LSE and LSM 
mode for the two theories, [11],[12]. The positions of 
maxima and minima nearly coincide. The difference 
between amplitudes can be explained considering that the 
LM theory takes into account field hybridization losses, 
owing to the undesired coupling between the hybrid field 
components due to the discontinuity caused by the 
lamination.  

 

 Fig.3: Coupling coefficient (θ=20°) 

Fig.4a Coupling coefficient varying with θ at z=0 

Fig.4b Coupling coefficient varying with θ at z=90.56nm 

In figure 4.a and in figure 4.b are reported the curves of 
C( θ ) computed at z = 0 and z = 90.56 nm respectively. 
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As shown in figure 3 the positions of the peaks moves as z 
varies, and for fixed values of z they may coincide, but in 
all figures is evident as the LM theory has an amplitude 
smaller respect to the CM theory (power losses).  

V. CONCLUSION 

In summary, we have compared two different theories in 
order to analyze thin multilayer films rib waveguide, as 
utilized in all optical systems where polarization control is 
required (e.g. integrated passive optical polarization 
switches and isolators). This study shows clearly that in 
order to model accurately this integrated structure we 
have to use the rigorous LM theory, as it considers the 
coupling of the hybrid field components owing to the 
slanted thin films lamination. 
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TABLE I 
LSE – LSM  Potentials in the guiding region 
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