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Abstract

In this paper we study a one-shot game of R & D between two price-
setting firms that are asymmetrically placed as they praoduce at
different cast levels. First we praove the existence and the properties
of a noncooperative equilibrium. Then, we show that the higher (lower)
the discaount rate, the lower (higher) the probability of Innovating of
the current leader. In a specialised version of the model we establish
the effect of the productivity of R & D expenditure, initial cost gaps

and market size on the expected identity of the winner of the patent
race.



1. Introduction

D this paper we analyse a game of Recearch and Development (R & D)
for a cost veduting lonovativn betwesn two techriologically asymme b io
firms. A large part af the recent game theoretic literature un R & D
has focused on symmetbric games (see Reinganum 1984 fo. a survey of the
ear iy literature and our 1988 a,b papers). However, there are at least
two  strands of literature in which the problem of asymmetric R & D
races arises.

The first one includes papers by Gilbert and Newbery (1982),
Reinganum (19837, and the subsequent debate in the American Economic

Review. This debate deals with the comparison of the incentives o
obtaln a patentable inncvation of an incumbent firm and & potential
entrant. The analysis aims at establishing which firm invests more in
R & D.

Asymmetric games have also been investigated 1n models with a
sequence of R & D races (e.g., Reinganum 1983, Vickers 1984, Beath et
al. 1987). Since a race is a contest in which 1t is possible to
distinguish sharply between the winner and the loser, after the first
race firms will be in an asymmetric position even if they were
symmetrically placed at the outset. In other words, the second race of
a multistage model will necessarely be one in which there is a high
cost and a low cost firm.

To the best of our knowledge, all the contributions dealing with
asymmetric races of R & D have focused on two rather extreme cases.
Either the vace is modeled as a deterministic game, so that not only

the type, but alss the timing of the innovation is known at the

outset, or the imovation is assumed to be drastic, that 1s <o
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dramatic as to give the winner monopoly power. The first line of
research has been pursued, e.g., by Gilbert and Newbery (19823,
Dasgupta (19B4), Vickers (1984) and Beath et al. (1987), while the
second one has been explored, e.g., by Reinganum (1983) and (1935).
These two extreme hypotheses often lead to opposite results. In
the incumbent vs. entrant debate, Gilbert and Newbery (1982) show that
1f the R & D race is deterministic, then the current monopolist will
have a greater incentive to innovate than the challenger. On the other
hand, Reinganum [19831 proves that in an uncertain environment, with a
drastic innovation (so that the loser of the race makes zero prafits)
in equilibrium the challenger would invest more than the incumbent.
The reason why these hypotheses allow one to reach a definite
conclusion may be explained in terms of what Fuderberg and Tirole
(1986, p. 32) have christened efficiency effect and replacement

effect. The former operates in favour of the firm whith the greatest
difference in payoffs between winning the race and letting the rival
win it. The latter operates against the firm which is currently making
positive profits, when there is uncertainty on the timing of
innovations: the existence of current positive profits induces the
leading firm to reduce its effort so that the time of successful
completion of the new technology is postponed. Since in Gilbert and
Newbery’s madel the timing of innovations is fixed, there is no
replacement effect; then, the asymmetric structure of firmg’
incentives gives a higher preemptive payoff to the incumbent than to
the entrant. On the other hand, the drastic character of innaovations

implies that the efficiency effect in Reinganum’s (1983) model is the

same for the two firms, so that only Lhe replacement effect operates.



The same argument explains the different results of Vickers
(1986 and Reinganum (1985). In Vickers' model. there is o
replacement effect because the timing of innovations is fixed. Since
under Bertrand competition in the product market the efficiency effect
always works in favour of the technological}y leading firm, it follows
that the leader will always win {(Increasing Dominance). On the other
hand, Reinganum’s (1983) model can only accomodate the replacement
effect, because she assumes drastic lnnovations; then, the efficiency
effect 1s the same for both firms, and the replacement effect gives
the challenger the greatest incentive to Innovate.

In a more general setting, however, both effects must be taken
into account. In this paper we shall show that under Bertrand
competition in the product markel the efficiency effect and the
replacement effect go in opposite directions. As a consequence,
generally speaking it is not possible to unambiguously identify the
expected winner of the R & D race. Nevertheless, we are able to find
out which ecenomic variables are responsible for the prevalence of
either effect.

Specifically, in a general setting we show in section 2 that the
higher the discount rate, the more likely the replacement effect
dominates. Hence, the higher the discount rate, the lower chance has
the current leader to win the technological race. 7o proceed further,
we speclalise the model by assuming a specific well-behaved hazard
function (section 3) and a linear demand function (section 4). We show
that a higher productivity of R & D expenditure increases the
probability that the current leader invests more than the challenger;
the same conclusion follows from an increase in the size of the market

and the initial cost gap. On the other hand, the effect of an increase



in the size of the innovation (as medasured by the difference between
the current lowest cost and the post 1nnovation cost) on the two
competing firms’ efforts in R & D is ambiguous. Section 5 contains
some concluding remarks. Finally, some technical issues are relegated

to three appendices.

2. The asymmetric R & D game under Bertrand competition: the general

case

In this section we study a R & D race between two price setting firms
which are asymmetrically placed as far as the technology is concerned.
We assume that Tfirms compete 1n prices in a homogeneous product
market, so that either the market is monopolised or a Bertrand
equilibrium is established.

Production takes place under constant returns to scale. Let B be
the low cost firm and A be the high cost firm. Denote by c, and ce the
constant marginal and average costs of the two firms, with cg < Ce -
Let 1wy be B’s current profit; obviously A’s current profit is zero.

Let wus denote by pmic) the monopoly price associated with a

constant marginal and average cost c. If

DM(CE) S Ca (1)

then B is a monepolist, A is a potential entrant and the equllibrium

price 1s pumice). On the other hand, 1f

pm(CB) > Cery (E)



then B 1s a Bertrand leader, A is the inactive firm in the asymmeti-ic
Bertrand equilibrium, and the equilibrium price 1s c,. Notice that in

both  cases A’s profits are null, while B's profits are positive.

Obviously, B's profits are larger in case (i) Lhan in case (2.
Besides competing in the product market, {irms compele fur a

single patentable innovation; the winnmer of the patent race will get

the exclusive right to pruduce forever at a cost level cx < Cw. We

assume through the paper that

Prmlc¥®) > cgn (3

that 1s, the innovation 1is not drastic in the sense that 1f the
initially less efficient firm wins the technological race, 1t will not
monopolise the market. On the other hand, if B wins the race, three
cases are possihle, i.e.:

(i1) (2) holds, and pu(c*) £ cn , s0 that B becumes a monopolist;

(111)  (2) holds,; and puml(c*) > cs 5, S0 that B remains a Bertrand
leader, while increasing its technological lead.

In the post-innovation equilibrium (monopoly or Bertrand
equilibrium), if B has innovated its profit will be Te* per unit of
time and A will get nathing forever; if A has innovated, its profit
will be wa* per unit of time and B will receijve nothing forever. In
all the three cases above, Ta¥ > Wa*, provided that the marginal
revenue curve 1s decreasing (see Appendix 1).

We assume that the timing of the innovation is uncertain, and

that each firm’s probability of lnnovating is  an tncreasing
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exponential function of its R & D expenditure (see Reinganum 1984 for
details). As far as the R & D process 1s concerned, the two firms
share Lhe same teclaology. For sake of simplicitys we assume that the
vazard Tunclion hiix, ), 1 = A,By io slrielly cuncave and salisfies Lhe

followiniy conditiaons

W{gy = & (4.1

1lm B (k) —- O td.11)
Xy T @

Iim 1 (xy) = @« (L.111)
Ky —»G

These conditions quarantee that the firms® maximisation problem will
always yield an interior solution, and Llhatl the second order
conditions are satisfied.

Let x and y be the R & D expenditure of firms A and B,
respectively. We assume that R & D costs are non contractual as in Lee
and Wilde [1980]. Firms noncooperatively choose the R & D expenditure

in order to maximise the discounted value of expected profits net of R

& D cost. Thus, A’s payoff is

hixlmg*/r - x

r o+ hix) + h(y)

and B’s payoff is

Wiy ne*/r + Wy - y
Wee = (&3
ro+ hix) + hiy)
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where v 1s the discount rate. Differentiating (5) and (&) with 1 espect

ta « and v, respectively, we get

S P dmad + By b {kina®/r = 1+ —~ Bix) - iyl + H {x)w

- (7))
& by + hix) + hiy)ge
and
S W, Ty e = n) W RO R {yine*/r = ¢ = hix) — hiy) + hiiy)y
S (8)
Sy Ir + hix) + hiy)12

The equilibrium R & D expenditures x# and y* are therefore the

solutions of the following system

N {x)mp*® + hiyIh " {xina*/v — + = hix) - hiy) + h'{x)x = 0 ("]

NPy (me* — w) + hOOR? Cydme*/r - v - hix) - hiy) + hilyly = 0 (1)

It can be shown ' that the hypothesis h’’ < 0 implies that &§f/8§x < 0
and &g/8y < 0, where f and g denote the L.H.S5. of (9) and (107,
respectively.

As a preliminary result, we show that an equilibrium of the R & D

game exists,

Proposition 1. An equilibrium X*,y* exists in which both x%, y* > 0.

Proof. See Appendix 2.



We are interested in analysing which firm makes the largest R & D
effort. Diagrammatically, we want to establishk under what conditians
the intersection of the reaction curves lies above or below the 43¢
straight line.

A quick anspection to (9) and (10) reveals that tewo opposite
Torces are at work. Firstly, there ie the efficiency effeci, that is
the difference in the payoff of a firm between wining the race and
letting the rival win it. In the present model, this gives a greater
incentive to the current low cost firm than to the currently high cost
firm, since me* > wa*. Secondly, current profits reduce B’s incentive
as e enters with a negative sign in expression (8) which implicitly
defines B’s incentive to innovate. This is the so-called replacement

effect. As Fudenberg and Tirole [1984] argue,; generally speaking
either effect may dominate, that is, the efficiency effect, measured
by (we* — wa*), may be greater or lower than s, whilch measures the
replacement effect.

Another way to look at the incentives to imnovate of the two
firms 1s to consider the first two terms which appear on the L.H.S§. of
(?) and (10). In this way, ane may distinguish two notions of
incentives: the first one is the difference between the flow of
profits accruing forever to the winner and those accruing to the
losers; the second one is the difference between the prospective
profits to the winner and his current profit. The former (i.e., wgt -
Wak) reflects the presence of rivalry in the techriolugical
competition: B anticipates that, should it fail to lnnovate, A would
succeed and gain a technological lead. Obviously, an analogous

redsoning would apply to A. Thus, this effect characterises situations



of strateyic interaction. Secondly, the differences (ma*® — ng)  and
(a* — nma) measure the incentives to invest in R & D irrespective of
the presence of rivals. This is the only incenlive taken into account
In the decision theoretic approach to R & D. Clearlys under Bertrand
competition in the product market, gur factorisation of the i1ncenlives
colncides with that of Fudenberg and Tirole (1986).

First of &ll, we shall shaow that the equilibrium R & D

expenditure of each firm is positively related to both its incentives.

Proposition 2. The equilibrium R & D investment y {(resp., x) is an
increasing function of np* (resp.; 1wa%) and (wep* - T) (resp., (na* -

T ) ).

Proof. Implicitly differentiating the equilibrium condition (10) one

gets:
Sy#* hix) h’(y)
F e > 0,

Stk r{édg/dy)
and

Sy+* h?(y)
~————-———~—-—="-——-—-——-—>O,
S{Tp* ~ Wg) 8§g/8y

where we have used the inequality &g/8y < O. Analogously,

Ex* hiy) h?(x)

ST % r{(&f/8x)



by the inequality &f/éx < 0. (Natice that Ta = 0.) »

This result implies that in order to compare the effects on R & D
lnvestment of different initial casts one can simply facus on  the
comparison between the incentives. That 1s, ane has to compare mwe% and
Ta¥* on  the one hand, and (mp* - 7.) and s 00 the other hand. We
already know that mw.* » Ta¥., We show in Appendix 3 that wax > Cmp¥ -
Tls 1n all the three cases we have distinguished above. Thus, the two
effects go in opposite directions. As a consequence, generally
speaking one cannot unambiguously establish the identity of the firm
which has the greatest incentive to 1nnovate.

At this level of generality, the discount rate r is the aonly
parameter of the model. We now show that r may be responsible fur one
effect to prevail over the other ane. More precisely, the relative

strength of the two effects is a strictly monotonic function of r.

Proposition 3. There exists a unigque r™ > 0 such that, if r > r™~ then

X* > y¥, whereas if r ¢ r~ then y* D x¥,

Proof. Let wus suppose that x = Y. Inserting this condition into
equatiaon (1) yields a wunique value of x and Ys say z¥,
Diagrammatically z#% is the abscissa of the intersection point of A’s
reaction curve and the 45° line (see figure 2). Clearly, if it turns
out that &Wn/8y, evaluated at x = Yy = 2%, 1s positive, then it follows
that y* > x*; if it turns out that dWe /Sy, evaluated at x = y = z#%, is

negative, then it follows that y*¥ { x*. Proceeding in this way we get



Sip
— S (¥ - W o~ Ta%) + hi{x)(mp* —Tma%)/r (11)
8y |x=y

W/ Ex=0

Clearly, the R.H.S. of (11) is a strictly decreasing function of -,

which tends to (Mm% - Wy - we*) < 0 as r goes to 1nfinite, and tends
to infinite as ~ goes to zera. (Notice that x decreases with ry and h
is an increasing function of x.) This suffices to prove the

Proposition. =«

The economic intuition behind Proposition 3 is that a large
discount rate reduces the present value of post-innovation profits,
and thus makes the 1nnovation less attractive to both firms. As a
tonsequences the efficiency effect becomes less impartant and the

replacement effect ends to prevail.

3. Parametrisation of the model I: the hazard function

In this section we specialise the model presented in section 2 by

assuming the following well-behaved hazard function:

hiz) = 2r4z 2= X,y (12)

where H > O is a parameter measur ing the productivity of R & D
expenditure.

It can be shown that the effects of B on the firms’ incentives to
innovate are exactly opposite to those of the discount rate .

Actually, wunder this parametrisation of the hazard function, 1t turns

o
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out that a single parameter, i.e. the ratio 0 = H/v, captures the role

of both the productivity of R & D expenditure and the discouni rate.

N, L

Proposition 4. There exists a unique 8% > 0 such that, if & > 6~ then

-

X¥ > y*, whereas i1f 6 < 6"~ then y¥* Uox*,

Proof. Proceeding as in the proof of Proposition 3, using (12), we get

(SMB
— = (We®* — W — Wp¥) + 28dz* (¥ —mak) (13

Sy X=y
SWo/Ex=0

where z* is the positive solution of the following equation (abtained

by setting x = y in equation (9))

Rua*/dz + 2H20%/r — v - 3udz = O

ar

36z - (262n4% ~1)Jz — Bwad = O (14)

This equation has two roots of oppasite sign. Clearly, only the

positive solution is economically meaningful. Differentiating (14)

with respect to 6 we get

ddz#* 3z - 4BnaRdz — mak
= - (13)
de 664z ~ (262p,%* —~1)
The dernominator of (15), evaluated at z = Z¥, 15 positive. Using (14),

ot
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the numerator of (13) reduces to [-26m,% — 1/61Jz < 0. It follows that
dyz#*/d6 > 0. Clearly, then, 8Jz% is an increasing function of 6, which
tends to 0 as 6 goes te 0 and tends to infinile as 6 gues tu infinite.

By (13), this suffices to prove Proposition 4. w

4. Parametrisation of the madel II: the hazard function and the demand

function

In this section we further specialise the model presented in section 2

by assuming (12) and the following linear market demand function

p=a-g ) a>»o (16)

Let us define the following strictly positive parametrs:

S = a - Cp is the size of the market,
M = Cs — Cs 15 1Initial cost gap,
N =Ce — c*¥ 15 the cost improvement (strictly speaking n measures the

cost improvement as of firm B, whereas for firm A the cost improvement

would be measured by m + n).

We mantain that, even winning the patent race, A cannot galn a
monopolistic position (see (3)). In the present setting this condition

1s equivalent to
s >m+n (17)

In what follows we shall focus only on case (iii) defined in

section 2. Under the parametrisation of the demand function (14), A’s



profits in case he wins the race (so that he becames & Ber trand

lvader) are

Te¥ = nils + m) (187

On the other hard, B’s profits (if B is a Bertrand leader buoth before

and after the innuvation) are

e = MS (19)

¥ = s{m+n) (20)

Plugging (16), {17) and (18) into (117, we get the following

expressiuon

Sl CRIz*
_— = Isim+r) - ms - nl{s+m)] + {s{m+n) - ni{s+m)]
Sy X=y r

SWa/8Ex=0

which can be wriften as

SWe CHJIz*

_— = - mn +

Sy X=y r
Wa/Ex=0

m {(s—-n) (21)

where z% is the solution of

e

oy



# 2r2n{s+m)
— nls+m) + . - ¢ - 3HJz = O (ce)
dz r

Let us define § = n(s+m). Implicitly differentiating (227 wilh respect

to § we get

dz* c{epdz/v + 1)
— = » 0O (235
dR /2 + 3

From (23) it follows that z# is an increasing function of s, m, and n.

Hence we liave the following Froposition.

Propoesition 3. For s and/or m large enough, the current leader has a
greater incentive to innovate (hence, a greater probability tu win the

patent race) than the follower.

Froof. Clearly, the R.H.5. of (21) is an increasing furction of s,
both directly and via z#. It is apparent that the R.H.5. of (21)
increases at a greater speed than s, and therefore will become
positive for s large enough.

As far as m is concerned, let us divide the R.H.S. of (21) by m.
The resulting expression, i.e. [-n + 2Rdz*(s-n)/r1, depends on m via
z¥. We have shown that z#* is an increasing function of m; furthermore,
since (22) is quadratic in Jz¥%, it is clear that Jz* goes to infinite
as m goes to infinite. It then follows that for m large enough, the

R.H.S5. of (21) is positive. «

Notice that the effect of n (i.e., the cost improvement) is



amblgunus, since an increase 1n n reduces the first term on the R.H.S
af {217, and has lwo opposite effecls on the second  term: one ie
direct and negetive, the cther is positive via z+.

The content of Proposition 5 1s not obvious. Indecds an inc oase
in lthe size of the wmarket s has two contrasting effect 10 that it
affecls toth the pre-ilanavation and Lhe puesti—innavallon prafits. More
precisely, N LCrease 1 S vy sases the rurrent profits  of  the
ieader, thus enhancing the 1 eplacement effecl; un lhe uther hand, it
Increases  the post-innovation profits of the winner. From (18) and
(20) it is clear that the effect on post-innovation profits is
straonger  for the leader than for the follower . Proposition 5 shaws
that  the net effect of the varialions in the replacement and Lhe
efficiency effect favours the leader. Similar a guments exlain the

effecis of an incirease in m.

3. Cancluding remarks

In this paper we studied an asymmetvic race of R & D belween two
technologically asymmetric price-setting Tirms. In section 2 we proved
a sufficiently geneial result about the role of the discount rale an
the expected identity of the winner of the palent race. The intuition
about that result (Proposition 2) relies upon the distinction between
the replacement effect and the efficient effect and their relationship
with the incentives to innovate. The effect of other economic
parameters has been shown within a specialised version of the model in
sections 3 and 4.

Amang  the extensions of ouwr model, it is wortih mentloniny the

~1



case in which firms are guantity-setting oligopolists in the product
market <o that in the resulting equilibrium both rivals make positive

{although different) profits.

fnl



Appendix 1

In this Appendix we show that me* > wa*. This is obvious when B 1s a
monopolist in the post-innovation equilibrium (cases (i) and (ii)). If

B remains a Bertrand leader (case (iii)), its profits will be

Tp¥ = (Cn - c*) glca)

whereas A’s profits in case A wins the race will be

Ta* = (cp - c*) glcg)

where gq(.) denotes the demand function. Now, if pmlc*) > cay then B’s
profits if B wins are given by the difference between the areas of the
regions ABC and CDE, while A’s profits in case A wins are given by the
difference between the areas of the regions ABC and CFG (see figure
1.

If the marginal revenue curve is downward sloping, then the difference
between the two areas is clearly positive. (Actually, it would
suffice +that the marginal revenue curve cuts the post—innovation

marginal cost curve from above only once.)

(figure 1 here)

Appendix 2

In this Appendix we prove Proposition 1. Let us consider the two
equilibrium conditions (9) and (10). They implicitly define the best
responses of firms A and B, respectively. We now investigate the

properties of these reaction curves. To begin with, let us consider

19



firm A’s reaction curve. When y = 0, (9) reduces to

RO ma* - hix) + ho(x)x = r (A.1)

Let us denote by H(x) the L.H.5. of (A.1)., By (4.i1)~(4.1ii) it follows
that H(0) = o, By the cancavity of h, H’{(x) = h’ 7 (x)(wa% + x) < O. By
the concavity of h again, it follows that hi(x) - h’(x)x > O, which
together with (4.11) implies H(em) < 0. Hence we may conclude that
equation (A.1) has a unique positive solution x°.

Next, implicitly differentiating equation (9) we get

dx §t/d8y
— F T e x 8§ /8y = Ry KT ()W ak /T~ 1]
dy §f/8x

It follows that there exists a unique x~ > 0 such that

dx/dy > 0 iff x < x*, and dx/dy = 0 iff x = x*

The critical value x* is implicitly defined by h’(x™) = r/ug*. By the
concavity of h, it follows easily that x~ > x°. Furthermore, since f
is a strictly monotonic function of x, there is a unique best
response of A to any strategy y chosen by B. Then, the reaction
function must be a continuous, strictly increasing function which
tends to infinite as x goes to x™.

Obviously; a similar reasoning applies to B’s best response (see
figure 2). Hence, an equilibrium exists in which both x and y are

strictly positive &>,

(figure 2 here)



Appendix 3

In this Appendix we show that m.% > m.* - Tn. We distinguish belween

cases (1}, (1i}, and (iii).

Case (i). In this case, the difference Ta¥ ~ {(Wg* ~ W) 1s the shaded

area 1n figure 3.

{(figure 3 here)

Case (ii). In this case B is a Bertrand leader before the innovation,

but becomes a monopolist after the innovation. Hence, the following

inequalities hold:

PrlCe) > Cay (B is not a monopolist before the innovation)

Prml{C*) > Cpy {the imnovation is non-drastic)

I’

Prlc¥®) 2 Cq. (B becomes a monopolist winning the patent race)

If prlc*) = cas the result follows as in case (111) below. Let us now
suppose that c* falls. If the marginal revenue curve is downward
sloping, then paic#*) < cg. Clearly, ng is independent of c#. Then, the

result follows if ma* grows more qulickly than we* as c* decreases.

NOW’
dwa*
= - q(CB)
dc#*
because A becomes a Bertrand leader in case he wins the patent, so

that his profits will be (cp - c*) q{ce). Moreover,

n
o

Lt



drig*
= - MR- (c*)
do#*
where MR™* is the inverse marginal revenue function. 5ince by
hypothesis ;. < pnic¥*), we have qlcwl » MR {c#). This completes the
proof in case (11).

Case (il1). In this case, the difference fig¥ — (Wp* - W) 1s  the

shaded area in figure 4.

(figure & here)

il
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FOOTNOTES

(1) Indeed

ET/8x = h™  (x)m % + R77 0 hiy)ma*/y + B 7 (x)x

which is clearly negative if h*’ < O. By the same token,

8g/8y = h’ 7y ime¥* ~ wu) + 77 (yih(x)ne/r + h>7¢y) < 0.

(2) Further conditions on the third derivative af the hazard

h would be required to assure uniqueness of the equilibrium.

[
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